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Abstract—This paper introduces a novel, parallel, and scalable
implementation of the VF2 algorithm for subgraph monomor-
phism developed in the high-productivity language Chapel. Ef-
ficient graph analysis in large and complex network datasets
is crucial across numerous scientific domains. We address this
need through our enhanced VF2 implementation, widely uti-
lized in subgraph matching, and integrating it into Arachne—a
Python-accessible, open-source, large-scale graph analysis frame-
work. Leveraging the parallel computing capabilities of modern
hardware architectures, our implementation achieves significant
performance improvements. Benchmarks on synthetic and real-
world datasets, including social, communication, and neuro-
science networks, demonstrate speedups of up to 97X on 128
cores, compared to existing Python-based tools like NetworkX
and DotMotif, which do not exploit parallelization. Our results on
large-scale graphs demonstrate scalability and efficiency, estab-
lishing it as a viable tool for subgraph monomorphism, the back-
bone of numerous graph analytics such as motif counting and
enumeration. Arachne, including our VF2 implementation, can
be found on GitHub: https://github.com/Bears-R-Us/arkouda-
njit.

I. INTRODUCTION

Subgraph monomorphism is a general case of the subgraph
isomorphism problem, which is known to be NP-complete [1].
Various heuristics have been developed to enhance its practical
performance, including pruning rules, strategic searching or-
ders, preprocessing steps, and the utilization of auxiliary data
structures. In the pursuit of advancing graph monomorphism
tools, we identified a pivotal limitation in the usage of the
Python NetworkX library within various scientific commu-
nities. Despite its simplicity and widespread adoption, this
tool is sequential and cannot exploit the ubiquitous parallel
processing capabilities of hardware architectures.

Addressing this computational inefficiency, we developed
a parallel version of the subgraph monomorphism algorithm,
VF2, in the high-level parallel Chapel language [2], [3]—a
decision motivated by Chapel’s ability to leverage concurrent
hardware resources productively. By implementing the core
computations in Chapel while preserving the user interface in
Python, we bridge the strength of both worlds: the ease of use
of Python and the parallel execution prowess of Chapel.
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Furthermore, existing domain-specific tools, such as Dot-
Motif [4], while proficient within its niche of brain connec-
tome analysis in neuroscience, lack the generality required
for broad scientific applications. Our tool transcends this
limitation by providing a versatile solution that is not confined
to a specific field or dataset type.

The sequential nature of currently available algorithms like
those in DotMotif and NetworkX results in large execution
times, even for analyses of modest complexity. By paralleliz-
ing the VF2 algorithm, we have realized performance enhance-
ments by up to 97X using 128 cores. Such an improvement not
only substantiates the effectiveness of parallel processing for
graph monomorphism problems but also democratizes access
to high-speed computational tools across diverse research
domains. Our implementation is a significant step toward
enabling comprehensive graph-theoretical studies on a scale
and at a speed previously unattainable with existing sequential
methods.

We integrated our parallel subgraph monomorphism algo-
rithm into the open-source graph framework Arachne [5],
which is an extension to the existing library, Arkouda [6],
[7], that provides Pandas- and NumPy-like operations at a
supercomputing scale. Arachne fits into typical exploratory
data analytics workflows in Arkouda by providing methods
to automatically transform tabular data into graphs, allowing
for graph-like operations and queries at scale. It is on its way
to becoming a tool to provide graph analytical capabilities at
a supercomputing scale by harnessing the full power of the
systems it runs on [5], [8]–[13].

Arachne automatically executes graph analytical kernels
on both shared-memory and distributed-memory, transferring
data as needed between compute nodes and their processors.
Arachne can be used to process massive, distributed graphs,
into workable chunks for shared-memory algorithms such as
VF2 or triangle counting. This hybridization allows Arachne to
be used everywhere, from single devices to compute clusters,
fully exploiting the computing power and architecture of each
device.

The main contributions in this paper are as follows:

1) Parallel and Optimized VF2 Implementation: We
present a parallel and optimized implementation of the



VF2 algorithm for subgraph monomorphism. This im-
plementation was developed using Chapel and integrated
into Arachne.

