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57 ABSTRACT

In some aspects, the techniques described herein relate to a
quantum method for solving a second-order cone program
(SOCP) instance, the method including: defining a Newton
system for the SOCP instance by constructing matrix G and
vector h based on the SOCP instance; preconditioning
matrix G and vector h via row normalization to reduce a
condition number of matrix G; iteratively determining u
until a predetermined iteration condition is met, the itera-
tions including: causing a quantum computing system to
apply matrix G and vector h to a quantum linear system
solver (QLSS) to generate a quantum state; causing the
quantum computing system to perform quantum state
tomography on the quantum state; and updating a value of
u based on a current value of u and the output of the quantum
state tomography; and determining a solution to the SOCP
instance based on the updated value of u.
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QUANTUM INTERIOR POINT METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to U.S. Provisional
Patent Application Ser. No. 63/413,230, “End-to End Analy-
sis for Quantum Interior Point Methods with Improved
Block-Encodings,” filed on Oct. 4, 2022, which is incorpo-
rated herein by reference in its entirety.

BACKGROUND

1. Technical Field

[0002] This disclosure relates generally to quantum inte-
rior point methods (QIPMs), and more particularly to imple-
menting quantum interior point methods (QIPMs).

2. Description of Related Art

[0003] The practical utility of finding optimal solutions to
well-posed optimization problems has been known since the
days of antiquity. With the advent of the quantum era, there
has been great interest in developing quantum algorithms
that solve optimization problems with provable speedups
over classical algorithms. Unfortunately, it can be difficult to
implement these quantum algorithms and evaluate whether
these quantum algorithms will be practically useful.

SUMMARY

[0004] In some aspects, the techniques described herein
relate to a quantum interior point method (QIPM) for
solving a second-order cone program (SOCP) instance using
a quantum computing system, the method including: receiv-
ing the SOCP instance; defining a Newton system for the
SOCP instance by constructing matrix G and vector h, where
matrix G and vector h describe constrains for a linear system
Gu=h based on the SOCP instance; preconditioning matrix
G and vector h via row normalization to reduce a condition
number of matrix G; iteratively determining u until a pre-
determined iteration condition is met, the iterations includ-
ing: causing the quantum computing system to apply matrix
G and vector h to a quantum linear system solver (QLSS) to
generate a quantum state; causing the quantum computing
system to perform quantum state tomography on the quan-
tum state; and updating a value of u based on a current value
of u and the output of the quantum state tomography; and
determining a solution to the SOCP instance based on the
updated value of u.

[0005] Other aspects include components, devices, sys-
tems, improvements, methods, processes, applications, com-
puter readable mediums, and other technologies related to
any of the above.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Embodiments of the disclosure have advantages
and features which will be more readily apparent from the
following detailed description and the appended claims,
when taken in conjunction with the examples in the accom-
panying drawings, in which:

[0007] FIG. 1 is a diagram of an example quantum circuit
configured to enact a unitary U[s] on registers on a set of
registers, according to some embodiments;
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[0008] FIG. 2 is a diagram of an example Quantum
singular value transform (QSVT) circuit, according to some
embodiments;

[0009] FIG. 3 is a diagram of an example-controlled
version of the quantum circuit in FIG. 1, controlled on qubit
¢, according to some embodiments;

[0010] FIG. 4 is a diagram illustrating an example decom-
position of the Uy, gate into a state-preparation unitary U,
and multi-controlled-Toffoli gates, according to some
embodiments;

[0011] FIG. 5 is a diagram illustrating an example decom-
position of the CR°(s) gate (top) and controlled-CR°(s) gate
(bottom), as defined in eq. (55), according to some embodi-
ments;

[0012] FIG. 6 is a diagram illustrating an example decom-
position of the V unitary (top) and controlled-V ; unitary
(bottom), as defined in eq. (57), according to some embodi-
ments;

[0013] FIG. 7 is a plot illustrating simulation results of the
QIPM on an SOCP instance corresponding to portfolio
optimization on 30 randomly chosen stocks, according to
some embodiments;

[0014] FIG. 8 includes plots of the Median Frobenius
condition number for 128 randomly sampled stock portfo-
lios from the DWCF index, according to some embodi-
ments;

[0015] FIG. 9 is a plot of the Median Frobenius condition
number K for 128 randomly sampled stock portfolios from
the DWCEF index, according to some embodiments;

[0016] FIG. 10 is a plot of the median value of the square
of the inverse tomography precision used to remain in the
neighborhood of the central path for 128 randomly sampled
stock portfolios from the DWCF index, according to some
embodiments;

[0017] FIG. 11 is a plot of the median value of the
estimated algorithm scaling factor, according to some
embodiments;

[0018] FIG. 12 is a diagram illustrating the breakdown of
quantum resources used for a single coherent run of the
uncontrolled version of a quantum algorithm, according to
some embodiments;

[0019] FIG. 13 includes two plots of the Median Frobe-
nius condition number for 128 randomly sampled stock
portfolios from the DWCF index, according to one or more
embodiments;

[0020] FIG. 14 includes two plots of the Median value of
the square of the required inverse tomography precision
used to remain in the neighborhood of the central path for
128 randomly sampled stock portfolios from the DWCF
index, according to one or more embodiments;

[0021] FIG. 15 includes two plots of the Median value of
the estimated algorithm scaling factor computed as the
median of n'«/&* for 128 randomly sampled stock port-
folios from the DWCF index, according to one or more
embodiments;

[0022] FIG. 16 is a flowchart of an example method,
specifically a quantum interior point method (QIPM), for
solving a second-order cone program (SOCP) instance using
a quantum computing system, according to one or more
embodiments;

[0023] FIGS. 17A-17B are block diagrams of a computing
system including a classical computing system and a quan-
tum computing system, according to some embodiments;
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[0024] FIG. 17C-17D are block diagrams of components
of'a quantum computing system, according to some embodi-
ments;

[0025] FIG. 17E is a flow chart that illustrates an example
execution of a quantum routine on the computing system;
and

[0026] FIG. 18 is an example architecture of a classical
computing system, according to some embodiments.

DETAILED DESCRIPTION

[0027] The figures and the following description relate to
preferred embodiments by way of illustration only. It should
be noted that from the following discussion, alternative
embodiments of the structures and methods disclosed herein
will be readily recognized as viable alternatives that may be
employed without departing from the principles of what is
claimed.

1. OVERVIEW

[0028] This disclosure studies quantum interior point
methods (QIPMs) for second-order cone programming
(SOCP), guided by the example use case of portfolio opti-
mization (PO). This disclosure provides a complete quantum
circuit-level description of the algorithm from problem input
to problem output, making several improvements to the
implementation of the QIPM. This disclosure reports the
number of logical qubits and the quantity/depth of non-
Clifford T-gates used to run the algorithm, including con-
stant factors. The determined resource counts depend on
instance-specific parameters, such as the condition number
of certain linear systems within the problem. To determine
the size of these parameters, numerical simulations of small
PO instances are performed, which lead to concrete resource
estimates for the PO use case. The numerical results do not
probe large enough instance sizes to make conclusive state-
ments about the asymptotic scaling of the algorithm. How-
ever, already at small instance sizes, the analysis suggests
that, due primarily to large constant pre-factors, poorly
conditioned linear systems, and a fundamental reliance on
costly quantum state tomography, fundamental improve-
ments to the QIPM are desired for it to lead to practical
quantum advantage.

A. Introduction

[0029] The practical utility of determining optimal solu-
tions to well-posed optimization problems has been known
since the days of antiquity, with FEuclid considering the
minimal distance between two points using a line. In the
modern era, optimization algorithms for business and finan-
cial use cases continue to be ubiquitous. Partly as a result of
this utility, algorithmic techniques for optimization prob-
lems have been well studied since even before the invention
of the computer, including a famous dispute between Leg-
endre and Gauss on who was responsible for the invention
of least squares fitting. With the advent of the quantum era,
there has been great interest in developing quantum algo-
rithms that solve optimization problems with provable
speedups over classical algorithms.

[0030] Unfortunately, it can be difficult to evaluate
whether these quantum algorithms will be practically useful.
In some cases, the algorithms are heuristic, and their per-
formance can only be measured empirically once it is
possible to run them on actual quantum hardware. In other
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cases, the difficulty in evaluating practicality stems from the
inherent complexity of combining many distinct ingredients,
each with their own caveats and bottlenecks. To make an
apples-to-apples comparison and quantify advantages of a
quantum algorithm, an end-to-end resource analysis that
accounts for all costs from problem input to problem output
may be performed.

[0031] Such an end-to-end analysis for a quantum interior
point method (QIPM) was performed for solving second-
order cone programs (SOCPs). In particular, this disclosure
focuses on a concrete use case with very broad applications,
but of interest in the financial services sector: portfolio
optimization (PO). In general, PO is the task of determining
the optimal resource allocation to a collection of possible
classes to optimize a given objective. In finance, one seeks
to determine the optimal allocation of funds across a set of
possible assets that maximizes returns and minimizes risk,
subject to constraints. Noteworthy, many variants of the PO
problem can be cast as a SOCP and subsequently solved
with a classical or quantum interior point method. Indeed,
classical interior point methods (CIPMs) are efficient not
only in theory, but also in practice; they are the method of
choice within fast numerical solvers for SOCPs and other
conic programs, which encompass a large variety of opti-
mization problems that appear in industry. Notably, QIPMs
structurally mirror CIPMs, and seek improvements by
replacing certain subroutines with quantum primitives.
Thus, compared to other proposed quantum algorithms for
conic programs not based on widely used classical tech-
niques (e.g., solvers that leverage the multiplicative weights
update method), QIPMs are uniquely positioned to provide
not only a theoretical asymptotic advantage, but also a
practical quantum solution for this common class of prob-
lem.

[0032] However, the QIPM is a complex algorithm that
delicately combines some purely classical steps with mul-
tiple distinct quantum subroutines. The runtime of the QIPM
is stated in terms of several parameters that can only be
evaluated once a particular use case has been specified;
depending on how these parameters scale, an asymptotic
speedup may or may not be achievable. Additionally, any
speedup is contingent on access to a large quantum random
access memory (QRAM), an ingredient that in prior asymp-
totic-focused analyses has typically been assumed to exist
without much further justification or cost analysis.

[0033] The resource analysis is detailed and takes care to
study aspects of the end-to-end pipeline, including the
QRAM component. This disclosure reports results in terms
of relevant problem parameters, and then describes numeri-
cal experiments to determine the size and scaling of these
parameters for actual randomly chosen instances of the PO
problem, based on historical stock data. This approach
allows us to estimate the exact resource cost of the QIPM for
an example PO problem, including a detailed breakdown of
costs by various subroutines. This estimate incorporates
several optimizations to the underlying subroutines, and
technical improvements to how they are integrated into the
QIPM. Consequently, our analysis allows us to evaluate the
prospect that the algorithm may exhibit a practical quantum
advantage, and it reveals the computational bottlenecks
within the algorithm that are most in need of further
improvement.

