
A Deployment Tool for Large Scale Graph
Analytics Framework Arachne

Garrett Gonzalez-Rivas, Zhihui Du, David A. Bader
Department of Data Science

New Jersey Institute of Technology
Newark, NJ, USA

{grg, zd4, bader}@njit.edu

Abstract—Data sets have grown exponentially in size, rapidly
surpassing the scale at which traditional exploratory data analysis
(EDA) tools can be used effectively to analyze real-world graphs.
This led to the development of Arachne, a user-friendly tool
enabling interactive graph analysis at terabyte scales while using
familiar Python code and utilizing a high-performance back-end
powered by Chapel that can be run on nearly any *nix-like
system. Various disciplines, including biological, information, and
social sciences, use large-scale graphs to represent the flow of
information through a cell, connections between neurons, interac-
tions between computers, relationships between individuals, etc.
To take advantage of Arachne, however, a new user has to go
through a long and convoluted installation process, which often
takes a week or more to complete, even with assistance from the
developers. To support Arachne’s mission of being an easy-to-
use exploratory graph analytics tool that increases accessibility to
high performance computing (HPC) resources, a better deploy-
ment experience was needed for users and developers. In this
paper, we propose a tool specially designed to greatly simplify
the deployment of Arachne for users and offer the ability to
rapidly and automatically test the software for compatibility with
new releases of its dependencies. The highly portable nature
of Arachne necessitates that this deployment tool be able to
install and configure the software in diverse combinations of
hardware, operating system, initial system environment, and the
evolving packages and libraries in Arachne. The tool was tested
in both virtual and real-world environments, where its success
was evaluated by an improvement to efficiency and productivity
by both users and developers. Current results show that the
installation and configuration process was greatly improved, with
a significant reduction in the time and effort spent by both users
and developers.

Index Terms—open-source framework, software deployment,
large-scale graph data, graph analytics

I. INTRODUCTION

Data sets being analyzed by data scientists, and scientists
in general, have grown exponentially in size, rapidly surpass-
ing the scale at which traditional exploratory data analysis
(EDA) tools [9], [24] can be used effectively. Arkouda [17],
[20] is an open source software framework that overcomes
the scalability limitations of traditional EDA tools. Arachne
[21] is a software package for Arkouda, empowering it to
support the analysis of massive real-world graphs. Arkouda
and Arachne are made up of a pair of user-facing Python
interfaces (the Arkouda and Arachne clients), with a high-
performance back-end (the Arachne server) written in Chapel
[2], [3]. By leveraging Chapel, an open-source, high-level,

parallel programming language designed for high performance
computing (HPC), Arachne’s server offers: the ability to be
run in single or multi-locale configurations, native vendor-
agnostic GPU acceleration, and distributed data structures.
The Arachne server is highly portable and supports nearly
all *nix-like systems [13]. It takes advantage of massively
parallel algorithms written in Chapel to allow for the analysis
of datasets on the order of hundreds of terabytes in a matter
of seconds, with the performance of some algorithms scaling
nearly linearly with up to several thousand nodes.

It is crucial for data analysis to preserve the ‘human-thought
loop’, which is the ability for a data scientist to ask questions,
execute the code representing those questions, analyze the
results, and form new questions. Traditional EDA tools became
ubiquitous because they enabled this loop, however, they
cannot do so at scale. They either impose long wait times
due to slow execution of code (e.g. Python, C/C++, Fortran,
etc.) or require the user to implement intricate and specialized
technologies (e.g. OpenMP [4], CUDA [22], etc.), making
this style of continuous hypothesis testing inefficient, if not
impossible. Arachne’s Pythonic interface and its ability to
take advantage of HPC resources allows for the computa-
tion of terabyte-scale data sets in real-time while writing
code fundamentally no different than using traditional EDA
tools. The Arkouda and Arachne Python clients use APIs
(application program interfaces) designed to be familiar to
data scientists, taking inspiration from the Python libraries
currently used in 80% of data science workflows [16], and
fitting seamlessly into the predominant EDA platform: Jupyter
Notebooks [10]. Arkouda/Arachne was developed with the
vision of empowering data scientists with better tools that
incorporate a user interface they already know so they can
take advantage of interactive, scalable EDA tools with ease.

