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Fig. 1: Connectivity-only vs. Neuron Morphology-Aware Motif Analysis. (a) Previous work [39,67] has focused on interactive motif
analysis, where neurons are represented as simple nodes connected through synapses. (b, c) This representation lacks scientifically
relevant neuron morphology, leading to ambiguity in motif queries. (d) Our approach integrates neuron morphology into motif queries
and enables searching motifs interactively by explicitly sketching neuron segments and their respective synapses. (e, f) Hence, users
can perform targeted queries for both morphological and connectivity patterns. Data: FlyEM Hemibrain (a-c) [56], MICrONS (d-f) [64].

Abstract—Connectomics, a subfield of neuroscience, reconstructs structural and functional brain maps at synapse-level resolution.
These complex spatial maps consist of tree-like neurons interconnected by synapses. Motif analysis is a widely used method for
identifying recurring subgraph patterns in connectomes. These motifs, thus, potentially represent fundamental units of information
processing. However, existing computational tools often oversimplify neurons as mere nodes in a graph, disregarding their intricate
morphologies. In this paper, we introduce MoMo, a novel interactive visualization framework for analyzing neuron morphology-aware
motifs in large connectome graphs. First, we propose an advanced graph data structure that integrates both neuronal morphology and
synaptic connectivity. This enables highly efficient, parallel subgraph isomorphism searches, allowing for interactive morphological motif
queries. Second, we develop a sketch-based interface that facilitates the intuitive exploration of morphology-based motifs within our
new data structure. Users can conduct interactive motif searches on state-of-the-art connectomes and visualize results as interactive
3D renderings. We present a detailed goal and task analysis for motif exploration in connectomes, incorporating neuron morphology.
Finally, we evaluate MoMo through case studies with four domain experts, who asses the tool’s usefulness and effectiveness in motif
exploration, and relevance to real-world neuroscience research. The source code for MoMo is available here.

Index Terms—Visual motif analysis, Scientific visualization, Neuroscience, Connectomics.

1 INTRODUCTION

Connectomics is a rapidly advancing subfield of neuroscience focused
on mapping the intricate network of connections between neurons
down to the level of individual synapses. The overarching goal is
constructing a comprehensive wiring diagram of an organism’s ner-
vous system. Recent breakthroughs [16, 29, 55, 63] in imaging and
automated neuron reconstruction have made this vision increasingly
tangible. This resulted in the publication of a complete connectome of
the fruit fly brain [15] as well as cubic-millimeter-scale connectomes of
both mouse [64] and human [59] brain tissue. These datasets now en-
able scientists to trace complete neural circuits that underlie all aspects
of information processing in the brain. Analyzing such circuits has
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already yielded transformative insights into the neural basis of behavior.
For instance, studies of the fly connectome have advanced our under-
standing of navigation [28], vision [46], and motor control [35], among
many others. However, extracting meaningful information from large-
scale connectomes remains an enormous challenge due to several key
factors. First, modern connectomes are extraordinarily large, exceeding
a petabyte size, making them computationally intensive to process.
Second, neurons are complex, tree-like structures that extend across
significant spatial distances. This morphology complicates the inter-
pretation and querying of connectivity. Third, the connectivity graphs
are extremely dense: a single neuron can form synapses with over
1,000 partners, rendering traditional node-link diagrams ineffective
for visual analysis. To address this complexity, neuroscientists often
employ motif analysis [61] as a divide-and-conquer strategy, breaking
down large connectomes into smaller, more interpretable subgraphs.
For example, motifs in the H01 dataset [59] have been identified based
on strong pairwise connections via multiple nearby synapses. Similarly,
motifs involving compass neurons in the fruit fly’s central brain have
elucidated mechanisms for encoding directional information [28]. Cru-
cially, these analyses consider both synaptic connectivity and neuron
morphology. Nonetheless, current interactive tools for connectomic
analysis [38, 39, 51, 67] lack support for querying networks based on
both synaptic connectivity and morphological structure.

In this paper, we present MoMo, a novel interactive visualization
and analysis tool designed to enable neuron morphology-aware mo-

https://github.com/VCG/momo


Fig. 2: Data Overview. Modern connectomics reconstructs tens of
thousands of neurons connected through millions of synapses. Here, we
show a single neuron (blue) and a single synaptic connection to a pink
neuron (orange box). Data: Human cerebral cortex / H01 [59].

tif analysis in large-scale connectome graphs. Our contributions are
four-fold: (1) First, we conduct a detailed study of domain-specific
goals for interactive motif analysis incorporating neuron morphology.
Based on these insights, we derive a set of analytical tasks that MoMo
must support to meet neuroscientists’ needs. (2) Second, we introduce
a novel graph-based data representation for connectomes that jointly
encodes synapse-level connectivity and neuronal morphology (Sec. 6).
In this model, each neuron is composed of interconnected segments
reflecting its branching structure, and synaptic connections link these
segments across neurons. This structure dramatically reduces data size
compared to voxel-based representations and enables the use of estab-
lished graph analysis techniques for efficient data processing. (3) Third,
we implement a Jupyter-based prototype of MoMo that supports the full
set of analysis tasks. The tool features an intuitive sketching interface
that allows users to draw motifs—including both morphological com-
ponents and synaptic connections—as query patterns. These sketches
are used to search the underlying graph representation, and matching
instances are visualized in interactive 3D renderings, allowing detailed
inspection of how motifs are embedded within neural tissue. (4) Fourth,
we evaluate MoMo through pilot and case studies on two state-of-the-art
connectome datasets, conducted in collaboration with expert neurosci-
entists. Each neuroscientist selected a phenomenon of interest, such
as shunting/lateral inhibition or center-surround receptive fields, and
successfully sketched and queried for corresponding motifs. MoMo
enabled experts to analyze potential instances of these phenomena
by sketching individual neuron segments and synapses—granularity
not supported by existing cell-level abstractions (see Section 10 for
examples).

2 RELATED WORK

Visualizing Connectomes. Beyer et al. [7] present a comprehensive
survey on interactive visualization techniques for connectome analysis.
Prior work in this space can be broadly categorized into four areas:
(a) data structures and algorithms for interactive connectome analysis
[5, 6, 22, 24, 60], (b) interactive spatial exploration [4, 25, 44, 54, 65],
(c) connectivity analysis [1, 20, 21, 54, 67–69], and (d) visualization
for scientific communication [10, 11]. Ganglberger et al. [22] present
a spatially-driven visual analytics framework for iterative exploration
of large, heterogeneous brain datasets. While their approach enables
flexible navigation and multimodal data encoding, it lacks fine-grained
motif search at the level of individual neuron segments and synapses.
MoMo advances the state of the art at the intersection of interactive
spatial analysis, connectivity analysis, and data representations for
connectomics. In contrast to previous systems, which typically support
separate exploration of neuronal morphology and connectivity [67],
MoMo enables integrated, interactive queries that jointly consider both
aspects. This is achieved through a novel graph-based representation
derived directly from neuronal skeletons, allowing morphology-aware
motif searches. Existing approaches often abstract the connectome
as simple node-link diagrams, with nodes representing entire neurons
and edges denoting synaptic connections. While other representations,

such as dendrograms [62], embed aspects of neuronal structure, they
do not support flexible, targeted motif queries. By bridging structural
morphology and connectivity, MoMo supports new modes of interactive
analysis in large-scale connectomic datasets.

