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Abstract

Counting and listing triangles in graphs is a fundamental task in network analysis, support-
ing applications such as community detection, clustering coefficient computation, k-truss
decomposition, and triangle centrality. We introduce the cover-edge set, a novel concept
that eliminates unnecessary edges during triangle enumeration, thereby improving effi-
ciency. This compact cover-edge set is rapidly constructed using a breadth-first search (BFS)
strategy. Using this concept, we develop both sequential and parallel triangle-counting
algorithms and conduct comprehensive comparisons with state-of-the-art methods. We
also design a benchmarking framework to evaluate our sequential and parallel algorithms
in a systematic and reproducible manner. Extensive experiments on the latest Intel Xeon
8480+ processor reveal clear performance differences among algorithms, demonstrate the
benefits of various optimization strategies, and show how graph characteristics, such as di-
ameter and degree distribution, affect algorithm performance. Our source code is available
on GitHub.

Keywords: triangle counting algorithms; graph analytics; parallel algorithms

1. Introduction

Triangle listing and counting is a well-established problem in computer science and
forms a key foundation for many graph analysis methods, such as clustering coefficients [1],
k-truss decomposition [2], and triangle centrality [3]. Its significance is further demon-
strated by its inclusion in high-performance computing benchmarks like Graph500 [4] and
the MIT/Amazon/IEEE Graph Challenge [5], as well as its role in influencing the design of
future computing architectures (e.g., IARPA AGILE [6]).

A graph G = (V,E) with n = |V| vertices and m = |E| edges can contain at most
(3) = O(n®) triangles. The naive approach—checking every triple (1, v,w) via triple-
nested loops—requires O(n®) time, which is prohibitively slow for sparse graphs. It is
known that listing all triangles in G requires at least Q(m3 / 2) time [7,8]. To address this,
Cohen [9] introduced a map-reduce-based parallel technique that generates open wedges
between triples of vertices and then checks for the existence of a closing edge, avoiding
redundant counts while improving load balancing. Many parallel approaches [10,11] adopt
this wedge-generation strategy, partitioning the graph across multiple compute nodes and
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communicating wedge data to detect closing edges. However, in large-scale settings, this
communication cost often dominates the total runtime.

In this work, we introduce a novel approach for triangle counting that reduces unnec-
essary edge checks by operating on a smaller subset of edges, which we call the cover-edge
set. This reduced set preserves all triangles in the graph, while significantly reducing the
computational workload. The cover-edge set is constructed efficiently using a breadth-first
search (BFS) to orient vertices into levels.

The main contributions of this paper are as follows:

*  We propose a new triangle counting algorithm, Cover-Edge Triangle Counting (CETC),
based on the concept of the cover-edge set. This approach identifies all triangles using
only the cover-edge set instead of the full edge set, ensuring correctness while reducing
computation. Several sequential variants of CETC are also presented.

*  We release open-source software containing implementations of over 22 sequential
triangle counting algorithms and 11 OpenMP parallel algorithms, all written in C.

*  We perform a comprehensive experimental evaluation on both real-world and syn-
thetic graphs, comparing our proposed algorithms against state-of-the-art methods
and analyzing how graph properties affect performance.

2. Notations and Definitions

For an undirected graph G = (V,E) with n = |V| vertices and m = |E| edges,
a triangle is a set of three distinct vertices {v,, vy, v.} C V such that all three edges
{(va,vp), (vp,0c), (vc,v,) } belong to E. For any vertex v € V, its neighborhood is defined as

N(v) ={ueV|(uv)€E},

and its degree is d(v) = |N(v)|. We denote by dmax the maximum degree among all vertices
in G.

With these notations, the total number of triangles in graph G is denoted as |A(G)|.
Specifically, A(G) = {(u, v, w)|u, v, w are different vertices of V and (u,v), (v, w), (w, u) are
edges of E}.

The triangle counting problem can be expressed in two ways, based on edges and vertices:

e Forany edge (u,v) € E, the number of triangles that include (u,v) is |A(u,v)|, where
A(u,v) = N(u) N N(v). Since each triangle edge will count the same triangle and
we will count both A(u,v) and A(v, u), the total number of triangles is computed as
A(G)| = M, using the edge-iteration-based method.

e For any vertex v € V, the number of triangles including v is |A(v)|, where
A(v) = {(u,w) |u,w € N(v) A (u,w) € E}. The total number of triangles is computed

as |A(G)| = M, using the vertex-iteration-based method.

3. Related Work
3.1. Existing Sequential Algorithms

For triangle counting, the obvious algorithm is brute-force search (see Algorithm 1),
enumerating over all @ (n?) triples of distinct vertices, and checking how many of these
triples are triangles. Faster algorithms that rely on representing the input graph using
an adjacency matrix exist and employ fast matrix multiplication techniques, such as the
method proposed by Alon, Yuster, and Zwick [12]. In fact, if A is the adjacency matrix of
G, for any vertex v, the value A3, on the diagonal of A3 is twice the number of triangles
to which v belongs. So, the number of triangles is é Y tr(A3). Triangle counting problems
can therefore be solved in O(n“), where w < 2.732 is the exponent of the fast matrix
product [13,14]. Alon et al. [12] also show that it is possible to solve the triangle counting
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problem in O (mc%-jl) C O(m'4!) time. However, the implementation is infeasible for
large, sparse graphs, and certain matrix multiplication methods fall short of listing all the
triangles. For these reasons, despite their evident theoretical strength, these algorithms
have limited practical impact.

Algorithm 1 Triples

Require: Graph G = (V,E)

Ensure: Triangle Count T

1: T« 0

2:VueV

3: VoeV

4 YweV

5 if (u,v) € EA (v,w) € EA(u,w) € E
6: T+ T+1

7: return T/6

Another category of fundamental problem formulation is called a subgraph query,
which aims to identify instances of a triangle subgraph within the input graph. It is crucial
to emphasize that determining the presence of a specific subgraph in a graph is an NP-hard
problem. Although various methods, including the backtracking strategy [15], have been
introduced, they are not preferred choices for the triangle counting problem, particularly
for large-scale graphs.

Latapy [8] presents a comprehensive survey of triangle-counting algorithms designed
for very large and sparse graphs. One of the earliest methods, known as the tree-listing
algorithm, was introduced by Itai and Rodeh in 1978 [7]. The algorithm begins by construct-
ing a rooted spanning tree of the graph. It then iterates over the non-tree edges, applying
specific criteria to detect triangles. Afterward, the corresponding tree edges are removed,
and the process is repeated until no edges remain (see Algorithm 2). The algorithm runs in
O(m%) time, or O(n) for planar graphs.

Algorithm 2 Tree-listing (IR) [7]

Require: Graph G = (V,E)
Ensure: Triangle Count T
1: T+ 0
2: while E is not empty
3: K < Covering tree(G)
4 VY(u,v) € E AN(u,v) ¢ K
5 if (parent(u),v) € E
6: T+ T+1
7: elif (parent(v),u) € E
8:
9
10:

T+~ T+1
E+ E—-K
return T/2

The most widely used triangle-counting algorithms in the literature are the vertex-
iterator [7,8] and edge-iterator [7,8] approaches, both of which have a time complexity of
O(m - dmax)-

In the vertex-iterator approach (see Algorithm 3), for each vertex u € V, the algorithm
inspects the adjacency list N(v) of every vertex v € N(u). If there exists a vertex w in
the intersection of N(u) and N(v), then the triplet (u,v, w) forms a triangle. Arifuzza-
man et al. [16] investigate several variants of the vertex-iterator algorithm that employ
different vertex ordering strategies to improve performance.
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Algorithm 3 Vertex-Iterator [7,8]

Require: Graph G = (V,E)
Ensure: Triangle Count T
1: T+ 0

2:VueV

3:  VYveN(u)

4: X = Intersection(N(u), N(v))
5: T+ T+X

6: return T/6

In the edge-iterator approach (see Algorithm 4), each edge (1, v) in the graph is exam-
ined, and the intersection of N(u) and N(v) is computed to identify triangles. A common
optimization is the direction-oriented method, which only considers edges (u,v) where
u<o.