[0034] While this disclosure focuses on the QIPM and its
application to the PO problem, this disclosure has more
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general applications and more general takeaways for quan-
tum algorithms and for quantum computing applications.
Firstly, the results emphasize the importance of end-to-end
analysis when evaluating a proposed application. Further-
more, the modular treatment of the underlying algorithmic
primitives produces quantitative and qualitative takeaways
that are relevant for end-to-end treatments of a large number
of other algorithms that also rely on these subroutines,
especially those in the area of machine learning, where data
access via QRAM and quantum linear algebra techniques
are often used.

B. Results

[0035] The resource analysis focuses on three central
quantities that determine the overall cost of algorithms
implemented on fault-tolerant quantum computers: the num-
ber of logical qubits, the total number of T gates (“'T-count™),
and the number of parallel layers of T gates (“T-depth”)
useed to construct quantum circuits for solving the problem.
The T-depth acts as a proxy for the overall runtime of the
algorithm, whereas the T-count and number of logical qubits
are helpful for determining how many physical qubits may
be used for a full, fault-tolerant implementation. We justify
the focus on T gates by pointing out that, in many prominent
approaches to fault-tolerant quantum computation, quantum
circuits are decomposed into Clifford gates and T gates, and
the cost of implementing the circuit is dominated by the
number and depth of the T gates. The fault-tolerant Clifford
gates can be performed transversally or even in software,
whereas the T gates use the expensive process of magic state
distillation. This disclosure stops short of a full analysis of
the algorithm at the physical level, as the logical analysis
seems to suffice to evaluate the overall outlook for the
algorithm and identify its main bottlenecks.

[0036] At the core of any interior point method (IPM) is
the solving of a linear system of equations. The QIPM
performs this step using a quantum linear system solver
(QLSS) together with pure state quantum tomography. The
cost of QLSS depends on a parameter K, the Frobenius
condition number ||G||||G™!|| of the matrix G that is inverted
(where ||*||- denotes the Frobenius norm, and ||| denotes the
spectral norm), while the cost of tomography depends on a
parameter &, a precision parameter. These parameters are
evaluated empirically by simulating the QIPM on small
instances of the PO problem.

[0037] Table I reports a summary of overall resource
calculation, in which the asymptotically leading term is
shown (along with its constant prefactor) in terms of param-
eters K and &, as well as n, the number of assets in the PO
instance, and &, the desired precision to which the portfolio
should be optimized. It is determined (numerically) that K
grows with n, and that & shrinks with n; it is estimated that,
at n=100 and €=10"7, the implementation of the QIPM may
use 8x10° qubits and 8x10*° total T gates spread out over
2x10** layers. These resource counts are decidedly out of
reach both in the near and far term for quantum hardware,
even for a problem of modest size by classical standards.
Even if quantum computers one day match the gigahertz-
level clock-speeds of modern classical computers, 10**
layers of T gates would take millions of years to execute. By
contrast, the PO problem can be easily solved in a matter of
seconds on a laptop for n=100 stocks.

[0038] This disclosure cautions that the numbers reported
should not be interpreted as the final word on the cost of the
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QIPM for PO. Further examination of the algorithm may
uncover many improvements and optimizations that may
reduce the costs compared to the current calculations. On the
other hand, the results do already incorporate several inno-
vations made to reduce the resource cost, including precon-
ditioning the linear system.

[0039] Besides the main resource calculation, this disclo-
sure makes several additional contributions and observa-
tions:

[0040] 1. This disclosure provides explicit example
quantum circuits for useful (e.g., important) subrou-
tines of the QIPM, namely the state-of-the-art QLSS
based on the discrete adiabatic theorem and pure state
tomography, which complement the circuits for block-
encoding (using QRAM). These example quantum cir-
cuits, and their precise resource calculations, may be
useful elsewhere, as these subroutines are ubiquitous in
quantum algorithms. See section IV F and section V for
additional details.

[0041] 2. This disclosure breaks down the resource
calculation into its constituents to illustrate which parts
of the algorithm are most costly. This disclosure deter-
mines that many independent factors create significant
challenges toward realizing quantum advantage with
QIPMs, and this work underscores aspects of the algo-
rithm that may be improved. This disclosure also notes
that the conditions under which QIPMs would be most
successful (e.g., when K is small) also allow for
classical IPMs based on iterative classical linear system
solvers to be competitive. See section VII for additional
details.

[0042] 3. This disclosure numerically simulates several
versions of the full QIPM solving the PO problem on
portfolios as large as n=120 stocks, and this disclosure
reports the empirical size and scaling of the relevant
parameters K, and &. There is considerable variability
in the trends observes, depending on which version of
the QIPM is chosen, and when the QIPM is terminated,
which makes it difficult to draw robust conclusions.
However, this disclosure determines that both K, and
E~! appear to grow with n. Note that previous numerical
experiments on a similar formulation of the PO prob-
lem suggested K does not grow with problem size, but
those pervius experiments scaled the number of “time
epochs” while keeping n constant. Additionally, this
disclosure observes that the “infeasible” version of the
QIPM originally empirically performs similarly to
more sophisticated “feasible” versions, despite not
enjoying the same theoretical guarantees of fast con-
vergence. Finally, contrary to theoretical expectation,
this disclosure observes that K, and E~' do not diverge
as €—0. See section VI for additional details.

[0043] 4. This disclosure makes various technical
improvements to the underlying ingredients of QIPMs:

[0044] Tomographic precision: Performing tomography
on the output of a QLSS necessarily causes the classical
estimate of the solution to the linear system to be
inexact. This disclosure describes how the allowable
amount of tomography precision can be determined
adaptively rather than relying on theoretical bounds.
Nonetheless, this disclosure also improves the constant
prefactor in the tomographic bounds. The total number
of state preparation queries used to learn an unknown
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L-dimensional pure state to & error using a tomography
method is to leading order at most 115L In(L)/&>.

[0045] Norm of the linear system: Since QLSSs output
a normalized quantum state, tomography does not
directly yield the norm of the solution to the linear
system. The norm can be learned through more com-
plicated protocols, but it is observed that in the context
of QIPMs, a sufficient estimate for the norm can be
learned classically.

[0046] Preconditioning: a preconditioning method is
proposed that is compatible with the QIPM, while
reducing the parameter K. The numerical simulations
suggest the reduction is more than an order of magni-
tude for the portfolio optimization problem.

[0047] Feasible QIPM: A “feasible” version of a QIPM
is implemended which includes determining a basis for
the null space of the SOCP matrix. This disclosure
identifies an explicit basis for the PO problem, thereby
avoiding a costly QR decomposition. However, this
disclosure observes that determines the basis via QR
decomposition leads to more stable numerical results.

TABLE I illustrates asymptotic, leading-order contributions
to the total quantum resources for an end-to-end portfolio
optimization (including constant factors), in terms of the
number of assets in the portfolio (n), the desired precision to
which the portfolio should be optimized (€ ), the maximum
Frobenius condition number of matrices encountered by the
QIPM (xy), and the minimum tomographic precision for the
algorithm to succeed (§). The T-depth and T-count expres-
sions represent the cumulative cost of O (=2 n'-* log(n)log
(¢7™") individual quantum circuits performed serially, a
quantity that we estimate evaluates to 6x10'? circuits at
n=100; see table X for a detailed accounting. The right
column uses a numerical simulation of the quantum algo-
rithm (see section VI) to compute the instance-specific
parameters in the resource expression and estimate the
resource cost at n=100 and e=10"".

TABLE I
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shows numerical results from simulations of the full prob-
lem, and section VII reflects on the calculations performed,
identifying the main bottlenecks and drawing conclusions
about the outlook for quantum advantage with QIPM.
[0049] The QIPM has many moving parts using several
mathematical symbols. While all symbols are defined as
they are introduced in the text, this disclosure also provides
a full list of symbols for the reader’s reference in the section
Additional Information A. Throughout the paper, all vectors
are denoted in bold lowercase letters to contrast with scalar
quantities (unbolded lowercase) and matrices (unbolded
uppercase). The only exception to this rule will be the
symbols N, K, and L, which are positive integers (despite
being uppercase), and denote the number of rows or columns
in certain matrices related to an SOCP instance.

II. PORTFOLIO OPTIMIZATION (PO)

A. Introduction

[0050] Portfolio optimization is the process widely used,
for example, by financial analysts to assign allocations of
capital across a set of assets within a portfolio, given
optimization criteria such as maximizing the expected return
and minimizing the financial risk. The creation of the
mathematical framework for modern portfolio theory (MPT)
is credited to Harry Markowitz, for which he received the
1990 Alfred Nobel Memorial Prize in Economic Sciences.
Markowitz describes the process of selecting a portfolio in
two stages, where the first stage starts with “observation and
experience” and ends with “beliefs about the future perfor-
mances of available securities.” The second stage starts with
“the relevant beliefs about future performances” and ends
with “the choice of portfolio.” The theory is also known as
mean-variance analysis.

[0051] Typically, portfolio optimization strategies include
diversification, which is the practice of investing in a wide

Resource QIPM complexity

Estimated at n = 100

Number of logical qubits 800 n?

T-depth (2 X 1OIO)KFnl'szlogz(n)logz({l)logz(KFnHmf’l)

T-count (7 X IOII)KFn”{2 log, (n) log, (E’l) log, (KFf’l)

8 x 10°

2 x 10?4

8 x 10%°

[0048] The outline for the remainder of this disclosure is
as follows. Section II describes and defines the portfolio
optimization problem in terms of Markowitz portfolio
theory. Section III describes Second Order Cone Program-
ming (SOCP) problems, illustrate how portfolio optimiza-
tion can be represented as an instance of SOCP, and discuss
how IPMs can be used for solving SOCPs. Section IV
review the quantum ingredients used to turn an IPM into a
QIPM. In particular, this disclosure reviews quantum linear
system solvers, block-encoding for data loading, and quan-
tum state tomography for data read out. This disclosure also
presents better bounds on the tomography procedure than
were previously known. Section V describes the implemen-
tation of using QIPM and quantum algorithms for SOCP for
the portfolio optimization problem, including a detailed
resource estimate for the end-to-end problem. Section VI

array of asset types and classes as a risk mitigation strategy.
Some popular asset classes are stocks, bonds, real estate,
commodities, and cash. After building a portfolio, one may
expect a return (or profit) after a specific period of time. Risk
is defined as the fluctmations of the asset value. MPT
describes how high variance assets can be combined with
other uncorrelated assets through diversification to create
portfolios with low variance on their return. Naturally,
among equal-risk portfolios, investors prefer those with
higher expected return, and among equal-return portfolios,
they prefer those with lower risk.

