
Rocket-Crane Algorithm for the Feedback Arc Set

Problem

David A. Bader1*, Justin Ellis-Joyce2,3*, Gert-Jan Both2,
Srinivas C. Turaga2, Harinarayan Asoori Sriram4,

Srijith Chinthalapudi4, Zhihui Du1*

1Department of Data Science, New Jersey Institute of Technology,
University Heights, Newark, 07102, New Jersey, USA.

2HHMI Janelia Research Campus, 19700 Helix Dr, Ashburn, 10587,
Virginia, USA.

3Department of Neuroscience, Johns Hopkins University, 1003 Wood
Basic Science Building, Baltimore, 21218, Maryland, USA.

4Edison Academy Magnet School, 100 Technology Dr, Edison, 08837,
New Jersey, USA.

*Corresponding author(s). E-mail(s): david.bader@njit.edu;
ellisj1@janelia.hhmi.org; zhihui.du@njit.edu;

Contributing authors: bothg@janelia.hhmi.org;
turagas@janelia.hhmi.org; harinarayansriram@gmail.com;

srijith.srinivas@gmail.com;

Abstract

Understanding information flow in the brain can be facilitated by arranging neu-
rons in the fly connectome to form a maximally “feedforward” structure. This
task is naturally formulated as the Minimum Feedback Arc Set (MFAS)–a well-
known NP-hard problem, especially for large-scale graphs. To address this, we
propose the Rocket-Crane algorithm, an efficient two-phase method for solving
MFAS. In the first phase, we develop a continuous-space optimization method
that rapidly generates excellent solutions. In the second phase, we refine these
solutions through advanced exploration techniques that integrate randomized
and heuristic strategies to effectively escape local minima. Extensive experi-
ments demonstrate that Rocket-Crane outperforms state-of-the-art methods in
terms of solution quality, scalability, and computational efficiency. On the pri-
mary benchmark–the fly connectome–our method achieved a feedforward arc set

1

with a total forward weight of 35,459,266 (about 85%), the highest among all
competing methods. The algorithm is open-source and available on GitHub.

Keywords: Feedback Arc Set Problem, Graph Algorithms, Large Data Analysis

1 Introduction

Understanding the direction of information flow in the Drosophila brain, or connec-
tome, is a fundamental goal of the Minimum Feedback Arc Set Challenge1. This task
can be formalized as the Minimum Feedback Arc Set (MFAS) problem in graph theory,
where the objective is to identify a minimal subset of edges whose removal eliminates
all cycles in a directed graph, resulting in a directed acyclic graph (DAG).

The MFAS problem is well-known for its computational complexity. Lawler [1]
established its NP-hardness, and Kann [2] further proved its APX-hardness, indicating
that constant-factor approximations are unlikely unless P = NP. Additionally, Karp [3]
demonstrated that the decision version of MFAS is NP-complete. These theoretical
results collectively underscore the intrinsic difficulty of developing efficient algorithms
for MFAS, particularly on large-scale graphs.

In practice, solving the MFAS problem involves three major challenges: scalability,
solution quality, and computational efficiency.

Scalability: Large-scale graphs, such as those derived from neural connectomes,
pose significant memory and runtime constraints. While solvers like Gurobi2 and
CPLEX3 can, in theory, solve MFAS using Mixed-Integer Programming (MIP), their
performance is often hindered by high memory consumption and prolonged execu-
tion times. Even with memory-efficient formulations such as linear arrangement (see
Section 2), computing an optimal solution remains impractical within acceptable time
constraints.

Existing heuristic methods also suffer from poor scalability. For example, the recent
connectivity matrix approach by Borst [4] shows promise but is limited to small graphs.
Divide-and-conquer techniques like Stochastic Evolution (SE) and Dynamic Clustering
(DC) [5] struggle with large graphs due to memory overflow or recursion depth issues,
making them unsuitable for practical use.

Solution Quality: Achieving near-optimal solutions is essential, especially given
the limitations of exact solvers. Dinur et al. [6] proved that, unless P = NP, no algo-
rithm can approximate MFAS with a factor strictly better than 1.36067, thereby
setting a strong hardness barrier for approximation algorithms. Many fast heuristics [7]
prioritize speed at the expense of solution quality, often removing a significantly larger
fraction of the edge weight–approximately 30% compared to our 15% (see Section
4.3)–highlighting a substantial performance gap.

Computational Efficiency: Some algorithms, like simulated annealing [8], can
theoretically reach optimal or near-optimal solutions but often require impractical

1https://codex.flywire.ai/app/mfas challenge
2https://www.gurobi.com/
3https://www.ibm.com/products/ilog-cplex-optimization-studio

2

https://codex.flywire.ai/app/mfas_challenge
https://www.gurobi.com/
https://www.ibm.com/products/ilog-cplex-optimization-studio

computation times. In real-world applications, high-quality results must be delivered
within acceptable timeframes, making runtime efficiency a critical consideration.

Our Contribution. To overcome these challenges, we propose the Rocket-Crane
algorithm–a novel two-phase framework that efficiently solves the MFAS problem on
large graphs while maintaining high solution quality. Our main contributions are:

• We present a simple yet powerful linear arrangement formulation for MFAS, which
serves as the foundation for a memory-efficient algorithm capable of scaling to large
graphs.

• We develop the Rocket-Crane algorithm, combining a fast, gradient-based opti-
mization phase (Rocket) with a high-quality refinement phase (Crane) that leverages
randomized and heuristic strategies to escape local minima.

• We conduct extensive experiments comparing Rocket-Crane with state-of-the-
art methods. Our results demonstrate superior scalability, runtime performance,
and solution quality across real-world large-scale datasets. The implementation is
publicly available as open-source on GitHub.

2 Problem Formulation

The Minimum Feedback Arc Set (MFAS) problem aims to identify and remove cycles
in a directed graph to transform it into a directed acyclic graph (DAG). Given a
directed, weighted graph G = (V,E,W), where V is the vertex set, E is the edge set,
and W is the weight function, let n = |V | denote the number of vertices and m = |E|
the number of edges. For each directed edge (u, v) ∈ E, its weight is given by w(u, v).
The MFAS problem involves removing a minimal-weight set of edges to eliminate all
cycles.

2.1 Cycle-Based Formulation

A natural approach to the MFAS problem is to explicitly identify cycles and ensure
that at least one edge is removed from each. We define a binary variable e(u, v) for
every edge (u, v) ∈ E, where:

e(u, v) =

{
1, if (u, v) is part of the feedback arc set,

0, otherwise.

Let C denote the set of all cycles in G. To guarantee cycle elimination, at least one
edge from each cycle c = (c1, c2, . . . , cl) ∈ C must be removed:

min
∑

(u,v)∈E

e(u, v) · w(u, v) (1)

Subject to:

∀c ∈ C,
∑

(u,v)∈c

e(u, v) ≥ 1. (2)

3

For special cases, such as triangles, alternative constraints (e.g., triangle con-
straints) can be used. While this formulation is intuitive and straightforward, its
practicality is severely limited by the exponential growth of the number of cycles.

In a dense graph with n vertices, the maximum number of cycles of length ≥ 2 is
given by:

n∑
k=2

(
n

k

)
· (k − 1)!.

This results in an impractical number of constraints in Equation 2, making it infeasi-
ble for exact algorithms to handle large graphs. The key limitations of this approach
include: (1) Explicit cycle enumeration is often computationally expensive and imprac-
tical for large graphs. (2) The formulation requires excessive memory for large graphs,
which is often prohibitive in real-world applications.

Due to these challenges, alternative formulations are necessary to solve the MFAS
problem efficiently for large graphs.

2.2 Linear Arrangement Formulation

Younger [9] proposed an alternative approach based on vertex ordering, known as the
linear arrangement method. In this formulation, a directed graph is represented as a
sequential ordering of its vertices, where an edge (u, v) is classified as a feedforward
edge if u precedes v in the order. Otherwise, it is considered a feedback edge. Removing
all feedback edges produces a DAG and corresponds to solving the MFAS problem.

