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Abstract—The rise of graph data in various fields calls for
efficient and scalable community detection algorithms. In this
paper, we present parallel implementations of two widely used
algorithms: Label Propagation and Louvain, specifically designed
to leverage the capabilities of Arachne, which is a Python-
accessible open-source framework for large-scale graph anal-
ysis. Our implementations achieve substantial speedups over
existing Python-based tools like NetworkX and igraph, which
lack efficient parallelization, and are competitive with parallel
frameworks such as NetworKit. Experimental results show that
Arachne-based methods outperform these baselines, achieving
speedups of up to 710x over NetworkX, 75x over igraph, and
12x over NetworKit. Additionally, we analyze the scalability of
our implementation under varying thread counts, demonstrating
how different phases contribute to overall performance gains of
the parallel Louvain algorithm. Arachne, including our commu-
nity detection implementation, is open-source and available at
https://github.com/Bears-R-Us/arkouda-njit.

Index Terms—Graph Algorithms, High-Performance Comput-
ing, Data Science

I. INTRODUCTION

Community detection, also referred to as graph clustering,
aims to partition the vertices of a network into groups char-
acterized by dense intra-cluster connections and sparse inter-
cluster connections. It is important to comprehend the structure
of complex networks, as community members usually exhibit
similar roles within the network. In recent years, community
detection has had a wide range of applications in various fields,
including urban transportation [1], social networks [2], biology
[3], FinTech [4], and more.

As networks continue to grow in size, it is necessary to
utilize effective parallel algorithms. For graphs with millions to
billions of edges, only (near) linear-time community-detection
algorithms are practical. To address this, we focus on two
parallel algorithms. Label propagation [5] is a simple yet
effective method in which vertices iteratively adopt the most
frequent community label among their neighbors until stable
communities emerge. The Louvain algorithm [6], widely rec-
ognized for its heuristic modularity optimization, has proven
highly efficient for clustering large, real-world networks. Its
performance has been further improved through various opti-
mizations and parallel implementations [7]–[11]. In this paper,
we implement these two algorithms in parallel and evaluate

them. Furthermore, they are integrated into the Arachne open-
source framework [12], allowing scalable exploratory graph
analysis.

Arachne [12] is an actively developed framework, integrated
with Arkouda [13], which combines the productivity of Python
at the front end with the high-performance computing capa-
bility of the Chapel programming language [14] at the back
end. Arachne provides a comprehensive set of graph analytics
algorithms, organized within a cohesive framework, with all
Chapel and Python code available on GitHub. Our research
focuses on developing and integrating parallel graph algo-
rithms into Arachne, enabling data scientists to take advantage
of Python and use their laptops to perform real-world graph
analysis on large computing platforms productively.

The primary contributions of this paper are as follows:

1) Scalable Parallel Implementations of Community
Detection Algorithms: We develop high-performance parallel
versions of two widely used community detection algorithms:
Label propagation and Louvain, optimized for large-scale
graphs. Using the parallel computing capabilities of Chapel,
our implementations efficiently process graphs with billions
of edges, achieving up to 710× speedup over NetworkX, 75×
over igraph, and 12× over NetworKit.

2) Comprehensive Evaluation across Various Graphs:
We conduct extensive experiments to assess the efficiency,
scalability, and output quality of our implementations. The
results show that our methods consistently outperform widely
used Python-based libraries across a variety of real-world
graphs, while delivering comparable or better solution quality
than both sequential and parallel baselines.

3) Integration with the Arachne Graph Analytics Frame-
work: This work demonstrates how Arachne, a flexible and
scalable open-source framework, facilitates the efficient imple-
mentation and execution of advanced community detection al-
gorithms. By leveraging Arachne’s design and capabilities, we
enable seamless scalability and high performance, providing
a practical tool for analyzing massive graphs. This integration
highlights Arachne’s potential as a robust platform for a broad
range of graph-analysis tasks beyond community detection.