2) Handling efficiently Large Graphs: Our implemen-
tation has been tailored to handle large graphs effi-
ciently. By leveraging Chapel’s capabilities, we have
modified the VF2 algorithm to optimize its performance
specifically for large graphs across various domains.
This includes enhancements that significantly improve
its scalability and speed.

3) Experimental Results: We provide comprehensive ex-
perimental results on both synthetic and real-world
graphs. These results demonstrate that our subgraph
monomorphism method outperforms the widely-used,
Python-based graph packages, DotMotif and NetworkX,
in terms of speed. Our approach is particularly effective
for large-scale graph data, showcasing substantial per-
formance improvements.

II. PROBLEM FORMULATION

Subgraph isomorphism is a fundamental problem in graph
theory and computational science found in extensive applica-
tions across various domains, including chemistry [14], bioin-
formatics [15], pattern recognition [16], [17], neuron science
[18], [19] and network analysis [20]. In addition, solving the
subgraph monomorphism problem yields solutions to other
well-known graph problems, including the graph monomor-
phism problem [21], k-truss counting [22], the Hamiltonian
Cycle problem [23], and the maximum clique [24] problem.

For the purposes of this paper, we focus on a more general
case of subgraph isomorphism, namely subgraph monomor-
phism. A subgraph monomorphism between two graphs exists
if there is a mapping from the vertices of one graph to the
vertices of another graph that preserves vertex adjacency. Un-
like isomorphism, this mapping does not need to be bijective;
it only needs to be injective. That is, the number of edges
between the matched vertices does not need to be exact, only
that at least one edge exists.

Let G1 = (V1, E1) be a graph (host graph) with n1 =
|V1| vertices and m1 = |E1| edges. Define G2 similarly as
(V2, E2). Moreover, let vertices and edges be labeled through
λ(v) and λ(u, v), respectively. A subgraph monomorphism is
an injective function f : V2 → V1 satisfying the following
properties:

• ∀u, v ∈ V2, (u, v) ∈ E2 =⇒ (f(u), f(v)) ∈ E1

• ∀u ∈ V2, λ(u) = λ(f(u))
• ∀(u, v) ∈ E2, λ(u, v) = λ(f(u), f(v))

We say that G2 is monomorphic to a subgraph of G1

under the mapping function f . Generally, the host graph and
subgraph can be either directed or undirected, but for this
paper, we focus on directed graphs. Our implementation can
be easily expanded to work for undirected graphs. Given two
graphs, the problem involves determining whether one graph
can be embedded within the other as a subgraph, preserving
both vertex labels and edge relationships. Despite its theo-
retical significance, subgraph isomorphism, and transitively

subgraph monomorphism, is recognized as an NP-complete
problem [25], implying that finding an exact solution for larger
graphs becomes increasingly challenging and computationally
intractable.

III. PARALLEL ALGORITHM IMPLEMENTATION

In Algorithm 1, we show our parallel subgraph monomor-
phism algorithm. Our primary improvement and optimization
methods are two-fold. Firstly, we reduce the amount of space
utilized by the VF2 implementation by restructuring the state
data structure. In the original VF2 data structure, two vectors,
core 1 and core 2 are used to keep the current mapping.
However, iterating over core 1 is both time-consuming and
inefficient, particularly for large graphs, leading to wasted time
and storage. To address this, we just use core2[n2] = n1

to keep the current mapping (n1, n2), which means that the
vertex n1 in the host graph G1 is mapped to n2 in the
subgraph G2. This restructuring not only saves space but also
makes the search for unmapped vertices easier. Based on the
simplified state data structure, it suffices to check the value
of core2[i], 0 ≤ i ≤ |V2|−1, to know if a vertex has been
mapped. If it retains the original value of -1, this indicates
that vertex i has not been mapped. Otherwise, it indicates that
i in G2 is mapped to core2[i] in G1. By eliminating the need
to iterate over core 1, we make the algorithm more efficient
in terms of both storage and parallel performance.