Visual Motif Analysis. Visualizing network motifs is a well-
established task in network visualization [9, 18, 33], with conventional
techniques primarily applied to domains such as social networks, ci-
tation graphs, and web connectivity. However, these approaches do
not directly extend to connectomic data due to the inherently three-
dimensional spatial structure of neurons—the nodes of connectome
graphs—which introduces domain-specific challenges for motif visual-
ization. To address this, Vimo [67] introduced an interactive system for
constructing and querying motifs within connectomes. MoMo builds on
this foundation by enabling the specification and analysis of morpho-
logical motifs—substructures that incorporate both neuronal branching
geometry and precise synaptic connectivity. This extension allows users
to define queries that account for spatially and structurally localized
connectivity patterns, a critical feature for understanding neural cir-
cuits. In parallel, computational methods have been proposed for motif
detection in connectomics. Matejek et al. [37] presented a parallelized
algorithm for efficient motif enumeration in large-scale brain datasets.
At the same time, DotMotif [39] introduced a domain-specific language
designed to express motif queries in a concise, readable form, with
backend integration into Python and Cypher [19]. While these systems
focus on computational efficiency and query abstraction, MoMo com-
plements them by providing an interactive, visual environment tailored
to spatially embedded morphological motifs in connectome data.

Visual Graph Query Interfaces. Interactive visual graph query in-
terfaces have been explored in various domains, such as bibliographic
data [72], and genomics data [42], among many others. Visage [49, 50]
shows how visual graph query interfaces can simplify pattern analy-
sis in simple conventional graphs, such as movie and actor networks
derived from Rotten Tomatoes. Follow-up work [48] has investigated
new visualization approaches to inspect and analyze motif query results
in conventional graphs. However, those previous approaches do not
translate directly to morphological brain motif analysis since these
approaches are designed for data without three-dimensional spatial con-
text. VisualNeo [27] aims to bridge the design for graph query engines
and visual graph query interfaces through a custom-designed software
system. VIIQ [30] simplifies interactive query construction using an
edge suggestion algorithm. Diehl et al. [13] propose a sketch-based
query system for spatio-temporal patterns, allowing users to visually
search time-series motifs. While conceptually related to our sketching
interface, their approach focuses on temporal data and lacks support
for spatially embedded morphology. In contrast, MoMo operates on 3D
neuron structures, accounting for both spatial positioning and branching
geometry during queries.

Multi-layer & Micro-vascular networks. McGee et al. [41] survey
the state of the art in multi-layer network visualization. Most relevant
to our work are multiplex network visualizations [8, 45], which are
defined by the presence of various edge types. However, most use cases
center around applications in sociology. Most similar to our work is
the visualization of vascular networks [23]. For example, Mayerich
et al. [40] visualize volumetric vascular data using techniques from
volume rendering and do not explicitly extract the graph information.

Previous Connectivity Motif Workflow. Vimo [67] offers a user-
friendly interface that allows users to draw motifs using a data ab-
straction where each node represents an entire neuron and each edge
represents a synaptic connection between neurons. While this abstrac-
tion simplifies the visualization and allows for an overview of which
neurons are connected, it has significant limitations. One major limita-
tion of Vimo’s approach is its lack of detailed morphology information.
In Vimo, each neuron is represented as a single node, which means the
internal structure—such as the exact locations of synapses, branching
points, and neuron morphology—is completely lost. This makes it
impossible to perform fine-grained analyses that require insight into
the internal pathways and synaptic organization within a neuron.



Fig. 3: MoMo Workflow. (a) Given a connectome dataset, we (b) transform the respective neurons and synapses into our neuron morphology-aware
graph representation. Each node in the graph depicts a neuron segment that is connected to other segments through synaptic connections (red
arrows) or to neighboring segments (black arrows). (c) The transformed dataset is interactivley queried by sketching motifs. (d) Finally, users can
explore identified motif instances in interactive 3D renderings and highlight the motif’s morphology through a focus & context approach. Data: Human
temporal cortex / H01 [59] (a), MICrONS [3] (d).

3 BIOLOGICAL BACKGROUND

Neuroscience Fundamentals. Brain tissue consists of neurons, among
other cells, that are connected through synapses [26] (see Fig. 2). Neu-
rons are complex, tree-like spatial structures that connect in various
spatial configurations. The spatial configuration of neuron connectivity
can heavily influence the underlying function of the respective neuronal
circuit. The resulting network diagrams are exceptionally dense, with
current connectome datasets exceeding tens of thousands of neurons
interconnected through millions of synapses.
Connectomics Data. Creating connectomes is an involved process that
starts with acquiring 3D image volumes, typically using electron [55]
or optical [63] microscopes. The resulting volumes are then segmented
using 3D convolutional neural networks [29]. Next, the automati-
cally reconstructed neurons and synapses undergo human or automated
proofreading [16,32,66,71], eliminating errors from the previous steps.
Here, we demonstrate our approach on two exemplary state-of-the-art
connectomes. We use the FlyWire connectome [15] for insect neurons
and the MICrONS dataset [64], which reconstructs approximately one
cubic millimeter of mouse visual cortex. For both datasets, MoMo uses
neuron skeletons and synaptic point annotations.
Motif Analysis in Connectomes. Neuronal connectivity motifs are
fundamental building blocks of computation in the brain. Many neu-
roscientific studies [15, 28, 59] are searching and analyzing structural
and connectivity motifs in the brain. For example, Hulse et al. [28]
report a group of neurons in the fruit fly’s central brain that form motifs,
which allow flexible spatial navigation and action selection. Another
exemplary motif that combines specific connectivity and neuron mor-
phology patterns is the concept of shunting inhibition [31,43]. Shunting
inhibition is a fundamental mechanism in neural computation, where
inhibitory synapses modulate the excitability of a neuron by altering its
input resistance. This mechanism effectively "shunts" incoming exci-
tatory signals, thereby regulating synaptic integration and influencing
the neuron’s ability to fire an action potential. Shunting inhibition is
crucial in various neural processes such as sensory processing or net-
work synchronization, among others. We report an example of shunting
inhibition in the case study (see Sec. 10).