Since every feedback arc set corresponds to a feedforward arc set in a linear
arrangement, minimizing the feedback arc set is equivalent to maximizing the feed-
forward arc set. This equivalence allows us to reformulate the problem by optimizing
the feedforward arc set over all possible linear arrangements.

Let lv denote the position of vertex v in a permutation of the n vertices, where lv
is a unique value in [0, n− 1]. We redefine the binary variable e(u, v) as follows:

e(u, v) =

{
1, if (u, v) belongs to the feedforward arc set,

0, otherwise.

The problem can now be formulated as:

max
∑

(u,v)∈E

e(u, v) · w(u, v) (3)

Subject to:
lu + 1 ≤ lv + n · (1− e(u, v)), ∀(u, v) ∈ E. (4)

This formulation ensures:

• If e(u, v) = 1, then lu < lv (or lu + 1 ≤ lv), maintaining the feedforward property.
• If e(u, v) = 0, then the constraint lu + 1 ≤ lv + n always holds trivially.

The linear arrangement formulation requires only (m + n) variables and m con-
straints, resulting in a memory complexity of O(m + n). This makes it significantly
more scalable for large real-world graphs compared to the cycle-based approach.

4

However, this approach remains computationally challenging. The number of pos-
sible vertex orderings is n!, implying that an exact algorithm would need to evaluate
all n! permutations to ensure an optimal solution. To address this, numerous heuristic
algorithms have been developed to find high-quality approximate solutions efficiently
[4, 5, 7, 10–14].

In this work, we focus on a real-world instance of the MFAS problem and demon-
strate the development of an efficient heuristic algorithm with strong performance
guarantees to tackle this computational challenge.

3 Rocket-Crane Algorithm

Heuristic algorithms [15–17] operate based on a “rule of thumb,” guiding the search
for solutions by leveraging shortcuts, approximations, or patterns derived from prior
knowledge. By reducing the problem space and focusing on the most promising can-
didates, heuristic methods achieve rapid solution discovery. However, their primary
drawback is the tendency to become trapped in local optima, failing to reach the
global optimum. The key challenge in heuristic algorithms lies in balancing efficiency
and solution quality–using simple rules to improve solutions quickly while avoiding
stagnation in suboptimal regions. Once a heuristic algorithm reaches a local optimum,
further progress often becomes increasingly difficult, constrained by an upper bound
beyond which improvements are infeasible.

Randomized algorithms [18, 19], such as Simulated Annealing [8] and Monte Carlo
[20] methods, introduce stochasticity into the decision-making process to enhance
solution diversity and accelerate convergence. Unlike heuristics that follow a fixed
set of rules, randomized algorithms explore multiple solution paths, increasing the
likelihood of escaping local optima. This capability makes them particularly effective
for NP-hard problems, where deterministic approaches may struggle. The primary
challenge, however, lies in efficiently managing randomness to maximize the probability
of discovering better solutions.

The proposed Rocket-Crane algorithm can achieve both rapid improvement and
critical refinement. Initially, a highly optimized heuristic–the Rocket sub-algorithm–
rapidly enhances solution quality, analogous to the swift ascent of a rocket. However,
further improvements become difficult once the heuristic approach reaches its limit.
At this stage, the Crane sub-algorithm takes over, employing more sophisticated and
often computationally intensive strategies to refine the solution further. This phase is
akin to lifting a heavy load with a crane–requiring more effort but enabling progress
beyond the limitations of heuristic techniques.

The Rocket-Crane algorithm strategically integrates heuristic optimization with
randomized search to balance computational efficiency and solution quality, pro-
moting both fast convergence and resilience against local optima. As discussed in
Section 2, the linear arrangement formulation is particularly well-suited for large
graphs. Accordingly, our Rocket-Crane algorithm is built upon this formulation.

5

3.1 Rocket Sub-Algorithm

The Minimum Feedback Arc Set (MFAS) problem, as formulated in Eqs. 3 and 4,
takes the form of a standard integer programming problem. By relaxing the integer
constraints and allowing the variables to take continuous real values, the problem can
be approximated as a linear programming (LP) problem. This relaxed LP formulation
can be efficiently solved using gradient-based optimization methods, which iteratively
refine the solution. Although the LP solution does not guarantee an exact answer to the
original integer problem, it often serves as a strong approximation. Our Rocket sub-
algorithm builds upon this principle and introduces two key innovations to improve
both efficiency and solution quality:

Linear Arrangement Formulation: Our linear arrangement formulation based
sparse representation reduces memory requirements from O(n2) in connectivity matrix
approaches [4] to O(m + n), enabling handling of graphs with more than 106 edges.
This eliminates memory exhaustion issues encountered by previous methods on large
inputs. Objective Alignment Mapping: Our approach preserves the relative order-
ing between discrete and continuous objectives by carefully designing the loss function
and the mapping between solution spaces. We observe that the Heaviside and Pauli
terms introduced in [4] increase computational cost without substantially improv-
ing the quality of the resulting feedforward sorting. In contrast, our method achieves
competitive MFAS performance using a simpler and more efficient loss function.

3.1.1 Continuous-Space Formulation

A solution to the MFAS problem is a permutation π : V → {0, . . . , n−1}, representing
a linear ordering of vertices. An edge (u, v) is considered feedforward if π(u) < π(v).
To enable gradient-based optimization, we relax this discrete formulation by assigning
each vertex a real-valued position: l : V → R, while preserving the order isomorphism:

π(u) < π(v) ⇔ l(u) < l(v), ∀u, v ∈ V. (5)

The continuous objective approximates the total weight of feedforward edges using
a differentiable sigmoid function:

max
∑

(u,v)∈E

σβ(l(v)− l(u)) · w(u, v), (6)

where σβ(x) = 1
1+e−βx is the sigmoid function with steepness parameter β > 0.

This provides a smooth approximation of the binary indicator used in Eq. 3, estimating
whether an edge (u, v) is feedforward (i.e., whether l(u) < l(v)).

The associated loss function for optimization is defined as:

L = −
∑

(u,v)∈E

σβ(l(v)− l(u)) · ŵ(u, v), (7)

where ŵ(u, v) denotes the max-normalized edge weights. This formulation offers
several key properties:

Smoothness: The sigmoid function σβ is C∞-smooth, making it suitable for
gradient-based optimization. Scale Invariance: Weight normalization ensures stable

6

gradients across graphs with varying edge weight magnitudes. Binary Approxima-
tion: The sigmoid function provides a smooth but accurate approximation of binary
edge orientation, effectively estimating whether an edge is feedforward in a continuous
setting.

3.1.2 Optimization Algorithm

Alg. 1 provides a detailed description of the proposed Rocket sub-algorithm, designed
to solve the MFAS problem within a continuous space framework.

The algorithm operates as follows:
Initialization (Lines 1 to 3): The position vector P is initialized by assigning

each vertex in the graph G = (V,E,W) a unique random value in R. The initial
score of the current mapping, denoted as current score, is computed based on P . The
variable best score is set to current score, and the iteration counter iter is initialized
to 0.

Optimization Loop (Lines 4 to 16): The core optimization procedure iterates
until the maximum iteration limit Threshold is reached. Within each iteration: In
Line 5, the position values of the source and target vertices for each edge (u, v) ∈ E are
extracted into vectors PS and PT , respectively. In Line 6, the difference ∆ = PT−PS
is computed, where each element δ(u, v) = l(v)− l(u) indicates whether the edge (u, v)
belongs to the feedforward arc set (δ(u, v) > 0) or the feedback arc set (δ(u, v) < 0).
In Line 7, a sigmoid transformation Sig is applied to ∆, defined as Sig = 1

1+e−β∆ ,
where β > 0 is a scaling parameter controlling the steepness of the sigmoid function.
In Line 8, the loss value is calculated as Loss = −

∑
(u,v)∈E Sig(u, v)× ŵ(u, v), where

ŵ(u, v) are max-normalized edge weights from w(u, v). In Line 9, the Adam optimizer
performs a single optimization step to update the position vector P and minimize
the loss. In Line 10, the score of the updated position vector P is recalculated as
current score. If current score > best score (Line 11), the current mapping P is
output as an improved solution (Line 12), and best score is updated (Line 13). The
iteration counter iter is incremented (Line 15).