Secondly, we leverage the highly efficient and dynamic
parallelization capabilities of Chapel, which automatically
generates parallel tasks and assigns them to available threads
based on the current system load. The optimal point to spawn
these tasks is immediately after generating candidates (line
9), ensuring that task execution is distributed effectively. As
seen on Algorithm 1, by carefully structuring our algorithm to
eliminate data dependencies, we allow for seamless parallel
execution. As a result, tasks are dynamically allocated to
available threads, maximizing resource utilization. Some tasks
may be completed earlier than others, particularly if none of
the candidates are feasible. In such instances, freed threads
can be promptly reassigned to subsequent recursive calls,
provided they are available when execution reaches one of
the nested forall loops. This approach ensures efficient use
of computational resources, enhancing both performance and
scalability.

Now, we will discuss each extra method within Algorithm
1. We will also discuss how we formulated our State data
structure and maintain our final mappings in a list M . We
utilize the typical definition of a list, where ours is based
off the Chapel language standard library list that allows for
parallel-safe appends (pushBack) and removals from the end
of the list (popBack) to prevent race conditions.

A. State Architecture

States that are crucial for the matching process and can be
described as a state space representation (SSR) [26]. Each state
generated is stored inside of a class named State that stores
the sizes of the graph and subgraph with integer variables n1



Algorithm 1 Parallel VF2 algorithm that generates the map-
pings of vertices u from the host graph that are mapped to
vertices v from the subgraph.
Input: A state Scurrent with the current mapping information

for a given recursive depth d.
Output: Mappings M of all host graph and subgraph pairs

that induce a monomorphism.
1: M = list(int) ▷ Parallel-safe list.
2: if d == n2 then ▷ n2 is the size of the subgraph.
3: for v ∈ Scurrent.core do
4: M.pushBack(v)
5: end for
6: return M
7: end if
8: candidates = getCandidatePairs(Scurrent)
9: for all (u, v) ∈ candidates do

10: if isFeasible(u, v, Scurrent) then
11: Sclone = Scurrent.clone()
12: addToT inTout(u, v, Sclone)
13: Mnew = V F2(Sclone, d+ 1)
14: for m ∈ Mnew do
15: M.pushBack(m)
16: end for
17: end if
18: end for all
19: return M

and n2, respectively. Further, a single core is maintained to
keep partial mapping, where the indices of core correspond to
the indices of the subgraph vertices. Then, the successors and
predecessors of each group of mapped vertices from the host
graph and subgraph are maintained (terminal sets) to quickly
generate the next candidates in the next depth d + 1 as seen
in line 13 of Algorithm 1. Lastly, each state contains methods
to quickly return if a given vertex from the host graph or
subgraph is mapped. This is discussed at the beginning of
Section III.

B. Checking Feasibility of (u, v) Mapped Pairs

The most important part of subgraph monomorphism is
confirming that a candidate pair is feasible because we need
to ensure that we generate and maintain only consistent states.
This procedure is responsible for both syntactic and semantic
checks. This step is illustrated in line 10 of Algorithm 1. It
involves checking five different cases where u is the vertex
from the host graph being mapped to some vertex v in the
subgraph. The first two cases, known as core rules [27], check
the consistency of the partial mapping. The remaining cases
help us distinguish and prune the search trees.

1) Rpred Ensures that the mappings of the predecessor
vertices of u and v are consistent with the existing partial
mapping in the given state. This is equivalent to a check
of the topological consistency of the graph.

2) Rsucc Ensures that the structural relationship of suc-
cessor vertices of u and v is preserved in the mapping.

This rule is essential for pruning the search space and
ensuring the integrity of the subgraph monomorphism
being found.

3) Rin Ensures that the candidate pair (u, v) being con-
sidered for the mapping does not violate the in-degree
constraints. This is done by comparing the number of
predecessor vertices of u and v that are not already part
of the partial mapping. The rule enforces that u ∈ G
should not have more predecessors outside the current
mapping than v ∈ H . This condition helps in pruning
the search space effectively.

4) Rout ensures that the candidate pair does not violate out-
degree constraints in the VF2 algorithm. It checks that
the number of connections u and v have with vertices not
yet included in the mapping is consistent and follows the
subgraph monomorphism rules. The rule ensures that the
vertex u ∈ G should not have more successors outside
the current mapping than v ∈ H . This condition helps
in pruning the search space effectively as with Rin.