4 GOALS AND TASK ANALYSIS

The idea of integrating neuron morphology into tools for motif analy-
sis originated while struggling to represent biologically relevant mo-
tifs [59] during the development of Vimo [67]. As a result, we dis-
cussed extending Vimo to morphological motifs in informal interviews
with four domain experts at an international connectomics conference
and research visits at both the Harvard Center for Brain Science and
Howard Hughes Medical Institute (HHMI) Janelia. All scientists are
leading experts in analyzing neuronal circuits reconstructed from high-
resolution electron microscopy data. Two experts focus on analyzing
mammalian brain tissue, while the others specialize in the fruit fly
(Drosophila) brain. Following the design study methodology from
Sedlmair et al. [58], we distilled the following goals and tasks.

4.1 Domain Goals
G1 - Quick Identification of Motifs. Hypothesis generation and
exploratory analysis are critical while analyzing connectome circuits.
Additionally, data exploration may generate new hypotheses, which in
turn requires rapidly iterating specific motifs of interests. Thus, domain
experts need tools to quickly identify various motifs of interest.
G2 - Precise Connectivity and Morphology Searches. The func-
tion of neuronal circuits is governed by both neuron morphology and
synaptic connectivity [28, 59]. Queries such as "Which neurons have
multisynaptic connections on the same neuronal branch?" or "Which
neuron pairs have connectivity clusters on separate branches?" are
common questions in connectome analysis. Thus, neuroscientists need
tools to find morphological motifs in conjunction with network motifs.
G3 - Accurate Spatial Analysis of Motif Instances. After identifying
motifs involving neuron morphology and synaptic connectivity, domain
experts want to inspect spatial models of the respective neurons and
their connectivity. When inspecting neurons and their connectivity, neu-
roscientists need to (a) view accurate 3D models while (b) correlating
the motif query to the original neuronal data.
G4 - Flexibility & Data Adaptability. Connectome analysis is a fast-
paced scientific discipline with dozens of datasets published annually.
Datasets are typically made accessible to the neuroscience community
through various platforms [16, 34, 51], which offer simple pythonic
interfaces for targeted data retrieval. Thus, scientists need flexible
tools that integrate into established, notebook-based analysis workflows
without building custom data interfaces.

4.2 Tasks
T1 - Fast Morphological Motif Queries. Scientists need to define mo-
tif queries rapidly but also require computationally efficient subgraph
isomorphism searches to identify motifs of interest quickly. (G1)
T2 - Interactive Sketching-based Queries. Scientists need to pre-
cisely define neuron morphology and synaptic connectivity patterns
without learning complex graph query languages like Cypher [19] or
Gremlin [52]. Interactive sketching-based drawing interfaces are ex-
pressive but do not require extensive graph query coding skills to define
morphology-aware motifs. (G1, G2)
T3 - Correlating Motif Structure with 3D Renderings. After a
successful query, users must identify the motif structure in a detailed
3D rendering of the respective neurons. (G3)
T4 - Analyze Motifs in Hyrid Code-UI Workflow. The computational
Jupyter Notebook environment brings ease of Python-based data han-
dling and interactive visualization components closer together. Here,
data can be loaded directly from various hosting platforms into respec-
tive interactive visualization widgets. (G4)

5 MoMo DESIGN AND WORKFLOW

MoMo provides an intuitive platform for visualizing and analyzing
motifs in connectome data that integrates into the computational anal-
ysis workflow of connectomics scientists, which often involves data



Fig. 4: Neuron Morphology-Aware Graph. (a) Neurons build networks through complex tree-like arbors (dendrites/axons) that extend from each
neuron’s soma. (b) Our graph representation captures the structure of wiring patterns by mapping each branch segment to a single graph node.
Synaptic connections between segments are shown as red edges, while neighboring segments are connected through black edges. (c) Conventional
connectome graph representations from previous work [38,67] discard neuron shape information and fully abstract neurons into single graph nodes.

analysis scripts in Python-based Jupyter Notebooks. Jupyter Notebooks
provide a robust and interactive environment for quick experimentation
and effective visualization. Hence, we designed MoMo as a Python
package to launch interactive Jupyter widgets for visualization. Users
are empowered to programmatically manipulate data before feeding it
into MoMo but can still use interactive visualization through custom
widgets (G4). We designed a simple workflow for MoMo (see Fig. 3):
Data Transformation (Sec. 6.2). The first step involves transforming
the desired connectome dataset into the neuron morphology-aware data
representation, which enables efficient motif queries (G2).
Sketching (Sec. 7.1). Users interactively draw a motif at the neuron
segment level using the sketching interface (see Fig. 6) (G1, G2). After
the user defines a motif, MoMo enables highly performant isomorphic
subgraph queries (Sec. 8) to identify sets of neurons that implement the
sketched morphology and connectivity pattern (G1).
Spatial Motif Rendering (Sec. 7.2). After selecting particular motif
instances, MoMo allows interactive 3D visualization of the respective
neurons and their synapses and highlights the motif’s region of interest,
such as highlighting the drawn segments in the visualization (G3).

6 NEURON MORPHOLOGY-AWARE MOTIFS

Neuron morphology-aware motifs combine patterns related to neuron
shape and their synaptic connectivity. In our proposed graph represen-
tation, a set of segments represents a single neuron (see Fig. 4b). Each
segment is connected to neighboring segments or, through synaptic
connections, to segments of another neuron. This contrasts previous
connectome graphs where each neuron is represented as a single node
connected by weighted edges indicating synapse count (see Fig. 4c).

6.1 Formal Definition
Fundamentally, we construct a two-layer network, where one level
describes neuron connectivity and the other layer neuron morphology.
The connectivity layer abstracts the connectome as a directed graph K =
(N,C), where a set of neurons N = {n0, ...,nv} is connected through
at set of synapses C = {c0, ...,cu}. In the morphology layer, each
tree-like neuron n ∈ N can be formalized as an acyclic skeleton graph
n = (V,E). V is a set of 3D coordinates (vertices) connected through a
set of edges E that describe the neuron’s centerline. Each synapse ci j =

{p ∈R3,(i, j)} ∈C stores both a spatial position p and the indices (i, j)
of the respective pre- and postsynaptic neurons. Here, we build a graph
G that captures both neuron morphology and neuron connectivity. First,
we partition each neuron skeleton n ∈ N into segments (Fig. 5). A
segment s is a set of vertices Vs and edges Es between two consecutive
branching or terminal vertices. Formally, a segment s is defined as

s = (Vs,Es), Es = {(vi,vi+1)|0 ≤ i < k}, Vs ⊂V,Es ⊂ E. (1)

Additionally, all vertices but the start v0 and endpoint vk must have
degree 2. Each segment always consists of two or more vertices.