B. Mathematical Formulation

[0052] Within a portfolio, w, represents the amount of an
asset i being held over some period of time. Often, this
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amount is given as the asset’s price in dollars at the start of
the period. When the price is positive (w;>0), this is referred
to as a long position; and when the price is negative (w;<0),
this is referred to as a short position with an obligation to buy
this asset at the end of the period. Typically, investment
banks hold long positions, while hedge funds build portfo-
lios with short positions that have higher risk due to the
uncertainty of the price to buy the asset at the end of the
period. The optimization variable in the portfolio optimiza-
tion problem is the vector of n assets we R™ in the portfolio.
[0053] The price of each asset i varies over time. u; is
defined to be the relative change (positive or negative)
during the period of interest. Then, the return of the portfolio
for that period is defined as r=u’w dollars. The relative
changes ue R™ follow a stochastic process, and this can be
modeled with a random vector with mean 1 and covariance
Y. The return T is then a random variable with mean " w and
covariance w’Lw.

[0054] To capture realistic problem formulations, one or
more mathematical constraints may be added to the optimi-
zation problem corresponding to the problem-specific con-
siderations. For example, two common constraints in port-
folio optimization problems are no short positions (w,20 for
all i, denoted by w=0) and that the total investment budget
is limited (17w=1, where 1 denotes the vector of ones). This
forms the classical portfolio optimization problem from
Markowitz’s mean-variance theory:

min wTZw (69)

aT _
st ot wW=Tum

This formulation is a quadratic optimization problem where
risk is minimized, while achieving a target return of at least
f,.;, with a fixed budget and no short positions. In practice,
the portfolio optimization problem is often reformulated in
other ways, for example, to maximize return subject to a
fixed amount of risk, or to optimize an objective function
that weighs risk against return. The current application
follows the latter approach, formulated as follows, where q
is a tunable risk-aversion coefficient:

min & w+ q,,wTZw @
st 1Tw=1

wz=0

This optimization problem is no longer a QO problem, but
it can be mapped to a conic problem, as described later in
section III B. Depending on the problem, additional con-
straints can be added. For instance, constraints can be added
to allow short positions, component-wise short sale limits, or
a total short sale limit. Another variant of this is a constraint
for a collateralization requirement, which limits the total of
short positions to a fraction of the total long positions. Often,
buying or selling an asset results in a transaction fee that is
proportional to the amount of asset that is bought or sold.
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Linear transaction costs or maximum transaction amounts
are often included as constraints in portfolio optimization.
Diversification constraints can limit portfolio risk by limit-
ing the exposure to individual positions and groups of assets
within particular sectors. To illustrate the flexibility of this
analysis, a maximum transaction constraint is included and
use the following problem formulation is used in the analy-
sis in the rest of the disclosure:

min —# w4+ q.‘,WTZW @
st 1Tw=1

w7l =¢

wz0,

where w denotes the current portfolio, so that Iw—w! is the
vector of transaction quantities for each asset, which are
constrained to be smaller than maximum values contained in
the vector L.

II. SECOND ORDER CONE PROGRAMMING
(SOCP) AND INTERIOR POINT METHODS
(IPM)

A. Definitions

[0055] Second-order cone programming (SOCP) is a type
of convex optimization that allows for a richer set of
constraints than linear programming (LP), without many of
the complications of semidefinite programming (SDP).
Indeed, SOCP is a subset of SDP, but SOCP admits interior
point methods (IPMs) that may be just as efficient as [PMs
for LP. Many real-world problems can be cast as SOCP,
including the example portfolio optimization problem of
interest.

[0056] For any k-dimensional vector v, the following may
be used v=(v,; ¥), where v, is the first entry of v, and ¥
contains the remaining k—1 entries.

[0057] Definition 1. A k-dimensional second-order cone
(for k>2) is the convex set

0¥ {wosre R g2y, @

where ||*|| denotes the vector two-norm (standard Euclidean
norm). For k=1, Q! ={x,e RIx,>0}.

[0058] Definition 2. In general, a second-order cone prob-
lem is formulated as

min ¢"x (&)
s.t. Ax=b

xeqQ,

where 9=Q1x . . . xQ™ is a Cartesian product of r
second-order cones of combined dimension N=N+ ... +N ,
and A is a full-rank KXN matrix encoding K linear equality
constraints, with K<N.

[0059] Note that the special case of linear programming is
immediately recovered if N=1 for all i. We say that a point
x is primal feasible whenever Ax=b and xe Q. It is strictly
primal feasible if additionally it lies in the interior of Q.
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[0060] The dual to problem in eq. (5) is a maximization

problem over a variable ye R¥ , given as follows:

min b7y ©
y
st. ATy+s=c

sEQ.

[0061] We say that a pair (s; y) is dual feasible whenever
ATy+S=c and se Q. For any point (x; y; s) with x, s€ Q, the
duality gap may be defined as

M

1 1
U )= =x"s = =(cTx=b"y),
r r

where r is the number of cones, as in definition 2, and the
second equality holds under the additional assumption that
the point is primal and dual feasible. The fact that x, se
Q implies that p(x, s)=0. Moreover, assuming that both the
primal and dual problems have a strictly feasible point, the
optimal primal solution x* and the optimal dual solution (y*;
s*) are guaranteed to exist and satisfy ¢’x*=b”y*, and hence

p==x"s"=x"T(c-A4A"y)=cx"=b"y" =0.
r

Thus, the primal-dual condition of optimality can be
expressed by the system

Ax=b
ATyts=c
xTs=0

xe Q,se Q. 8

B. Portfolio Optimization as SOCP

[0062] The portfolio optimization problem can be solved
by reduction to SOCP, and this reduction is often made in
practice. Here this disclosure describes one way of translat-
ing the portfolio optimization problem, as given in eq. (3)
into a second-order cone program.

[0063] The objective function in eq. (3) has a non-linear

term qNw’Zw, which may be linearized by introducing a

new scalar variable t, and a new constraint t>N w’Xw. This
results in the equivalent optimization problem

n(lin) [~f; q]" (w; 1) €))
x=(w;t

st 1Tw=1

[w; =il < &;

w; 20

Fe=wt Zw.
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[0064] A goal now is to express the constraints in eq. (9)
as second-order cone constraints. Given an mxn matrix M
for which £=M"M, the constraint on t can be expressed by
introducing an m-dimensional variable M subject to the
equality constraint N=Mw and the second-order cone con-

straint (t; 1) € Q™.

[0065] The matrix M can be determined from X via a
Cholesky decomposition, although for large matrices X, this
computation may be costly. Alternatively, if £ and p are
calculated from stock return vectors u‘, .. ., u“ during m
independent time epochs (e.g. returns for each of m days or
each of m months), then a valid matrix M” is given by
=g, ..., u" ), i.e. the columns of M” are given by the
deviation of the returns from the mean in each epoch. This
is the approach taken in the numerical experiments herein
(presented later).

[0066] The absolute value constraints are handled by
introducing a pair of n-dimensional variables ¢ and p,
subject to equality constraints 0={—(w—w) and p={+(w—w).
The absolute value constraints are then imposed as positivity
constraints 0,<0, p,20, which are included as second-order
cone constraints of dimension 1. Alternatively, the absolute
value constraints may be encoded with n second-order cone
constraints of dimension 2; these formulations are equiva-
lent up to a simple coordinate change, and one may opt to
use 1-dimensional cones for their simplicity of presentation.
[0067] In summary, the portfolio optimization problem
from eq. (3) may be described as the following SOCP that

minimizes over the variable x=(w; 0; p; t; 1) € R3m+1;

min [~#;0;0; ¢; 017 (w; ¢; p; 51 = ¢ x a0
1" 0" 0" 0 0" :; 1
000 | we
U7 0 10 0 ’["w—g
M 0 0 0 - 0
7
wdpnme Q@x--xQ

n positivity constraints

x Q' x--x@!
2n budget constraints
ym+1
x@",

risk

where [ denotes an identity block, O denotes a submatrix of
all Os, 0 is a vector of all Os, 1 is a vector of all 1s, and the
size of each block of A can be inferred from its location in
the matrix. Thus, the total number of cones is r=3n+1, and
the combined dimension is N=3n+m+1. Note that r=2n+1
cones if the absolute value constraints are represented using
dimension-2 cones. The SOCP constraint matrix A is a KxN
matrix, with K=2n+m-+1.

[0068] Notice that many of the rows of the KXN matrix A
are sparse and contain only one or two nonzero entries.
However, the final m rows of the matrix A will be dense and
contain n+1 nonzero entries due to the appearance of the
matrix M containing historical stock data; in total a constant
fraction of the matrix entries will be nonzero, so sparse
matrix techniques will provide only limited benefit.

[0069] Additionally, note that the primal SOCP in eq. (10)
has an interior feasible point as long as (has strictly positive
entries. To better understand this, choose w to be any strictly
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positive vector that satisfies Iw—w|<C, and let 0=C+(w—w),
p=C—(w—w), N=Mw, and t equal to any number strictly
greater than |n|. It can be verified that the dual program
likewise has a strictly feasible point; this guarantees that the
optimal primal-dual pair for the SOCP exists and satisfies eq.
(8).

C. Interior Point Methods for SOCP

1. Introduction

[0070] Interior point methods (IPMs) are a class of effi-
cient algorithms for solving convex optimization problems
including LPs, SOCPs, and SDPs, where (in contrast to the
simplex method) intermediate points generated by the
method lie in the interior of the convex set, and they are
guaranteed to approach the optimal point after a polynomial
number of iterations of the method. Each iteration involves
forming a linear system of equations that depends on the
current intermediate point. The solution to this linear system
determines the search direction, and the next intermediate
point is formed by taking a small step in that direction. This
disclosure considers path-following primal-dual I[PMs,
where, if the step size is sufficiently small, the intermediate
points are guaranteed to approximately follow the central
path, which ends at the optimal point for the convex opti-
mization problem.

2. Central Path

[0071] To define the central path, first establish some
notation related to the algebraic properties of the second-
order cone. Let the product uov of two vectors u=(u; i),

v=(Vqg; ¥) € Q" be defined as

wov=(u" V:uyi+vyit) (1n
and the identity element for this product is denoted by the
vector e=(1; 0)e Q¥ . For the Cartesian product 9=Q"1x ..

. XQ" of multiple second-order cones, the vector e is
defined as the concatenation of the identity element for each
cone, and the circle product of two vectors is given by the
concatenation of the circle product of each constituent. A
consequence of this definition is the that e”e is equal to the
number of cones r.

[0072] Now, for the SOCP problem of eq. (5), the central
path (x(v); y(v); s(v)) is the one-dimensional set of central
points, parameterized by ve [0, «), which satisfies the con-
ditions:

Ax(v)=b
ATy(v)+s(v)=c

x(v)os(v)=ve
x(ve Q.s(vie Q. 12)

Note that the central path point (x(v); y(v); s(v)) has a
duality gap that satisfies u(x(v), s(v))=v, and that when v=0,
eq. (12) recovers eq. (8).