5) Rnew ensures that the candidate pair (u, v) being con-
sidered for inclusion in the mapping is compatible in
terms of their relationships with vertices not yet included
in the mapping. This rule looks at both predecessor and
successor vertices of u and v, comparing their counts
with the vertices outside the current mapping. In essence,
this rule checks whether the potential addition of (u, v)
to the mapping would maintain the consistency of the
graph structure, particularly with respect to nodes that
are yet to be mapped. It ensures that u does not have
more external (outside the current mapping) predecessor
or successor connections than v. This constraint helps
reduce the search space by pruning candidate pairs that
cannot be part of a valid monomorphism, thus enhancing
the efficiency of our VF2 algorithm.

C. Generating Candidate Pairs

Using the optimized way of checking if vertices from the
host graph and subgraph have not been mapped, as discussed
in Section III-A, the candidates are generated by the method
in line 8 of Algorithm 1 by looping over out-neighbors of
the state at a given point of the subgraph and adding them as
candidates with the vertices that make up the out-neighbors
of the state from the host graph. This is done only as long
as there are out-neighbors available for both the host graph
and subgraph mapped vertices at a given state. If not, then the
same checks are applied to the in-neighbors. If there are no
in-neighbors generated for either of the mapped vertices for
the host graph and subgraph, then both unmapped vertices are
returned for the host graph and main graph.

D. Generating Tin and Tout

Line 12 of Algorithm 1 generates the successors and pre-
decessors (terminal sets) of the current generated mappings
and adds them to a given state. This is straightforward as it
checks to ensure the successors and predecessors have not yet
been mapped, and if not, they are added to Tin and Tout for



both the host graph and subgraph. The vertices invoking this
method, the candidate pair (u, v) where u is from the host
graph, and v from the subgraph, are also removed.

IV. EXPERIMENTAL STUDY

A. Datasets

We carried out our experiments on both a suite of synthetic
graphs that were crafted explicitly for benchmarking and real-
world datasets. The synthetic directed graphs were derived
from standard random graph models, including Erdős–Rényi
[28], Watts–Strogatz [29], and Barabási–Albert [30], which are
frequently used in network analysis studies.

The real-world datasets used include the Hemibrain v.1.2
dataset [31], the Enron email network, and the Math Overflow
temporal network [32]–[36] whose specifications are noted in
Table. I. To demonstrate the efficiency and performance of
Arachne, we conducted systematic comparisons between our
implementation and those from well-established and widely
used Python libraries such as NetworkX and DotMotif.

B. Experimental Configuration

1) Hardware Configuration: Experiments were computed
on a server that contains two AMD EPYC 7713 (Milan) @
2.0GHz CPUs with 64 cores per CPU and 1TB RAM.

2) Software Configuration: Arachne is set up to work in
the client-server model, where the client is usually a Python
script or Jupyter notebook and the server is the Arkouda server
usually running on an HPC (high-performance computing)
system. For our experiments, two compute nodes were allo-
cated, one to behave as the server and the other as the client,
with the Arkouda server running on the server node and the
Python script executing on the client node. Each experiment
had its own Arkouda server running since currently, Arkouda
servers only allow one connected instance.

C. Performance Comparisons

The first set of experiments is based on Erdős–Rényi
random graphs. To encompass the full spectrum of graph
types one might encounter in practice, we assembled a diverse
collection of Erdős–Rényi graphs. The generation of these
graphs was centered on varying the probability of an existing
edge between a pair of vertices, ranging from a sparsity of
P = 0.0005 to a fully connected state of P = 1. For the sake
of space, we only present the results for the two ends of the
probability spectrum. These results can be seen in Figs. 1 and
2.