Arachne is an incredibly powerful software package, but
before any piece of software can be used, it needs to be
installed, configured, and learned. Arachne’s design paradigms
make it exceptionally easy to learn, reducing the amount of
time between starting to use the software and being productive
with it. However, the process of deploying the software still
poses a significant hurdle to would-be users, a challenge shared
by many large open source software packages. Within our own
lab (the developers of Arachne), it is not uncommon for new
individuals joining the team to take up to a week or more to



get Arachne running on their system. When collaborating with
other labs, it often takes a significant amount of interaction
over a considerable period of time before the software envi-
ronment is set up and working. These issues in the installation
and configuration of Arachne prevent perspective users from
trying the software, hindering its ability to become more
widely adopted and being a useful solution for more people.
As Arachne is becoming one of the foremost tools for doing
large-scale graph analysis in neuroscience, among other fields,
Arachne is in need of a tool to address the problematic
deployment process.

The major contributions of this work are as follows:
1) A fast and easy-to-use deployment tool facilitating a

more straightforward trial of or migration to Arachne.
2) A way for Arachne developers and community con-

tributors to quickly and automatically install different
configurations of the software, reducing barriers to entry
and accelerating testing.

3) Experimental results in virtual and real world situations
that demonstrate improved efficiency when using a de-
ployment tool for Arachne.

II. ANALYZING THE PROBLEM

Arachne’s deployment difficulties arise from a long, intri-
cate, and complex installation process that is further com-
plicated by the lack of adequate documentation1. The doc-
umentation to deploy Arachne is broken into two sections
‘Installing Prerequisites’ and ‘Building the Arkouda Server
with Arachne’, which together take up less than a page. The
user is instead instructed to follow certain subsets of instruc-
tions across different sections of Arkouda’s documentation,
which also contains several redirects to different sections of
documentation, some of which are two years or more out of
date and contain broken links. Assuming the user has no issue
finding the instructions they need to follow, they still have to:

• Perform the installation of nearly two dozen packages
(which varies between operating systems),

• Configure Python environments with Anaconda (and its
installation if they don’t have it on their system),

• Download, configure, and build Chapel (with different
configurations for different use cases),

• Link the dependencies to Arkouda Makefile.paths (for the
GNU Make build system),

• Build Arkouda with the Arachne (after going back to
Arachne’s documentation).

To get a running Arachne environment through this process
requires the user to skip over several steps of the Arkouda
documentation (which they are never explicitly told to do),
use different versions of certain dependencies than specified
in the Arkouda documentation, and adjust commands being
run to fit their system (such as the number of concurrent jobs
when building Chapel).

Although it is possible to complete the installation by being
very careful, reading everything thoroughly, and having a

1Which is currently in the process of being rewritten.

good understanding of (and experience with) everything that
needs to be done, it is unlikely that users who are unfamiliar
with performing such installations will be able to succeed.
The diverse combinations of hardware, operating system, and
preexisting system software makes creating documentation
that is applicable to every user very difficult and, even if
it were to be done, the user would have to look through a
monumental amount of documentation to find what is directly
applicable to them and then would still have to deal with the
complexity and intricacy of Arachne’s deployment process.

Improved documentation is a vital tool for developers, sys-
tem administrators, and technically experienced members of
the community; however, the installation process will remain
challenging for less technically experienced users and will take
several hours of active involvement to complete. In addition,
the large number of steps that need to be taken means a non-
trivial likelihood of mistakes being made, which prospective
users likely wouldn’t be able to understand or remedy without
assistance. The installation process of Arachne, largely due
to the installation processes of Chapel and Arkouda, offers
nearly a hundred environment variables and configuration
options to set, and while most of these aren’t used in the
majority of installations, their presence can intimidate users
and their intricate nature may confuse developers. While some
of these problems are specific to Arachne, other complex open
source packages often face the same, or similar deployment
challenges.