https://github.com/Bears-R-Us/arkouda-njit


II. PRELIMINARIES

A. Notation

Let G(V,E,w) be an undirected, weighted graph, where V
represents the set of n vertices, E ⊆ {{u, v} | u, v ∈ V }
denotes the set of m edges. N(v) denotes the neighbor of v.
An edge e is said to be incident to a vertex v if v is one of
the two vertices that connects e. Loops, edges that connect a
vertex to itself, are also allowed. The weight associated with
an edge eij is denoted by wij . In the case of an unweighted
graph, we assume that all edges have unit weight, i.e., wij = 1.
Following the convention of [15], the degree of a vertex is
defined as the number of its neighbors:

deg(v) = |{e | e ∈ E, v ∈ e}|

For the weighted degree, we sum the weights of all incident
edges, defined as:

degw(v) =
∑

e∈E|v∈e

w(e) + Lv

where Lv is the weight of the loop on v if one exists and is
0 otherwise. Loops are counted twice, similar to how they are
treated in directed graphs. The weighted volume of a set of
vertices S is the sum of their weighted degrees:

volw(S) =
∑
v∈S

degw(v)

For two disjoint subsets of vertices A,B ⊂ V , the weighted
cut is defined as the total weight of all edges between A and
B:

cutw(A,B) =
∑

{u,v}|{u,v}∈E,u∈A,v∈B

w({u, v})

We use cutw(A) as shorthand for the cut between A and the
rest of the graph, that is, cutw(A, V \A). Similarly, cutw(v,A)
is used to represent cutw({v}, A).

B. Community Detection

Community detection is a widely used technique in network
science to partition a network into a set of disjoint communi-
ties C = c1, . . . , cn, where each community ci ⊆ V , ∪ci = V ,
and ci∩cj = ∅. Although some methods allow for overlapping
communities, in this paper we assume communities to be
disjoint, so overlapping is not considered in this context.

C. Modularity

Modularity, introduced by Newman and Girvan in 2004
[16], is a widely used metric to evaluate the quality of commu-
nities identified by heuristic-based community detection algo-
rithms. Communities with high modularity are characterized
by dense internal connections and sparse connections between
them. The modularity ranges from -0.5 to 1 [17], with higher
values indicating better community structures. As mentioned
in [18], modularity can be written as:∑

c∈C

volw(c)− cutw(C)

volw(V )
− volw(C)2

volw(V )2

Modularity can be changed by moving vertices between
communities. A move consists of removing a vertex from
its current community and assigning it to a different one.
Let A represent the current community of v and B the
target community. Denote by A− and B− the communities
A and B that exclude v, respectively. The modularity change,
△Qv → B, resulting from such a move is given by:

△Qv→B = 2 ∗ (cutw(v,B−)− cutw(v,A−)

volw(V )
−

degw(V ) ∗ volw(B−)− volw(A−)

volw(V )2
) (1)

D. Arachne

Arachne is an extension to the existing library, Arkouda,
which provides Pandas- and NumPy-like operations at a super-
computing scale. Arachne integrates into typical exploratory
data analytics workflows within Arkouda by providing meth-
ods to automatically convert tabular data into graph structures,
enabling large-scale graph operations and queries. It efficiently
executes graph analytical kernels in shared and distributed
memory, transferring data as needed between compute nodes
and processors as required.

Currently, Arachne includes a variety of optimized graph
kernels such as connected components [19], subgraph isomor-
phism [20], and k-truss [21], among others.

III. ALGORITHMS

In this section, we describe two parallel variants of existing
community detection algorithms, as well as the implementa-
tion details.

A. Parallel Label Propagation

1) Algorithm: The Label Propagation Algorithm (LPA),
introduced by Raghavan et al. [5], is a widely used method
for community detection in large-scale networks due to its
simplicity and scalability. The algorithm initializes each vertex
with a unique label and iteratively updates vertex labels based
on their neighbors. In each iteration, a vertex adopts the
label with the highest aggregate edge weight in its neighbor-
hood (for weighted graphs), effectively forming communities
through local greedy updates. The process continues until
convergence, defined as the number of label updates falling
below a user-defined threshold θ. LPA has a near-linear time
complexity; Each iteration takes O (m) time, and the total
running time is O (L ·m), where L is the number of iterations.
Although L depends on the network structure rather than
the size, LPA typically converges in only a few iterations in
practice, despite the lack of formal guarantees.

2) Implementation: Algorithm 1 shows the pseudocode of
our parallel label propagation implementation. The algorithm
is parallelized by dividing the vertex set across threads, each
operating independently on a shared label array (line 14).
This asynchronous approach accelerates convergence, but can
lead to race conditions: When evaluating the neighborhood
of vertex u (line 15), its neighbor v could hold the previous



Algorithm 1 Parallel Label Propagation (PLP).