Output (Line 17): Upon completion of the loop, the algorithm returns the best
position vector P found during optimization, which represents the optimal continuous-
space mapping of vertices.

This approach efficiently solves large-scale MFAS problems by leveraging the
smoothness of the sigmoid function and the power of gradient-based optimization,
ensuring alignment with the discrete-space objective of maximizing feedforward arcs.

3.2 Crane Sub-Algorithm: A Complementary
Randomized-Heuristic Approach

Heuristic methods frequently exhibit diminishing returns in solution quality due to
deterministic search biases or local optima entrapment. In contrast, randomized algo-
rithms leverage stochastic exploration to escape suboptimal regions, making them
natural complements to heuristic frameworks. We propose the Crane sub-algorithm
for the Minimum Feedback Arc Set (MFAS) problem, which synergistically integrates
three components: (1) a topologically initialized Simulated Annealing (SA), (2) Monte

7

Algorithm 1 Rocket Sub-Algorithm for Gradient-based MFAS Optimization
Input: Graph G = (V,E,W), where V is the vertex set, E is the edge set, and W is the edge weight set; maximum
iterations Threshold; scaling parameter β.
Output: Optimized position vector P in continuous space.

1: Initialize position vector P with unique random values in R for each vertex in V
2: Calculate initial mapping score current score based on P
3: best score ← current score, iter ← 0
4: while iter < Threshold do
5: Extract position values PS and PT for source and target vertices of each edge (u, v) ∈ E from P
6: Compute ∆ = PT − PS, where ∆(u, v) = l(v) − l(u) for each edge

7: Compute sigmoid transformation Sig = 1
1+e−β∆

8: Compute loss Loss = −
∑

(u,v)∈E Sig(u, v) × ŵ(u, v)

9: Use Adam optimizer to update P and minimize Loss
10: Recalculate mapping score current score based on updated P
11: if current score > best score then
12: Output current mapping P as improved solution
13: best score ← current score
14: end if
15: iter ← iter + 1
16: end while
17: return P

Carlo (MC) sampling, and (3) a Mixed Integer Programming (MIP) heuristic. This
hybridization exploits the complementary strengths of global exploration and local
intensification, achieving superior performance compared to single-method baselines.

3.2.1 Topologically Initialized Simulated Annealing

Simulated Annealing (SA) is a canonical stochastic optimization technique for nav-
igating complex solution landscapes while avoiding premature convergence [8]. We
enhance SA with a problem-specific initialization strategy:

Topological Sorting (TopoShuffle) Initialization. Given an initial permuta-
tion P , we construct a new Directed Acyclic GraphDAG = (V,E′), where E′ ⊆ E and
apply Kahn’s topological sorting algorithm [21] to generate a new permutation TSP .
Formally, for all edges (u, v) ∈ E, u precedes v in TSP , ensuring Γ(TSP) ≥ Γ(P),
where Γ(·) denotes the MFAS objective score (i.e., the total weight of preserved
feedforward arcs). This initialization provides diverse starting configurations for the
following optimization while guaranteeing solution quality that is at least as good as,
and potentially better than, the original.

3.2.2 MIP Heuristic Integration

Using the linear arrangement formulation in Section 2.2, we refine solutions via an MIP
solver (e.g., Gurobi). Given an initial feasible solution S0, the solver executes heuristic
strategies (e.g., feasibility pumps, objective diving) under a fixed time budget tmax,
prioritizing feasible solutions over optimality gaps. The MIP component intensifies the
search in promising regions identified by SA.

3.2.3 Monte Carlo Sampling

Monte Carlo sampling provides lightweight diversification by performing greedy
stochastic swaps. For vertices u, v ∈ V , the transition probability to candidate solution
S′ is:

P (St+1 = S′) =

{
1 if Γ(S′) > Γ(St),

0 otherwise.

8

This mechanism efficiently explores adjacent solutions with minimal computational
overhead.

3.2.4 Hybrid Policy

Alg. 2 formalizes the Crane sub-algorithm, which alternates between SA, MIP heuris-
tics, and MC sampling using an adaptive policy. The algorithm executes each method
until a stagnation criterion is met (e.g., no improvement for k iterations), then
switches to the next method. This balances: (1) SA’s thermal fluctuation-driven escape
from local minima, (2) MIP’s problem-structure-aware intensification, (3) MC’s rapid
neighborhood exploration.

Algorithm 2 Crane Sub-Algorithm for MFAS Optimization
Input: Graph G, initial permutation P , cooling rate α, iteration thresholds NSA, NMC, MIP time budget tmax.
Output: Optimized permutation Pbest.

1: repeat
TopoShuffle Initialization:

2: Construct a DAG based on G from P
3: Generate TSP via topological sorting on the DAG
4: Initialize Pbest ← TSP , temperature T ← T0, iter ← 0

SA Global Exploration:
5: for iter ← 1 to NSA do

6: Randomly select u, v ∈ V ; compute δ = Γ(S′) − Γ(TSP)
7: Update T ← T · α
8: if δ ≥ 0 or accept with probability e−δ/T then
9: TSP ← S′
10: if Γ(TSP) > Γ(Pbest) then

11: Pbest ← TSP

12: end if
13: end if
14: end for

MIP Intensification:
15: Pbest ← MIP Heuristic(Pbest, tmax)

MC Local Diversification:
16: for iter ← 1 to NMC do

17: Randomly select u, v ∈ V ; compute δ = Γ(S′) − Γ(Pbest)

18: if δ > 0 then
19: Pbest ← S′

20: end if
21: end for
22: until convergence or termination condition
23: return Pbest

The workflow of Alg. 2 is as follows: The whole algorithm is implemented in a
Repeat-Termination loop, which continues until convergence–typically when Γ(Pbest)
plateaus–or until an external stopping criterion is met (Lines 1–22). In the loop, it first
performsTopoShuffle Initialization by constructing a directed acyclic graph (DAG)
from the input permutation P and generating a new topologically sorted permutation
TSP (Lines 2–4). This is followed by SA Global Exploration, where the algorithm
iteratively perturbs TSP using Simulated Annealing (SA), guided by a geometric
cooling schedule with decay rate α = 0.95 (Lines 5–14). Next, MIP Intensification
is applied to refine the best solution Pbest using mixed-integer programming (MIP)
heuristics within a predefined time limit tmax (Line 15). Finally, the algorithm uses
MC Local Diversification, which explores neighboring solutions through greedy
swaps to further improve local optima (Lines 16–21).

This hybrid strategy combines SA’s global exploration, MIP’s intensification, and
MC’s local diversification, achieving robust performance on large-scale MFAS instances
(validated in Section 4.5).

9

4 Experimental Results

4.1 Experimental Environment and Dataset Characteristics

All experiments were conducted on a high-performance computing node within the
NJIT Wulver cluster4. The computational node is equipped with 128 CPU cores, 512
GB of memory, and Dual NVIDIA A100 Tensor Core GPUs (80 GB HBM2 memory
each), offering substantial parallel computing capabilities required for the efficient
execution of large-scale algorithms.

Our JAX-based implementation of the Rocket sub-algorithm is designed to be
hardware-agnostic, supporting execution on both CPU and GPU. This enables seam-
less hardware acceleration when GPU resources are available, significantly reducing
computation time.

The dataset5 used in our study is a large-scale directed graph representing the
connectome of a fly. It consists of 136,648 vertices and 5,657,719 edges, resulting in a
graph density of 0.000303, indicative of its sparsity. In this graph, vertices correspond
to individual neurons, and weighted edges denote synaptic connections, where edge
weights reflect the strength of these connections. The input is structured as an edge
list comprising triplets of the form (source, target, weight).