A. Challenges for Developers

Arachne’s development workflow usually includes the initial
prototyping done on a laptop or workstation, preliminary
testing done on a small cluster, and the final deployment
being done on a supercomputer or in the cloud. This means
that to engage in Arachne development (in our lab, as a
collaborator, or as a member of the community), it would have
to be installed on each developer’s computer. The time and
difficulty it takes for the initial installation of Arachne can, at
best, increase the amount of time before productive work can
start or, at worst, deter individuals or groups from working
with Arachne altogether. In addition, Arachne Developers
have to install the software repeatedly with experimental
configurations to verify its compatibility with new releases
of Arkouda, Chapel, and other dependencies. Currently, the
time-consuming process of building Arachne with custom
configurations for testing prevents developers from being able
to simultaneously do other work, reducing their efficiency
and increasing the ‘cost’ of performing thorough testing. In
addition, the current installation process of Arachne routinely
necessitates its developers to stop other work to aid users in
getting the software working on their system successfully.

B. Challenges for Users

Installing Arachne necessitates the installation and/or com-
pilation of many packages and dependencies, the configu-
ration of multiple environments, and the building of Ark-
ouda/Arachne itself. Not only can this be daunting to less



technically experienced users, but even developers and system
administrators experienced with this so-called ‘dependency
hell’ [7] often face issues with version conflicts, missing
dependencies, and out-of-date documentation, among other
issues. These issues are often difficult to trace to their root
causes, even by professional developers. For example, the
order in which the steps of configuring Arachne’s Python
environment are completed can create a critical failure, with
an error message regarding the C compiler, stating that it ‘is
likely not a problem with pip’ even though that is the root
cause of the error. These kinds of issues can be very difficult
for users not working in software development to resolve. The
installation and configuration process will likely be the first
interaction with the project that a prospective user will have
and, therefore, it is imperative that it be as simple and easy
as possible. Arachne is currently being used primarily in the
analysis of: cyber, financial, and national security; biological
and social sciences; and information systems. Furthermore,
Arachne is becoming the foremost graph analysis tool in
neuroscience connectome research; to succeed at this, it must
handle an influx of users experienced in neuroscience, rather
than systems administration, who need to install the software.

III. DESIGN AND DEVELOPMENT OF THE TOOL

The design of this deployment tool should ensure that it
can provide value to both developers and users, regardless of
their level of experience, which can be measured by an in-
crease in productivity and efficiency. There are several mature
build/deployment systems that offer different functionalities,
such as GNU Make [15], Meson2, and Jenkins [23], however,
these general-purpose tools lack the flexibility to exactly fit
Arachne and the challenges faced by its developers and users.
A specialized approach, on the other hand, can be customized
to include the functionality requested (e.g. the ability to
easily install different releases without version conflicts), while
ensuring that it is straightforward for users and configurable
for developers. While this tool is designed to address the
specific needs of Arachne, its design paradigms are applicable
to other large or complicated software packages.

A. Ease of Use

From a development perspective, ‘ease of use’ means
that creating and updating of the installer script should be
largely automated, and integrated closely with the existing
development workflow. To support this, the deployment tool’s
workflow should leverage GitHub actions to, whenever a pull
request is accepted or a commit is pushed, create both the
installation script itself and a companion file. These two
files should be created from a configuration file updated by
the repository maintainer. The configuration file should use
a standard config file format (YAML [6], TOML3, JSON
[18], etc.) to make implementing and extending the tool’s
functionality easier. This file should contain both declarative
instructions (used to generate the companion file) as well as

2https://mesonbuild.com/
3https://toml.io/en/

imperative logic structures (used to generate the installation
script). The companion file should outline the specific envi-
ronment variables that need to be set, the versions of depen-
dencies to use, and other information regarding the installation
process. This would enable automated testing of experimental
configurations across various environments, integrating with
most major CI/CD pipelines [25], as well as the ability for
branches (and forked repositories) to have different companion
files (and for the developers/users to tell the installer where to
look for its companion file).

From a user perspective, ‘ease of use’ means that the
installer should be highly portable (i.e. allowing the same
script to be used regardless of the computing environment),
simple to use, and able to provide easily understandable
information to the user. The installer should also have easy to
set options for common configurations that a user might want,
such as the desired release type (stable or rolling release) and
environment type (user, developer, or just the Python client).
The installer should use the presence of the companion file in
Arachne’s GitHub repository to ensure it has the most up-to-
date information for a rolling release installation or be able
to go back and get the appropriate dependency versions for
previous stable releases of Arachne.