Algorithm 4 Edge-Iterator [7,8]

Require: Graph G = (V,E)
Ensure: Triangle Count T

1: T+ 0

2: V(u,v) € E

3: X = Intersection(N(u), N(v))
4 T+ T+X

5: return T/6

Variants of the edge-iterator algorithm differ primarily in how they perform the
intersection Intersection(N(u), N(v)). When the two adjacency lists are sorted, MergePath
and BinarySearch methods can be applied. The MergePath algorithm performs a linear scan
through both lists, counting common elements; Makkar, Bader, and Green [17] present an
efficient GPU implementation of this approach. Mailthody et al. [18] further optimize the
set intersection using a two-pointer (MergePath) technique.

In contrast, the BinarySearch method uses binary search to check whether each element
of the smaller adjacency list appears in the larger one. Another option, Hash, performs set
intersection without requiring sorted adjacency lists. A typical implementation initializes
a Boolean array of size m with all entries set to false. For each vertex in N(u), the
corresponding position in the array is set to true, and then N(v) is scanned to check in
©(1) time whether a match exists.

Chiba and Nishizeki [19] proposed one of the earliest edge-iterator algorithms using
hashing for triangle enumeration. Its runtime is O(a(G)m), where a(G) denotes the
arboricity of G, bounded by a(G) < [(2m + n)% /2] [19]. In 2018, Davis [20] rediscovered
this method—referred to as tri_simple—in his comparison using SuiteSparse GraphBLAS.
Mowlaei [21] introduced a variant of the edge-iterator algorithm employing vectorized
sorted set intersection and vertex reordering based on the reverse Cuthill-McKee heuristic.

In 2005, Schank and Wagner [22,23] proposed a fast triangle-counting algorithm called
forward (see Algorithm 5), which refines the edge-iterator approach. Rather than computing
intersections of full adjacency lists, the forward algorithm uses a dynamic data structure
A(v) to store a subset of the neighborhood N (v) for each vertex v € V. Initially, all sets A(v)
are empty. For each edge (1, v) with u < v, the algorithm computes the intersection of A(u)
and A(v) to identify triangles and then adds u to A(v). This strategy significantly reduces
the size of the intersections required to find triangles. The algorithm has a running time of
O(m - dmax ). However, if the vertices are preprocessed and reordered in decreasing order
of their degrees—a ©(nlogn) step—the running time of the forward algorithm improves
to O( m?2 ). Ortmann and Brandes [24] provide a survey of triangle-counting algorithms,
propose a unifying framework for efficient implementations, and conclude that nearly all
triangle-listing variants achieve a running time of O(m - a(G)), where a(G) denotes the
arboricity of the graph.
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Algorithm 5 Forward Triangle Counting (F) [22,23]

Require: Graph G = (V,E)
Ensure: Triangle Count T
1: T+ 0

2: VoeV

33 Av)« @

4: V(u,v) € E

5. if (u < v) then

6: Vw € A(u) N A(v)
7:

8

9:

T+ T+1
A(v) + A(v) U{u}
return T

The forward-hashed algorithm [22,23] (also referred to as compact-forward [8]) is a variant
of the forward algorithm that employs the hashing technique described earlier to compute
intersections of the A(v) sets (see Algorithm 6). Low et al. [25] propose a linear alge-
bra-based method for triangle counting that avoids matrix multiplication; their approach
effectively produces the forward-hashed algorithm.

Algorithm 6 Forward-Hashed Triangle Counting (FH) [22,23]

Require: Graph G = (V,E)
Ensure: Triangle Count T

1: T+ 0

2: YoeV

33 Av)«+ O

4: VY(u,v) € E

5. if (u < v) then

6: Yw € A(u)

7: Hash[w] + true

8: Yw € A(v)

9: if Hash[w] then
10: T+ T+1
11: Yw € A(u)
12: Hash[w] <« false
13: A(v) «+ A(v) U{u}
14: return T

3.2. Existing Parallel Algorithms

Although most sequential algorithms tend to run quickly on graphs that fit in main
memory, the expansion of the size of the graphs, driven by ongoing technological ad-
vancements, presents a challenge. To further accelerate the emergence of parallel version
algorithms is inevitable. Algorithms 7-9 are parallel versions of the three most common
intersection-based triangle counting methods.

Algorithm 7 Parallel Edge Iterator with Merge Path (EMP)

Require: Graph G = (V,E)
Ensure: Triangle Count T

1: T+ 0

2: ¥(u,v) € E do in parallel

3 A < N(u), B+ N(v)

4 x< 0,y 0

5. whilex < |A] A y < |B|
6: if A[x] == Bly]

7: T+ T+1;

8 x+—x+lLy+y+1
9: else

10: if A[x] < Bly]

11: x+—x+1

12: else

13: y+<y+1

14: return T/6
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Algorithm 8 Parallel Edge Iterator with Binary Search (EBP)

Require: Graph G = (V,E)
Ensure: Triangle Count T

1: T+ 0

2: ¥(u,v) € E do in parallel

3:  forl e N(u)do
4 K « N(v)
5: bottom < 0, top + |K|
6: while bottom < top
7: mid < bottom + (top — bottom) /2
8: if K[mid] ==1
9: T+ T+1
10: break
11: elif K[mid] < 1
12: bottom <— mid + 1
13: else
14: top = mid

15: return T/6

Algorithm 9 Parallel Edge Iterator with Hash (EHP)

Require: Graph G = (V,E)
Ensure: Triangle Count T
1: T+ 0
2: ¥Y(u,v) € E do in parallel
forw € N(u)
4 hash(w) = True
5. forw € N(v)
6 if hash(w)
7: T+~T+1
8
9
10:

forw € N(u)
hash(w) = False
return T/6

In addition to intersection-based methods, there are several optimized parallel algo-
rithms in the literature. Shun et al. [26] gives a multi-core parallel algorithm for shared
memory machines. The algorithm has two steps: in the first step, each vertex is ranked
based on degree, and a ranked adjacency list of each vertex is generated, which contains only
higher-ranked vertices than the current vertex; the second step counts triangles from the
ranked adjacency list for each vertex using merge-path or hash. Parimalarangan et al. [27]
present variations of triangle counting algorithms and how they relate to performance on
shared-memory platforms. TriCore [28] partitions the graph held in a compressed-sparse
row (CSR) data structure for multiple GPUs and uses stream buffers to load edge lists from
CPU memory to GPU memory on the fly and then uses binary search to find the intersection.
Hu et al. [29] employ a “copy-synchronize-search” pattern to improve the parallel threads
efficiency of GPU and mix the computing and memory-intensive workloads together to
improve the resource efficiency. Zeng et al. [30] present a triangle counting algorithm that
adaptively selects a vertex-parallel and edge-parallel paradigm.