The graph consists of 9,626 strongly connected components (SCCs), the majority
of which are relatively small. However, a single giant component dominates the struc-
ture, containing 126,840 vertices–92.8% of the entire graph. This massive component
presents the primary computational challenge, as it prevents the problem from being
easily decomposed into smaller, more manageable SCCs.

Fig. 1 In-degree distribution across all vertices. The distribution exhibits a heavy tail, with most
vertices having low in-degrees and a small number exhibiting extremely high in-degrees, a feature
typical of real-world networks.

Fig. 1 illustrates the in-degree distribution of the graph. The heavy-tailed nature of
the distribution implies that while the majority of vertices have low in-degrees, a few
serve as hubs with extremely high connectivity. Such hubs are likely to participate in
multiple cycles, complicating the task of identifying a minimal set of edges for removal.

4https://hpc.njit.edu/clusters/wulver/
5https://codex.flywire.ai/app/mfas challenge

10

https://hpc.njit.edu/clusters/wulver/
https://codex.flywire.ai/app/mfas_challenge

The average in- and out-degrees are both 41.40, with maximum in- and out-degrees
of 8,840 and 8,064, respectively.

Fig. 2 Edge weight distribution. The histogram shows the skewness, with most edges concentrated
at lower weights. The inset zooms into the 99th percentile (weight = 54.00), highlighting the long
tail of the distribution.

Fig. 2 presents the distribution of edge weights. The distribution is highly skewed,
with most weights concentrated near the lower end of the spectrum. The minimum
edge weight is 2, the maximum is 2,405, the mean is 7.41, and the median is 4.00. The
99th percentile weight is 54.00, and the standard deviation is 12.77. This long-tailed
distribution presents a fundamental challenge for identifying a high-weight feedforward
(acyclic) arc set. While a few high-weight edges contribute disproportionately to the
total edge weight, including them in the solution may introduce cycles, forcing trade-
offs with many lower-weight alternatives. Conversely, although low-weight edges are
individually less valuable, they are abundant and structurally dispersed, potentially
forming large acyclic subgraphs if carefully selected. The irregularity and density of
these small weights make it difficult to apply simple heuristics for prioritizing edge
inclusion. As a result, designing an effective optimization strategy requires balancing
the retention of high-weight edges with the need to maintain acyclicity over a vast,
sparsely weighted graph.

Fig. 3 Distribution of degree differences (out-degree minus in-degree). The distribution is centered
around zero, indicating that most vertices have approximately balanced in- and out-degrees.

11

Fig. 3 shows the distribution of degree differences, computed as the out-degree
minus in-degree for each vertex. A pronounced peak at zero suggests that a large
number of vertices have balanced degrees. Specifically, 4,722 vertices (3.46%) exhibit
a degree difference of exactly zero. The distribution is roughly symmetric, with 77,789
vertices (56.93%) having more outgoing than incoming edges, and 54,137 vertices
(39.62%) having the reverse. This balance limits the effectiveness of heuristics based
solely on degree differences, such as those proposed in [10].

Regarding vertex classification, the graph contains 6,651 source vertices (4.87%)
with zero in-degree, 2,447 sink vertices (1.79%) with zero out-degree, and 127,550
regular vertices (93.34%) with both non-zero in- and out-degrees. The overwhelm-
ing prevalence of regular vertices presents another challenge: strategies that rely on
selectively removing sources or sinks are unlikely to be sufficient for solving the
problem.

In summary, the dataset’s large scale, structural sparsity, heterogeneous degree
distribution, and highly imbalanced edge weights collectively undermine the effective-
ness of simple heuristics. These challenges highlight the need for novel methodologies
capable of handling the complexity and scale inherent to real-world graphs.

4.2 Evaluation Metrics

We evaluate algorithmic performance based on the total weight of the feedforward arc
set, either in absolute terms or as a percentage of the total edge weight in the graph.
A higher feedforward weight or percentage reflects a more effective algorithm, as it
indicates greater success in retaining high-weight acyclic substructures.

Performance is assessed from three complementary perspectives:

• Time to Good (TTG) – The time required for the algorithm to reach a solution
of reasonably good quality. This metric is relevant in time-sensitive applications
where approximate solutions are acceptable.

• Time to Excellent (TTE) – The time taken to obtain a high-quality solution
that satisfies stringent quality thresholds. This is critical in contexts where only
near-optimal or high-quality solutions are acceptable.

• Time to Best (TTB) – The time required to discover the best solution within
a fixed time budget. This metric is both the most challenging to optimize and the
primary focus of our evaluation, as it reflects the algorithm’s peak performance
under time constraints. It highlights the trade-off between solution quality and
computational efficiency.

To benchmark solution quality, we adopt the linear arrangement method for the
feedback arc set problem. A random permutation of the vertices partitions the edges
into two acyclic subsets: a feedforward edge set and a feedback edge set. We select the
subset with the larger total weight as the final feedforward arc set. By construction,
this yields a baseline feedforward weight of at least 50% of the total, serving as the
minimum standard for acceptable performance.

Based on empirical observations from preliminary experiments, we establish the
following quality thresholds:

12

• A solution achieving at least 75% of the total edge weight is considered good
quality.

• A solution achieving at least 80% is considered excellent quality.

Ultimately, our objective is to identify the highest-quality feedforward arc
set within a reasonable computation time, emphasizing algorithmic efficiency
and scalability for solving NP-hard instances on large-scale, complex graphs.

4.3 Comparison of Heuristic Algorithms

To rigorously evaluate the performance of our novel Rocket-Crane algorithm, we com-
pare it against a comprehensive selection of heuristic algorithms designed to solve the
Minimum Feedback Arc Set (MFAS) problem. This evaluation provides a detailed
understanding of the relative advantages and limitations of each approach. Table 1
presents the comparative results. In this table, “Score” denotes the total weight of
the feedforward arc set (larger is better), “Percentage” represents the score as a frac-
tion of the total edge weight, “Exec Time” reports the execution time (in seconds) on
our experimental platform, and “Time Complexity” indicates the theoretical compu-
tational complexity. Here, n is the number of vertices, m is the number of edges, and
t denotes the number of iterations (if applicable).

Table 1 Performance Comparison with Fifteen Different Heuristic Algorithms

SE DC Greedy GreedyAbs Simple BergeShor DFS KwikSort Sort Sift KwikSort* Sort* Sift* Tight-Cut* RASstar Rocket-Crane

Score NA NA 29025804 30646022 21028911 25390953 23702336 21392424 30131918 NA 22743824 31949612 NA NA 33014221 33550730
Percentage (%) NA NA 69.25 73.12 50.17 60.58 56.55 51.04 71.89 NA 54.27 76.23 NA NA 78.77 80.05
Exec Time (s) NA NA 49 38 3 4 33 20 4284 NA 2229 21082 NA NA 9 4.2
Time Complexity O(n4) O(mn log n) O(m+ n) O(m+ n) O(m+ n) O(m+ n) O(m+ n) O(n log n) O(n2) O(n2) O(n log n) O(n2) O(n2) O(nm4) O(mn) O(t(m+ n))

Note: “NA” indicates that the algorithm failed to produce a feasible solution within a
24-hour runtime.

4.3.1 Stochastic Evolution (SE) and Dynamic Clustering (DC)
Algorithms

Saab [5] introduced two divide-and-conquer-based algorithms for the MFAS prob-
lem: Stochastic Evolution (SE) and Dynamic Clustering (DC). Unlike many heuristic
methods that rely on vertex linearization, SE and DC approach the problem by
recursively partitioning the graph and removing feedback arcs based on minimum
bisection heuristics, a task that is itself NP-hard. Due to the absence of publicly avail-
able implementations, we developed our own Python versions, carefully following the
methodological details described in the original paper.