B. Variable Levels of Interactivity

One way for both users and developers to be more produc-
tive would be for the installation of Arachne to be handled in
an automatic, or ‘unattended’, manner. By not requiring human
interaction during the installation process, the time to get
new team members set up to start working would be reduced
to the time it takes their system to compile dependencies,
developers could run multiple tests simultaneously while doing
other work, and users could get the software installed on
their system easily and quickly. However, a lack of interaction
risks compromising the tool’s value for developers and system
administrators, so it should be designed to function across
different levels of interactivity as follows:

1) Unattended: When running the installer in ‘unattended’
mode, a user should only have to copy a single line of
code from the documentation into their terminal and run the
command to get a usable Arachne environment on their system
when it finishes running. The user should be able to pass
arguments to the installer to set common installation options,
such as whether to install a user or developer environment.

2) Attended: When running the installer in ‘attended’
mode, the installer should still be approachable and provide
human-readable messages that are understandable without
experience or background in handling software installation in a
*nix-like environment. Whenever prompting the user for input,
it should provide a high-level summary of the changes that
would be made to their computer and give the recommended
response for their system.

3) Developer: When running the installer in ‘developer’
mode, the installer should allow the user a great deal of
control over the installation process, providing more detailed
information, increased logging, the ability to stop and resume



(or restart) the installation, or the option to modify the next
step in the installation while the script is running. It should
allow a user to override any part of the installation process
by passing the installer a configuration file (e.g., replace or
change the version of a package/dependency, change how or
when environments are configured, etc.).

The deployment tool should always perform error checking
and adjust its response depending on what mode the script
is being run in. By performing checks after each step of the
installation process, the installer should be able to determine if,
where, and what error occurred. The installer should collect
information by leveraging a list of common, known issues,
where the installer ran into an issue, and search the output
stream for phrases or patterns associated with these issues.
Once it has collected information, it should tailor its response
depending on run mode by: 1. attempting to handle the
errors (unattended), 2. providing a human-readable list of
likely/potential errors and creating a log file (attended), or
3. pausing where it encountered the error, printing detailed
information to the screen, and waiting for the user to resolve
the error (developer).

C. Portability

To ensure that the installer is simple and straightforward for
the user, it should be able to adapt to different computing envi-
ronments and allow the same command to universally perform
the deployment. It should be able to run on nearly all major
operating systems, including most GNU/Linux distributions
[5], [8], BSD derivatives [14], [19] (including MacOS [12]),
and Windows Subsystem for Linux (WSL2) [1]. To this end, it
should be POSIX compliant [11], shell-agnostic, and otherwise
as portable as possible. Even on systems that are incompatible
with Arachne or its dependencies, the installer script should
run and print a message regarding the incompatibility and
direct the user to a list of compatible systems.

For all systems supported by Arachne and its dependencies,
the script should be able to identify the essential system
information to adjust itself to integrate with the system’s
package manager, file system, method of running privileged
commands, etc. For example, if the system already has a
method of handling Python environments installed (e.g. conda,
pipenv, venv, poetry, etc.), the installer should either configure
the environments using the currently installed solution or,
depending on the mode the installer is running in, ask the
user which method they prefer to use and provide a note that
Anaconda is the recommended one.

D. Modularity

The deployment tool should be designed to be modular
in order to promote the easy extension of its functionality
to ensure that it maintains relevancy and usability as the
software and its project develop and change. The deployment
tool is made up of four parts: a configuration file, a GitHub
Action, a Companion File, and an Installer Script. All four
components should be modular and use common formats to be
easier to work with. For example, the GitHub action should be

comprised of several modules, such as: a parser, an interpreter,
and generators. Different parser modules could be written
to support ingesting different configuration file formats. The
interpreter module could be extended to support custom logic.
New generator modules could be written to allow for the
generation of the installer script or companion file in different
languages (such as Python or Pkl) or even Docker images.