3. Determining an Initial Point on the Central Path Via
Self-Dual Embedding

[0073] Path-following primal-dual interior point methods
determine the optimal point by beginning at a central point
with v>0 and following the central path to a very small value
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of v, which is taken to be a good approximation of the
optimal point. For a given SOCP, determining an initial
point on the central path is non-trivial and, in general, can be
just as hard as solving the SOCP itself. One solution to this
problem is the homogeneous self-dual embedding, a slightly
larger self-dual SOCP is formed with the properties that (i)
the optimal point for the original SOCP can be determined
from the optimal point for the self-dual SOCP and (ii) the
self-dual SOCP has a trivial central point that can be used to
initialize the IPM.

[0074] To do this, introduce new scalar variables T, 8, and
¥, which are used to give more flexibility to the constraints.
Previously, Ax=b was used. In the larger program, this
constraint is relaxed to read Ax=bt—(b—Ae)0, such that the
original constraint is recovered when t=1 and 6=0, but x=e
is a trivial solution when t=1 and 6=1. Similarly, the
constraint A”y+s=c is relaxed to read A”y+s=ct—(c—e),
which has the trivial solution y=0, s=e when t=0=1. These
can be complemented with two additional linear constraints
to form the program:

min  (#+ 1)f 13)
(x57.855:6)
0 47 - x 5 0
-4 0 b -b |, ol [ o
¢t =-bT 0 -z T s 0
T 5 z 0 [4 0 r+1

x,seé 7,k=0; y, 0 free,

where b=b—Ae, c=c—e, z=c’e+1, and r=e’e is the number of
cones in the original SOCP. While eq. (13) is not exactly of
the form given in eq. (5), it can still be considered a primal
SOCP. Since the block matrix in eq. (13) is skew-symmetric
and the objective function coefficients are equal to the
right-hand-side of the equality constraints, when the dual
program (c.f. eq. (6)) is computed, an equivalent program is
arrived at; thus, eq. (13) is self-dual. Thus, when applying
path-following primal-dual IPMs to eq. (13), in some
embodiments, only the primal variables (thatis X, y. 7, 6, s,
K) may need to be tracked. Taking into account the addition
of T and k, which are effectively an extra pair of primal-dual
variables, the duality gap (c.f. eq. (7)) is defined as

1 . 14
= —_ + 7).
pix, 1, 8, k) P} (x7s+«1)

Note that if the point (x; y; T; 0; s; K) is feasible, i.e., if it
satisfies the four linear constraints in eq. (13), then the
following identity is determined:

—x"ATy+xTer—x"C0+«kT (15)
r+1

Hx, 7,8, 6) =

~b"yT+b yO+x"eT —xTel + kT

r+1
b y0—x"cl+ 7zl
- r+1

=9,



US 2024/0144066 Al

where the first, second, third, and fourth rows of eq. (13) are
invoked above in lines one, two, three, and four, respec-
tively. This equality justifies the redefinition in eq. (14):
noting that the primal objective function in eq. (13) is (r+1)0,
and (since the program is self-dual) the associated dual
objective function is —(r+1)0, note that the gap between
primal and dual objective functions, divided by the number
of conic constraints (2r+2), is exactly equal to 6.

[0075] The central path for the augmented SOCP in eq.
(13) is defined by the feasibility conditions for the SOCP
combined with the relaxed complementarity conditions
xos=ve and kt=v. Thus, the point (x=e; y=0; 1=1; 0=1; s=e;
k=1) is not only a feasible point for the SOCP in eq. (13),
but also a central point with v=1.

[0076] Finally, a noteworthy property of the self-dual
SOCP in eq. (13) is that the optimal point for the original
SOCP in eq. (5) can be derived from the optimal point for
the SOCP in eq. (13). Specifically, let (x,*; y.,/*; T%; 0%;
s.,*; k*) be the optimal point for eq. (13) (it can be shown
that 6*=0). Then if

Xey Ved S

sd sd sd

>0, (x*;y*;S*):(—*; " ;—*)
T T T

is an optimal primal-dual point for egs. (5) and (6). If T#=0,
then at least one of the original primal SOCP in eq. (5) and
the original dual SOCP in eq. (6) must be infeasible. As
previously demonstrated, the specific SOCP for portfolio
optimization in eq. (10) is primal and dual feasible, so t*#0
for that example.

[0077] What if there is only a point that is approximately
optimal for the self-dual SOCP? An approximately optimal
point for the original SOCP can still be determined. Suppose
a feasible point for which p (x, T, s, K)=€. The point (x/t;
y/T; s/t) is O(e) close ti feasible for the original SOCP in
the sense that the equality constraints are satisfied up to
O(e) error

-] S s

£ an

5
472 + 2 = ¢ = <t -l
T T T

[0078] Moreover, since k>0 and 6=, assert using the
third row of eq. (13) that the difference in objective function
achieved by the primal and dual solutions is also O (€), that
is

LX Ly lete+1] (18)
cT=-hTE 2 ——e
T T T

In summary, by uvsing the self-dual SOCP of eq. (13), a
trivial point is obtained from which to start the IPM, and
given an (approximately) optimal point, the following is
obtained: either an (approximately) optimal point to the
original SOCP or a certificate that the original SOCP was not
feasible to begin with.
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4. Iterating the IPM

[0079] Each iteration of the IPM takes as input an inter-
mediate point (x; y; T; 0; s; K) that is feasible (or in some
formulations, nearly feasible), has duality gap

1
m(x*s +KT)

equal to p, and is close to the central path with parameter
v=p. The output of the iteration is a new intermediate point
(X+AX; y+Ay; T+AT; 0+A0; s+As; K+AK) that is also feasible
and close to the central path, with a reduced value of the
duality gap. Thus, many iterations lead to a solution with
duality gap arbitrarily close to zero.

[0080] One additional input is the step size, governed by
a parameter 6<1. The [PM iteration aims to bring the next
intermediate point onto the central path with parameter
v=6p. This is accomplished by taking one step using New-
ton’s method, where the vector (Ax; Ay; AT; AB; As; AK) is
uniquely determined by solving a linear system of equations
called the Newton system. The first part of the Newton
system is the conditions to be met for the new point to be
feasible, given in the following system of N+K+2 linear
equations:

0 47 -c T Ax As -A"y+er—cf-s)y (19)

-4 0 b -b||aAy N 0l Ax — bt + b0
¢’ bT 0 -z||Ar Ac |7 —c"x+bTy+28
-7 5z 0 )\Af 0 T x-b y-z1

Note that if the point is already feasible, the right-hand-side
is equal to zero.

[0081] The second part of the Newton system is the
linearized conditions for arriving at the point on the central
path with duality gap op. That is, aim for (x+AX)o(s+As)
=cpe and (kK+AK)(T+AT)=0p. By ignoring second order
terms (i.e., the O(AxoAs) and O(AKAT) terms), these
become

xoAs+soAx=Cue—xos
KATHTAK=CU—KT. 20)

[0082] The expression above can be rewritten as a matrix
equation by first defining the arrowhead matrix U for a
vector u=(u,; i)e Q* as

uy o Q20

o
u=|_ =ue' +eu +uol—2ugee’.
o ouod

When ue @ lies in the direct product of multiple second-
order cones, the arrowhead matrix is Qformed by placing
the appropriate matrices of the above form on the block
diagonal. The arrowhead matrix has the property that for any
vector v, Uv=uov.
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[0083] Using this notation, the Newton equations in eq.
(20) can be written as

Ax (22)

X 0) At _(U’,ue—Xs)
0 “Nou—«t )

where X and S are the arrowhead matrices for vectors x and
.

[0084] Equations (19) and (22) together form the Newton
system. It is observered that there are 2N+K+3 constraints to
match the 2N+K+3 variables in the vector (Ax; Ay; At; AG;
As; Ax). As long as the duality gap is positive and (x; y; T;
0; s; ) is not too far from the central path (which will be the
case as long as a is chosen sufficiently close to 1 in every
iteration), the Newton system has a single unique solution.
Note that one can choose different search directions than the
one that arises from solving the Newton system presented
here; this includes first applying a scaling transformation to
the product of second-order cones, then forming and solving
the Newton system that results, and finally applying the
inverse scaling transformation. Alternate search directions
are explained in section Additional Information D, but in the
main text the basic search direction illustrated above is
maintained, since in the numerical simulations the simple
search direction gave equal or better results than more
complex alternatives, and it enjoys the same theoretical
guarantee of convergence.

5. Solving the Newton System

[0085] The Newton system formed by combining egs. (19)
and (22) is an LxL linear system of the form Gu=h, where
L=2N+K+3. Classically this can be solved exactly a number
of ways, the most straightforward being Gaussian elimina-
tion, which scales as O (L?). Using Strassen-like tricks, this
can be asymptotically accelerated to O (L®) where »<2.38,
although practically the runtime is closer to O (L*). Mean-
while, the linear system can be approximately solved using
a variety of iterative solvers, such as conjugate gradient
descent or the randomized Kaczmarz method. The complex-
ity of these approaches depends on the condition number of
the Newton matrix. Section IV discusses quantum
approaches to solving the Newton systemni.

[0086] Itis noteworthy to distinguish methods that exactly
solve the Newton system, and methods that solve it inex-
actly, because inexact solutions typically lead to infeasible
intermediate points. As presented above, the Newton system
in egs. (19) and (22) can tolerate infeasible intermediate
points; the main consequence is that the right-hand-side of
eq. (19) becomes non-zero. As discussed in section [V, exact
feasibility is difficult to maintain in quantum [PMs, since the
Newton system cannot be solved exactly.

[0087] The inexact-feasible IPM(IF-IPM) is a workaround
by which exact feasibility can be maintained despite an
inexact linear system solver. For the [F-IPM, this disclosure
assumes access to a basis for the null space of the feasibility
constraint equations, that is, a linearly independent set of
solutions to eq. (19) when the right-hand-side is zero. These
basis vectors are arranged as the columns of a matrix B;
since there are N+K+2 linear feasibility constraints and
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2N+K+3 variables, the matrix B should have N+1 columns.
In the case of portfolio optimization, a matrix B satisfying
this criterion can be deduced by inspection, as discussed in
section Additional Information C; however, this choice does
not yield a B with orthogonal columns. Generating a B with
orthonormal columns can be done by performing a QR
decomposition of the matrix in eq. (19), which would incur
a large one-time classical cost of O ((N+K)®) operations.
Better asymptotic scaling for QR decomposition can be
accomplished using fast matrix multiplication. In either
case, since B is a basis for the null space of the constraint
equations, there is a one-to-one correspondence between

vectors Aze RV and vectors that satisfy eq. (19) via the

relation (Ax; Ay; At; AB; As; AK)=BAz. Thus, the Newton
system can be reduced to

S000XO0 Bl Az oue — Xs 23)
[(0 0«00 ‘r) ] Z_( U’,u—KT)
(Ax; Ay; At; AB; As; Ax) = BAz. (24

The Newton system above can be solved by first computing
Az by inverting the quantity in brackets in the first line and
applying it to the right-hand-side, and then computing (Ax;
Ay; At; AB; As; Ak) by performing the multiplication BAz.
This matrix-vector product can be accomplished classically
in O(N?) operations. Note that matrix-matrix products
where one of the matrices is an arrowhead matrix (S or X)
can also be carried out in O (N?) classical time, as the form
of arrowhead matrices given in eq. (21) implies that the
product can be computed by summing several matrix-vector
products. Finally, note that since the second and fourth block
columns of the first matrix in eq. (22) are zero, the second
and fourth block rows of B (e.g., in eq. (Cl)) can be
completely omitted from the calculation.