1: Input: Graph G = (V,E), maxIteration, threshold
2: Output: C: Community of each vertex

3: function PLP(G)
4: C ← [0..|V |] ▷ initialized as singleton
5: Vactive ← V ▷ active vertices in each iteration
6: ∆N ← 0 ▷ number of vertices changed
7: for li ∈ [0..maxIteration] do
8: ∆N ← PLPMOVE(G,C, Vactive)
9: if ∆N ≤ THRESHOLD then

10: break
11: end if
12: end for
13: return C
14: end function

15: function PLPMOVE(G,C, Vactive)
16: ∆N ← 0
17: parallel for v ∈ Vactive do
18: c∗ ← argmaxc{

∑
u∈N(v):C(u)=c w(v, u)}

19: if c∗ = C[v] then
20: Vactive ← Vactive \ v
21: continue
22: end if
23: C[v]← c∗

24: ∆N ← ∆N + 1
25: Vactive ← Vactive ∪N(v)
26: end parallel for
27: return ∆N
28: end function

label Ci−1(v) or the current label Ci(v). However, these
race conditions are acceptable and even beneficial. In the
original description of the algorithm [5], the vertices are
traversed in random order. We make this step optional in our
parallel version, relying instead on the inherent randomization
provided by thread execution.

To improve efficiency, we maintain a set of active vertices,
Vactive, which is initialized at line 5. A vertex becomes inac-
tive if its label remains unchanged after an iteration, as imple-
mented in lines 19 and 20, and is removed from the active set.
It is reactivated only if one of its neighbors updates its label, as
handled in line 25. This selective update strategy significantly
reduces redundant computations and focuses computation on
regions of the graph that are still undergoing change. The
algorithm terminates when the number of updated vertices falls
below a user-defined threshold, which is checked in line 9, or
when the predefined maximum number of iterations is reached,
as specified in line 7. These termination criteria ensure efficient
execution while preserving community quality, particularly in
the presence of high-degree vertices that may otherwise delay
convergence.

B. Parallel Louvain Algorithm
The Louvain algorithm, introduced by Blondel et al. [6],

is a multi-level greedy method designed to maximize modu-
larity and identify high-quality, disjoint communities in large
networks. The approach begins by assigning each vertex to
its own community, resulting in an initial singleton partition,
where each vertex is in a community by itself. In this way,
every vertex is assigned a community ID equal to its vertex
ID, an integer that uniquely identifies each vertex.

The algorithm proceeds through two iterative phases: the
local-moving phase and the aggregation phase. During the
local-moving phase, each vertex v evaluates whether moving
to a neighboring community would increase modularity and
greedily joins the community that provides the highest gain. In
the aggregation phase, all vertices within the same community
are merged into a super-vertex, reducing the graph’s size.

These two phases together form one iteration of the al-
gorithm, which is repeated until no further improvement in
modularity can be achieved.

In our parallel implementation of the Louvain algorithm,
we go beyond the straightforward approach of parallelizing
the main for-loop. Our primary optimizations take advantage
of the features of Arachne and Arkouda to accelerate both the
local-moving and aggregation phases of the algorithm. The
specific improvements and detailed workings of our approach
are described below.

1) Local-moving Phase: The pseudocode for the local-
moving phase is shown in Alg. 2.

At the beginning of each local-moving phase, since we
calculate △Q using Eq. 1, we need to initialize two arrays:
volVertex and volCom, representing the volume of vertices and
the volume of the community. In line 4, each vertex is assigned
its own community by setting the community ID to its vertex
ID, effectively creating singleton communities. As a result,
both volVertex and volCom are arrays initialized in lines 5-6
with lengths equal to the number of vertices, and their initial
values are set to w(v), the weight of the respective vertex.

The core of our local moving phase lies in the parallel
vertex movement evaluation process starting from line 9. For
each vertex v, the algorithm concurrently examines whether
moving v to one of its neighboring communities yields a
positive △Q. Specifically in lines 13-15, we compute the △Q
in parallel for each neighboring community. After identifying
a neighboring community that produces the maximum increase
in △Q on line 16, the algorithm updates both the community
membership and volume information. When a beneficial move
is found, lines 17-19 show how we adjust the volumes by si-
multaneously decreasing volCom[c] and increasing volCom[d]
by volVertex[v], followed by updating the vertex’s community
ID.