IV. IMPLEMENTATION

The deployment tool’s implementation is such that a single
command can be copied into the terminal of the vast majority
of GNU/Linux systems and, as quickly as their machine can
finish the compilation, they will have a working Arachne
installation. The installer script, 724 lines of POSIX shell in
seven discrete modules, runs in both the ‘attended’ and ‘unat-
tended’ modes without any issues. Several user-experience
improvements are planned, such as a continuous progress
status (in addition to one for each step) and more human-
readable messages throughout the installation. To achieve this,
the installer has very robust information collection mecha-
nisms and the ability to integrate with the system package
managers of GNU/Linux distributions and MacOS (with other
BSD-derivatives being planned to be supported in the future).
The installer also integrates with the two most popular tools
for handling Python environment management (Anaconda &
venv/pip), while support for other tools (pipenv and poet)
have been outlined but are not currently under development.
The installer’s error checking is thorough, although its ability
to handle errors is currently limited to only a few common
issues with Anaconda environments, Chapel configurations,
and linking dependencies to Arkouda (Makefile.paths
remediation through symlinks). Further development into im-
proving the error handling mechanisms, such as supporting
other Python environment managers, is underway. Once it is
completed, the new Arachne documentation will these single
commands to run the installer for different use-cases, along
with how to use the installation script. The same information
will be shown if a user runs it with the -h|--help flag or
without passing it any flags.

The preliminary implementation of the deployment tool
has focused on getting a fully-functional installer script for
users to begin taking advantage of, and thus much of the
integration with GitHub actions is still under development.
A configuration file (implemented in YAML) has been written
that is able to represent the installer, which is comprised of 491
lines split across three sub-documents. The Python script used
to generate the companion file and installer script from the
configuration file has been written with 605 lines across four
modules (a parser, an interpreter, and two generation modules
– one for the companion file and one for the installation
script). Further development to make the configuration file
easier to use and the integration of the Python script with
GitHub actions is underway. The companion file, currently
implemented in TOML (due to the ease of writing a parser
for that format in POSIX shell), supports the overriding
of: packages and dependencies (their versions, if they are



installed or compiled, etc.), the configuration of the Chapel
environment, and the Anaconda environment (entirely or with
specific modifications). The ability for this file to contain
overrides for any function/step of the installer (through direct
code replacement or another mechanism) has been partially
implemented but is still in early testing and is not feature
complete. Similarly, some of the more advanced features of
the ‘developer’ run mode are still under development, such as
the ability to stop and resume (or restart) the installer, or to
modify its next step before it is run. These features have been
prototyped by having the installer create a temporary file that
tracks initial flags/values passed, files and variables created/set,
steps completed, and the actual commands for the next step
to be taken; by writing its next step to a file and pausing, the
user can edit the next step without having to stop and restart
the installer.

V. RESULTS

The deployment tool has been tested in both virtual and real-
world environments. Virtual testing was primarily conducted
on virtual machines (VMs) running a set of common distri-
butions of GNU/Linux4, while additional testing was done on
less-used operating systems5. These VMs were hosted6 on a
high-performance server with 2 x Intel Xeon E5-2630v3 @
2.4 Ghz CPUs with 16 cores per CPU and 226 GB of DDR4
RAM, running ProxMox VE 8.1.4, and were provided with
20 virtual CPU cores (x86-64-v2-AES), 32 GB of memory,
and a 64 GB boot disk. Results of both virtual and real-
world tests are measured in three ways: the duration of the
installation process, the duration and number of necessary
human-interactions, and the number and severity of errors
encountered during the installation process.

A. Virtual Testing

When testing for compatibility and portability between
GNU/Linux environments, the deployment tool was run in
Fedora, Debian, five different versions of Ubuntu, and two
different editions of RHEL. All but one environment was
able to run and install Arachne without issue, while the final
environment (RHEL 9.4 Workstation) had an issue with the
configuration of its Chapel environment. In this instance,
the environment was configured (defining a set of variables
in a plaintext file) and recompiled (with make clobber)
manually. When the installer was re-run, it recognized Chapel
was already on the system and continued with the rest of the
deployment without issue. Further compatibility testing was
completed on two different versions of MacOS, FreeBSD, and
WSL2 through Windows Server. When running on FreeBSD,
a handful of issues were encountered, which went unresolved
due to time constraints and the relatively low priority of
supporting that operating system at this time. Otherwise, the

4Ubuntu 20.04 (Desktop & server), 22.04 (Desktop & server), & 23.10
Desktop, Debian 12.5 Desktop, Fedora 39 Workstation, and Red Hat Enter-
prise Linux (REHL) 9.4 (Workstation & Server).

5Windows Server 2022 Standard, MacOS 13 & 14, and FreeBSD 13.3.
6Except the MacOS VMs, as per Apple EULA.

same script was run on eight different distributions/versions of
GNU/Linux, two versions of MacOS, and several distributions
in WSL2 on a Windows Server 2022 VM, all without issue.