Fig. 5: Neuron Segments. We partition each neuron into a set of seg-
ments. In our graph structure, each node represents a single segment.
Neighboring segments are connected through edges. Terminal branches,
such as spines or skeletonization artifacts/twigs, are being pruned during
the data transformation. Data: Human temporal cortex / H01 [59].

∀v ∈Vs \{v0,vk},deg(v) = 2 and |VS| ≥ 2 (2)

For each segment s, we also store a set of synapses C(s) that connect
s to another neuron’s segment. Finally, we combine both layers in
a neuron-morphology-aware graph G = (S,E,A). The vertices S =⋃v

i=0 si are the union of all previously computed segments. There
are two types of edges. The first edge type E connects neighboring
segments sl , st of the same neuron nm,

E = {(snm
l ,snm

t ), ...}. (3)

The second edge type A defines neuron connectivity and thus con-
nects two segments of different neurons if they share synapses.

A = {(sni
l ,s

n j
t )| ci j ∈C(sni)∧ ci j ∈C(sn j )}. (4)

Next, given a motif M, we search for isomorphic subgraphs in G,
such that

M ∼= G′ ⊆ G,

where G′ is an induced subgraph of G. M and G′ are isomorphic.



Fig. 6: Interactive Motif Sketching & Interactive 3D Rendering. (a) Users start by sketching neuron segments and their synaptic connectivity
using an interactive drawing board within a jupyter widget. Next, users can search for matching instances. A list of found motif instances is then
displayed in the results panel. (b) Neurons of identified motif instances can be inspected in an interactive 3D rendering shown in a jupyter widget.
Synapse locations are shown in red. (c) We allow users to grey out interactively or (d) hide neuron arbors not involved in the sketched motif to
simplify creating correspondence with the motif sketch and the 3D spatial neuronal anatomy. Data: MICrONS [3].

6.2 Data Transformation
Connectome data must be transformed into our graph representation.
Skeletons are a standard and readily available format for representing
3D neuron data in connectomes. Skeletons store sample x,y,z coordi-
nates and the radius along the centerline of a neuron. Transforming a set
of skeletons and their respective synapses into our graph representation
involves the following steps:
Pruning Terminal Branches. Neurons frequently contain numerous
small terminal branches, such as spines or artifacts from the skele-
tonization procedure, that can obscure meaningful segment creation
(see Fig. 5). Thus, we iteratively prune terminal branches below a
specified threshold t. Determining t depends on the properties of the
datasets and is a hyperparameter of our graph representation. The goal
is to suppress non-meaningful fine-scale morphology (e.g., spines or
skeletonization noise) while preserving subcellular structures relevant
for motif detection. As a rule of thumb, the pruning threshold should
exceed the average spine length to avoid losing meaningful structures.
We evaluated thresholds ranging from 1–5 µm on pilot datasets, as-
sessing their impact on noise reduction and motif preservation. Based
on empirical results and expert feedback, we selected dataset-specific
pruning factors, with exact values reported in Section 9.
Synapse to Skeleton Mapping. Next, we establish a mapping between
the location p of synapse and the closest skeleton vertex of its pre- and
postsynaptic partner neuron. This mapping is necessary to determine
which synapses correspond to which neuron segments.
Skeleton Downsampling. Next, we abstract the pruned neurons by
focusing on more significant structural elements—the paths between
branching points and endpoints. The exact curvature of these paths
is disregarded to reduce computational complexity while maintaining
essential connectivity. Thus, we downsample each neuron skeleton, so
only branching points and endpoints remain. Branching- and endpoints
are shown as black dots in Figure 4a. Those remaining points are a
compact representation of the neuron’s arborization patterns.
Graph Assembly. The next step is restructuring the downsampled
neurons into our neuron morphology-aware data representation. Neu-
ron segments, defined as paths between branching points or endpoints,
are represented as individual nodes. Neighboring segment nodes are
connected through intra neuron edges (Fig 4b - black arrows). Synaptic
connections between segments of different neurons become inter neu-
ron edges types (Fig 4b - red arrows). Note that other properties such
as neuronal compartmentalization (axon/dendrite) or synapse polarity
(inhibitorty / excitatory) can be easily mapped to nodes and edges as
well. The final graph can now be used to query morphological motifs.
Complexity. The transformation of skeleton and synapse data into
our graph representation scales linearly with dataset size. Let N be
the number of neurons, E the average number of skeletal segments per
neuron, and S the average number of synapses per neuron, yielding a
total time complexity of O(N · (E +S)).

The pipeline includes loading skeletons, pruning small branches,

downsampling, snapping synapses to skeleton nodes, and graph as-
sembly. Each neuron is processed independently, making the pipeline
easily parallelizable.

On standard hardware, we construct a morphology-aware graph for
12,000 neurons and 500,000 synapses (FlyWire) in under 10 minutes
on a 64-core machine with 256 GB RAM. For smaller datasets like
MICrONS ( 1,700 neurons, 150,000 synapses), processing takes under
90 seconds. Memory usage scales linearly with neuron segments and
synapses, driven mainly by connectivity and metadata storage.

For very large datasets (>100k neurons), users can parallelize pro-
cessing across cores or machines, as neurons and their synapses are
handled independently, supporting distributed execution at connectome
scale.

7 MOTIF VISUALIZATION

In MoMo, visualizing neuron morphology-aware motifs is done through
motif sketching and interactive 3D rendering of motif instances. We
considered alternatives like visual subgraph selection, where users
pick observed multisynaptic patterns directly from the visualization,
and rule-based motif definitions using logical or structural constraints.
While visual selection is intuitive for highlighting known patterns, it
relies on clean subgraph separation and does not scale well. Rule-based
queries offer flexibility but are harder to express and computationally
intensive. We chose sketch-based input for its speed, intuitiveness, and
support for hypothesis-driven exploration.MS: TODO: citations

7.1 Motif Sketching

The sketching board provides an interface for users to create motif
sketches by defining neurons with distinct colors and specifying synap-
tic connections (Fig. 6a). Each node in the sketch represents either a
branching point or an endpoint, while neuron segments are drawn in
different colors selected from a menu, where each color corresponds
to a distinct neuron. Users can add synaptic connections by selecting
the appropriate tool and linking previously drawn segments (red edges).
Both neuron segments and synaptic connections are directed, reflecting
the natural flow of signals within and between neurons.