The diagrams provided show that Arachne’s computation
time remains the lowest across all probabilities, maintaining a
significant lead even as the number of edges reaches millions.
When P = 0.0005 (Fig. 2), the graphs depict a gradual (almost
linear) increase in computation time for all three libraries as
the edge counts increase, but Arachne’s slope is remarkably
flatter. The most telling is the graph with P = 1 (Fig. 1)
where every possible edge is present, making the graph fully
connected. Here, Arachne significantly outperforms the com-
peting libraries, underlining its robustness in handling dense

networks with millions of found monomorphisms (monos).
Another perspective to consider is the scale of the largest
graphs in these figures. The largest graph in Fig. 1 contains
almost 94 million monos, while the largest one in Fig. 2
contains nearly 13 million monos. This indicates that in Fig.
1, there is substantial backtracking due to the density of
connections. In contrast, despite the large number of nodes
and edges in Fig. 2, Arachne’s efficient handling of large
graphs minimizes the performance impact. This demonstrates
Arachne’s capability to manage extensive graph structures
effectively, showcasing its superior performance in both sparse
and dense graph scenarios.

Fig. 1. Execution time comparison on random graphs with p = 1.

Fig. 2. Execution time comparison on random graphs with p = 0.0005.

The next series of experiments utilizes Barabási–Albert
graph generation models, which are also known as “scale-
free networks” due to their characteristic power-law degree
distribution. In this study, we generated scale-free graphs
based on different configurations of the Barabási-Albert model
parameters to showcase the spectrum of possible network
structures within the scale-free paradigm, from a highly clus-
tered network structure with a significant focus on vertices
with high in-degrees, indicative of a centralized connectivity
pattern, to a star-like topology with influential central vertices.
Fig 3 shows one of the many generated configurations, char-
acterized by parameters α = 0.41, β = 0.54, and γ = 0.05,



TABLE I
REAL-WORLD DATASETS USED FOR EXPERIMENTATION, SORTED BY THE NUMBER OF EDGES.

Dataset Number of vertices Number of edges Density Field
Enron Emails 36,692 183,831 0.0001 Communication network

Math Overflow 24,818 506,550 0.0008 Social network
Hemibrain v1.2 21,739 3,550,403 0.0075 Neuroscience

produces a network with moderate preferential attachment
and a higher propensity for internal connections, resulting in
moderate clustering and balanced degree distribution.

Fig. 3. Execution time comparison on scale-free graphs.

For the third category of random graphs, we employed
the Watts-Strogatz model to generate networks with a variety
of configurations to illustrate the variability in small-world
network characteristics. These configurations ranged from net-
works with a high degree of rewiring, introducing significant
randomness and resulting in attributes similar to random
graphs, characterized by relatively low clustering and shorter
path lengths. Conversely, some configurations preserved much
of the original ring lattice structure, resulting in networks with
high clustering and longer path lengths, typical of regular
lattices.

These contrasting setups demonstrate the impact of the
rewiring probability in transitioning from highly structured
networks to those exhibiting more random properties, high-
lighting the flexible nature of the Watts-Strogatz model in ex-
ploring the continuum between regular and random networks.
The results consistently reveal that our implementation can
efficiently handle the intricate structures of small-world graphs
with millions of edges, which are common in many real-world
scenarios. For the sake of conciseness, we present only one of
the diagrams as a sample of the results, as VF2-PS consistently
outperformed the other algorithms across all configurations, as
shown in Fig. 4.

To provide a rigorous evaluation of Arachne’s performance
and accuracy, we conducted an extensive series of tests ex-
amining subgraph monomorphism across various structures.
These structures, including three-node, four-node, and fully
connected cliques of increasing sizes, were carefully selected
for their relevance and frequent occurrence in numerous do-

Fig. 4. Execution time comparison on small-world graphs with k = 10 and
p = 0.01.

mains, such as motif counting, where subgraph search tasks are
prevalent. In crafting our experimental graphs, we generated
300 distinct directed Erdős–Rényi graphs. The vertex counts
for these graphs were uniformly distributed within a range
of 100 to 300, and their edge densities were uniformly
sampled from a continuum spanning 0.05 to 0.1. This thorough
approach enabled a comprehensive assessment of Arachne,
measuring its efficiency and precision against a broad spectrum
of graph densities and configurations that one might encounter
in real-world scenarios.

Fig. 5. Execution time comparison for 300 random graphs with density (0.05
to 0.1).