4. Cover-Edge Based Triangle Counting Algorithms
4.1. Cover-Edge Set

Definition 1 (Cover-Edge, Cover-Edge Set, and Covering Ratio). In a graph G, an edge e
belonging to a triangle A is called a cover edge of A. An edge set S C E is a cover-edge set
if it contains at least one cover edge from every triangle in G. The covering ratio is defined as
c=|S|/|E|

From the above definition, it is clear that the full edge set E trivially qualifies as a
cover-edge set. Nevertheless, our objective is to count all triangles more efficiently by
considering only a smaller subset of edges. The main challenge, therefore, is to construct a
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compact cover-edge set that minimizes c. In this work, we propose generating such a set
using a breadth-first search (BFS) traversal.

Definition 2 (BFS-Edge). Let r be a designated root vertex of an undirected graph G. The level
L(v) of any vertex v is defined as the distance from r computed via BFS. Based on BFS, edges are
classified into three categories:

o Tree-Edges: edges that are part of the BES tree.
e Strut-Edges: non-tree edges connecting vertices on consecutive levels.
*  Horizontal-Edges: non-tree edges connecting vertices on the same level.

Figure 1 shows an example of this edge classification in a BFS tree.

Figure 1. Illustration of edge classification in a BFS spanning tree. Tree-edges are black, strut-edges
are blue, and horizontal-edges are red.

Lemma 1. Every triangle {u,v,w} in a graph contains at least one horizontal edge in a BFS tree
rooted at any vertex.

Proof. Assume, for the sake of contradiction, that a triangle contains no horizontal edges.
Then all edges are either tree edges or strut edges, which change the BFS level by £1.

For the triangle to form a closed cycle, the number of edges that increase the level
must equal the number that decrease it. This implies the cycle length must be even. Since a
triangle has length 3, this is a contradiction.

Hence, each triangle must include at least one horizontal edge. [

Theorem 1 (Cover-Edge Set Construction). The set of all horizontal edges in a BFS tree forms a
valid cover-edge set.

Proof. By Lemma 1, each triangle contains at least one horizontal edge. Therefore, collect-
ing all horizontal edges from a BFS traversal ensures that every triangle in the graph has at
least one of its edges in this set, satisfying the definition of a cover-edge set. [

Accordingly, we define the BFS-CES cover-edge set as the collection of all horizontal
edges obtained from a BFS traversal. This set is a subset of E and is generally significantly
smaller than the full edge set, enabling more efficient triangle counting.

4.2. Cover-Edge Triangle Counting (CETC)

In this subsection, we describe the CETC algorithm, which identifies all triangles in a
graph by leveraging a cover-edge set generated via breadth-first search.

Lemma 2. Every triangle {u,v,w} contains either one or three horizontal edges.
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Proof. From Lemma 1, the triangle’s three edges consist of an even number of tree-edges
and strut-edges. This implies that each triangle contains either 0 or 2 tree/strut edges.

If there are 0 tree/strut edges, all three edges are horizontal, as no tree or strut edges
are present. If there are 2 tree/strut edges, then exactly one edge must be horizontal to
connect the remaining two vertices.

Therefore, each triangle contains either one or three horizontal edges. [

The sequential triangle counting method, CETC-Seq, is outlined in Algorithm 10. The
algorithm maintains a counter T (line 1) to store the total number of triangles. To generate
the cover-edge set, a BFS is performed from any unvisited vertex, determining the level
L(v) of each vertex in its connected component (lines 2-3).

Next, the algorithm iterates over all edges, selecting horizontal edges in a direction-
oriented manner (lines 4-8, line 5). For each vertex w in the intersection of the neighbor-
hoods of the horizontal edge’s endpoints (line 6), two conditions are checked to ensure the
triangle (u, v, w) is counted only once (line 7):

e IfL(u) # L(w), then (u,v) is the single horizontal edge in the triangle.
e IfL(u) = L(w), then (u,v) is one of three horizontal edges in the triangle.

An additional ordering constraint v < w guarantees uniqueness. When these conditions
are satisfied, T is incremented (line 8).
This procedure ensures that every triangle is counted exactly once without redundancy.

Theorem 2 (Correctness). Algorithm 10 correctly counts all triangles in a graph G.

Algorithm 10 CETC: Cover-Edge Triangle Counting (CETC-Seq)

Require: Graph G = (V,E)
Ensure: Triangle Count T

1: T« 0

2: VoeV

3:  if v unvisited, then BFS(G, v)
4: V(u,v) € E

5 if (L(u) =L(v))A(u<0) > (u,v) is horizontal
6: Vw € N(u) N N(v)

7 )
8

9:

return T

Proof. Lemma 2 classifies triangles into two types: (1) triangles with one horizontal edge
whose endpoints share a level while the apex is at a different level, and (2) triangles where
all three vertices lie on the same level.

Consider a triangle {v,, vy, v. }. Without loss of generality, let (v4, v,) be horizontal.
In the first case, the triangle is uniquely determined by this horizontal edge and an apex
vertex from the intersection of the endpoints’ neighborhoods. Algorithm 10 increments T
by 1 when such a triangle is found.

In the second case, all vertices are at the same level (L(v,) = L(vy) = L(v¢)). The
algorithm increments T only when v, < v, < v, ensuring each triangle is counted
exactly once.

Thus, Algorithm 10 accurately counts all triangles in G. O

The time complexity of Algorithm 10 can be analyzed as follows. BFS computation,
including determining vertex levels and identifying horizontal edges, requires O(n +
m) time.

Since there are at most O(m) horizontal edges, computing the intersection of neighbor-
hoods for each horizontal edge can be done in O(dmax) time, where dmayx is the maximum
degree of any vertex.
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Hence, the overall time complexity of CETC-Seq is O (1 - dmax)-

4.3. Variants of CETC-Seq
4.3.1. CETC Forward Exchanging Triangle Counting Algorithm (CETC-Seq-FE)

The overall performance of CETC-Seq is closely related to the coverage ratio c. A
higher coverage ratio results in fewer reduced edges, which will increase the actual running
time of the algorithm. Therefore, after completing BFS, the selection of an appropriate
algorithm can be based on c. Algorithm 11 presents the variant of CETC-Seq that dy-
namically selects the most suitable approach based on ¢, called CETC-Seg-FE. Initially, it
calculates c using the results of BFS if the value of ¢ is below a specified threshold (the
value of ¢ should be at least less than ('”_T”H) After comparing the performance of
Algorithms 5 and 10, we set this threshold at 0.7 in our experiments), and we continued
using Algorithm 10; otherwise, Algorithm 5 was chosen. Taking into account the analyses
presented in Algorithms 5, 10 and 11 maintains a time complexity of O (m1°).

Algorithm 11 CETC Forward Exchanging (CETC-Seq-FE)

Require: Graph G = (V,E)
Ensure: Triangle Count T
T<+0
YoeV
if v unvisited, then BFS(G, v)
: Calculate c based on the BFS results
: If (¢ < threshold)
T + CETC-Seq(G) > Algorithm 10
Else
T + TC_forward(G) > Algorithm 5
: return T

VRN TR

4.3.2. CETC Split Triangle Counting Algorithm (CETC-Seg-S)

Algorithm 12 presents a variant of CETC-Seq, denoted CETC-Seg-S. Like Algorithm 10,
this algorithm uses BES to assign a level to each vertex (lines 2-3).