[0088] Thus, there are three main choices for how to run
the [PM when the solution to linear systems is inexact: first,
by solving eqgs. (19) and (22) directly and allowing inter-
mediate solutions to be infeasible; second, by determining a
matrix B by inspection as described in section Additional
Information C and then solving eqgs. (23) and (24); third, by
determining a matrix B via QR decomposition and then
solving eqgs. (23) and (24). When the linear system is solved
using a quantum algorithm, as discussed in section IV, this
disclosure refers to the algorithm that results from each of
these three options by I[-QIPM, [F-QIPM, and [F-QIPM-
QR, respectively. The pros and cons of each method are
summarized in table II.

6. Neighborhood of the Central Path and Polynomial
Convergence

[0089] Prior literature establishes that if sufficiently small
steps are taken (i.e., if G is sufficiently close to 1), then each
intermediate point stays within a small neighborhood of the
central path. This disclosure now reviews these conclusions.

For a vector u=(u,; fi)e QX the following matrix is defined:

o 25)

o + 1ty = IIMII2

:a

\[ ~ @l 1 + ———

&
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which, as for the arrowhead matrix, generalizes to the
product of multiple cones by forming a block diagonal of
matrices of the above form. This disclosure uses the follow-
ing distance metric

dF(x,T,S,K):\/Z'\/\\sz—p(x,T,S,K)e\\2+(Tk—p(x,‘c,s,l<))2. (26)
The distance metric induces a neighborhood N, which
includes both feasible and infeasible points, as well as the
neighborhood N ., which includes only feasible points

N V={(xy,71,0;8K): dp(x,T,5,K) <Y, T,5,K)} @27

N =N @nP, 28)

where P ;. denotes the set of feasible points for the self-dual
SOCP. Note that the vector T s can be computed classically
in O(N) time given access to the entries of x and s. Thus,
whether or not a point lies in NV () can be determined in

O (N) time.
[0090] So long as 0<y<!4 and (x; y; T; 0; s; K)e N AV),
then the following may be true:
(AR y+HAY THAT; 0+A8; s+As e +AK)E N (D), (29)

where

~ 4 +200+ D1 - o)) (30)

- T

TABLE II
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despite an inferior theoretical guarantee of success. Thus, in
sections V and VI, where the QIPM implementation,
resource count, and numerical analysis are described, this
disclosure focuses on the [I-QIPM. This disclosure presents
some of the results of the numerical simulations of the
[F-QIPM and IF-QIPM-QR results in the section Additional
Information.

IV. QUANTUM INTERIOR POINT METHODS
(QIPM)

A. Introduction to QIPM

[0093] Asdiscussed in section III, each iteration of an [PM
SOCP solver involves forming and solving a linear system
of equations that depends on the intermediate point at the
current iteration. For classical IPM implementations for
SOCP, the linear systems of equations are typically solved
exactly; for example, the numerical SOCP solving package
ECOS solves linear systems with a sparse LDL (Cholesky)
factorization. For arbitrary dense systems, the runtime of
solving an LXL system this way is O (L*), but by exploiting
sparsity the actual runtime in practice could be much faster,
by an amount that is hard to assess. Alternatively, it would,
in principle, be possible to employ classical iterative
approximate linear system solvers such as conjugate gradi-
ent descent or the randomized Kaczmarz method. The
choice of the linear system solver thereby determines the

Choices on which version of the Newton system to solve lead to different
versions of the QIPM, even with the same underlying quantum subroutines.

IF-QIPM-QR

Equations (23) and (24)

N+1
Yes

I1-QIPM IF-QIPM
Newton system Equations (19) and (22) Equations (23) and (24)
Size of Newton system (L) 2N +K + 3 N+1
Feasible intermediate points No Yes
Caveats Theoretical convergence Ill-conditioned null-space Uses classical QR

guarantee uses O(1%)
(rather than O((¥)
iterations

basis leads to large

Newton system

condition number of

decomposition, which could
dominate overall runtime

[0091] Thus, if I'<y, and assuming the Newton system is
solved exactly, every intermediate point will lie in N (y).
This condition is met, for example, if Y=V10 and 6=1—-(20V2
\@+D))™". Since each iteration reduces the duality gap by a
factor , the duality gap can be reduced to € after roughly
only 20:§2(+1) In(1/€) iterations. If the Newton system is
solved inexactly, but such that feasibility is preserved (e.g.,
by solving inexactly for Az and then multiplying by B, as
described above), then an error 6 on the vector (x; T; s; K) can
be tolerated, and the resulting vector can still be within the
neighborhood at each iteration.

[0092] On the other hand, if the Newton system is not
solved exactly, then the resulting vector may not be feasible.
Thus, the II-QIPM version of the QIPM does not enjoy the
theoretical guarantee of convergence in ¢ (\T) iterations that
the [F-QIPM and IF-QIPM-QR versions do (see table II).
The best guarantees for the [I-QIPM would imply conver-
gence only after O (%) iterations. Nevertheless, it is unclear
if a small amount of infeasibility makes a substantial dif-
ference in practice: multiple versions of the QIPM were
simulated and similar overall performance was observed
when intermediate solutions were allowed to be infeasible,

overall complexity of the IPM SOCP solver. An idea of
QIPM is to use a quantum subroutine to solve the linear
system of equations. Other steps of QIPMs may be classical
and may remain the same as described in section III. As a
quantum linear system solver (QLSS) does not solve the
exact same mathematical problem as classical linear system
solvers and, moreover, a QLSS uses coherent (quantum)
access to the classical data as given by the entries of the
relevant matrices, there are various additional tools (dis-
cussed herein) that allow embedded QLSS subroutines as a
step of [PM SOCP solvers.

[0094] First, this disclosure discusses in section IV B the
input and output model of QLSSs and present the complex-
ity of state-of-the-art QLSSs. Then, section IV C provides
constructions based on quantum random access memory
(QRAM) to load classical data as input into a QLSS and
discusses the complexity overhead arising from that step.
Subsequently, section IV D presents so-called pure state
quantum tomography that allows to convert the output of the
QLSS into an estimate of the classical solution vector of the
linear system of equations. Section IV E puts all the steps
together and states the overall classical and quantum com-
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plexities of using QLSSs as a subroutine in [PM SOCP
solvers. The idea is to compare these costs to the complexi-
ties of classical IPM SOCP solvers and point out regimes
where quantum methods can potentially scale better that any
purely classical methods (e.g., in terms of the SOCP size N,
the matrix condition number ¥, etc.)

B. Quantum Linear System Solvers

[0095] For current purposes, a linear system of equations
is given by a real invertible LxXL matrix G together with a
real vector h=(h,, . . ., h;), and one is looking to give an
estimate of the unknown solution vector u=(u,, . . . , u,)
defined by Gu=h. The (Frobenius) condition number is
defined as

kA(G):=lGlIAG, €2

where ||| denotes the Frobenius norm and ||*|| for a matrix
argument denotes the spectral norm.

[0096] For this setting, the input to a QLSS is then
comprised of: (i) a preparation unitary U, that creates the
€= log L] qubit quantum state

®¢
> =[RS LRyl vialh) =U,1 00 (32)

where ||*|| for a vector argument denotes the vector two-norm
(standard Euclidean normy), (ii) a block encoding unitary U,
in the form

G (33)
Us :=[ 1Gll ]

[0097] on €+ . qubits for some £ ; €N, and (iii) an
approximation parameter €, ¢p € (0,1]. The quantum linear
system problem (QLSP) is stated as follows: For a triple (G,
h, €,,5p) as above, the goal is to create an £ -qubit quantum
state |¥) such that

Dyl o2
120 ol

defined by Gu=h with u=(u,, . . ., u,), by employing as few
times as possible the unitary operators U, U, their inverses
U,', U,%, controlled versions of Ug, U, and additional
quantum gates on potentially additional ancilla qubits. The
state-of-the-art QLSS using the fewest calls to U,, U, and
their variants, is based on ideas from discrete adiabatic
evolution. This disclosure notes the following explicit com-
plexities. In this formulation, the quantum state Iv}) corre-
sponds to the normalized solution vector of the normalized
linear system Gu=h. Thus, the state Iv) does not carry
information on the norm of the solution |[u||. This norm is
related to v by the relationship [[u||=|h|/IGv].

[0098] Proposition 1. The QLSP for (G, h, €,) can be
solved with a quantum algorithm on |—10g2(L)—|+4 qubits for

19 )| = esp for Iv) =

(35)
e =C- KFéG) +0 [ «r(G) ]

0
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for some constant C<15307 using Q=K (G) controlled que-
ries to each of U and U;*, and 2Q queries to each of U, and
U,%, and constant quantum gate overhead. If G is positive
semi-definite, then C<5632 instead.

[0099] Note that a stronger version of above proposition
works with the (regular) condition number k(G):=||G||G™|,
but it uses a block-encoding of the form eq. (33) in which the
normalization factor is ||G]| rather than |Gl In the current
case, the Frobenius version K-(G) is used, since there may
not a straightforward method to perform U, with normal-
ization factor ||G| ., described in section IV C. It is then
sufficient to give upper bounds for the remaining K(G) to
run the algorithm from proposition 1. In practice, such upper
bounds are given by using appropriate heuristics (cf. section
V on implementations).

[0100] Note that proposition 1 implies a solution to the
QLSP in eq. (34) with an asymptotic query complexity of
O (K€ 5,5p) 10 U, U, and their variants and under standard
complexity-theoretic assumptions this is optimal in terms of
the scaling O (), but not in terms of the scaling O (g, gp).
To get to an improved O (log(l/e,,sp)) scaling, an eigen-
state filtering method may be used that additionally invokes
a quantum singular value transform based on a minimax
polynomial. The following overall complexities are pro-
vided.