These tests were carefully designed to examine the effect
of both network size and subgraph size and structure. By
employing the mentioned configurations, we ensured a robust
evaluation of VF2-PS’s capabilities. Fig. 5 reflects the aggre-
gation of data from 300 individual graph generations using



one of the most challenging subgraphs to stress and test all
parts of our implementation. This provides a robust statistical
basis for our conclusions.

D. Performance Results on Real-World Graphs

In order to expand our understanding of subgraph monomor-
phism and validate the practical effectiveness of Arachne,
we extended our analysis to encompass real-world datasets.
These include directed three-vertex, four-vertex and five-vertex
subgraphs from the Hemibrain v1.2 dataset in neuroscience,
the Math Overflow temporal network in social science, and the
Enron email network in communication science. The results
of three-vertex, illustrated in Figures 6-8, reveal VF2-PS’s
capability to efficiently process complex and diverse graph
structures. Three-vertex motifs, specifically “fan-in,” “fan-out,”
and “path-2,” are prevalent across various domains and are
characterized by unique connectivity patterns between vertices.
Our analysis indicates that the number of monomorphisms
detected and the orientation of the edges significantly influence
the performance of subgraph monomorphism tools. For the En-
ron email network, Arachne achieved an impressive speedup
of 81.516 times compared to the widely used NetworkX.
Similarly, in the Math Overflow dataset, VF2-PS facilitated
a speedup of 72.780 times, and for the Hemibrain dataset,
the speedup reached 97.023 times. These metrics highlight
Arachne’s robust performance and precision in motif finding
tasks.

This consistent performance across varied datasets high-
lights VF2-PS’s adaptability and efficiency as an analytical
tool, making it particularly suitable for fields like compu-
tational biology and social network analysis, where the di-
rectional characteristics of relationships are fundamental to
network dynamics.

E. Scalable Performance

To demonstrate how our parallel implementation can lever-
age cores to improve performance, we used different numbers
of parallel threads to run the same task on the same graph.
In Chapel, we can update the value of the environmental
variable CHPL_RT_NUM_THREADS_PER_LOCALE to vary
the number of threads. For this category of experiments, we
generated five different graphs with a total number of vertices
ranging from 250 to 4,000 and P values ranging from 0.02
to 0.05. Our hardware configuration could support up to 128
threads, so we tested each graph with 1 to 128 threads. The
results shown in Fig. 9, belongs to this category with P sets
to 0.03.

When the graph is large enough, we can see that the execu-
tion time will decrease almost linearly with the total number of
threads (the graph with 4,000 vertices). This means that when
we increase the number of parallel threads, the total execution
time will decrease linearly. However, if the graph size is not
large enough when we increase the number of parallel threads,
the parallel efficiency will decrease (for graphs with 1,000 and
2,000 vertices), and even worse, the total execution time will
increase (for graphs with 250 and 500 vertices). This trend

Fig. 6. Execution times for 3-vertex motifs for the Enron email network.

Fig. 7. Execution times for 3-vertex motifs for the Math Overflow temporal
network.

Fig. 8. Execution times for 3-vertex motifs for the Hemibrain dataset.

can be seen in graphs with a small size. The reason for this
is that when the graph size is small, there is not enough work
to be assigned to each parallel thread. However, employing
more parallel threads will have additional overhead. When
the time savings of parallel execution cannot compensate for
the additional parallel overhead, the total execution time will
increase instead of decrease. Our experimental results in Fig.
9 show that our method can achieve scalable performance on
large graphs.

V. RELATED WORK

Subgraph monomorphism can be formulated as a constraint
programming problem. The backtracking approach is widely
used to solve subgraph monomorphism. The constraint pro-
gramming approach was introduced by McGregor [37] to solve
the problem and improved by Ullmann [38]. Significantly,
Ullmann proposed an algorithm called Focus-Search, which



Fig. 9. Execution time comparison for random graphs with the same
probability P = 0.03 but different number of vertices and edges when
different parallel threads are used.

applies a bit-vector domain reduction to each step, to improve
his early version [39].