The SE algorithm employs a stochastic evolution strategy, in which graph par-
titions are iteratively perturbed using randomized mutations and crossover-like
operations to reduce the total feedback arc weight. This evolutionary process requires
repeated evaluations over all n vertices and results in a time complexity of O(n4),
making it computationally expensive even for moderately sized graphs.

In contrast, the DC algorithm adopts a more structured approach by dynamically
clustering vertices and recursively refining the partitions based on connectivity. Its

13

complexity, O(mn log n), is lower than SE’s, as the recursive bisection depth scales
with log n while still considering all edges during each partitioning step.

Empirical results in [5] show that SE and DC can outperform Greedy-based algo-
rithms on small graphs with up to a few thousand vertices. However, when applied
to our real-world connectome graph comprising 136,648 vertices and over 5.6 million
edges, neither SE nor DC returned a feasible solution after more than two days of
computation. The excessive computational burden, especially SE’s quartic time com-
plexity and DC’s sensitivity to edge volume, renders these methods impractical for
large-scale applications, despite their promising performance on smaller instances.

4.3.2 Typical Heuristic Algorithms

Simpson et al. [7] conducted an extensive evaluation of multiple heuristic algorithms
for the MFAS problem, including Greedy [10], GreedyAbs, Simple [9], BergeShor [22],
DFS, KwikSort [23], Sort, and Sift, as well as optimized variants: KwikSort*, Sort*,
and Sift*. Originally implemented in Java for unweighted undirected graphs, we reim-
plemented and extended these algorithms in Python to support edge-weighted directed
graphs. Multiple algorithmic and implementation-level optimizations were introduced
to enhance runtime performance and output quality.

Among these, Simple, BergeShor, and DFS are distinguished by their struc-
tural heuristics, while the remaining algorithms rely primarily on linear arrangement
strategies to determine vertex orderings and extract feedback arc sets.

• Greedy: Constructs a vertex ordering iteratively by selecting the vertex with the
maximum signed difference between out-degree and in-degree. With complexity
O(m + n), it achieved 69.25% in 49 seconds. Our implementation outperforms the
benchmark code 6, which requires nearly one hour. Being deterministic, its solutions
vary little across runs.

• GreedyAbs: A variant of Greedy that considers the absolute difference between
out-degree and in-degree for vertex selection. It improves over Greedy with 73.12%
in 38 seconds. Like Greedy, it is deterministic, offering minimal gains from repeated
runs.

• Simple: Generates a random vertex permutation, derives feedforward and feedback
arc sets, and selects the larger. With complexity O(m + n), it runs in 3 seconds
and produces scores ranging from 50.17% to over 70%. Multiple runs with different
seeds enhance solution quality.

• BergeShor: Assigns low-weight edges to the feedback arc set based on local degree
comparisons in a single pass. Its linear complexity and execution time of 4 seconds
yielded 60.58%. Its deterministic design precludes improvements through repetition.

• DFS: Identifies feedback arcs as back edges in a depth-first traversal. If the resulting
feedback arc set exceeds 50% of the total weight, the complement is selected. With
complexity O(m+ n), it achieved 56.55% in 33 seconds. Varying DFS roots allows
modest diversity.

• KwikSort: Inspired by QuickSort, partitions vertices based on their edge direc-
tions into “smaller,” “equal,” and “larger” subsets. Recursive partitioning leads to

6https://github.com/arie-matsliah/sfas/

14

https://github.com/arie-matsliah/sfas/

O(n log n) complexity. The base variant scored 51.04% in 20 seconds. KwikSort*,
which runs 200 iterations, reached 54.27% in 2229 seconds.

• Sort: Starts with a random vertex order and iteratively repositions each vertex
among its predecessors to minimize backward edges. With O(n2) complexity, it
scored 71.89% in 4284 seconds. Sort*, running 10 iterations, improved this to 76.23%
in 21082 seconds.

• Sift: An aggressive variant of Sort that re-evaluates vertex positions across all oth-
ers in each iteration. Although conceptually powerful, its high computational cost
rendered it infeasible for our large graph. Sift* attempted multiple runs but similarly
failed within a 24-hour window.

4.3.3 Tight-Cut* Algorithm

Hecht et al. [13] proposed the Tight-Cut* algorithm, which aims to remove feed-
back arcs by strategically breaking isolated cycles, thereby transforming the graph
into an acyclic structure. Unlike many MFAS heuristics that rely on vertex order-
ing, Tight-Cut* employs a fundamentally different approach based on minimum s–t
cuts. Specifically, it performs a minimum cut computation for each edge to identify
and eliminate cycles, resulting in a theoretical time complexity of O(nm4). This high
complexity arises from the need to compute flow-based cuts across all m edges and n
vertices, compounding the computational burden.

To evaluate its performance, we converted our dataset into the required format and
executed the Tight-Cut* algorithm on our experimental platform. Despite running
the implementation for over 48 hours, it failed to yield a feasible solution for the
neuroscience graph, which consists of 136,648 vertices and over 5.6 million edges. These
results confirm that, while Tight-Cut* may be effective for small graphs or specific
cases–as noted in the original paper–its high computational cost makes it impractical
for large-scale, real-world instances such as the one examined in our study.

4.3.4 RASstar Algorithm

Xiong et al. [14] introduced the RASstar algorithm, which integrates rule-based reduc-
tions and recursive ordering to address the MFAS problem efficiently. RASstar first
applies a series of graph simplification rules to reduce structural complexity and
eliminate redundant patterns. It then employs the GreedyAbs algorithm to gener-
ate an initial vertex ordering. Subsequently, the graph is recursively partitioned into
two sequential subgraphs, with GreedyAbs applied at each step to further refine the
ordering.

This recursive process continues until all subgraphs collapse into single vertices,
producing a final topological sort from which the feedback arc set is extracted.
Conceptually, RASstar bears similarity to the SE and DC approaches in its divide-and-
conquer design. However, unlike those methods, RASstar leverages efficient linear-time
partitioning heuristics rather than computationally expensive minimum bisections.

Implemented in C++, we adapted our dataset to RASstar’s input format and
executed the algorithm without modification. It achieved a solution with 78.77% feed-
forward weight in just 9 seconds, demonstrating both high quality and efficiency. The

15

method’s time complexity is O(mn), and its near-deterministic nature ensures consis-
tent results across runs, obviating the need for repetition. These traits make RASstar
a strong candidate for practical large-scale applications.

4.3.5 Rocket-Crane Algorithm

Our proposed Rocket-Crane algorithm combines high-quality solutions with excep-
tional runtime performance, particularly when applied to large-scale graphs. The
core Rocket sub-algorithm is implemented in JAX, allowing for seamless GPU accel-
eration and automatic parallelization. Rocket iteratively explores vertex orderings,
dynamically refining the solution using a feedforward weight maximization strategy.

The algorithm’s complexity is O(t(m + n)), where t denotes the number of itera-
tions. In our experiments, Rocket achieved the highest overall performance, producing
a feedforward arc set that retained 80.05% of the total edge weight in just 4.2 sec-
onds. This superior efficiency, coupled with scalability, positions Rocket-Crane as a
state-of-the-art method for solving the MFAS problem in large, real-world directed
graphs.

A detailed analysis of Rocket-Crane’s optimization mechanisms and performance
characteristics will be presented in Section 4.4.

4.3.6 Clustering of Algorithms

To provide an intuitive understanding of the trade-offs between execution time and
solution quality, we visualize the performance of all evaluated algorithms using a
quadrant-based scatter plot (Fig. 4). The plot classifies algorithms into four categories
based on their position along two axes: solution quality (feedforward arc set weight)
and execution time.

• Upper Left Quadrant (High Quality, Short Time): This region includes
algorithms that simultaneously achieve high solution quality and low execution
time. Our Rocket-Crane algorithm exemplifies this quadrant, delivering top-tier
performance with exceptional efficiency.

• Upper Right Quadrant (High Quality, Long Time): Algorithms here pro-
duce high-quality solutions but incur considerable computational cost. Sort* is
representative, offering strong results at the expense of long runtimes.