[0101] Proposition 2. The QLSP problem for (G, h, €,) can
be solved with a quantum algorithm on |—10g2(L)—|+5 qubits
that produces a quantum state

NPI0SY 15} +yTpIL) Ifail) (36)

with { 0°1.L) 1=0 and success probability p=V4. With that, the
sought-after €,-approximate solution quantum state I¥) can
be prepared using Q+d controlled queries to each of U and
U,", and 2Q+2d queries to each of U, and U,", where

0=2Cx (GO (i) (37

d=2%(GDIn(2/e,). (38)

Here, C<15307 is the same constant as in proposition 1.
[0102] This version of the algorithm basically uses propo-
sition 1 with constant choice of €,<V4, and then uses
eigenstate filtering to measure whether the final state is the
correct solution state. On average the algorithm is repeated
no more than twice to produce the desired state 19} . The
resulting scaling that proposition 2 implies for the QLSP
problem in eq. (34) is O(x log(l/ey,5p)). which under
standard complexity-theoretic assumptions is optimal in
both Kk and €,,¢p. In practice the Q=2Cx{G) dominates
over d and all other terms can be safely neglected for typical
settings—even for finite scale analyses. Moreover, the con-
stant C is typically an order of magnitude smaller than the
estimates given; for positive semi-definite G the constant is
estimated as 638. No direct estimates for general matrices G
are available, but this disclosure henceforth assumes
C=2000 for the numerical estimates. Additionally, note that
for the eigenstate filtering step via QSVT, the minimax
polynomial and its corresponding quantum signal process-
ing angles have to be computed. This is done as part of
classical pre-processing.

[0103] Note that the implementation of the QLSS in each
of proposition 1 and proposition 2 assume perfect imple-
mentation of the underlying circuits, without additional gate
synthesis errors. In practice, however, these circuits will not
be implemented perfectly, and hence additional sources of
error are later included (e.g., block-encoding error, imper-
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fect rotation gates, etc.) that also contribute to €,, p. These
additional contributions are in section IV D, for example.

[0104] The following continues by laying out the addi-
tional classical and quantum resources used to employ
QLSS for estimating in an end-to-end fashion the classical
solution vector v=(v,, . . ., v;) instead of the quantum state
Iv).

C. Block-Encoding Via Quantum Random Access Memory
(QRAM)

[0105] Many quantum algorithms (and in particular for the
current use case), use coherent access to classical data for
use in the algorithm. Block-encodings of matrices provide a
commonly used access model for the classical data by
encoding matrices into unitary operators, thereby providing
oracular access to the data. As mentioned above, for a matrix

Ge R*! | a unitary matrix U, block-encodes G when the
top-left block of U, is proportional to G, i.e.

. 39
U(;:=(G_/a .), (39

where a>|G| is a normalization constant, chosen as o=|\G| »
for the use case. The other blocks in Ug; are irrelevant, but
they are encoded such that Ug; is unitary. For current real
matrices G are focused on, but the extension to complex
matrices is straightforward. A block-encoding makes use of
unitaries that implement (controlled) state preparation, as
well as quantum random access memory (QRAM) data
structures for loading the classical data. Specifically, QRAM
is referred to as the quantum circuit that allows query access
to classical data in superposition:

40
S0 25 3w, @
J J

where ] is the address in superposition with amplitude y; and

Iaj) is the classical data loaded into a quantum state. There
are several models of QRAM one can use that differ in the
way in which the data is loaded. The two most notable
QRAM models are the select-swap (SS) model, which is
particularly efficient in terms of T-gate utilization, and the
bucket-brigade (BB) model, which has reduced susceptibil-
ity to errors when operated on potentially faulty hardware.

[0106] The block-encoding unitary Uy acts on £+7
qubits, where € = log,(L)] and, in our construction, £ =% .
To build it, U, may be formed as the product of a pair of
controlled-state preparation unitaries U, and Uy. Specifi-
cally,

Us=Ug'Up, “n
Ug:l0>®j> P> m/j) Ij) 42)

U102k 11 10,) @3)

May 2, 2024

where the ¢ -qubit states I\Vj) and I({)k) are determined from
the matrix elements G, of G, as follows:

G @4
Wiy=D G
=116,
Colgl és)
[¥) = ) G,

where G, denotes the jth row of G. That is, controlled on the
second £ -qubit register in the state Ij>, Uy prepares the
£ -qubit state I\Vj) into the first € -qubit register, and U,

performs the same operation for the states I({)k) modulo a
swap of the two registers. Both U, and U, utilize an

additional ¥ QRAM ancilla qubits that begin and end in the

state 10) . These controlled-state preparation unitaries Uy
and U, are implemented by combining a QRAM-like data-
loading step with a protocol for state preparation of £ -qubit
states. There are several combinations of state preparation
procedure and QRAM model one can choose with varying
benefits and resource requirements. Reference arXiv:2206.
03505 (hereafter “Clader”) studies the resources used to
implement these block-encodings and provides explicit cir-
cuits for their implementation. This disclosure simply
imports the relevant resource estimates from that work in
table III. In the current setting, the matrices to block encode
are typically dense, which is why the general constructions
from Clader are sufficient. For the current purposes, this
disclosure works with the minimum depth circuits that
achieve a T-gate depth of O (log L), at the price of using a
total number of O (L?) many qubits for the data structure
implementing the block encoding unitary U. Additionally,

the € -qubit unitary U, defined by Ih) =UhIO)®[ corre-
sponds to the special case of quantum state preparation and
is directly treated by the methods outlined in Clader. The
resources used to synthesize U, up to error €, are also
reported in table IIL.

TABLE III

Logical quantum resources used to block-encode (left column)
and control-block-encode (right column) an L x L matrix G to
precision g € [0, 1], where L =2%is
assumed. Here terms are suppressed doubly and triply logarithmic

in L and l/e; (see Clader).

Controlled Block

Resource Block Encoding Encoding

# of qubits  Ngy,: =412 -3L+2€—1

T-depth Tppe: =102 + 24 log,(l/eg) + 44

T-count Tepe: =(12 log,(1/es) + 56)L.2 —
24L - 12 logy(1/eg) — 32€ — 32

Nochet =Ngpe + L
Tpeve: =Tppe +4
Tecoer =Tepe +
16(L - 1)
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TABLE IV

Logical quantum resources used to prepare an arbitrary £ -qubit quantum
state |h} from classical data (left column) and a single-qubit
controlled version (right column) to precision g, € [0, 1]. Here
terms are suppressed doubly and triply logarithmic in L and 1/g, (see
Clader). For a single-qubit control, there are no additional Clifford gates
used, which can be observed by examining the state-preparation procedure
in Clader and noting that the state [00)®? 1)+ 11) Iy} can
be prepared with minor modifications to the procedure that prepares ).
First, use the “flag” qubits to control both the angle loading and unloading
steps (rather than just the unloading steps), and second, control every flip
of the flag qubits in that procedure with the first single-qubit control, thus
turning NOT gates into CNOT gates, which are also Clifford. When the
control is ON, the procedure works as before, and when the control is
OFF, none of the qubits leave the 10} state.

Controlled State

Resource State Preparation Preparation

# of qubits Nep: =AL +€—¢6 Ngesp: =Ngg + 1
T-depth Tpy: =3 €+ 12logy(1/e)) +24  Toep' =Ty
T-count T, =(12 logy(1/g,,) + 40)L — Teesp: =Ty

12 logs(1/e,) — 16 € — 40

[0107] The minimum-depth block encodings of Clader
also incur some classical costs. Specifically, the quoted
depth values are only achievable assuming a number of
angles have been classically pre-computed and for each
angle a gate sequence of single-qubit Clifford and T gates
that synthesizes a single-qubit rotation by that angle up to
small error. Calculating one of the angles can be done by
summing a subset of the entries of G and computing an
arcsin. Meanwhile, circuit synthesis uses applying a version
of the Solovay-Kitaev algorithm. For the block-encoding
procedure, L(I.—1) angles and their corresponding gate
sequences are computed, which uses a total runtime of L?
poly log(l/es;), although this computation is amenable to
parallelization. For the state preparation procedure, L—1
angles and their sequences are used.

D. Quantum State Tomography

[0108] This disclosure described how a quantum state 1§
)} approximating the (real-valued) solution |v) of a linear
system up to precision €, s, can be produced. As mentioned
in section IV B, in the actual circuit implementation, the
approximation error €, sp accounts for both the inherent
error from eigenstate filtering captured in proposition 2 as
well as additional gate synthesis error arising from imperfect
implementation of block-encoding unitaries and single-qubit
rotations. The next step is to approximately read out the
amplitudes of 1¥) into classical form. To start out, this
disclosure proves the following proposition, which commu-
nicates how many copies of a quantum state are used to
provide a good enough classical description of it, up to a
phase on each amplitude.

Proposition 3. Let 0<¢,8<1 and Iy} =X,_,,01j} be a quan-
tum state. Then,

5+421

3¢?

In(21/8)<3.1942¢2 In(2L/8) measurements of ly) in the
computational basis suffice to learn an £-f _-norm estimate
lael of lal, with success probability at least 1-6.
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[0109] The proof is provided in the section Additional
Information B1. Recall that proposition 2 gives a unitary U
such that

UIOSO{)) =\/I_]|05) ‘;) +\/§IJ_) Ifail) (46)

with 1¥) :=X,_,V¥,1i) , <0°1 1) =0, and p>V4. The vector ¥ may
have complex coefficients, but it approximates a real vector
Vv up to some error €, gp in £, norm. A goal is to obtain an
estimate ¥'=(v,', . . ., v,/) such that

|lv—#"|<& for an error parameter &e [0,1]. 47N

where & captures other (e.g., all) sources of error. Proposi-
tion 3 is not quite sufficient because it only gives us an
estimate of the absolute value of V. However, the following
procedure is sufficient:

[0110] 1. Create k=57.5 L In(8L/8)/(e*(1-€*/4)) many
copies of the quantum state U|05+£> =\pl0%) 19} +
NI=pIL) Ifail) , and measure them all in the computa-
tional basis to give empirical estimates {p;},_,” of the
probabilities pl¥,I2.

[0111] 2. Using controlled applications of U, create
k=57.5 L In(6L/8)/(¢*(1—€*/4)) copies of

L 48)
2200019+ 272|000 D Ap] i) +1 4 Mfail'),
=1

which by applying a Hadamard can be mapped to

Jpi+
2%:1\/17‘”)

2

i) - “9)

LEpi I

> + ] )il

|0%)10) +[0%11)

Here I1') is an arbitrary state orthogonal to 10°} and Ifail'
} and Ifail"} are arbitrary unnormalized states. The quanti-
ties \/E are (possibly complex) amplitudes that satisfy |
\/E—\/Elemp for all i; they arise because the state Ei:IL\/EIi
} can only be prepared up to some error. Next, measure this
state in the computational basis, denoting the measurement
count of the result 0% as k;* and the result 0° 1i as k;.