State space representation is another popular data structure
for solving the subgraph isomorphism problem. In this ap-
proach, the search space (also called state space) is conceptu-
ally defined as a tree of states, where each state corresponds to
a partial mapping of the pattern vertices onto target vertices.
For example, a typical VF2 method [40] contains two main
phases: search and refinement. The first step is the same as
Ullmann’s algorithm. The main difference is in the refinement
phase. The algorithm initially deals with the first vertex, selects
a vertex connected with the already matched query vertices,
searches for a subgraph match, and backtracks if not. The real
innovation of VF2 is it brings in feasibility rules to prune
in advance. VF2++ [41], VF3 [42], and VF3-Light [43] are
different variants of the VF algorithm family.

QuickSI [44] identifies a sequence of query graph nodes
to match by using the node frequency information that is
pre-computed from the data graph and tries to access nodes
having infrequent vertex labels and infrequent adjacent edge
labels as early as possible. SPath [45] uses a path-based
indexing technique as patterns of comparison in the data graph
and neighborhood signatures to minimize searching space.
BoostIso [46] defines four types of vertex relationships to
reduce duplicate computation. CFL-Match [47] presents the
core-forest-leaf decomposition of the query graph, and the
compact path-based index aims to postpone cartesian products.
CECI [48] proposes the compact embedding cluster index
and divides the data graph into multiple mappings clusters
for parallel processing. These algorithms employ different
heuristic methods to improve their performance.

Several works [49]–[52] have been conducted to compare
the performance of different algorithms or even the efficiency
of different heuristic methods. Their results show that no
algorithm can always be the best for all cases. How to employ
different heuristic methods for different scenarios can have

very different effects.
Parallel technology is another important method to im-

prove practical performance. PGX.ISO [53] employed a par-
allel in-memory method to achieve a significant performance
boost over an existing secondary storage-based RDF database.
STwig [54] works in a distributed environment. Graphflow [55]
can execute with multiple threads on CPUs. CECI [48] and
Glasgow [56], [57] can run in parallel on both a single machine
and multiple machines. VF3P [58] is the parallel version of
VF3.

GpSM [59] and GunrockSM [60] outperform previous
works by leveraging breadth-first search favoring GPU par-
allelism. PBE [61] divides the graph into several partitions,
each of which can be placed in GPU memory to support a
large data graph beyond the capability of GPU memory. Zeng
et al. [62] avoids joining twice and employs fine-grained load
balance strategies to improve their algorithm on GPUs.

Currently, there are useful packages that scientists can use
for research. In the field of connectomes, DotMotif [4] is
developed to reduce the expertise and time required to analyze
biological graphs of any size. Conversely, data scientists also
use the NetworkX Python library [63].

VI. CONCLUSION

Large graph analytics, particularly for NP-complete prob-
lems, present significant challenges for data scientists. Provid-
ing data scientists with high-performance, easy-to-use tools
for handling large graphs can significantly enhance their
productivity and efficiency. This paper presents a novel paral-
lelized implementation of the VF2 subgraph monomorphism
algorithm within the open-source Arachne graph framework.
Arachne supports large-scale graph analytics by leveraging su-
percomputers or cloud resources through a popular Python in-
terface. Comprehensive experimental results demonstrate that
Arachne outperforms other Python-based subgraph monomor-
phism implementations, such as NetworkX and DotMotif.

For future work, we plan to expand our evaluation to
existing parallel frameworks focusing on distributed-memory
parallelism.
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[41] A. Jüttner and P. Madarasi, “VF2++—An improved subgraph isomor-
phism algorithm,” Discrete Applied Mathematics, vol. 242, pp. 69–81,
2018.

[42] V. Carletti, P. Foggia, A. Saggese, and M. Vento, “Challenging the
time complexity of exact subgraph isomorphism for huge and dense
graphs with VF3,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 4, pp. 804–818, 2017.

[43] V. Carletti, P. Foggia, A. Greco, A. Saggese, and M. Vento, “The
VF3-light subgraph isomorphism algorithm: when doing less is more
effective,” in Structural, Syntactic, and Statistical Pattern Recognition:
Joint IAPR International Workshop, S+ SSPR 2018, Beijing, China,
August 17–19, 2018, Proceedings 9. Springer, 2018, pp. 315–325.