• Lower Left Quadrant (Low Quality, Short Time): These methods yield rel-
atively weak solutions but execute quickly. Simple belongs to this group, making it
a viable option for rapid approximations where precision is less critical.

• Lower Right Quadrant (Low Quality, Long Time): The least desirable algo-
rithms fall into this region, characterized by both high runtime and poor solution
quality. KwikSort*, despite repeated iterations, shows only limited improvement
and thus fits this profile.

This clustering framework clearly illustrates the performance landscape and sup-
ports informed algorithm selection for large-scale Minimum Feedback Arc Set (MFAS)
problems, where balancing solution quality and computational feasibility is essential.

16

Fig. 4 Clustering of heuristic algorithms based on solution quality and execution time.

4.4 Rapid Convergence to Excellent Solutions with Rocket

The Rocket sub-algorithm can deliver high-quality solutions rapidly and continues to
refine them as computation progresses. This iterative behavior allows for a control-
lable trade-off between speed and solution quality, making Rocket highly adaptable
to various runtime constraints.

Fig. 5 presents the progression of Rocket’s performance over time on both CPU
and GPU platforms. The main plot captures the overall trend, while an inset zooms
into the final convergence phase for finer resolution.

Key observations include:

• Rapid Initial Improvement: Both CPU (blue curve) and GPU (red curve) vari-
ants achieve a steep increase in solution quality within the first few seconds, with
scores rising from approximately 2.2×107 to over 3×107 within the first 103 seconds.
This indicates that Rocket is capable of producing high-quality approximations early
in its execution.

• GPU Acceleration Advantage: Throughout the execution, the GPU consis-
tently outperforms the CPU. For example, at 10 seconds, the GPU reaches a
score of 34,522,696 (approximately 82.36%), whereas the CPU achieves 29,324,461
(about 69.97%). This demonstrates the effectiveness of JAX-based parallelization
in harnessing GPU computing power.

• Asymptotic Convergence: As time approaches 105 seconds, both curves plateau
near a final score of 3.4 × 107, indicating convergence. This suggests diminishing
returns in solution quality beyond this point, offering a practical upper bound on
useful computation time.

• Detailed Convergence Behavior: The inset magnifies the interval from 2× 104

to 105 seconds. The CPU score improves gradually from 3.4724×107 to 3.4728×107,
while the GPU score remains nearly flat between 3.4730 × 107 and 3.4732 × 107,
revealing fine-grained convergence dynamics.

This analysis highlights Rocket’s strengths in delivering rapid, high-quality solu-
tions and its scalability via GPU acceleration.

17

Fig. 5 Solution quality vs. execution time for the Rocket sub-algorithm on CPU (blue) and GPU
(red). The inset magnifies the convergence phase.

4.5 Beyond the Excellent: Refinement with Crane

While the Rocket sub-algorithm demonstrates exceptional performance in the early
and mid-stage optimization process–achieving a feedforward arc set score of 34,732,073
(approximately 82.87%)–it exhibits a characteristic plateau after several hours of exe-
cution. This behavior is typical of gradient-based methods, which quickly ascend to
local optima but struggle to escape them without external intervention. Once this sat-
uration point is reached, further runtime produces no gains, signaling the need for a
more refined approach.

To address this limitation, the Crane sub-algorithm extends the solution quality
beyond Rocket’s plateau. It improves the best-found solution to 35,459,266 (or 84.60%
in percentage terms), raising the score by 727,193 points (about 1.73%). Although
the numerical improvement may appear marginal, it is highly significant in domains
where near-optimal solutions are critical. This refinement comes at a cost: Crane
requires approximately 20 days of computation, compared to Rocket’s few-hour run-
time. Nonetheless, in many real-world applications, such costs are acceptable, as even
small gains in quality can provide significant value.

The Crane sub-algorithm integrates three complementary optimization strategies–
Simulated Annealing (SA), Mixed-Integer Programming (MIP) heuristics, and Monte
Carlo sampling–into a cohesive multi-stage procedure. It begins with SA, which is
employed to escape local optima by iteratively perturbing the current best solution
over NSA = 1,000,000 iterations, thereby steering the search toward promising regions
in the solution space. The solution produced by SA is then passed to an MIP-based
refinement module, yielding a feasible solution with higher quality by solving a relaxed
integer optimization problem using heuristic techniques within a 40-minute budget.
Finally, a Monte Carlo sampling component explores the neighborhood of the MIP-
refined solution over NMC = 1,000,000 iterations, capturing subtle improvements that
deterministic methods may overlook.

Our experimental results clearly demonstrate the effectiveness of the proposed
complementary strategy. By leveraging Gurobi’s warm-start capability, we initialize
the MIP solver with a solution generated by Simulated Annealing (SA), allowing
it to focus on improving high-quality heuristic solutions rather than solving for the
exact optimum. We observe that once MIP identifies an improved solution, additional

18

time rarely leads to further gains. In practice, a time budget of 20–40 minutes is
typically sufficient for MIP to enhance the SA output. For example, starting from
an SA solution with a score of 35,231,371, MIP improves it to 35,231,397 in under
20 minutes. However, continuing with the same approach beyond this point tends to
yield diminishing returns. When SA + MIP reaches a score of 35,231,406, further
improvement becomes challenging. In contrast, Monte Carlo (MC) sampling is able
to push the solution to 35,435,948, creating a significantly better starting point that
enables SA and MIP to rapidly refine it further to 35,448,870.

These experimental results support a key conclusion: switching to a complemen-
tary method is often more effective than persisting with the same approach after one
method achieves an improvement. This reinforces the advantage of combining multiple
strategies in a staged refinement pipeline.

Our experiments also highlight the importance of TopoShuffle initialization in
accelerating search efficiency. Starting from a baseline score of 35,142,231 (about
84%), SA alone can improve the score to 35,147,408 in one hour. However, with
TopoShuffle initialization, SA achieves 35,162,376, a 0.0426% improvement, which is
substantial in the refinement phase, where gains are typically incremental. A similar
trend holds for MC: from the same starting point, MC alone reaches 35,147,408, while
TopoShuffle+MC reaches 35,162,376, outperforming both pure SA and pure MC.

This iterative process–alternating between SA, MIP-based heuristics, and Monte
Carlo search–enables the Crane sub-algorithm to achieve refinements unattainable by
any single method alone.

In summary, the Rocket sub-algorithm rapidly drives the solution quality from a
baseline (e.g., 50%) to an “excellent” threshold (83%) in minimal time but tends to
plateau beyond that. The Crane sub-algorithm takes over from this point, performing
advanced refinements and pushing the solution beyond excellent. A hybrid approach–
beginning with Rocket and transitioning to Crane–offers a powerful and balanced
strategy, combining speed, robustness, and solution quality for solving large-scale
Minimum Feedback Arc Set (MFAS) problems.

4.6 Discussion

Key hyperparameters–particularly the sigmoid sharpness parameter β and the number
of optimization iterations–significantly influence the performance of our algorithm. To
alleviate the need for manual tuning, we adopt a cyclical schedule for β7, varying its
value dynamically throughout optimization.

This adaptive adjustment allows the optimizer to alternate between smoother
and sharper approximations of the binary indicator function. As a result, the algo-
rithm gains flexibility to explore the solution space more broadly and refine promising
regions, thereby reducing sensitivity to any single, fixed choice of β.

We can easily incorporate an early exit mechanism for iteration control that termi-
nates the current optimization phase if no substantial improvement is observed within
a predefined number of iterations or a time threshold. This strategy improves effi-
ciency by avoiding wasted computation in stagnating regions of the search space and
accelerates progression to subsequent optimization phases.

7β = (cos(np.linspace(0, 2 · π · ncycles, num epochs)) + 1.1) /2.