After testing for portability, the deployment tool was tested
for its resiliency against variable initial system states while
being simultaneously benchmarked against the three metrics
mentioned above – these tests were all conducted on VMs
running Ubuntu 22.04 Server LTS. These VMs all had different
simulated software configurations installed onto them (using
configurations found on GitHub and Reddit as well as common
GNU/Linux utilities). Looking at the first 14 tests (run in pairs,
with 2 VMs installing Arachne simultaneous and the installers
in ’unattended’ mode), the user only had to interact with their
machine twice (once to paste the command / run it, and once
to enter their password), and in every test the user was finished
interacting with the installation process within 30 seconds. The
total time until the first start of Arachne (by the user, not
the automated testing) was, on average across all 14 tests, 2
hours 21 minutes and 57 seconds. All fourteen tests completed
without encountering any issues, producing fully functional
Arachne installations, although certain configurations seemed
to take an unusually long time when solving their Python
environments (despite using Anaconda).

Next, to simulate a system administration workflow, four
systems were connected via SSH and the installer was run
on them in ’unattended’ mode, but this time each system
had different flags passed to the installer (i.e. release: sta-
ble/rolling and environment: user/developer). This test was run
three times, and the average total time of human interaction
(connecting to each machine, writing out the command, and
entering a superuser password) was just 4 minutes and 35
seconds. In all of the tests, all of the Arachne installations
were successful, creating four different environments with less
than 5 minutes of active work. While having 4 simultaneous
installations slowed the time until the first start of Arachne to
nearly 7 hours rather than 2, this is almost certainly a limitation
of the virtual environment host rather than something that
needs to be corrected in the deployment tool.

When running the installer in ‘attended’ mode, there was a
higher number of human-interaction events (as it is designed
to do) and, while the time spent performing those actions were
low (usually only a few seconds to a minute), they were spread
throughout the installation process and, therefore, required the
user to be monitoring their system. Averaging the timings
across 6 runs (3 sets of 2 parallel tests), it took approximately
45 seconds when the script was first run to select the 2 options
(release and environment), enter the root password, and accept
the list packages being installed by their system’s package
manager. It took approximately 2 hours for the prerequisite
dependencies to be installed, Chapel to be configured and
built, Arkouda and Anaconda installed, and their environments
configured. If the user selected a developer environment, they
were prompted to enter the URL of the fork of Arachne they
would like to use or to simply hit enter to use the upstream
repository. After approximately 20 more minutes (while the
Arkouda/Arachne server was built and tested), the Arachne



environment was fully ready to be used.

B. Real-world results

Because it is still so new, the tool has only been run
by several users on their machines so far, however, it has
already demonstrated that it offers significant improvements
over the original deployment process of Arachne and provided
substantial benefits to the people who used it. Before the
installer was created, a PhD student, who, despite working
in our lab for a full year and trying multiple times, was
still unable to get Arachne working on their system (running
MacOS 14). After beginning working on a new project where
they needed Arachne, a meeting was setup with them, and
within 3 hours of running the deployment tool on their system,
they had Arachne installed successfully. This was not an
entirely unattended installation because it required the cleaning
up of previous attempts to install the software, the setting of
several environment variables before the script was run, and
the use of a Chapel utility after the script finished. However,
the reaction to the successful completion of this installation
was significant and overwhelmingly positive, not only from
the PhD student, but also from several other members of the
lab, especially by those who had previously helped with or
tried to install Arachne on the individual’s computer.

When our lab began working with a group of researchers
at Harvard, a graduate student and research fellow working in
Computer Engineering and Software Development needed to
deploy Arachne on their system. This process took over one
hundred back-and-forth messages with several of Arachne’s
core developers and lasted nearly a week before they had
a successfully running Arachne installation. The process re-
quired several reconfigurations of environments as well as
the reinstallation or recompilation of several dependencies.
Despite having nearly unlimited access to the Arachne de-
velopment team, sending them over a dozen screenshots and
copy-and-pasting the outputs of several terminal commands,
the installation still had to be partially repeated multiple times
before the Arachne installation was usable.