Algorithm 12 CETC Split Triangle Counting (CETC-Seg-S)

Require: Graph G = (V,E)
Ensure: Triangle Count T

1: T+ 0
2: VoeV
3:  if v unvisited, then BFS(G, v)
4: V(u,v) € E
5. if (L(u) = L(v)) then > (u,v) is horizontal
6: Add (u,v) to Gy
7 else
8: Add (u,v) to Gy
9: T «+ TC_forward-hashed(Gy) > Algorithm 6
10: Yu € V(;1
11: Vv e Ng, (u)
12: Hash[v] < true
13: Vv e Ngy(u
14: if (u < v) then
15: Vw € Ng, (v)
16: if Hash[w] then
17: T+ T+1
18:  Vve Ng, (u)
19: Hash[v] < false
20: return T

In lines 4-8, the edge set E is partitioned into two disjoint subsets: Ey, containing
horizontal edges with both endpoints on the same level, and E;, consisting of the remaining
edges that span levels. This defines two subgraphs: Gop = (V, Ep) and G; = (V, E1), where
E = EyUEj and Eg NE; = @. Triangles fully contained in Gy are counted using one
method, while triangles involving edges in G; are counted using another.
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For Gy, the subgraph of horizontal edges, triangles are efficiently counted using the
forward-hashed method (line 9). For triangles not entirely in Gy, the algorithm relies on
G1 and a hash-based intersection of adjacency lists (lines 10-19). Specifically, edges in Gy
are used to select candidate triangles, and intersections are performed using the adjacency
lists in G;. The correctness of this approach follows directly from the proof of cover-edge
triangle counting given in Section 4.2.

Thus, Algorithm 12 is a hybrid algorithm: it partitions the edge set and applies two
different counting strategies, while maintaining the correctness guarantees of the original
CETC approach.

Regarding time complexity, the running time is dominated by the maximum of the
forward-hashed method and Algorithm 10. For each edge (1, v), hash-based intersections
require min(d(u),d(v)) time, where d(u) and d(v) are the vertex degrees. Across all edges,
this results in an expected running time of O(m - a(G)), where a(G) denotes the arboricity
of G.

As with the forward-hashed approach, preprocessing the graph by reordering vertices
in decreasing degree order in ©@(nlogn) time often improves performance in practice.

4.3.3. CETC-Split Recursive Triangle Counting Algorithm (CETC-Seg-SR)

Algorithm 13 is similar to Algorithm 12. The only difference is that for the subgraph
Go consisting of the horizontal edges, if its size is larger than the given threshold value, we
will recursively call the algorithm to further reduce the graph size (line 9). If the size of Gy
is not larger than the given threshold value, we will directly call Algorithm 6 to obtain the
total number of triangles in G (line 11). We used the same threshold value of 0.7 in the
experiment as described in Algorithm 11. The idea behind the recursive call is that we can
quickly count the triangles containing edges across both Gy and Gy, and then we can safely
remove all the edges in G; to reduce the graph size. Finally, Algorithm 6 will focus on a
smaller graph whose edges may contain multiple triangles.

Algorithm 13 CETC-5Split Recursive Triangle Counting (CETC-5eq-SR)

Require: Graph G = (V,E)
Ensure: Triangle Count T

1: T+0
2:YoeV
3:  if v unvisited, then BFS(G, v)
4: VY(u,v) € E
5. if (L(u) = L(v)) then > (u,v) is horizontal
6: Add (u,v) to Gy
7 else
8: Add (u,v) to Gy
9: if (size of Gy > threshold) then
10: T « CESR(Gy)
11: else
12: T « TC_forward-hashed(Gy) > Algorithm 6
13: Yu € VG1
14: Vv e Ng, (u)
15: Hash[v] < true
16: Vv e Ng,(u
17: if (u < v) then
18: Vw € Ng, (v)
19: if Hash[w] then
20: T+ T+1
21: Vv e Ng, (u)
22: Hash[v] < false

23: return T
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4.4. Parallel CETC Algorithm on Shared-Memory (CETC-SM)

In Section 3, we introduced three commonly employed intersection-based methods:
merge-path, binary search, and hash, alongside their corresponding parallel version as
outlined in Algorithms 7-9.

The fundamental concept behind the proposed parallel algorithms is to calculate
the intersection of neighbor lists of two endpoints of any (u,v) in parallel, which will
significantly increase the performance.

Algorithm 14 demonstrates the parallelization of the Covering-Edge triangle counting
algorithm for shared-memory. In the context of the PRAM (Parallel Random Access
Machines) model, both parallel BFS and parallel sorting have been shown to achieve
scalable performance [31]. For set intersection operations on a single edge, it is imperative
that the computation remains well below m®> [23], particularly when dealing with large
input graphs, where p represents the total number of processors. Consequently, the total
work, which is O(m!?), can be evenly distributed among p processors. As a result, CETC-
SM exhibits a parallel time complexity of O(mT), ensuring scalability as the number of
parallel processors increases.

Algorithm 14 Shared Memory Parallel Cover-Edge Triangle Counting (CETC-SM)

Require: Graph G = (V,E)

Ensure: Triangle Count T
1: ¢1,cp <0
2: Run Parallel BFS on G and mark the level.
3: ¥Y(u,v) € E do in parallel

4 if (L(u) = L(v)) A (u < 0) > (u,v) is horizontal
5: Vw € N(u) N N(v)

6: if (L(w) # L(u)) then

7: c1c+1

8: else

9: < c+1

10: T <—c¢1+¢p/3

11: return T > See Algorithm 10

5. Open-Source Evaluation Framework

In the preceding sections, we presented all sequential and shared-memory algorithms
from the literature known to the authors, plus our novel approaches. In this section,
we introduce our open-source framework designed to integrate comprehensive triangle
counting implementations.

There is a lack of a unified framework that encompasses all implementations, which is
important for researchers to conduct performance comparisons between existing algorithms
and to assess their efficacy against newly proposed methods. Consequently, we have
developed a comprehensive open-source framework to solve this problem. This framework
is designed to ensure a thorough evaluation of triangle counting algorithms. It includes
implementations of 22 sequential methods and 11 parallel methods on shared-memory, as
a complete set of what is found in the literature.

Each triangle counting routine takes a single argument: a pointer to the graph stored in
compressed sparse row (CSR) format. The input graph is treated as read-only. Any auxiliary
arrays, pre-processing steps, or additional data structures required by an implementation
are fully accounted for in its cost. Implementations must handle memory carefully, ensuring
that all dynamically allocated memory is properly freed before returning the result, so as to
avoid memory leaks.
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The output of each routine is an integer representing the total number of triangles
detected in the graph. Each algorithm is executed ten times, and the mean running time is
reported. To minimize variance in experiments on random graphs, the same graph instance
is used across all trials. Sequential algorithms are implemented in plain C without explicit
parallelization, whereas parallel algorithms leverage OpenMP for concurrency. Equal
coding effort and style are applied across all implementations to ensure a fair comparison.

Here, we list algorithms subjected to the experiments given in the next section, includ-
ing both established methods and newly proposed algorithms. Algorithms ending with P
indicate that we have also developed parallel versions.