For example, Figure 6 illustrates a motif composed of three neu-
rons (green, blue, and purple) and two synaptic connections. The
sketching board accepts connectome datasets formatted in the neuron
morphology-aware graph representation, allowing users to query the
dataset based on the drawn motif. Matched motifs are dynamically
displayed in a results list for exploration.
Querying for Morphological Motifs. Once the sketch is complete,
users can initiate a query by pressing a designated button and specifying
the desired number of results. The MoMo backend processes the request
and returns a list of motifs matching the drawn example.
Reviewing Found Instances. Query results are displayed in a list
view, where each detected motif instance is enumerated. Neuron IDs



Fig. 7: Wildcard Feature. (a) MoMo enables users to leave specific parts of the motif query undefined. (b) This enables flexible motif discovery,
such as identifying multiple distinct synaptic clusters. (c, d) A focus and context strategy is used to better correlate the motif sketch to the true
neuroanatomy rendering. We allow users to gray out or hide neuronal branches unrelated to the sketched motif. Data: FlyWire [15]. MS: TODO
Change caption and references to the fig in the text

corresponding to the drawn segments are grouped and highlighted using
the same colors as in the sketch for easy interpretation.
Sketch Reproduction and Sharing. Users can import and export
motif sketches as JSON files, preserving segment information for future
queries or sharing with collaborators, facilitating reproducibility and
collaborative research.

7.2 Spatial Motif Rendering
MoMo provides an interactive 3D exploration of motif instances (see
Fig. 6). After selecting a queried motif instance from the result list
(Fig. 6a), users can visualize the corresponding neurons in 3D. The
3D viewer widget is launched via a Python function call (see Fig. 6b),
enabling detailed inspection of the identified structures. MoMo provides
three visualization modes, following a focus & context approach, to
enable the user to correlate the sketched motif with the detailed 3D
renderings of neurons from a specific motif instance (see Fig. 6b-d).
Full Instance Rendering. The first mode shows the full morphology of
neurons involved in a motif instance (see Fig. 6b). This mode provides
important spatial context. However, it can be hard to mentally map the
sketched motif pattern to the 3D neuron rendering due to the cluttered
neuron morphologies.
Focused Instance Rendering (Color). In the second mode, we de-
focus neuronal branches that are unrelated to the sketched motif by
rendering them in gray (see Fig. 6c). This helps to identify the neural
processes involved in the motif easily visually but can still be perceived
as cluttered due to occlusion effects.
Focused Instance Rendering (Pruning). The third mode prunes
unrelated neuron branches that are unrelated to the motif. This enables
clear inspection of the neuronal segments that implement a motif pattern
(see Fig. 6d). However, this view lacks important spatial context and is
thus complemented by the previous two visualization modes.

In all modes, synapses are represented as red spheres within the visu-
alization. The user can switch between those three modes interactively
in the user interface (see Fig. 6b-d).

8 INTERACTIVE MOTIF QUERIES

Our neuron morphology-aware graph representation extends conven-
tional connectome graphs by adding significant complexity through
introducing additional nodes and edges. In our exemplary dataset from
MICrONS, 1,712 proofread neurons are connected through around
150,945 synaptic edges. Once transformed into our morphology-aware
representation, the respective graph contains more than 390,000 nodes
and 400,000 edges.
Computational Challenges. Generally, isomorphic subgraph search
in a host graph is known to be an NP-complete problem [12]. Con-
sequently, in the worst-case scenario, the computational complexity
increases exponentially with graph size. While this is manageable for
small-scale graphs, larger graphs, such as our representation, cause
expensive and long computation times to identify even small motifs.

Such long computation times are impractical for interactive applica-
tions such as MoMo, because users want to sketch motifs and inspect
related instances quickly.
Parallel Motif Discovery. To reduce long waiting times and enable
rapid data exploration, we integrated the parallel state of the start VF2-
PS [14] motif discovery algorithm into MoMo. VF2-PS addresses the
above challenges by representing subgraph isomorphism queries as a
state-space search problem [47]. In this state-space representation, each
state encapsulates a partial or complete mapping of vertices from the
motif graph M to vertices of the host graph G, which enables highly
efficient work distribution over many parallel cores. For example, VF2-
PS [14] can reduce query times for simple motifs up to 48× compared
to conventional NetworkX-based motif queries (see Supplement).
Custom Motif Discovery Features. We extended the VF2-PS algo-
rithm with three custom features that facilitate interactive motif analysis.
First, wildcards in queries (see Fig. 7) enable flexible motif queries
by allowing users to leave certain attributes of the neuron morphology
undefined. Thus, it allows users to explore structural hypotheses with-
out requiring precise knowledge of a neuron’s complete morphology.
For example, to investigate whether multiple synaptic connections be-
tween two neurons exist within distinct spatial regions or clusters, users
can draw multiple disconnected neuron segments in different colors
and specify synaptic connections as needed. Second, color matching
ensures that the nodes correspond to distinct neurons and their connec-
tions. Hence, we developed a post-processing stage, introducing arrays
to track the color assigned to each node and edge. Next, each identified
motif instance is checked to ensure its color structure matches the input
subgraph, meaning that the colors correspond to distinct neuron IDs.
Third, users can define query limits. For interactive exploration of motif
in MoMo it is not necessary to enumerate all instances of a particular
motif sketch in the whole connectome dataset. Thus, we allow the user
to set an upper bound on the number of motif instances (see Fig. 6a),
after which the isomorphic subgraph query algorithm should terminate.

9 DATA AND IMPLEMENTATION

MoMo requires a connectivity network and proofread reconstructions
of neurons represented as 3D skeletons and synapses, along with their
spatial locations. MoMo then processes the input data and transforms it
into the neuron morphology-aware graph representation. Once the data
is transformed, all subsequent computations can be executed during
runtime. We tested MoMo on two different connectome datasets.
FlyWire Data. We tested MoMo on a subset of the FlyWire connec-
tome [15] that includes neurons from the medulla intrinsic (Mi) and
T4 families, Lamina Intrinsic, Lobula Intrinsic, Centrifugal, and Distal
Medulla neurons. All these neurons are located in the right optical
lobe, bringing the total to 12,803 neurons with 532,530 synaptic con-
nections. The final neuron morphology-aware graph has 956,729 nodes
and 654,778 intra-neuron edges. Based on experimental evaluations
and expert feedback, we set the pruning factor to 3 µm for this dataset.