19

4.6.1 Evaluation Based on the Proposed Metrics

To systematically compare algorithmic effectiveness, we evaluate each method accord-
ing to the three performance metrics introduced earlier: Time to Good (TTG),
Time to Excellent (TTE), and Time to Best (TTB). These metrics reflect the
time required to reach solution quality thresholds of approximately 75%, 80%, and
85%, respectively. Table 2 summarizes these results.

Among the evaluated algorithms, only four–Sort, Sort*, RAS*, and our proposed
Rocket-Crane–are capable of achieving a Good Solution (defined as a relative score
of approximately 75%). Their respective execution times are 4,284 seconds, 21,082
seconds, 9 seconds, and 3.6 seconds. Notably, Rocket-Crane reaches this threshold
with the shortest execution time by a significant margin.

In terms of achieving an Excellent Solution (approximately 80%), Rocket-Crane is
the only algorithm able to do so, requiring just 4.2 seconds. This result underscores
its rapid convergence and high-quality early-stage performance.

Finally, for the Best Solution benchmark (approximately 85%), Rocket-Crane
again stands out as the sole algorithm capable of reaching this level of performance.
It achieves this score within approximately 20 days, demonstrating its capability
toward near-optimal solutions at a computational cost that, while substantial, remains
reasonable and acceptable given the complexity of the task.

Table 2 Evaluation of Different Algorithms Based on Performance Metrics

Algorithm TTG (75%) (s) TTE (80%) (s) TTB (85%) (days)

SE NV NV NV
DC NV NV NV
Greedy NV NV NV
GreedyAbs NV NV NV
Simple NV NV NV
BergeShor NV NV NV
DFS NV NV NV
KwikSort NV NV NV
Sort 4284 NV NV
Sift NV NV NV
KwikSort* NV NV NV
Sort* 21082 NV NV
Sift* NV NV NV
Tight-Cut* NV NV NV
RASstar 9 NV NV
Rocket-Crane 3.6 4.2 20

Note: “NV” indicates that the algorithm did not meet the specified performance criterion.

5 Related Work

The Minimum Feedback Arc Set (MFAS) problem has been extensively studied across
theoretical, algorithmic, and applied domains. Foundational work by Younger [9]
established the linear arrangement formulation for MFAS, which became a cornerstone
for many heuristic approaches. Divieti et al. [24] transformed MFAS into the prime
implicant selection problem in switching theory, revealing its structural equivalence
with classical problems in Boolean logic.

Recent theoretical progress includes extremal bounds and probabilistic analysis.
Fox et al. [25] derived tight upper bounds for MFAS size under forbidden subgraph con-
straints and introduced constructive algorithms with provable guarantees. Diamond
et al. [26] analyzed MFAS behavior in random graphs generated via the Erdös-Rényi

20

model, establishing asymptotic lower bounds using binomial-based probabilistic tools.
These works contribute to a deeper theoretical understanding but are not directly
applicable to large, irregular real-world graphs.

Given the NP-hardness of MFAS, specialized algorithms have been designed for
restricted graph classes. For example, Kenyon-Mathieu et al. [27] developed a PTAS
specifically for tournament graphs, and Eades et al. [11] proposed a heuristic for cubic
graphs that guarantees a feedback arc set of size at most |E|/4. Hecht [28] introduced
essential minors and isolated cycles to reduce problem complexity and obtain exact
solutions for resolvable graphs. Similarly, Chen et al. [29] developed fixed-parameter
algorithms that are effective only when the solution size is small. However, these
approaches lack scalability or generalizability to dense or heterogeneous graphs, such
as those seen in biological networks or software call graphs.

To address these challenges, some researchers developed preprocessing or kernel-
ization techniques. Baweja et al. [30] proposed a semi-streaming PTAS for tournament
graphs, while Bessy et al. [31] introduced a linear vertex kernel for the k-Feedback
Arc Set problem, significantly reducing the problem size when k is small. On the
exact algorithm front, Lempel et al. [32] formulated MFAS as a Boolean algebra prob-
lem and solved it using permanent expansions, and Baharev et al. [33] combined lazy
constraint generation with integer programming to tackle sparse instances. Despite
their theoretical appeal, these exact methods struggle to scale to graphs with tens or
hundreds of thousands of nodes.

In practice, heuristic and approximation algorithms are commonly used. Berger
et al. [22] proposed randomized algorithms capable of finding large acyclic subgraphs
in polynomial time. Even et al. [34] introduced sphere-growing techniques and frac-
tional relaxations, achieving improved theoretical guarantees supported by empirical
evidence. Simpson et al. [7] conducted a comprehensive study on multiple approxi-
mation algorithms, optimizing greedy and randomized variants for large-scale graphs.
Their results show that properly engineered heuristics can scale to massive graphs
with billions of arcs while maintaining competitive performance.

More recent innovations leverage bio-inspired and stochastic techniques. Kudelic
et al. [35] introduced the Ant-Inspired Monte Carlo Algorithm (AIMCA), which com-
bines adaptive learning mechanisms with Monte Carlo sampling. AIMCA maintains
polynomial complexity while offering probabilistic guarantees, particularly effective
for multigraphs. Hecht et al. [13] proposed Tight-Cut*, a hybrid approach integrat-
ing isolated cycle detection, randomized relaxations, and minimum cut heuristics.
Their method achieves near-optimal solutions on sparse graphs, validated by empirical
approximation ratios close to 2.

Sorting-based heuristics have also been repurposed for MFAS. Brandenburg et
al. [12] reinterpreted classical sorting strategies like insertion sort and Quicksort [23]
to construct acyclic subgraphs. Their hybrid approaches demonstrate improved
convergence properties by combining deterministic ordering with localized refinements.

Saab [5] developed two divide-and-conquer algorithms–Stochastic Evolution (SE)
and Dynamic Clustering (DC)–that iteratively improve feedback arc sets via ver-
tex movement and hierarchical partitioning. These algorithms perform well on small

21

graphs but do not scale effectively to larger datasets due to their high computational
complexity.

Xiong et al. [14] introduced a modern framework combining graph reduction
techniques with a recursive divide-and-conquer strategy. Their method significantly
improves performance on large circuit graphs by reducing redundancy and partitioning
graphs for local optimization. This algorithm represents the latest in heuristic design
and is included in our empirical evaluation.

Borst [4] recently proposed a novel approach for analyzing neural connectivity by
mapping discrete vertex indices to continuous values and minimizing a smooth energy
function using gradient-based optimization. Although this continuous-space mapping
improves interpretability and reveals hidden structures, it is computationally expensive
and applicable only to small networks. In contrast, our work generalizes this idea with
improved mapping strategies and scalable optimization, enabling application to large,
real-world datasets while preserving high solution quality.

In summary, while many existing methods provide strong theoretical insights or
heuristic value, they often fall short in balancing scalability, generality, and quality
on real-world graphs. Our proposed Rocket-Crane framework addresses this gap by
combining rapid convergence, deep refinement, and GPU-accelerated scalability.

6 Conclusion

We have presented Rocket-Crane, a novel two-phase algorithm for solving the NP-hard
Minimum Feedback Arc Set (MFAS) problem on large, real-world directed graphs.
Our method outperforms state-of-the-art heuristics and exact solvers by delivering
high-quality solutions within seconds and continuing to refine them to near-optimality.
Specifically, Rocket-Crane can achieve “good” and “excellent” solutions—with approx-
imately 75–80% of the total edge weight retained in the feedforward arc set—in under 5
seconds. Notably, Rocket-Crane is the first algorithm, to our knowledge, that achieves
a “best” solution with approximately 85% feedforward arc set weight on large-scale
real-world graphs. This milestone, reached within a feasible computation window of
20 days, sets a new benchmark in the field.