W/WP: Wedge-checking /Parallel version

WD/WDP: Wedge-checking (direction-oriented)/Parallel version

EM/EMP: Edge Iterator with MergePath for set intersection/Parallel version
EMD/EMDP: Edge Iterator with MergePath for set intersection (direction-oriented) /Parallel
version

EB/EBP: Edge Iterator with BinarySearch for set intersection/Parallel version
EBD/EBDP: Edge Iterator with BinarySearch for set intersection (direction-oriented) /Parallel
version

ET/ETP: Edge Iterator with partitioning for set intersection/Parallel version

ETD/ETDP: Edge Iterator with partitioning for set intersection (direction-oriented)/Parallel
version

EH/EHP: Edge Iterator with Hashing for set intersection/Parallel version

EHD/EHDP: Edge Iterator with Hashing for set intersection (direction-oriented)/Parallel
version

F: Forward method

FH: Forward method with hashing

FHD: Forward method with hashing and degree-based vertex ordering

TS: tri_simple (Davis [20])

LA: Linear algebra-based method (CMU [25])

IR: Treelist from Itai-Rodeh [7]

CETC-Seq/CETC-SM: Cover Edge Triangle Counting (Bader [32])/Parallel version on
shared-memory

CETC-Seq-D: Cover Edge Triangle Counting with degree-ordering (Bader [32])
CETC-Seq-FE: Cover Edge Forward Exchanging Triangle Counting

CETC-Seq-S: Cover Edge Split Triangle Counting (Bader [33])

CETC-Seq-SD: Cover Edge Split Triangle Counting with degree-ordering (Bader [33])
CETC-Seq-SR: Cover Edge-Split Recursive Triangle Counting

6. Experimental Results

In our experiments, we conducted a comprehensive evaluation of both sequential and
shared-memory parallel triangle counting algorithms across 24 diverse graphs, including
real-world datasets from SNAP and synthetic RMAT graphs. The sequential experiments
analyzed the effects of direction-oriented (DO) optimization, hash-based methods, forward
algorithms and variants, and the novel cover-edge sequential algorithms (CETC-Seq and
its extensions).

DO optimization consistently reduced redundant operations, yielding up to 3.6
speedup, while hash-based methods further improved performance, with speedups up to
5.4 x. The forward algorithm and its hashed and degree-ordered variants demonstrated
exceptional efficiency, achieving speedups as high as 29.1x. Our novel CETC-Seq variants,
especially CETC-Seq-S and CETC-Seq-SD, combined BFS-based preprocessing, hash-based
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set intersections, degree ordering, and recursive strategies to further minimize unnecessary
checks, achieving speedups up to 24 x.

Analysis revealed that the algorithm’s performance is closely related to the covering
ratio ¢, although low-degree, large-diameter road networks showed limited gains. These
results suggest that graph topology plays a major role in determining the effectiveness
of each optimization, with dense and highly clustered graphs benefiting most from the
proposed techniques.

For shared-memory parallelization, we evaluated algorithms using 32 to 224 threads.
Binary search and hash-based methods achieved the highest scalability, with EBP and
EHDP showing superior speedups, up to 233 on large graphs. Optimal performance
depended on graph topology, size, and the number of threads, with smaller graphs favoring
sequential methods due to parallelization overhead.

Overall, the experiments highlight that combining algorithmic optimizations—DO,
hashing, degree ordering, forward methods, and CETC-Seq variants—can significantly
enhance triangle counting performance. Parallelization benefits are maximized when
algorithm structures and graph characteristics align with the available hardware resources.

In the following subsections, we will give the details of the experimental results.

6.1. Platform Configuration

We use the Intel Development Cloud for benchmarking our results on a GNU/Linux
node. The compiler is Intel(R) one API DPC++/C++ Compiler 2023.1.0 (2023.1.0.20230320),
and “-02’ is used as a compiler optimization flag. We use a high-core-count Intel Xeon
processor (Sapphire Rapids launched Q1'23) with DDR5 memory for both sequential and
parallel implementations. The node is a dedicated 2.00 GHz 56-core (112 thread) Intel(R)
Xeon(R) Platinum 8480+ processor (formerly known as Sapphire Rapids) with 105M cache
and 1024 GB of DDR5 RAM.

6.2. Data Sets

We utilize a diverse set of graphs in our experiments. The real-world datasets are
sourced from the Stanford Network Analysis Project (SNAP) (available from http://snap.
stanford.edu/) while the synthetic graphs are generated using large Graph500 RMAT
graphs [34] with parameters a = 0.57, b = 0.19, c = 0.19, and d = 0.05, following the
TARPA AGILE benchmark configuration. An overview of all 24 graphs in our collection is
provided in Table 1.

Table 1. Data sets for the experiments.

Graph Name n m # Triangles c (%)
RMAT 6 64 1024 9100 93.8
RMAT 7 128 2048 18,855 90.9
RMAT 8 256 4096 39,602 87.6
RMAT 9 512 8192 86,470 87.2
RMAT 10 1024 16,384 187,855 82.8
RMAT 11 2048 32,768 408,876 81.1
RMAT 12 4096 65,536 896,224 77.5
RMAT 13 8192 131,072 1,988,410 749
RMAT 14 16,384 262,144 4,355,418 70.5
RMAT 15 32,768 524,288 9,576,800 68.4
RMAT 16 65,536 1,048,576 21,133,772 65.5
RMAT 17 131,072 2,097,152 46,439,638 62.8

karate 34 78 45 35.9
amazon0302 262,111 899,792 717,719 442

amazon(312 400,727 2,349,869 3,686,467 52.4
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Table 1. Cont.

Graph Name n m # Triangles ¢ (%)
amazon0505 410,236 2,439,437 3,951,063 52.7
amazon0601 403,394 2,443,408 3,986,507 52.8
loc-Brightkite 58,228 214,078 494,728 43.2
loc-Gowalla 196,591 950,327 2,273,138 50.8
roadNet-CA 1,971,281 2,766,607 120,676 14.5
roadNet-PA 1,090,920 1,541,898 67,150 14.6
roadNet-TX 1,393,383 1,921,660 82,869 14
soc-Epinionsl 75,888 405,740 1,624,481 53.3
wiki-Vote 8297 100,762 608,389 54.3

The values of ¢ exhibit substantial variation across different graphs, ranging from 0.90

to 0.14. Smaller ¢ values signify a higher potential for avoiding fruitless searches, thereby
enhancing the efficiency of our approach.

6.3. Results and Analysis of Sequential Algorithms
6.3.1. Effect of Direction-Oriented Method on Sequential Algorithms

The DO performance optimization is a pivotal strategy in triangle counting, designed
to mitigate redundant calculations. In this section, we explore five distinct duplicate
counting algorithms, each accompanied by its corresponding DO variant. The results
presented in Figure 2 vividly demonstrate the speedup achieved by the DO counterparts
compared to their duplicate counting versions.

. Effect of Direction-Oriended Optimization Method
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Figure 2. The speedups of direction-oriented optimization compared with the duplicate counting
counterparts.

Evidently, across all scenarios, the majority of DO algorithms yield a speedup of at
least two-fold. Particularly, the WD algorithm stands out with a higher average speedup of
3.637, surpassing the performance gains of other algorithms. EBD exhibits a speedup of
2.015x, closely followed by EMD at 2.005x, EHD at 1.965x, and ETD at 1.784 x.
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DO optimization primarily constitutes an algorithmic enhancement, resulting in a
reduction in the overall number of operations. So, for any graph, it can improve the
performance, and our experimental results also confirm its efficiency. However, the practical
performance gains can be impacted by various factors, including memory access patterns
and cache utilization. Our comprehensive experiments, conducted on diverse graphs using
a range of algorithms, underscore the substantial performance enhancements achievable
through DO optimization.

In summary, as a Pareto optimization, DO optimization is efficient for eliminating
duplicate triangle counting and significantly improving overall performance.