MICrONS Data. As a second dataset, we tested MoMo on a set of
1,712 proofread neurons from the MICrONS dataset [3]. This data
describes the detailed synaptic wiring of a mouse’s primary visual cor-
tex. The respective neuron morphology-aware graph contains 392,438
nodes, 250,923 intra-neuron edges, and 156,945 synaptic edges. For
this dataset, we applied a pruning factor of 1 µm, following the same
evaluation process as for the Flywire dataset.
Implementation. MoMo is implemented as a modular Python library
designed for Jupyter environments. The motif sketching interface (see
Fig. 6a) and 3D visualization widget (see Fig. 6b-d) are implemented as
separate components, each embedded within a Jupyter cell. MoMo uses
the AnyWidget framework [36] to simplify the integration of custom
JavaScript components within a Jupyter widget. Both widgets use
JavaScript/React, while the data processing backend is implemented in
Python. MoMo builds on libraries such as Navis [57] for neuron data
processing and Paper.js as a vector graphics scripting framework to
facilitate intuitive motif drawing. The 3D interactive skeleton rendering
is based on Three.js with SharkViewer [70]. The VF2-PS algorithm
is implemented in Arachne [2, 17], which provides access to parallel
property graph data structures [53]. We have made the MoMo code,
along with example code for transforming skeletons into our graph
representation, publicly available on GitHub (see abstract). The datasets
used will be released upon acceptance of this paper.

10 EVALUATION

We evaluate MoMo through a series of case studies, assessing the
usefulness for real-world neuroscience research questions.
Participants. We evaluated MoMo with four experts (P1–P4): three
male and one female, from Harvard University, Janelia Research Cam-
pus, the University of Würzburg, and Freie Universität Berlin. The
group comprised one professor, one research scientist, and two post-
doctoral researchers, all specializing in the analysis of neuronal circuits
reconstructed from EM image data. Additionally, two participants had
prior experience using graph abstraction tools for connectome analysis.
Their diverse expertise provided valuable neuroscientific perspectives,
reinforcing the tool’s broad applicability.
Session Structure. Each session lasted around one hour and was con-
ducted either in person or via an interactive Zoom call. All but the first
participant (pilot study) engaged directly with the tool, either hands-on
or through remote screen control. The first participant took part in a
pilot study during the tool’s development, providing early feedback
and use cases that helped shape its design. First, we introduced MoMo,
outlining its capabilities and the novel integration of neuronal morphol-
ogy in motif analysis. Next, participants explored example motifs by
sketching their own and analyzing the retrieved instances. Finally, the
experts discussed their findings, offering insights into their biological
relevance, potential applications of the tool, and areas for improvement.

Each case study, details the expert’s analysis objective, an overview
of the relevant biological context, and how MoMo facilitated their inves-
tigation. Three out of four case studies explore the interplay between
neuron morphology and synapse polarity (inhibition/excitation). While
MoMo does not explicitly store polarity, experts agreed that analyzing
the underlying connectivity is the essential first step in investigating
these phenomena. Our approach enables an exploratory analysis of
motif instances that could support the respective neural computations.
Lastly, we synthesize key takeaways across all case studies, identifying
strengths, challenges, and opportunities for future enhancements.

10.1 Pilot Study: Investigating Shunting Inhibition
As an initial pilot study, we collaborated with P1 to explore potential
applications of MoMo during its development. They suggested investi-
gating the biologically relevant use case of shunting inhibition. This
phenomenon exemplifies a case where both neuronal morphology and
connectivity must be considered, making it challenging to study with
existing graph-based tools.
Understanding Shunting Inhibition. Shunting inhibition is a neu-
ral mechanism in which inhibitory inputs suppress excitatory signals,
preventing their propagation. This occurs when an inhibitory neuron
synapses onto a neuron receiving an excitatory input, but the inhibitory

input is positioned upstream relative to the excitatory one. As a result,
the inhibitory signal can cancel or shunt the excitatory effect before it
travels further through the neuron [31, 43].
Applying MoMo to Shunting Inhibition. During the remote session
conducted via Zoom, the expert instructed us to sketch multiple motifs
representing possible instances of shunting inhibition. One of the
sketched motifs can be seen in Fig. 8a. The sketched motif comprises
a network of three interconnected neurons: a blue neuron with four
horizontally connected segments, a green neuron segment linked to its
leftmost part, and a purple neuron segment synapsing onto its rightmost
part. Given the left-to-right signal flow, the expert hypothesized that
an inhibitory signal from the purple neuron could shunt an excitatory
input from the green neuron, preventing its transmission along the blue
neuron. The expert also instructed us to iteratively create additional
motifs with varying numbers of blue segments to explore how the tool
would handle different configurations.

Following the motif query, they explored multiple matching in-
stances within the Flywire dataset [15]. The expert examined the
visualized results, assessing whether the retrieved structures aligned
with the desired morphological and connectivity patterns. Figure 8
illustrates one of the identified instances across different view modes
in MoMo. In Figure 8c, only the sketched segments are highlighted in
their respective colors, with the rest of the neuron structures grayed out
for clarity. Figure 8e shows the four segments of the blue neuron are
colored differently to emphasize different segments of the blue neuron
in the motif sketch.

Fig. 9: Case Study 1. Query for Lateral Inhibition. (a) A schematic
representation of lateral inhibition, featuring a four-neuron example (A,
B, C, D). Assuming Neuron A sends an excitatory signal to Neuron B,
which, in turn, reduces the activity of its neighboring neurons (C and D)
through inhibitory connections, preventing the lateral spread of action
potentials and enhancing signal contrast. (b) The sketch illustrates the
four-neuron example, with connectivity and morphological structure that
align with the schematic. (c, d) The renderings show an example motif
instance with different levels of focus. Data: MICrONS [3].MS: include
the new arrows in the caption

10.2 Case Study 1: Lateral Inhibition
To further assess MoMo’s applicability, we conducted a case study
with P2. They highlighted MoMo ’s potential as a complementary
approach to tools like Vimo that abstract entire neurons as nodes. In
their view, Vimo is well-suited for initially defining broader connec-
tivity constraints, while MoMo becomes particularly valuable when
morphology needs to be considered alongside connectivity for more
detailed investigations. They suggested using the tool to investigate
lateral inhibition. Unlike the pilot study, this expert directly interacted
with MoMo in person, allowing for more hands-on evaluation of the
tool’s query and visualization capabilities.
Understanding Lateral Inhibition. Lateral inhibition is a key neural
process where inhibitory neurons reduce the activity of their neigh-
boring excitatory neurons, thereby enhancing contrast in sensory pro-
cessing and aiding in pattern recognition. This mechanism typically
involves inhibitory connections that synapse onto adjacent excitatory
neurons, suppressing their responses and refining signal transmission.
A classic example of lateral inhibition is depicted in Figure 9a, where



Fig. 8: Pilot Study: Query for Potential Shunting Inhibition. (a) The sketch illustrates a three-neuron motif (green, blue, and purple). The green
neuron connects to the leftmost segment of the blue neuron, while the purple neuron connects to the rightmost segment. Thus, assuming the purple
neuron provides inhibitory input, it could suppress the excitatory input from the green neuron due to the left-to-right signal propagation within the blue
neuron. (b-d) The renderings show an exemplary motif instance queried with MoMo at different levels of focus. (e) We show the four corresponding
segments of the blue neuron by assigning each segment a distinct color. Data: FlyWire [15].

