A real-world challenge in data science is to develop interactive methods for quickly analyzing new and novel data sets that are potentially of massive scale. In this talk, Bader will discuss his development of graph algorithms in the context of Arkouda, an open-source NumPy-like replacement for interactive data science on tens of terabytes of data. Massive-scale analytics is an emerging field that integrates the power of high-performance computing and mathematical modeling to extract key insights and information from large-scale data sets. Productivity in massive-scale analytics entails quick interpretation of results through easy-to-use frameworks, while also adhering to design principles that combine high-performance computing and user-friendly simplicity. However, data scientists often encounter challenges, especially with graph analytics, which require the analysis of complex data from various domains, such as the cybersecurity, natural and social sciences. To address this issue, we introduce Arachne, an open-source framework that enhances accessibility and usability in massive-scale graph analytics. Arachne offers novel algorithms and implementations of graph kernels for efficient data analysis, such as connected components, breadth-first search, triangle counting, k-truss, among others. The high-performance algorithms are integrated into a back-end server written in HPE/Cray’s Chapel language and can be accessed through a Python application programming interface (API). Arachne’s back-end server is compatible with Linux supercomputers, is easy to set up, and can be utilized through either Python scripts or Jupyter notebooks, which makes it a desirable tool for data scientists who have access to high performance computers. In this talk, Bader presents an overview of the algorithms his research group has implemented into Arachne and, if applicable, the algorithmic innovations of each. Further, Bader will discuss improvements to our graph data structure to store extra information such as node labels, edge relationships, and node and edge properties. Arachne is built as an extension to the open-source Arkouda framework and allows for graphs to be generated from Arkouda dataframes. The open-source code for Arachne can be found at https://github.com/Bears-R-Us/arkouda-njit. This is joint work with Oliver Alvarado Rodriguez, Zhihui Du, Fuhuan Li, and Mohammad Dindoost. Bader is supported in part by the National Science Foundation awards CCF-2109988 and OAC-2402560.
David A. Bader is a Distinguished Professor and founder of the Department of Data Science in the Ying Wu College of Computing and Director of the Institute for Data Science at New Jersey Institute of Technology. Prior to this, he served as founding Professor and Chair of the School of Computational Science and Engineering, College of Computing, at Georgia Institute of Technology. Bader is an elected Board Member of the Computing Research Association (CRA). He is a Fellow of the IEEE, ACM, AAAS, and SIAM; a recipient of the IEEE Sidney Fernbach Award; the 2022 Innovation Hall of Fame inductee of the University of Maryland’s A. James Clark School of Engineering; a 2025 inductee of the Mimms Museum of Technology and Art’s Hall of Fame; and the 2025 recipient of the Heatherington Award for Technological Innovation. The Computer History Museum recognizes Bader for developing the first Linux-based supercomputer which became the predominant architecture for all major supercomputers in the world.