In contrast, when an undergraduate intern had issues in-
stalling Arachne manually (until now the only way to install
it), they were directed to reach out for the deployment tool.
They sent three screenshots of the errors they had been
encountering. By analyzing those errors, it was revealed that
several non-trivial environment-configuration errors had been
made several steps previously in the installation process and
that they had been trying to install incompatible versions of
Arkouda and Arachne. They were directed on how to clean
up their previous installation attempt and provided with the
new deployment script. After that, they had a single issue
with Chapel not showing up on their PATH, which they were
quickly able to resolve on their own to get Arachne working.
This issue was a result of the installer checking what shell
process it was being run in, and because it was piped to bash, it
added the shell hook for Chapel to the individual’s .bashrc,
even though their default shell was ZSH. The deployment
tool has already been modified to recognize both the current

and default shell; when running as an attended installation,
it will prompt the user about which shell to use if they are
different, otherwise it will use the default shell. Altogether,
there were fewer than 15 messages exchanged over the course
of four days, with less than one full day elapsing between them
receiving the script and having Arachne running successfully.

At this point, the installer has been tested on several
machines that people use as their daily computer, all with
existing software, environments, and other configurations on
them from regular use prior to the installer being run on
them. The installer, so far, has worked on every GNU/Linux
and MacOS system it has been run on in the real world.
When two other undergraduate interns, both on Windows 11
systems, tried to run the installer in WSL2 (using Ubuntu
24.04), the first individual encountered pathing issues which
required a series of symlinks to be added manually, while
the second ran the installer without any issues. The pathing
issues encountered were with regard to LLVM, however, the
installer is now able to automatically correct these issues, if
encountered, by building the version of LLVM bundled with
Chapel. Future testing and work could be done to automate
the generation of symlinks to fix this issue to prevent the
necessity of rebuilding LLVM, if the pathing issues appear
more frequently.

VI. CONCLUSION AND FUTURE WORK

The deployment tool developed for Arachne has enabled
multiple users to easily install and configure the software
environment on their systems. When running as an unat-
tended installation, it is able to address the majority of the
known complexities and challenges associated with installing
such an intricate piece of software across diverse computing
environments automatically. This approach allows users to
deploy Arachne with a single command, vastly streamlining
the process and greatly reducing the need for technical support.
The experimental results show that, while it often took a
couple of hours to install the software due to compile times,
it significantly cut down on the amount of time and effort the
user had to put in for the installation to under one minute.

Future work will focus on further refining the deployment
tool, expanding compatibility, creating more robust error han-
dling, and promoting its ability to be a largely automati-
cally generated installation solution. It would be possible,
in the future, to increase the generality of the deployment
tool, such as allowing it to support the installation of other
popular modules for the Arkouda framework. The Arkouda
framework offers a variety of modules with functionality
that could be beneficial for Arachne as well, such as: an
improved multi-user experience through the use of multiplexed
and bidirectional communications (arkouda proxy server), a
containerized multi-locale deployment of the server on Kuber-
netes (arkouda-helm-charts), and a more user-friendly mon-
itoring experience through an integration with Prometheus
(arkouda metrics exporter). This work is a tool for Arachne
but its design idea, development experience, and some of its
code/framework can be shared by other open source packages.



ACKNOWLEDGMENT

We thank the Arkouda and Chapel communities for their
continued support, as well as our interns for helping test the
deployment tool and providing feedback. This research was
funded in part by NSF grant number CCF-2109988.

REFERENCES

[1] Hayden Barnes. Pro Windows Subsystem for Linux (WSL). Springer,
2021.

[2] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel
programmability and the chapel language. The International Journal of
High Performance Computing Applications, 21(3):291–312, 2007.

[3] Bradford L Chamberlain, Elliot Ronaghan, Ben Albrecht, Lydia Duncan,
Michael Ferguson, Ben Harshbarger, David Iten, David Keaton, Vassily
Litvinov, Preston Sahabu, et al. Chapel comes of age: Making scalable
programming productive. Cray User Group, 2018.

[4] Rohit Chandra. Parallel programming in OpenMP. Morgan kaufmann,
2001.

[5] Francesco Di Cerbo, Marco Scotto, Alberto Sillitti, Giancarlo Succi,
and Tullio Vernazza. Toward a gnu/linux distribution for corporate
environments. In Emerging Free and Open Source Software Practices,
pages 215–236. IGI Global, 2007.