[0112] 3. Define

o = mm[@,

K-k ] 0
r

& —kf] G

o= 2

2 = 52)
0 if \fpr = ———¢€4f1—— +&;
W2z ¥4

af if @;#0and kf =k
n if a;+0 and & <k;

and let &; =

a

Output the estimate

FUNIEED A L2
W) =2kl Y, @
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Proposition 4. Suppose that [¥—v|<e,,sp and that v is a
real-valued vector. Let € and €,,, be constants that satisfy e+
\/ﬁemﬁ\/fegmpsl/z. Then the algorithm above outputs an
estimate ¥' such that H\N/'—VH<£+1.58\/f£mp+1.58£QLSP with
probability 1-9.

[0113] The proof is provided in the section Additional
Information B1. The statement is used to bound the total
error parameter & by the quantity €+1~58\/E€mp+1~58€gmp~
Proposition 4, together with proposition 2, produces with
high probability an O (€) good estimate ¥' of v by using
O (LIn(L)/e*) many samples. If a goal is to resolve the initial
linear system Gu=h, then the vector ¥' produced as in
Section IV D as an estimate for the normalized vector
v=u/|[ul|, gives an estimate for u via

1]
G|’

=7

for which the following is found:

1]
=2l < llv=¥11- (1 + k(G ===
Gl

[0114] There are other methods in the literature that allow
to perform pure state quantum tomography with comparable
query complexities, but this disclosure favors the above
method because of its computational simplicity, and the fact
that it does not require solving any potentially costly addi-
tional optimization problems. The sample complexity has
been improved to O (LIn(L)/e%), which comes at the cost of
more complicated quantum circuits and higher constant
overheads (See Reference arXiv:2206.03505). It would be
interesting to work out the more involved finite complexity
of this result, and further comment on the potential impact
of this are provided in section VIL

E. Asymptotic Quantum Complexity

[0115] Putting things together, the steps of our QLSS for
given real LxL matrix G and real vector h of size L may be:

[0116] 1. Construct the circuits that implement the
block-encoding unitaries U, and U, up to error €, and
€, via quantum state preparation and QRAM, which
involves a classical pre-processing cost scaling as
Lpoly log(1/eg,). The quantum resources used are
described in table IIl. The T-gate depth (referred to as
“time complexity”) is O (log L) and the total T-gate
count is O (L%).

[0117] 2. Employ the QLSS unitary from proposition 2
to approximately solve the corresponding QLSP, lead-
ing to the quantum state 1¥) . The query complexity to
Ug, U, their controlled versions, and their inverses, is
C)_|(KF(G) log(1/¢)). The number of qubits useed is |—10g
L K5.

[0118] 3. Repeat the previous step O (LIn(1/8)e™?)
many times to implement the pure state quantum
tomography scheme from section [V D, which also
includes the use of an O (L) qubit QRAM structure, and
one ancilla qubit. Tomography leads to the sought-after
classical vector estimate ¥' with ||¥'—||<e.

May 2, 2024

[0119] The QLSS can then be used for each iteration of an
I[PM SOCP solver, which involves forming and solving a
linear system of equations, resulting in the QIPM SOCP
solver. This disclosure provides the quantum circuits used to
implement the solver in the section IV D.

F. Quantum Circuits

[0120] The following are the quantum circuits used for the
QLSS of proposition 1. The QLSS includes applying a
unitary U[s] for many different values of s, where U[s] is a
block-encoding of a certain Hamiltonian related to G and h,
as specified below. The unitary acts on 4+ +¢  total qubits,
where the final £ ; qubits are ancillas associated with Ug.
The four single-qubit registers are referred to with labels a,,
a,, a,, a,, the € -qubit register with label L, and the € _-qubit
register with label £ .. These labels are used as subscripts on
bras, kets, and operators to clarify the register to which they
apply. The circuit for U[s] is depicted in FIG. 1. Specifically,
the unitary U[s] is a block-encoding of the (2+7 )-qubit
Hamiltonian c(s)-H [s]:=(1-f(s)H +f(s)H , on registers
a,a,L, where c(s) is a normalization factor (defined later in
eq. (60)),

0 0 Ip—|hyhl, O (53)
_ 0 0 0 -1
Ho=lpcma, o 0 o
0 -1 0 0
0 0 0 G (54
0 0 Gy - |myhl;) ©
and 4, = Uz =Iz) 0]
0 (=1l G 0 0
Gt 0 0 0

and where I, denotes the identity operation on subsystem L,
and the four rows and columns correspond to the sectors
with qubits a,, a, set to (0,0), (0,1), (1,0), (1,1). FIG. 1
features the expressions:

CR(s) := |0><0|a4 BR($),, + 1)1y, ® Ha, ¢5)

CRY(9) = [1)(1],, ® R(5),, +10301,, ® Hyy 56)

Ve = 10)0l,, ® Za, ® e, + 1)1 ( 0 UG) GD
= ® Zay &l +11)(11,, ® ,

6= 1000 8 Zny ®eg + 10Uy | »

where H denotes the single-qubit Hadamard gate, and R(s)
is given by

Rs) = 4(1 AU C) ) 58
CNu-feP st SO S

G . 59

F6 = 2 (1 (14 s{or @ - 1)) ©?

kp(G)—1

The normalization factor of R(s) above combines with a
factor of 1/7/Z introduced by the Hadamard gate to give an

overall normalization factor for ¥ (s) of

D=1+ e 27121] (60)
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and scheduling function f(s) with f(0)=0 and f(1)=1. Note
the self-inverse property U[s]’=1 Vs <[0,1]. The overall
quantum circuit U for the quantum algorithm of proposition
1 is then given as:

Q 61)

with the walk operator

P[s]:=WU][s],
where W is the operator that acts as identity on registers
a,a,L (which host the Hamiltonian # [s]) while performing
the reflection (2|0|a2a3{’6)0( —1y,a,¢¢) on the remaining
qubits. The unitary U makes Q controlled queries to each of
U, and UF, and 2Q queries to each of U, and U7, and it
has constant quantum gate overhead.
[0121] FIG. 1is a diagram of an example quantum circuit
that is a main component of the example quantum circuit for
proposition 1, enacting the unitary U[s] on registers
a;a,a,a,Lf  of the scaled Hamiltonian c(s)-H [s], where
H [s]=(1—Ff(s)H ;+f(s)H |, on registers a,a,L. The quan-
tum gates and functions are defined in egs. (53) to (59)
except for sub-circuit Uy, which is depicted in FIG. 4. The
unitary U[s] is then used in eq. (61) to define the overall
quantum circuit U for proposition 1.
[0122] Next, give the remaining QSVT eigenstate filtering
quantum circuit for the refined quantum linear system solver
of proposition 2. The null space of ¢(1)-H [1] is of interest,
which has ground-state energy equal to zero and spectral gap
at least c(l)KF_l(G)z(\/fKF)_l. As such, employ the Cheby-
shev minimax polynomial:

1- (G2
2 ’
T,[_l MM)

2 _ 2 (62)
[[ 1 2)5 KE (G)/2]
R,(x, K}l(G)) =

1- (G2

where T,(*) is 1-th Chebyshev polynomial of the first kind, as
part of the corresponding QSVT quantum circuit. R, has
even degree d equal to

d:=21=2 (G)n(2e,, ))for some €, (0,1] (63)

asp asp

where €, is the precision to which R, approximates the
optimal filter operator. The QSP subscript stands for “quan-
tum signal processing.”

[0123] The circuit for the eigenstate filtering step is
depicted in FIG. 2. To implement it, one may classically
pre-compute the corresponding QSP angles {¢,, . . ., 0,}.
The query complexity to the block encoding U[1] is given by
d, the additional gate overhead is as in FIG. 2, and the total
number of qubits is 1+4+f . Finally, using the overall
quantum circuit U from proposition 1 with constant approxi-
mation parameter €,=4 therein (to produce an input state to
the quantum circuit of FIG. 2), gives the overall quantum
circuit of the QLSS from proposition 2, which then solves
the QLSP to error €,=¢_ .

[0124] FIG. 2 is a diagram of an example Quantum
singular value transform (QSVT) circuit, acting on the
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block-encoding U[1] of H (1)=F ,/\2, as defined in eq.
(54). The circuit features one additional ancilla qubit and
depends on the classically precomputed rotation angles {¢,,
e 04

[0125] A quantum tomography routine may also include
performing controlled versions of the above circuits as
described in eq. (49) and illustrated in FIG. 3 (which
replaces FIG. 1). More specifically, FIG. 3 is a diagram of
an example-controlled version of the quantum circuit in
FIG. 1, controlled on qubit c. Note that not all gates need to
be controlled on c, as their inverses follows in the circuit.
The controlled circuits can be accomplished by modifica-
tions to the circuits in FIGS. 1 and 2 as follows.

[0126] Any QSVT circuit can be made controlled by
simply controlling the application of the z rotation gates,
since the rest of the circuit contains only symmetric appli-
cations of unitary gates and their inverses. Thus, a controlled
version of FIG. 2 may be created by simply performing
controlled-c,, rotations, which uses two CNOT gates and an
extra single qubit ¢, rotation gate.

[0127] Controlling the linear system portion is not enough
to implement eq. (49). This may (e.g., must) be followed up
with a controlled state-preparation routine, controlled on the
value of the qubit ¢ being in the |1} state. The resource
analysis for controlled state-preparation is reported in Ref.
Clader. The resource counts are reported here in table I'V.

V. IPM IMPLEMENTATION AND RESOURCE
ESTIMATES FOR PO

[0128] The previous section reviewed the ingredients used
to implement the QIPM, namely, QLSS, block-encoding,
and tomography. Here, combine those ingredients to
describe how the QIPM is actually implemented, making
several observations that go beyond prior literature. Also
perform a full resource analysis of the entire protocol and
report resources used to run the algorithm.

A. QIPM Loop and Pseudo-Code

[0129] A QIPM is formed from an [PM by performing the
step of solving a linear system with a quantum algorithm; the
rest of the steps are classical. Example Algorithm 1 presents
pseudocode for the interior point method where the single
quantum subroutine—approximately solving a linear sys-
tem—appears in blue text. The input to Algorithm 1 is an
SOCP instance with N variables, K linear constraints, and r
second-order cone constraints, along with a tolerance
parameter €. Here note that K=0O (N) in the case of the
formulation of the PO problem simulated in section VI. The
output of the QIPM is a vector x that is J(€) close to
feasible, and O (e) close to optimal.