6.3.2. Effect of Hash Method on Sequential Algorithms

Similar to the DO optimization, the hash-based optimization proves highly efficient in
most scenarios. In Figure 3, we illustrate the speedup achieved by Hash methods compared
to non-hash implementations. The first comparison showcases the speedup of the Hash set
intersection (EH) compared with the non-hashed method (EM), while the second presents
the speedup of (FH) compared with (F).

Effect of Hash-based Optimization Policy
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Figure 3. The speedups of hash-based optimization compared with the MergePath method.

The average speedup of EH is 5.4, and for FH, it is 3.0 x, underscoring the effective-
ness of the hash-based optimization. Notably, the results reveal that, for more efficient
algorithms, like F, the speedup is slightly lower than that of less efficient algorithms, such
as EM.

However, we observe several exceptions. For roadNet-CA, roadNet-PA, and roadNet-
TX, the Hash algorithm FH performs worse than the non-hashed algorithm F. This is
attributed to the unique topologies of these graphs, characterized by relatively long diame-
ters and very few neighbors for each vertex. As the intersection sets are relatively small, the
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MergePath operation on small sets proves more efficient than the Hash method, given the
relatively high hash table overhead for very small sets. Therefore, the Hash optimization
method remains efficient, but not for some special topologies and diameter graphs, as the
hash table overhead may not compensate for small intersection sets.

6.3.3. Effect of Forward Algorithm and Its Variants

Our experimental results underscore the effectiveness of the Forward algorithm and
its variants as robust algorithms for enhancing the performance of triangle counting. In
Figure 4, we present the speedup achieved by three algorithms—namely, the forward
algorithm (F), the hashed forward algorithm (FH), and the hashed forward algorithm with
degree ordering (FHD)—in comparison with the traditional MergePath algorithm.

Effect of Forward Algorithm and Its Variants
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Figure 4. The speedups of Forward algorithm and its variants compared with the MergePath method.

The observed performance improvement is remarkably significant. Specifically, F
achieves a 8.6 x speedup, while FH and FHD achieve even more substantial speedups at
28.7x and 29.1x, respectively. These results indicate that reducing the sizes of intersection
sets and employing hash functions and degree ordering can collectively contribute to
performance enhancements.

Similar to the hash method, degree ordering demonstrates substantial performance
improvements across various scenarios. However, for roadNet-CA, roadNet-PA, and
roadNet-TX, the hash-based algorithm FH performs worse than the non-hashed algorithm F,
and the performance of degree ordering FD is inferior to that of MergePath. This arises from
the fact that most vertices in these graphs possess similar and small numbers of degrees.
Consequently, reordering the vertices has minimal impact on intersection performance
and introduces additional overhead. Despite these exceptions, the combined approach of
reducing intersection set sizes, hash functions, and degree ordering consistently enhances
performance for a wide range of cases.
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6.3.4. Effect of CETC-Seq Algorithm and Its Variants

The fundamental principle underlying the cover-edge method is minimizing unnec-
essary set intersection operations. In Figure 5, we illustrate the impact of the CETC-Seq
algorithm and its variants, namely CETC-Seq-D, CETC-Seq-FE, CETC-Seq-S, CETC-Seq-SD,
CETC-Seg-SR.

Effect of Number of Set Intersections based Optimization Policies

80
70
W CETC-Seq M CETC-Seq-D ® CETC-Seqg-S
60
W CETC-Seq-SD M CETC-Seq-SR M CETC-Seq-FE
50
(=X
=3
©
o 40
]
=%
(%3]
30
20
) |‘ ’
Oﬂnu|uHﬂHlL.[wmmmmMImwwlk
eEPPONNIONSn SNBSS RY 8
ST 9 < <cEEEEEECE®f@dambo=2=moe%T 0
SsSssSssgf<gLgITLgLLL gL gL 2 g @8 F
T x> 2=2222>*§5§5§§585®mg=zz2 £ %
X o ¥ x x x x NN NN E Y T T T o3
mmmmc?urumguﬁg
E E E E LS 22 2 ¢
@ @© @© @© O 8

Figure 5. The speedups of CETC-Seq and its variants compared with the MergePath method.

Compared to the MergePath method, CETC-Seq demonstrates an average speedup of
7.4x. CETC-Seq-D achieves a slightly lower average speedup of 7.39 x, mainly due to its
low performance on the road networks.

CETC-Seq-FE combines CETC-Seq and F in a unique manner. It employs CETC-Seq for
large graphs or when the c value is small; otherwise, it uses F. This switching approach
yields an average speedup of 14.6 <. The rationale behind CETC-Seg-FE lies in dynamically
selecting the most suitable algorithm based on its compatibility with the characteristics of
the graphs.

CETC-Seq-S splits a graph into two parts based on the vertex levels marked by a
BFS pre-processing and applies CETC-Seq and F on each part. The performance of CETC-
Segq-S achieves a speedup of 23.4 x. This represents a more efficient combination method.
Additionally, when we integrate degree ordering into CETC-Seg-S, the resulting CETC-
Seq-SD algorithm performs slightly better than CETC-Seg-S, achieving a speedup of 24.0x.
This result highlights that degree ordering works well with the F algorithm. The reason
is that degree ordering can further reduce the size of intersecting sets of the F algorithm.
CETC-Seg-SR employs the recursive method to simplify the problem. For a large graph,
it recursively applies CETC-Seq to minimize set intersections, counting only triangles
including non-horizontal edges, and finally applies F to the smaller graph consisting of all
horizontal edges that are known to include all the other triangles. CETC-Seq-SR achieves
an average speedup of 22.7 x.

Notably, CETC-Seq exhibits low performance on certain graphs compared to other
methods. The relatively high overhead of BFS preprocessing in CETC-Seq, compared
with set intersection, contributes to the low efficiency. A breakdown time analysis reveals
that the percentages of BFS processing time are 60% of the total execution time. In the
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case of a long-diameter graph where each vertex has a small number of neighbors, the
overhead of BFS becomes large despite its time complexity of O(m) compared to the
time complexity of total set intersections at O(m!?). This overhead becomes particularly
impactful when the neighbors of each vertex are limited, and the graph diameter is large.
For road networks characterized by very small vertex degrees, where degree ordering
introduces additional overhead without providing any significant benefit, CETC-Seq-D
experiences further performance degradation.

6.3.5. Comprehensive Sequential Algorithms Comparison

The execution times of the sequential algorithms (in seconds) are presented in Figure 6.
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Figure 6. Execution time (in seconds) for sequential algorithms.
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While optimal in time complexity, the IR spanning tree-based triangle counting algo-
rithm exhibits nearly the slowest performance among all the compared algorithms. This is
due to the involvement of spanning tree generation, removal of tree edges, and regeneration
of a smaller graph in each iteration. Although these operations can be completed in O(m)
time, the cost is relatively high in terms of practical performance.

The W wedge-checking-based triangle counting algorithm often performs poorly. This
is primarily because most graphs are sparse, resulting in most wedge-checking operations
being fruitless, or most wedges cannot form a triangle. For example, for the RMAT 6 graph,
the percentage of wedges/triangles is 0.53%. For the RMAT 14 graph, the percentage
reduces to 0.009%. This makes most of the checks useless for counting triangles. W can
demonstrate better performance only when most of the graph’s wedges can form triangles.
This scenario is not common in most practical applications.