To optimize computation, line 7 introduces an atomic
Boolean array, needCheck, which tracks whether a vertex
should be reconsidered for movement in the next iteration.
The parallel processing in line 11 ensures that a vertex is
only evaluated if it is marked for checking, which happens
when either its community or that of one of its neighbors



Algorithm 2 Parallel Local-Moving Phase

1: Input: Graph G = (V,E), maxIteration
2: Output: Updated communities for all vertices
3: for v ∈ V do
4: comID[v]← vertexID[v] ▷ communityID
5: volV ertex[v]← w(v) ▷ volume of vertex
6: volCom[v]← w(v) ▷ volume of community
7: needCheck[v]← true
8: end for
9: repeat

10: parallel for v ∈ V do
11: tmpNeedCheck[v]← false
12: if needCheck[v] = true then
13: parallel for u ∈ N(v) do
14: ∆Qu ← ∆Qv→comID[u]

15: end parallel for
16: ∆Qfinal ← argmaxu∈N(v)∆Qu

17: if ∆Qfinal > 0 then
18: volCom[comID[v]]-=volV ertex[v]
19: volCom[comID[final]]+=volV ertex[v]
20: comID[v]← comID[final]
21: tmpNeedCheck[v]← true
22: parallel for u ∈ N(v) do
23: tmpNeedCheck[u]← true
24: end parallel for
25: end if
26: end if
27: end parallel for
28: needCheck ← tmpNeedCheck
29: until No vertex changes community or iteration count
30: exceeds maxIteration
31: return comID

has changed. This selective processing significantly reduces
unnecessary computations. The operation shown on line 25
updates the needCheck array for the next iteration based
on the changes made in the current round. As specified in
line 26, the local-moving phase continues this parallel process
until either no vertex changes its community or the maximum
iteration count is reached.

We note that, similar to other parallel Louvain implemen-
tations, the final result is not strictly deterministic. Due to
concurrent updates or variations in thread scheduling, the final
community assignment and the achieved modularity may differ
across runs. This nondeterminism is a common characteristic
of parallel heuristics and does not affect the overall quality or
scalability of the algorithm [9].

2) Aggregation Phase: In the implementation of the aggre-
gation phase of the Louvain algorithm, we adopt a stream-
lined but robust strategy to iteratively remap and construct
higher-level graphs. After determining the updated community
assignments for each vertex at the start of the aggregation
phase, the community IDs are first remapped to a contiguous
range from 0 to the total number of unique communities. This
ensures efficient indexing and facilitates the subsequent graph

processing.
Subsequently, the edge list is traversed to update the

endpoints of each edge according to the new community
IDs. During this step, edge weights are recalculated based
on the interactions between the communities represented by
the endpoints. This updated edge list, now representing the
coarsened graph, is transmitted back to the Python front-end.

The Arachne framework leverages Arkouda’s GroupBy
and Broadcast functionality during the graph reconstruction
process. This critical step automatically merges edges with
identical endpoints, aggregating their weights to produce the
final edge weights for the coarsened graph. This integration
of GroupBy and Broadcast not only simplifies the graph
reconstruction, but also ensures computational efficiency by
offloading the aggregation process to Arkouda’s optimized
back-end.

Following this, the algorithm alternates between the local-
moving and aggregation phases in an iterative manner. During
each iteration, the vertices are reassigned to communities in
the local-moving phase based on modularity optimization, and
the edge list is updated in the aggregation phase to reflect the
new community assignments and then reconstruct a new graph.
These steps are repeated until no further changes in vertex
community assignments occur, representing convergence and
the termination of the algorithm. The overall process is out-
lined in the following pseudo-code.

Algorithm 3 Parallel Louvain Algorithm

1: Input: Graph G = (V,E), maxIteration θ
2: Output: Final communities for all vertices
3: function LOUVAIN(Graph G)
4: repeat
5: C ← LocalMoving(G, θ)
6: done← |{c | c ∈ C}|== |V (G)| ▷ Convergence
7: if not done then
8: G← Aggregation(G,C)
9: end if

10: until done
11: return C
12: end function
13: function AGGREGATION(Graph G, Partition C)
14: V ← C ▷ Remapping
15: E ← {{A,B} | {u, v} ∈ E(G) :
16: u ∈ A ∈ C, v ∈ B ∈ C}
17: return Graph(V,E)
18: end function