Neuron A could send an excitatory signal to Neuron B. Neuron B, in
turn, could inhibit the activity of its neighboring neurons (C and D),
preventing the lateral spread of action potentials and enhancing the
contrast of the signal. This process is crucial for sensory perception
as it helps distinguish between different stimuli by sharpening the re-
sponse of the excited neuron and reducing the activity of its neighbors.
Identifying such motifs within large-scale connectomic data requires
tools capable of analyzing both synaptic connectivity and the spatial
relationships between neurons.
Applying MoMo to Lateral Inhibition. In this case study, the expert
used MoMo’s sketching interface to draw multiple motifs correspond-
ing to potential instances of lateral inhibition. These motifs typically
involved central neurons receiving excitatory inputs from neighboring
neurons and subsequently potentially inhibiting the activity of these
neighboring neurons. Some drawn motifs matched existing structures
in the dataset, while others did not. After each motif sketch, the ex-
pert utilized MoMo’s visualization interface to inspect the identified
instances and assess whether they corresponded to the expected anatom-
ical and connectivity patterns of lateral inhibition. This process was
iterative—after reviewing the results, the expert modified the sketch
and conducted another motif search to refine the analysis. The expert
highlighted that MoMo’s ability to incorporate detailed morphological
structure greatly facilitated the investigation of complex phenomena
like lateral inhibition, enabling a more nuanced exploration than possi-
ble with purely connectivity-based tools.
Figure 9b presents an example of a potential lateral inhibition motif,
derived from the expert’s sketched motifs and follow-up discussions.
In this case, the orange neuron is depicted as potentially making an
excitatory synaptic connection onto the blue neuron, which then forms
potential inhibitory synapses onto the neighboring purple and green
neurons, dampening their responses and creating a feedback inhibition
loop. Figure 9c provides a simplified view of an identified instance
from the MICrONS dataset [3], emphasizing only the relevant neuron
segments and synaptic connections from the original sketch. In contrast,
Figure 9d presents the same instance with the full neurons in grayscale,
preserving the sketch’s color to provide broader structural context.

10.3 Case Study 2: Feed Forward Excitation
To assess MoMo ’s usability for researchers who are not familiar with
graph-based representations of neuronal data, we conducted a case
study with P3, an expert specializing in the detailed analysis of physical
neuronal structures, such as images and 3D reconstructions, rather than
relying on graph abstractions. This expert’s perspective was invaluable
in understanding how MoMo could enhance the study of neuronal
morphology using graph-based tools. For this case study, P3 chose to
investigate feed-forward excitation and the presence of dense synaptic
connections within neurons.

Biological Significance of Feed-Forward Excitation Feed-forward
excitation involves the transmission of excitatory signals from one
neuron to another, often amplifying signals in circuits involved in
sensory processing and motor coordination. It plays a vital role in
the integration and rapid transmission of information across the brain.
Dense synaptic connections occur in regions with a high concentration
of synapses, facilitating complex neural processing. These connections
are crucial for brain areas involved in learning, memory, and sensory
processing, supporting the integration of large amounts of information
for tasks like pattern recognition and cognition.
Applying MoMo to Feed-Forward Excitation During the Zoom ses-
sion, the expert engaged with MoMo’s sketching interface, using remote
control to explore motifs related to feed-forward excitation and dense
synaptic connections. This was the expert’s first time considering a
graph-based abstraction of the connectome data, which required a shift
in perspective from their typical approach of analyzing physical neu-
ronal structures. They actively explored the found instances of the
drawn motifs by leveraging MoMo ’s various view modes, rotating and
zooming in and out of the visualized motifs. The real-time querying
feature was particularly advantageous, allowing the expert to refine
and visualize their hypotheses iteratively. This dynamic exploration
facilitated a deeper understanding of how complex neural circuits are
connected and how spatial arrangements of neuronal structures influ-
ence connectivity patterns. The ability to interactively adjust the visual
representation helped bridge the gap between abstract graph-based
data and the expert’s more familiar, physical visualization of neuronal
morphology.

10.4 Case Study 3: Center-Surround Receptive Fields
This case study was conducted in collaboration with P4, who was
already familiar with previous tools that utilized a sketch-based graph
abstraction for connectomics data. After discussing several initial ideas,
the expert chose to investigate the phenomenon of center-surround
receptive fields for this session.
Understanding Center-Surround Receptive Fields. In sensory neu-
roscience, neurons process information from their surroundings in
structured patterns. A common motif in visual processing is the center-
surround receptive field, where a neuron’s response depends on the
contrast between the center and the surrounding region of its input.
This structure enhances edge detection and contrast sensitivity, which
are critical for vision. Neurons tuned to this pattern fire most strongly
when a bright stimulus is in the center and a darker region surrounds
it (or vice versa). This mechanism is fundamental in biological vision
systems, including those in flies and mammals, and is analogous to
computational filters like Gabor filters used in artificial vision models.
Applying MoMo to Center-Surround Receptive Fields. During the
Zoom session, the expert used MoMo’s sketching and visualization



interface via remote control to analyze and refine neuron motifs relevant
to the study of center-surround receptive fields. After several iterations,
they finalized the sketch shown in Figure 10a. According to their
explanation, the green neuron represents the potential central excitatory
unit, which is hypothesized to respond to a bright stimulus in the center
of its receptive field. The blue neuron, acting as a localized feature
detector, was designed to respond selectively to smaller bright regions,
thus enhancing the detection of fine details. Surrounding the central
excitatory unit are the purple and orange neurons, which represent the
potential surround inhibitory neurons. These neurons are activated by
darker areas surrounding the center, contributing to contrast detection.
Using MoMo ’s real-time query feature, the expert successfully iden-
tified potential instances of the center-surround receptive field phe-
nomenon within the MICrOns dataset [3] (see different views of one
identified instance in Figures 10b and c). The expert explored these
motifs through MoMo ’s visualization interface, utilizing its different
views to examine the morphological and connectivity patterns that
aligned with the expected characteristics of the phenomenon.