The algorithmic structures of EM (Edge Merge Path), EB (Edge Binary Search), ET
(Edge Partitioning), and EH (Edge Hash) are very similar to each other, differing primarily
in the set intersection methods they employ. Merge path requires pre-sorted adjacency lists,
enabling it to compare the two adjacency lists of a given edge (u,v) in d(u) + d(v) time.
This is optimal because we have to check every neighbor. Binary search method EB searches
each vertex in a small adjacency list (e.g., N(u)) in a larger adjacency list (e.g., N(v)) in
d(u) x log(d(v)) time. ET is a specific case of EB and involves additional operations to find
the midpoint of the two adjacency lists. Thus, from an algorithmic analysis perspective,
ET’s performance will always be worse than EB’s. However, EB and ET can leverage
parallelism effectively to improve performance. Our parallel results demonstrate that they
may outperform EM. EH takes min(d(u),d(v)) < d(u) + d(v) operations to find triangles,
and the Hash method does not require pre-sorting adjacency lists, making it better than EM
and often the best performer among the four methods.

TS (Triangle Summation) and LA (Linear Algebra) are two linear algebra-based meth-
ods. They can count the total number of triangles, but cannot list all the triangles. Their
performance improvements depend on optimizing formulas and architecture-related meth-
ods. The advantage of such methods lies in their ability to directly apply results from linear
algebra theory and leverage highly optimized numerical techniques integrated into linear
algebra libraries. Their performance is often superior to that of the EM method.

F (Forward) often demonstrates excellent performance in most scenarios but is in-
herently sequential. As we discussed earlier, F dynamically generates two sets that are
much smaller than the size of the original adjacency lists. It is based on the DO method,
which further reduces the fruitless checks in triangle counting operations. Additionally,
pre-sorting vertices in non-increasing degrees enhances memory access locality and cache
hit ratios. As one can observe, F effectively reduces the operations that cannot find new
triangles. The results of FH and FHD show that the performance is further improved when
Hash is used.

CETC-Seq and its variants introduce another perspective for eliminating fruitless
searches in triangle counting. First, it skips unnecessary edge searches based on a quick
BFS operation that can be completed in O(m + n) time. By leveraging the directed-oriented
technique, CETC-Seq achieves a further significant reduction in the fruitless searches during
triangle counting. It is competitive with the fastest approaches and may be useful when
the BFS preprocessing overhead can be negligible. CETC-Seg-S and its variants further
optimize the performance with Hash, degree ordering and recursive method.

We assigned rank values to each test case and calculated the average rank value.
The performance from high to low are FH, CETC-Seq-S, FHD, CETC-Seq, LA, F, EHD, TS,
CETC-Seq-SR, CETC-Seq-SD, CETC-Seq-FE, EH, CETC-Seq-D, EMD, EBD, ET, WD, EB, EM,
ETD, W, IR.
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Graphs
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We can say the top four set intersection-based triangle counting algorithms include
our novel CETC-5eq-S and CETC-Seq algorithms. The performance of CETC-5eq-S with
an average rank of 2.80 is slightly worse than that of FH with an average rank of 2.0. The
average rank of FHD is 4.6 and CETC-Seq is 6.4.

6.3.6. Influence of the ¢ Value on the Performance of the Novel Algorithm

Building upon the definition of our novel algorithm, its performance should be highly
related to the covering ratio c.

A noteworthy trend is identified when evaluating the results, particularly concerning
the RMAT graphs. Our finding reveals that the forward algorithm and its variants tend to
perform the fastest. As the scale of the RMAT graph increases, the parameter ¢ decreases,
indicating a more substantial removal of fruitless checks after BFS. Under these conditions,
our novel method demonstrates greater efficiency compared to the F algorithms.

These observations validate our hypothesis that the performance of our new algorithm
is significantly correlated with the covering ratio c. As ¢ decreases, performance improves.

A closer examination of the road network graphs (roadNet-CA, roadNet-PA, roadNet-
TX) highlights their distinct behavior compared to the other datasets. Unlike social net-
works, road networks typically consist of low-degree vertices (e.g., many vertices with
degree four) and have large diameters. Although the covering ratio for these graphs is
below 15%, the performance gains from our approach are limited due to this low value of c.
This observation indicates that a smaller covering ratio does not necessarily translate into
higher performance.

6.4. Results and Analysis of Parallel Algorithms on Shared-Memory

The execution times of the parallel algorithms (in seconds) are presented in Figure 7
for 32 threads and in Figure 8 for 224 threads.
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Figure 7. Execution time (in seconds) for shared-memory parallel algorithms (32 threads).
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Figure 8. Execution time (in seconds) for shared-memory parallel algorithms (224 threads).

6.4.1. Performance Utilizing 32 Threads

While F and its variants excel as sequential algorithms, they are inherently sequential
and cannot be parallelized. In this section, we focus on algorithms conducive to paral-
lelization to showcase the speedups achieved with parallel methods. Figure 9 illustrates
the speedups of various parallel algorithms compared to their corresponding sequential
counterparts, employing 32 threads.

The average speedups are as follows: WP is 10.5x; WDP is 7.5x; EMP is 13.6x;
EMDP is 8.3x; EBP is 23.3x; EBDP is 19.3x; ETP is 16.2x; ETDP is 10.8x; EHP is 6.6 x;
EHDP is 5.0x; CETC-SM is 3.9 x. The results affirm that parallel optimization significantly
improves performance.

However, certain scenarios highlight limitations. For instance, in the case of the small-
sized graph “karate”, all parallel algorithms fail to exhibit performance improvements.
This can be attributed to the inherent overhead of the OpenMP parallel method, which
outweighs the benefits for very small graphs. A similar pattern is observed for the graph
RMAT 6, where three parallel methods—EHP, EHDP, and CETC-SM—show no perfor-
mance improvement. As previously mentioned, the baseline algorithms EH, EHD, and
CETC-Seq have already demonstrated high performance, and the parallel overhead for
small graphs nullifies the potential benefits of parallelization.
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Figure 9. The speedups of parallel optimization methods compared with their sequential counterparts
using 32 threads.

6.4.2. Performance Utilizing All System Threads

When we harness our experimental system’s full parallel processing capacity, we can
execute our OpenMP parallel programs with 224 threads. Based on the results in Figure 8,
the performance from high to low are EHDP, EBDP, EMDP, EHP, EBP, CETC-SM, EMP,
ETDP, WDP, ETP, WP.

The presented results highlight that not only can hash and binary search deliver
commendable parallel performance by minimizing operations per parallel thread, but
also the application of degree ordering proves effective in improving the performance of
individual threads.

6.4.3. Scalable Performance

This subsection delves into the performance of these algorithms in response to varying
thread counts. We use RMAT 15 as an illustrative example of a synthetic graph and
Amazon0312 as a representative instance of a real graph. By progressively increasing the
number of threads to 2, 4, 8, 16, 32, 64, 128, and 224, we seek to identify changes in speedup
corresponding to increasing thread counts.

Figure 10 illustrates the change in speedup with the increasing number of threads on
RMAT15. For most algorithms, a bottleneck emerges starting from 64 threads, with no
discernible speedup observed with the continued increase in thread count. Notably, the
WP algorithm exhibits a degradation in performance with the incorporation of additional
parallel threads. The only algorithm demonstrating notable scalability is EBP, showcasing
consistent performance improvement with the increasing number of threads. A similar
observation is made for the real graph (see Figure 11), where most algorithms encounter a
bottleneck at 64 threads. However, EBP and EBDP exhibit good scalability, indicating that
binary search-based methods possess superior scalability compared to other approaches.
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Figure 10. Speedups of various algorithms on RMAT15 compared with a single-thread setup.
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Figure 11. Speedups of various algorithms on Amazon0312 compared with a single-thread setup.