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

A. Datasets

In this section, we present an experimental analysis using
several real-world datasets, including com-amazon,
com-dblp, com-youtube, com-livejournal,
as-skitter, and com-orkut. These datasets are
commonly used in network analysis studies and are publicly



available at SNAP [22]. The number of vertices in these
datasets ranges from 0.335 million to 4.00 million, while the
number of edges spans from 0.926 million to 117 million.
Detailed information about each dataset is presented in
Table I

TABLE I: Dataset Statistics

Graph |V | |E| Diameter

com-dblp 317,080 1,049,866 21
com-amazon 334,863 925,872 44

as-skitter 1,696,415 11,095,298 25
com-youtube 1,134,890 2,987,624 20

com-livejournal 3,997,962 34,681,189 17
com-orkut 3,072,441 117,185,083 9

B. Experimental configuration

The experiments were conducted on an AMD EPYC 7763
server with dual sockets and 512GB of memory. Each socket
contains 64 cores, providing a total of 128 cores. The system
is equipped with 64KB L1 caches, 512KB L2 caches, and
32MB L3 caches. Arachne is set up to work in the client-server
model, where the client, typically a Python script or Jupyter
notebook, interacts with an Arkouda server running on a
high-performance computing (HPC) system. The relevant code
was compiled using GCC version 13.2.0. We used NetworKit
v11.0, NetworkX v3.1, and igraph v0.11.8 as baselines. Unless
otherwise stated, all running times exclude I/O and graph
loading time and only include the algorithmic execution.

V. EXPERIMENT RESULTS

A. Comparing performance

We evaluate the performance of our parallel implementa-
tions of two community detection algorithms: Label propaga-
tion and Louvain, using Arachne. These implementations are
compared with established Python libraries, including igraph,
NetworkX, and NetworKit. The running time and modularity
for each algorithm are measured five times, and the average
is reported to ensure accuracy and consistency.

1) Label Propagation Algorithm: As shown in Fig. 1,
our experimental results demonstrate that Arachne-LPA ex-
hibits superior performance on all test graphs. For smaller
graphs such as com-dblp and com-amazon, Arachne-LPA
achieves execution times of 0.5s and 0.4s, respectively, demon-
strating speedups of 96.9x and 42.7x compared to igraph
implementations. This performance advantage becomes more
pronounced with larger graphs: on com-livejournal,
Arachne-LPA completes in 16.3s compared to igraph’s 425.6s
(26.2x speedup), while on com-orkut, it achieves a
15.4x speedup over igraph (31.9s vs 492.5s). In particular,
NetworkX-LPA shows significant performance degradation on
larger graphs, requiring 3686.4s for com-orkut.

2) Louvain Algorithm: The comparison of the running
time of different Louvain implementations is presented in
Fig. 2. The Arachne-Louvain implementation consistently
outperforms other methods in almost all the datasets tested.
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Fig. 1: Running time in seconds with igraph-LPA, NetworkX-
LPA, and Arachne-LPA

For smaller graphs like com-dblp and com-amazon,
Arachne completes in 1.54s and 1.57s, respectively, com-
pared to 5.50s and 4.00s for igraph, 41.75s and 30.33s for
NetworkX, and 0.44s and 0.62s for NetworKit. Although
NetworKit achieves lower running times on some small
graphs, Arachne demonstrates strong scalability and becomes
increasingly advantageous on larger datasets. For example, on
com-livejournal, Arachne completes in 5.59s, signifi-
cantly faster than igraph (417.34s), NetworkX (2214.39s), and
NetworKit (69.31s). The greatest performance gain appears on
com-orkut, where Arachne completes in 15.60s, compared
to 1176.58s for igraph, 11072.52s for NetworkX, and 109.14s
for NetworKit. As shown in Fig. 3, Arachne-Louvain achieves
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Fig. 2: Running time in seconds with igraph-Louvain,
NetworkX-Louvain, NetworKit-Louvain, and Arachne-
Louvain

modularity that is highly comparable to those produced by
sequential implementations. For example, on com-amazon
and as-skitter, Arachne reaches modularity values of
0.9248 and 0.8289, closely matching the results from igraph
(0.9262 and 0.8404) and NetworkX (0.9260 and 0.8462). In
contrast, NetworKit tends to produce lower modularity values
on several datasets, such as 0.6918 on com-amazon and
0.7503 on as-skitter. These results suggest that Arachne
not only provides significantly faster execution than sequential
implementations but also delivers higher-quality results than
existing parallel baselines like NetworKit.