[6] Malin Eriksson and Victor Hallberg. Comparison between json and yaml
for data serialization. The School of Computer Science and Engineering
Royal Institute of Technology, pages 1–25, 2011.

[7] Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and
Charles Zhang. Escaping dependency hell: finding build dependency
errors with the unified dependency graph. In Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 463–474, 2020.

[8] Jesús M González-Barahona, Gregorio Robles, Miguel Ortuño-Pérez,
Luis Rodero-Merino, José Centeno-González, Vicente Matellan-Olivera,
Eva Castro-Barbero, and Pedro de-las Heras-Quirós. Analyzing the
anatomy of gnu/linux distributions: methodology and case studies (red
hat and debian). In Free/Open Source Software Development, pages
27–58. IGI Global, 2005.

[9] David Caster Hoaglin, Frederick Mosteller, and John Wilder Tukey.
Understanding robust and exploratory data analysis, volume 3. Wiley
New York, 1983.

[10] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, et al. Jupyter notebooks–
a publishing format for reproducible computational workflows. In
Positioning and power in academic publishing: Players, agents and
agendas, pages 87–90. IOS press, 2016.

[11] Donald Lewine. POSIX programmers guide. ” O’Reilly Media, Inc.”,
1991.

[12] Modhuparna Manna, Andrew Case, Aisha Ali-Gombe, and Golden G
Richard III. Modern macos userland runtime analysis. Forensic Science
International: Digital Investigation, 38:301221, 2021.

[13] B. McDonald, M. Strout, S. Coghlan, and O. A. Rodriguez. Data science
beyond the laptop: Handling data of any size with arkouda. Presented
at ChapelCon, Jun. 5 2024. [Online]. Available: https://chapel-lang.org/
ChapelCon/2024/arkouda-tutorial.pdf, 2024.

[14] Marshall Kirk McKusick, Keith Bostic, Michael J Karels, and John S
Quarterman. The design and implementation of the 4.4 BSD operating
system, volume 2. Addison-Wesley Reading, MA, 1996.

[15] Robert Mecklenburg. Managing Projects with GNU Make: The Power
of GNU Make for Building Anything. ” O’Reilly Media, Inc.”, 2004.

[16] M. Merrill. Arkodua: Interactive supercomputing for data analytics made
possible by chapel. In Achieving Productivity at Scale with Chapel in
User Applications, SIAM-P22, 2022.

[17] Michael Merrill, William Reus, and Timothy Neumann. Arkouda:
interactive data exploration backed by Chapel. In Proceedings of the
ACM SIGPLAN 6th on Chapel Implementers and Users Workshop, pages
28–28, 2019.

[18] Ioannis Papagiannopoulos. JSON application programming interface
for discrete event simulation data exchange. PhD thesis, University of
Limerick, 2015.

[19] John S Quarterman, Abraham Silberschatz, and James L Peterson. 4.2
bsd and 4.3 bsd as examples of the unix system. ACM Computing
Surveys (CSUR), 17(4):379–418, 1985.

[20] William Reus. CHIUW 2020 Keynote Arkouda: Chapel-Powered, In-
teractive Supercomputing for Data Science. In 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 650–650. IEEE, 2020.

[21] Oliver Alvardo Rodriguez, Zhihui Du, Joseph T. Patchett, Fuhuan Li,
and David A. Bader. Arachne: An Arkouda package for large-scale
graph analytics. In The 26th Annual IEEE High Performance Extreme
Computing Conference (HPEC), Virtual, September 19-23, 2022, 2022.

[22] Jason Sanders and Edward Kandrot. CUDA by example: an introduction
to general-purpose GPU programming. Addison-Wesley Professional,
2010.

[23] Nikita Seth and Rishi Khare. Aci (automated continuous integration)
using jenkins: Key for successful embedded software development. In
2015 2nd International Conference on Recent Advances in Engineering
& Computational Sciences (RAECS), pages 1–6. IEEE, 2015.

[24] John W Tukey. Exploratory data analysis, volume 2. Reading, MA,
1977.

[25] Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, and Massimil-
iano Di Penta. Ci/cd pipelines evolution and restructuring: A qualitative
and quantitative study. In 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 471–482. IEEE,
2021.