Fig. 10: Case Study 3: Center-Surround Receptive Fields. (a) Motif
sketch, which could correspond to a potential center-surround receptive
field. The key components of the sketch include a green neuron (poten-
tially the central excitatory unit), a blue neuron (potentially the localized
feature detector), and purple and orange neurons (potentially the sur-
round inhibitory neurons). (b, c) Renderings of the identified instances
of the potential center-surround receptive field phenomenon, queried
using MoMo, shown at different levels of focus. Data: MICrONS [3].MS:
include the new arrows in the caption

10.5 Key Evaluation Findings
MoMo effectively fulfills its core goals and tasks outlined in Section 4
by offering an interactive, morphology-aware motif analysis tool for
connectomics research. Across all case studies, experts highlighted
its intuitive interface, real-time querying, and seamless integration of
sketching and visualization. However, while the tool offers several ad-
vantages, certain limitations and areas for improvement were identified,
which are discussed below.
Efficient and Intuitive Motif Identification. One of MoMo ’s most
valued strengths is its ability to facilitate rapid motif identification
(G1, T1) through an interactive sketching interface (G2, T2). Experts
particularly appreciated the tool’s capacity to refine and adjust queries
in real time, especially when no exact matches were initially found,
like in the first case study. This flexibility lowers the barrier to entry
for researchers unfamiliar with complex query languages (G4, T4).
However, relying on user-generated sketches introduces subjectivity, as
motif definitions may vary across users. Future enhancements could
include predefined motif templates or automated suggestions.
Enhancing Connectivity and Morphology Analysis. The tool ef-
fectively supports combined connectivity and morphology queries,
enabling detailed circuit-level analyses (G2). This was demonstrated
in studies on shunting inhibition and lateral inhibition, where experts
could specify spatial arrangements of potential excitatory and inhibitory
synapses and retrieve biologically relevant instances. However, the ac-
curacy of search results remains dependent on the data preprocessing

Fig. 11: Mammalian Neurons vs. Insect Neurons. Comparison of
neuronal structures between the MICrONS and Flywire datasets. (a)
A mammalian neuron from MICrONS, characterized by small, uniform
terminal branches. (b) An insect neuron from Flywire, displaying more
intricate and variable terminal branches, particularly in the yellow-circled
region. Thus, mammalian neurons are overall better suited for MoMo.

of connectome data. While pruning fine structures improves efficiency,
it may also lead to omitting crucial neuronal details. Deriving the right
pruning factor is key to balancing efficiency and preserving essential
structural information. Experts noted that incorporating additional
semantic information, such as branch lengths or the ability to query
specific regions of the connectome, would enhance MoMo ’s applica-
bility.
Insect vs. Mammalian Brains. We tested MoMo both on the Flywire
and MICrONS datasets, allowing case study participants to switch be-
tween them based on their preferences. Thus, participants raised the
question of whether our neuronal abstraction approach is better suited
for certain connectomes. Our method captures neuronal structure at the
segment level, which is much more well defined in mammalian neurons
compared to insection neuron, such as flies. In the mammalian brain
(MICrONS), terminal branches (twigs) are relatively uniform in size
and structure, making them easier to manage and more consistently
pruned. In contrast, insect neurons (Flywire) exhibit greater variability,
requiring dataset-specific pruning adjustments. Fig. 11a shows a mam-
malian neuron with small, uniform twigs, whereas Fig. 11b highlights
an insect neuron with more intricate and variable branches, particu-
larly in the yellow-circled region. This variability makes abstraction
more challenging in insect neurons. Consequently, our approach is
particularly well-suited for mammalian neurons, where uniform twig
structures simplify preprocessing, but MoMo remains adaptable for
more complex insect neurons through parameter tuning.
Improving Spatial Analysis and Visualization. MoMo ’s ability
to correlate motif queries with 3D neuron reconstructions (G3, T3)
is a significant advantage. Experts appreciated the tool’s multiple
visualization modes, which aid spatial reasoning about synaptic in-
teractions. However, some participants found interpreting dense 3D
structures challenging. Future improvements could include occlusion-
aware highlighting or interactive slicing to enhance clarity in highly
interconnected regions. Another key challenge lies in the wildcard fea-
ture, which allows flexible matching of neuronal segments. While this
feature provides adaptability, it currently lacks the ability to constrain
wildcard segments to specific neuronal regions. For example, in the
feed-forward excitation case study, a constraint ensuring that synaptic
connections occurred on a particular neuron arbor would have improved
specificity. Introducing constraint options for wildcards could enhance
motif refinement while preserving flexibility.
Limitations of Motif Querying. While MoMo enables segment-level
motif sketching and structural queries, some limitations remain. Users
cannot specify exact segment lengths or precise synapse positions along
a segment, as sub-segment resolution is not supported. Quantitative
constraints (e.g., “at least three inputs”) are also unavailable, limiting
expressiveness for some patterns. While effective for small to mod-



erately sized motifs (typically 3–4 neurons with 3–6 segments and
synapses), querying larger or more complex motifs is challenging due
to combinatorial search space and sketching usability. As noted by P2,
MoMo works best alongside higher-level tools better suited for motifs
with 5+ neurons.

11 CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel approach for interactively searching
and analyzing neuron morphology-aware motifs in large connectome
graphs. This method enables the exploration of complex neural struc-
tures and their functional relationships across datasets such as FlyWire
and MICrONS. By focusing on connectivity patterns at the segment
level, our approach facilitates the identification of motifs, like lateral
inhibition, that were previously difficult to query. Through case studies,
we demonstrated the tool’s effectiveness in supporting exploratory anal-
ysis and providing insights into neuronal function. We also presented a
fully functioning prototype that allows users to perform these analyses
interactively and efficiently.

We see several exciting directions for future work. First, comparative
visualization methods are needed to correlate morphology-aware con-
nectivity patterns across specimens of different sexes or developmental
stages, posing challenges such as establishing visual correspondences
between comparison targets. Second, MoMo currently focuses on mor-
phological motifs and does not support the query or analysis of spatial
motifs, such as helix patterns. Spatial motifs incorporate spatial coor-
dinates alongside neuronal morphology, enabling the identification of
geometric patterns beyond what morphology alone can reveal. Integrat-
ing spatial motif queries would require additional data, significantly
increasing computational demands. Third, alternative interactions for
motif definition should be explored, such as selecting patterns directly
in the 3D rendering or using scribbling-based drawings. Finally, while
our current approach investigates the connectome based on detailed hy-
potheses of motif morphology and connectivity, there is an opportunity
to explore unknown motifs by integrating graph-based machine learn-
ing with interactive visualization. A major challenge here is effectively
visualizing automatically identified morphological motifs.
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Table 1: Algorithmic Evaluation. Execution time comparison for motif querying between Arachne and NetworkX. Arachne is utilized in MoMo.
Performance measured on a system with two AMD EPYC 7713 CPUs (64 cores each) and 1TB RAM. Data: FlyWire.

Subgraph VF2-PS (sec) NetworkX (sec) # Instances

2.48 336.45 696,460

3.62 173.75 191,690

2.88 5,980.54 5,048

339.46 16,436.85 2,308

1.56 435.07 44,657

78.77 810.23 161,842

4.10 1,018.23 179,255

38.06 >12,000 4,992
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