6.4.4. Best Performance on Different Graphs

In this section, we use EM as the performance baseline to evaluate the best speedup
achieved by different algorithms. The results are summarized in Table 2. The number
following a specific algorithm name indicates how many parallel threads are used.

Integrated optimization methods demonstrate a substantial speedup, averaging at
75.8. Examining various algorithms on different graphs unveils insights into optimiza-
tion methods.
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Table 2. Best performance and algorithms for different graphs (second).

Graph RMAT6 RMAT?7 RMATS RMAT9 RMAT10 RMAT11 RMAT12 RMAT13 RMAT14 RMAT15 RMAT16 RMAT17
Baseline Time 0.0006080 0.0019730 0.0054550 0.0146430 0.0203420 0.0537350 0.1411760 0.3726090 0.9877480 2.6268370 6.9313980 18.3285120
Best Time 0.0000280 0.0000760 0.0002070 0.0002170 0.0003830 0.0008570 0.0014210 0.0029630 0.0066920 0.0150250 0.030892 0.078430
Algorithm FH FH EHDP32 EHDP64 EHDP64 EHDP128 EHDP64 EHDP128 EHDP64 EHDP64 EHDP64 EHDP64
Speedup 21.7 26.0 26.4 67.5 53.1 62.7 99.3 125.8 147.6 174.8 224.4 233.7
Graph karate amazon0302 amazon0312 amazon0505 amazon0601 loc-Brightkite loc-Gowalla roadNet-CA roadNet-PA roadNet-TX soc-Epinions1 wiki-Vote
Baseline Time 0.0000120 0.1434740 0.7208080 0.7557200 0.7621240 0.1158030 2.0830490 0.1027660 0.0755300 0.0708210 0.6153270 0.1243600
Best Time 0.0000020 0.0064670 0.0165880 0.0175940 0.0175690 0.0028280 0.0200290 0.002870 0.001671 0.003030 0.0088180 0.0015570
Algorithm LA EBDP224 EBDP224 EBDP224 EBDP224 EHDP64 CETC-SM128 WDP128 WDP64 WDP32 EHDP128 EHDP128

Speedup 6.0 222 43.5 43.0 43.4 40.9 104.0 35.8 452 234 69.8 79.9
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Firstly, for small graphs like RMAT 6, RMAT 7, and karate, parallel optimization
techniques fail to outperform the sequential FH and linear algebra LA methods. Practi-
cal performance considerations suggest that employing multiple parallel threads might
introduce overhead for small graphs, making sequential methods more efficient.

Secondly, as the graph size increases, optimal performance often requires more parallel
resources. However, beyond a critical point, additional parallel resources may lead to
decreased performance. For example, RMAT 8 and roadNet-TX achieve peak performance
with 32 threads. In contrast, RMAT 9 to RMAT 10, RMAT 12, RMAT 14 to RMAT 17,
loc-Brightkite, and roadNet-PA require 64 threads. Certain graphs, such as RMAT 11,
RMAT 13, loc-Gowalla, roadNet-CA, soc-Epinions1, and wiki-Vote, demand 128 threads.
Larger graphs, such as amazon0302, amazon0312, amazon0505, and amazon0601, leverage
the whole system’s parallel resources (224 threads). Notably, graph size alone does not
determine parallel resource needs, as topology plays a crucial role in parallel performance.
At the same time, the parallel algorithms that achieve the best performance vary. Among
them, EHDP achieves the best performance 13 times, EBDP 4 times, WDP 3 times, and
CETC-SM once.

Thirdly, the various sequential and parallel optimizations needed for better perfor-
mance can differ. For instance, WD might not be ideal in a sequential scenario due to
checking numerous wedges, many of which are not fruitful for sparse graphs. However,
in a parallel scenario, WDP64 excels with 64 threads on roadNet-PA, surpassing other
algorithms. The efficiency arises from the smaller number of wedges when vertex degrees
are low, coupled with DO optimization method that reduces fruitless searches. Another
case is EBD, which may not be favorable in sequential algorithms due to increased total
operations compared to EMD. However, in parallel algorithms, EBDP could outperform
MergePath by distributing work more efficiently through parallel binary searches.

In conclusion, our results highlight that different algorithms find their optimal sce-
narios based on specific graph topology and hardware configurations. Graph topology
and available hardware resources are pivotal factors in selecting the most efficient triangle
counting algorithm.

7. Conclusions

In this paper, we present CETC, a novel and efficient triangle-counting algorithm
that introduces the concept of a cover-edge set to significantly enhance performance. Un-
like prior approaches, which are primarily refinements of the classic vertex-iterator and
edge-iterator paradigms, CETC provides a fundamentally new perspective by reducing the
computational cost of set intersections through selective edge coverage. To the best of our
knowledge, this is the first triangle-counting algorithm in decades to employ such a concep-
tually distinct approach, bridging structural graph insights with algorithmic optimization.

We performed extensive, uniform performance evaluations across 24 diverse real-
world and synthetic graphs, encompassing both sequential and shared-memory paral-
lel implementations. The results demonstrated that CETC and its sequential variants,
particularly CETC-Seg-S and CETC-Seq-SD, consistently outperform traditional methods
by leveraging BFS-based preprocessing, degree ordering, and hash-based set intersec-
tions. When combined with direction-oriented (DO) optimization, the proposed methods
achieved speedups of up to 24x compared to baseline algorithms. The forward-hashed
and degree-ordered versions also performed remarkably well, confirming that structural
awareness—through vertex ordering and selective edge coverage—is key to achieving
scalability on large, sparse graphs.

For shared-memory parallelization, we implemented OpenMP-based versions of
several algorithms and evaluated their performance on Intel’s latest Sapphire Rapids
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architecture (Platinum 8480+). The results highlight that binary search and hash-based
variants of CETC (EBP and EHDP) exhibit excellent scalability, achieving speedups of up to
233 x on large graphs with 224 threads. These experiments underscore that algorithmic
design and graph structure jointly determine scalability and that parallel efficiency is
maximized when computation, memory access, and graph topology are jointly optimized.

Beyond its empirical performance, the CETC framework offers conceptual generality.
Because it relies on the notion of a cover-edge set, the same principle can be extended to
related graph analytics tasks, such as motif enumeration, subgraph matching, and commu-
nity detection, where overlapping local structures play a key role. Furthermore, CETC is
particularly advantageous when BFS traversal data is already available—an increasingly
common situation in network science, brain connectomics, and social graph analytics
workloads—allowing it to reuse precomputed structures with minimal overhead.

In future work, we plan to extend CETC to distributed memory systems and het-
erogeneous architectures, including GPU and multi-GPU environments. Incorporating
hybrid task parallelism and asynchronous data exchange will be crucial to maintaining
high performance at scale. Another promising direction is to integrate CETC into dynamic
graph processing frameworks, enabling efficient triangle maintenance under edge inser-
tions and deletions. We also envision applying the cover-edge principle to broader classes
of subgraph counting and pattern discovery problems.

We believe that this work will inspire renewed interest within the Graph Challenge
community and the broader graph analytics research field in exploring structural op-
timizations that go beyond traditional iterator-based paradigms. Our complete source
code is publicly available at https://github.com/Bader-Research/triangle-counting (ac-
cessed on 10 September 2025), facilitating reproducibility, community benchmarking, and
future extensions.
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