3) Analysis across Graph Sizes: The experimental results
reveal consistent performance characteristics between the two
algorithms. Our experiments demonstrate that the relative
performance advantage of Arachne implementations exhibits
a strong correlation with the size of the graph. For smaller
graphs such as com-dblp and com-amazon, we observe
moderate but consistent performance improvements. However,
efficiency becomes substantially more significant for large-
scale graphs like com-livejournal and com-orkut,
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Fig. 4: Scalability of execution times as the number of threads
is increased for the Louvain implementation

where performance improvements often span multiple orders
of magnitude. This scaling behavior suggests that Arachne’s
parallel processing approach becomes particularly effective as
graph size increases, making it especially suitable for large-
scale graph analysis tasks.

B. Strong Scaling

Strong scaling experiments were conducted on the
com-livejournal dataset to evaluate the parallel effi-
ciency of our Louvain implementation, as shown in Fig.4. We
varied the number of threads from 2 to 128 by configuring
the CHPL_RT_NUM_THREADS_PER_LOCALE environment
variable in Chapel. To provide deeper insights into the scaling
behavior, we also break down the running time of different
phases to better understand the individual performance.

Our experimental results demonstrate that the Louvain im-
plementation achieves strong scalability. As the number of
threads increases, we observe substantial performance im-
provements. Specifically, the total execution time decreases
from 25.6 seconds with 2 threads to 5.6 seconds with 128
threads, yielding a 4.6× speedup.

When it comes to phase-level analysis, the local-moving
phase, which dominates the sequential execution time in the
Louvain algorithm, shows the most significant improvement
with parallelization. Specifically, its execution time improves
by 7x when scaling from 2 to 128 threads, reducing from 16.8s
to 2.4s. This indicates that the label-update operations in this
phase are highly parallelizable. In contrast, the aggregation
phase exhibits limited scalability due to its global communi-
cation requirements.

VI. RELATED WORK

Community detection has been extensively studied to ad-
dress the problem from various perspectives, with label prop-
agation [5] and Louvain algorithm [6] being two of the most
widely used heuristics.

Label propagation has gained popularity due to its simplic-
ity, efficiency, and ease of implementation. Various improve-
ments have since been proposed to address its limitations [23],
[24]. The Louvain algorithm is a greedy modularity optimiza-
tion method for detecting communities with high modularity.
To scale it to large graphs, several parallel Louvain methods
(PLMs) have been proposed [9], [25]. They demonstrated
that parallel heuristics can achieve modularity comparable to
sequential baselines while scaling to much larger graphs.

Several graph analysis frameworks expose these algorithms
through Python interfaces. NetworkX [26] is widely adopted
in the Python ecosystem, but its pure Python implementation
lacks parallelization. igraph [27] provides a C back-end with
Python bindings, offering improved performance but only
limited multithreading. NetworKit [28] is a high-performance
C++ framework with Python bindings that includes parallel
Louvain (PLM) and label propagation (PLP) implementations.
Our comparisons focus on these frameworks because they
represent the most widely used Python-facing tools, and thus
provide the most relevant baselines to evaluate Arachne’s
parallel performance.

Other state-of-the-art implementations, such as GPU-
based algorithms [29], [30] or distributed-memory algorithms
[8], target different execution environments. Although these
achieve excellent performance on their respective platforms,
they are beyond the scope of this work.

VII. CONCLUSION AND FUTURE WORK

Large graph analysis presents significant challenges for data
scientists, particularly in community detection, which is a
common task. In this paper, we have developed and imple-
mented several parallel and optimized algorithms for com-
munity detection with the open-source framework Arachne.
Arachne facilitates large-scale graph analytics by leveraging
supercomputers and cloud resources while providing a user-
friendly Python interface. Our experimental results show that
our implementation within the Arachne framework achieves
substantial performance improvements, with absolute speedups
compared to existing Python toolkits such as NetworkX,
igraph, and NetworKit, demonstrating great scalability as well.

For future work, we plan to expand the capabilities of
Arachne by implementing additional community detection
algorithms. In the meantime, our aim is to conduct comparative
experiments against other state-of-the-art implementations to
further validate the performance advantages of Arachne. By
continuing to improve and optimize our software, we try to
empower data scientists to analyze and derive insights from
large-scale graph data.
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