[44] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hardness:
an efficient algorithm for testing subgraph isomorphism,” Proceedings
of the VLDB Endowment, vol. 1, no. 1, pp. 364–375, 2008.

[45] P. Zhao and J. Han, “On graph query optimization in large networks,”
Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 340–351,
2010.

[46] X. Ren and J. Wang, “Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs,” Proceedings of the VLDB
Endowment, vol. 8, no. 5, pp. 617–628, 2015.



[47] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph
matching by postponing cartesian products,” in Proceedings of the 2016
International Conference on Management of Data, 2016, pp. 1199–1214.

[48] B. Bhattarai, H. Liu, and H. H. Huang, “Ceci: Compact embedding
cluster index for scalable subgraph matching,” in Proceedings of the
2019 International Conference on Management of Data, 2019, pp. 1447–
1462.

[49] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An In-Depth
Comparison of Subgraph Isomorphism Algorithms in Graph Databases,”
Proceedings of the VLDB Endowment, vol. 6, no. 2, pp. 133–144, 2012.

[50] T. Ma, S. Yu, J. Cao, Y. Tian, A. Al-Dhelaan, and M. Al-Rodhaan, “A
comparative study of subgraph matching isomorphic methods in social
networks,” IEEE Access, vol. 6, pp. 66 621–66 631, 2018.

[51] C. Solnon, “Experimental evaluation of subgraph isomorphism solvers,”
in Graph-Based Representations in Pattern Recognition: 12th IAPR-TC-
15 International Workshop, GbRPR 2019, Tours, France, June 19–21,
2019, Proceedings 12. Springer, 2019, pp. 1–13.

[52] S. Sun and Q. Luo, “In-memory subgraph matching: An in-depth study,”
in Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 2020, pp. 1083–1098.

[53] R. Raman, O. van Rest, S. Hong, Z. Wu, H. Chafi, and J. Banerjee,
“PGX.ISO: parallel and efficient in-memory engine for subgraph iso-
morphism,” in Proceedings of Workshop on Graph Data management
Experiences and Systems, 2014, pp. 1–6.

[54] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient
subgraph matching on billion node graphs,” Proc. VLDB Endow.,
vol. 5, no. 9, p. 788–799, may 2012. [Online]. Available: https:
//doi.org/10.14778/2311906.2311907

[55] C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S. Salihoglu,
“Graphflow: An active graph database,” in Proceedings of the 2017 ACM
International Conference on Management of Data, 2017, pp. 1695–1698.

[56] B. Archibald, F. Dunlop, R. Hoffmann, C. McCreesh, P. Prosser, and
J. Trimble, “Sequential and parallel solution-biased search for sub-
graph algorithms,” in International Conference on Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research.
Springer, 2019, pp. 20–38.

[57] C. McCreesh and P. Prosser, “A parallel, backjumping subgraph isomor-
phism algorithm using supplemental graphs,” in International conference
on principles and practice of constraint programming. Springer, 2015,
pp. 295–312.

[58] V. Carletti, P. Foggia, P. Ritrovato, M. Vento, and V. Vigilante, “A
parallel algorithm for subgraph isomorphism,” in Graph-Based Rep-
resentations in Pattern Recognition: 12th IAPR-TC-15 International
Workshop, GbRPR 2019, Tours, France, June 19–21, 2019, Proceedings
12. Springer, 2019, pp. 141–151.

[59] H.-N. Tran, J.-j. Kim, and B. He, “Fast subgraph matching on large
graphs using graphics processors,” in Database Systems for Advanced
Applications, M. Renz, C. Shahabi, X. Zhou, and M. A. Cheema, Eds.
Cham: Springer International Publishing, 2015, pp. 299–315.

[60] X. Sun and Q. Luo, “Efficient GPU-Accelerated Subgraph Matching,”
Proc. ACM Manag. Data, vol. 1, no. 2, jun 2023. [Online]. Available:
https://doi.org/10.1145/3589326

[61] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K.-L. Tan,
“GPU-Accelerated Subgraph Enumeration on Partitioned Graphs,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1067–1082. [Online].
Available: https://doi.org/10.1145/3318464.3389699
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