The strength of our approach lies in three core innovations. First, the use of a
linear-arrangement-based formulation provides a memory-efficient and scalable alter-
native to traditional cycle-based methods, which often suffer from severe memory
bottlenecks. Second, our Rocket sub-algorithm leverages continuous-space gradient-
based optimization. By carefully designing a surrogate loss function that aligns well
with the MFAS objective, Rocket is able to efficiently explore the solution space using
highly efficient numerical optimization techniques. Third, the Crane sub-algorithm
extends Rocket’s results through a synergistic integration of randomized search (sim-
ulated annealing), MIP-based heuristic, and Monte Carlo exploration. These three
components are highly complementary: each explores distinct regions of the solution
space, and when combined, they achieve significantly better results than any single
method alone.

The effectiveness of Rocket-Crane has been demonstrated on large-scale neuro-
science graphs and featured in a recent Nature publication [36], highlighting its

22

applicability to real-world scientific domains. Our approach not only achieves state-
of-the-art results in terms of performance and scalability but also introduces a
new paradigm for solving MFAS by combining continuous optimization, heuristic
scheduling, and stochastic refinement.

Our implementation is publicly available on GitHub, supporting reproducibility
and future research. We believe Rocket-Crane lays the foundation for future hybrid
frameworks in graph optimization, especially for problems where early-stage speed
and late-stage quality are both essential.

Acknowledgment

This research was funded in part by NSF grant number CCF-2109988 and OAC-
2402560.

References

[1] Lawler, E.: A comment on minimum feedback arc sets. IEEE Transactions on
Circuit Theory 11(2), 296–297 (1964)

[2] Kann, V.: On the approximability of NP-complete optimization problems. PhD
thesis, Royal Institute of Technology Stockholm (1992)

[3] Karp, R.M.: Reducibility among combinatorial problems. In: 50 Years of Integer
Programming 1958-2008: from the Early Years to the State-of-the-Art, pp. 219–
241. Springer, Berlin (2009)

[4] Borst, A.: Connectivity matrix seriation via relaxation. PLOS Computational
Biology 20(2), 1011904 (2024)

[5] Saab, Y.: A fast and effective algorithm for the feedback arc set problem. Journal
of Heuristics (3), 235–250 (2001) https://doi.org/10.1023/A:1011315014322

[6] Dinur, I., Safra, S.: The importance of being biased. In: Proceedings of the Thiry-
fourth Annual ACM Symposium on Theory of Computing, pp. 33–42 (2002)

[7] Simpson, M., Srinivasan, V., Thomo, A.: Efficient computation of feedback arc
set at web-scale. Proceedings of the VLDB Endowment 10(3), 133–144 (2016)

[8] Rutenbar, R.A.: Simulated annealing algorithms: An overview. IEEE Circuits and
Devices magazine 5(1), 19–26 (1989)

[9] Younger, D.: Minimum feedback arc sets for a directed graph. IEEE Transactions
on Circuit Theory 10(2), 238–245 (1963)

[10] Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for the feedback
arc set problem. Information processing letters 47(6), 319–323 (1993)

23

https://doi.org/10.1023/A:1011315014322

[11] Eades, P., Lin, X.: A heuristic for the feedback arc set problem. Australas. J
Comb. 12, 15–26 (1995)

[12] Brandenburg, F.J., Hanauer, K.: Sorting heuristics for the feedback arc set
problem. Department of Informatics and Mathematics, University of Passau
(2011)

[13] Hecht, M., Gonciarz, K., Horvát, S.: Tight localizations of feedback sets. Journal
of Experimental Algorithmics (JEA) 26, 1–19 (2021)

[14] Xiong, Z., Zhou, Y., Xiao, M., Khoussainov, B.: Finding small feedback arc sets
on large graphs. Computers & Operations Research, 106724 (2024)

[15] Romanycia, M.H., Pelletier, F.J.: What is a heuristic? Computational intelligence
1(1), 47–58 (1985)

[16] Kokash, N.: An introduction to heuristic algorithms. Department of Informatics
and Telecommunications 1, 1–7 (2005)

[17] Maaroju, N.: Choosing the best heuristic for a NP-Problem. PhD thesis (2009)

[18] Maffioli, F.: Randomized algorithms in combinatorial optimization: A survey.
Discrete Applied Mathematics 14(2), 157–170 (1986)

[19] Buluc, A., Kolda, T.G., Wild, S.M., Anitescu, M., Degennaro, A., Jakeman,
J., Kamath, C., Kannan, R., Lopes, M.E., Martinsson, P.-G., et al.: Random-
ized algorithms for scientific computing (rasc). arXiv preprint arXiv:2104.11079
(2021)

[20] Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method. John
Wiley & Sons, Hoboken, NJ (2016)

[21] Kahn, A.B.: Topological sorting of large networks. Communications of the ACM
5(11), 558–562 (1962)

[22] Berger, B., Shor, P.W.: Approximation algorithms for the maximum acyclic sub-
graph problem. In: Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 236–243 (1990)

[23] Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information:
ranking and clustering. Journal of the ACM (JACM) 55(5), 1–27 (2008)

[24] Divieti, L., Grasselli, A.: On the determination of minimum feedback arc and
vertex sets. IEEE Transactions on Circuit Theory 15(1), 86–89 (1968)

[25] Fox, J., Himwich, Z., Mani, N.: Extremal results on feedback arc sets in digraphs.
Random Structures & Algorithms 64(2), 287–308 (2024)

24

[26] Diamond, H., Kon, M., Raphael, L.: Asymptotic lower bounds for the feedback
arc set problem in random graphs. arXiv preprint arXiv:2409.16443 (2024)

[27] Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Proceedings of
the Thirty-ninth Annual ACM Symposium on Theory of Computing, pp. 95–103
(2007)

[28] Hecht, M.: Exact localisations of feedback sets. Theory of Computing Systems
62, 1048–1084 (2018)

[29] Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. In: Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing, pp. 177–186 (2008)

[30] Baweja, A., Jia, J., Woodruff, D.P.: An Efficient Semi-Streaming PTAS for
Tournament Feedback ArcSet with Few Passes. arXiv preprint arXiv:2107.07141
(2021)

[31] Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé,
S.: Kernels for feedback arc set in tournaments. Journal of Computer and System
Sciences 77(6), 1071–1078 (2011)

[32] Lempel, A., Cederbaum, I.: Minimum feedback arc and vertex sets of a directed
graph. IEEE Transactions on circuit theory 13(4), 399–403 (1966)

[33] Baharev, A., Schichl, H., Neumaier, A., Achterberg, T.: An exact method for the
minimum feedback arc set problem. Journal of Experimental Algorithmics (JEA)
26, 1–28 (2021)

[34] Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback
sets and multicuts in directed graphs. Algorithmica 20, 151–174 (1998)

[35] Kudelić, R., Ivković, N.: Ant inspired Monte Carlo algorithm for minimum
feedback arc set. Expert systems with applications 122, 108–117 (2019)

[36] Dorkenwald, S., Matsliah, A., Sterling, A.R., Schlegel, P., Yu, S.-C., McKellar,
C.E., Lin, A., Costa, M., Eichler, K., Yin, Y., et al.: Neuronal wiring diagram of
an adult brain. Nature 634(8032), 124–138 (2024)

25

	Introduction
	Problem Formulation
	Cycle-Based Formulation
	Linear Arrangement Formulation

	Rocket-Crane Algorithm
	Rocket Sub-Algorithm
	Continuous-Space Formulation
	Optimization Algorithm

	Crane Sub-Algorithm: A Complementary Randomized-Heuristic Approach
	Topologically Initialized Simulated Annealing
	MIP Heuristic Integration
	Monte Carlo Sampling
	Hybrid Policy

	Experimental Results
	Experimental Environment and Dataset Characteristics
	Evaluation Metrics
	Comparison of Heuristic Algorithms
	Stochastic Evolution (SE) and Dynamic Clustering (DC) Algorithms
	Typical Heuristic Algorithms
	Tight-Cut* Algorithm
	RASstar Algorithm
	Rocket-Crane Algorithm
	Clustering of Algorithms

	Rapid Convergence to Excellent Solutions with Rocket
	Beyond the Excellent: Refinement with Crane
	Discussion
	Evaluation Based on the Proposed Metrics

	Related Work
	Conclusion