[0130] A description of the QIPM algorithm is provided
herein along with the following new observations:

[0131] Classical costs: The IPM uses 0(\/1_r log(1/€))
iterations. In the classical case, when solving the PO
problem via SOCP with an IPM, the cost of an iteration
is dominated by the time used to solve a linear system
of size LxL, which is O(N®) if done via Gaussian
elimination, since L~0 (N) in the PO problem. In the
quantum case, this step is performed quantumly. How-
ever, even in the quantum case, some classical costs are
incurred: the left-hand and right-hand sides of the
Newton system in eq. (19) and eq. (22) are classically
computed to load this classical data into quantum
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circuits that perform the QLSS and tomography to gain
a classical estimate of the solution to the linear system.
In particular, constructing the linear system includes
classical matrix-vector multiplication to compute the
residuals on the right-hand-side of the Newton system
in eq. (19). If the SOCP constraint matrix A is O (N)xN
and the number of cones r=0 (N), then this classical
matrix-vector multiplication takes O (N?) time in each
of the O (\N) iterations. Thus, the QIPM uses at least
O (N*®) classical time. Additionally, in the resource
counts the minimal depth block-encoding circuits from
Reference Clader are used, which use N”poly log(1/¢)
classical time per iteration (although this can be par-
allelized) to compute angles and corresponding gate
sequences to precision €. These classical costs limit the
maximum possible speedup of the QIPM over the
classical IPM, but if the quantum subroutine is suffi-
ciently fast that classical matrix-vector multiplication
and angle computation is the bottleneck step, then this
is a good signal for the utility of the QIPM.

[0132] Preconditioning: Since the runtime of the QLSS
depends on the condition number of the matrix G that
appears in the linear system Gu=h, it is worth exam-
ining preconditioning techniques for reducing the con-
dition number. In the implementation proposed, a
simple form of preconditioning may be preformed. Let
D be a diagonal matrix where entry D;; is equal to the
norm of row i of the matrix G. Instead of solving the
linear system Gu=h, solve the equivalent system
(D™'G)u=D""h. Note that D™'G and D™'h can each be
classically computed in O (N?) time, roughly equal to
the time used to compute h in the first place (see
previous bullet), so this step is unlikely to be a bottle-
neck in the algorithm. In the numerical experiments
herein, the condition number of D™'G is typically more
than an order of magnitude smaller than G, and some-
times several orders of magnitude (see FIG. 9 in section
VI).

[0133] Norm of linear system and step length: As dis-
cussed in section IV B, QLSSs produce a normalized
state lu>, where u is the solution to Gu=h, and quantum
state tomography on |u) can only reveal the direction
of the solution u and not its norm. The norm can be
estimated separately with a comparable amount of
resources, but in the context of QIPMs, it is not
necessary to learn the norm of the solution. If the
direction of the solution is known, the amount by which
to update the vector in that direction can be determined

16
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classically in O (N) time as follows. If (Ax; Ay; AT; AB;
As; AK) is the normalized solution to the Newton linear
system in eqs. (19) and (22), then the amount to step in
that direction is equal to

HiG T s Ol -+ D
—(Ax)Ts - (As)Tx - (AT — (AT)K.

64

This expression is chosen such that the duality gap of the
new point is (e.g., exactly) a factor of 6 smaller than the old
point, up to deviations that are second order in the step
length. Note that if the old point is feasible and the solution
to the linear system is exact, the second and higher order
contributions vanish anyway.

[0134] Adaptive tomographic precision and neighbor-
hood detection: In conventional work, the choice of
tomography precision parameter is determined by a
formula that aimed to guarantee staying within the
neighborhood of the central path under a worst-case
outcome. However, since determining whether a point
is within the neighborhood of the central path can be
done in classical O (N) time (see section III C 6), the
tomography precision parameter & herein may instead
be determined adaptively for optimal results. For
example: start with &='%, solve the linear system to
precision & and check if the resulting point is within the
neighborhood of the central path. If yes, continue to the
next iteration; if no, repeat the tomography with &¢&/
2. Since the complexity of tomography is O (1/€?), the
cost of this adaptive scheme is proportional to a geo-
metric series 4+16+64+ . . . +0 (1/£%) of which the final
term makes up most of the cost (accordingly, for
simplicity, the resource calculation may only account
for the final term). This cost could be much lower than
the theoretical value if the typical errors are not as
adverse for the IPM as a worst-case error of the same
size.

[0135] The pseudocode in Algorithm 1 illustrates the
“infeasible” version of the example algorithm (II-QIPM
from table II). The numbers on the left refer to steps of
Algorithm 1. Text in Algorithm 1 bookended by “/*” and
“*/” are comments on one or more of the steps. To imple-
ment the feasible versions (IF-QIPM and [F-QIPM-QR),
minor modifications are made to reflect the process
described in section IIL

Algorithm 1: Quantum Interior Point Method

Input: SOCP instance (A, b, c), list of cone sizes (N, --- , N,) and tolerance €

Output: Vector x that optimizes objective function (eq. (5)) to precision €

/* For portfolio optimization, A, b, ¢ are given in eq. (10). First n

entries of x give optimal stock weights.

1 (Gy18586) « (e; 0:11e51)
1 1 1 1
peloel-———
2042 r

3 while pu 2 e:

,y < 1/10

*/
/* initialize on central path */

/* set parameters */

/* Follow central path until

duality gap less than € */
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Algorithm 1: Quantum Interior Point Method

AT -c T
-4 0 b -D
Ge ¢t = 0 -z

[

=)

o

o o
OO OO ~
N oo =

0 0 « O
A y+er-TH-3s
Ax — bt + B0
i —c'x+by+z0
5 N T

5 =
€ {j” = classically */
ope — X Se

Op — KT

6 Iforj=1,..,L:

7 2
ge > 1Gal

/* from egs. (19) and (22) */

/* mat .-vec. mult. performed

/* preconditioning via row

normalization */

/* norm of jth row of G */

0 hi < hjlg
10 fork=1,...,L:
|G « Gylg
11 I Classically compute L? angles and gate decompositions to perform block-encoding of G and state-
| preparation of [h>
12 18«1
13 I repeat /* try smaller and smaller &
| until central path is found */
1411 E« &2
15 11 (Ax; Ay; AT; AB; As; AK) < ApprSolve(G, h, &)
16 11 plo-DE+1)
(step length) = (Ax)7s + (As) " x + (Ax)T + (AT)K
17 11 (x5 95150585 K) « (x5 95 T; 0; 85 K) + (step length) - (Ax; Ay; AT; AB; As; Ak)
18 luntil (x5 y; 15058, k)e Ny
19 105 y; 1505 85 K) « (X5 y5 15 975 85 K)
20 p<«op
21 return x/t
22 def ApprSolve (G, h, &):
23 IL«<2N+K+3
24 18 « 0.1
25 le « 0.98
26 1k « 57.5LIn(6L/8)/(eX(1 — %/4))
27 | Run tomography as described in section IV D using k applications and k controlled-applications of the
| QLSS algorithm on the system (G, h)
28 Ireturn Vector ¥ for which 1191l = 1 and I¥' — vl £ & with probability at least 1 — 8, where v o<
IG™'h

B. End-to-End Quantum Resource Estimates

[0136] The QIPM described in the pseudocode takes 2082
rln(e ™) iterations to reduce the duality gap to €, where r
is the number of second-order cone constraints. In the case
of the portfolio optimization problem, r=3n+1, where n is
the number of stocks in the portfolio. Choosing the constant
pre-factor to be 20\2 allows us to utilize theoretical guar-
antees of convergence (modulo the issue of infeasibility
discussed in section III C 5); however, it would not be
surprising if additional optimization of the parameters or
heuristic changes to the implementation of the algorithm
(e.g. adaptive step size during each iteration) would lead to
constant-factor speedups in the number of iterations. Since
the number of iterations would be the same for both the
quantum and classical IPM, these sorts of improvements
would not impact the performance of the QIPM relative to
its classical counterpart.

1. Quantum Circuit Compilation and Resource Estimate for
Quantum Circuits Appearing within QIPM

[0137] The QIPM includes repeatedly performing a quan-
tum circuit associated with the QLSS and measuring in the
computational basis. The costs of each of these individual
quantum circuits is accounted for herein. There are two
kinds of circuits that are used: first, the circuit that creates
the output of the QLSS subroutine, given by the state in eq.
(36), and second, the circuit that creates the state used to
determine the signs of the amplitudes during the tomography
subroutine corresponding to a controlled-QLSS subroutine,
given in eq. (49).

[0138] To simplify the analysis, first compile the circuits
from the previous section into a primitive gateset that
includes Toffoli gates (and multi-controlled versions of
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them), rotation gates, block-encoding unitaries, state-prepa-
ration and controlled state-preparation unitaries. This com-
pilation allows combining previous in-depth resource analy-
sis for these primitive routines (See Ref. Clader) with the
additional circuits shown here.

[0139] From left to right in the U[s] circuit shown in FIG.
1, the circuits for Uy, CR%s) (and equivalently CR'(s)),
and V; in FIGS. 4 to 6, respectively. In addition to these
circuits, controlled versions of them may be performed
within the tomography routine to estimate the sign of the
amplitudes. The controlled-U[s] gate is given in FIG. 3. The
implementation of the controlled versions of CR%(s) (and
equivalently CR'(s)), and V; are also depicted in FIGS. 5
and 6, respectively.

[0140] With these decompositions in place, table V reports
the resources used to perform each of the two kinds of
quantum circuits involved in the QIPM (which are each
performed many times over the course of the whole algo-
rithm). The resource quantities are reported in terms of the
number of calls Q to the block-encoding (which scales
linearly with the condition number), as well as the con-
trolled-block-encoding and state-preparation resources
given previously in tables III and IV. The expressions also
depend on various error parameters which must be specified
to obtain a concrete numerical value.

[0141] In section VI, after observing empirical scaling of
certain algorithmic parameters, error parameters are
described to arrive at a concrete number for a specific
problem size.

2. Resource Estimate for Producing Classical

Approximation to Linear System Solution

[0142] The resource estimates described above capture the
quantum resources used for a single coherent quantum
circuit that appears during the algorithm. The output of this
quantum circuit is a quantum state, but the QIPM includes
a classical estimate of the amplitudes of this quantum state.
This classical estimate is produced through tomography, as
described in section IV D, by performing k=57.5 L In(6L/
3)/(e*(1—€%/4)) repetitions each of the QLSS and controlled-
QLSS circuits, where ¢ is the desired tomography precision
and 0 is the probability that the tomography succeeds. In the
example implementation given in Algorithm 1, fix 6=0.1.
Thus, to estimate the quantum resources of a single iteration
of the QIPM, the previous resource estimates reported in
table V should each be multiplied by k. With P processors
large enough to prepare the output of the QLSS, these k
copies may be prepared in k/P parallel steps, saving a factor
of P in the runtime at the expense of a factor of P additional
space. The resources and scaling estimates do not account
for any parallelization, and completely serial execution and
runtime is assumed.

[0143] After multiplication by k, these expressions give
the quantum resources used to perform the single quantum
line of the QIPM, ApprSolve. This subroutine has both
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classical input and output and can thus be compared to
classical approaches for approximately solving linear sys-
tems.

[0144] FIG. 4 is a diagram illustrating an example decom-
position of the Uy, gate (shown, e.g., in FIG. 1) into a
state-preparation unitary U, and multi-controlled-Toffoli
gates. The reflection operator W is given by W'=I,, ;—2I 1¢
) 11, ®I0{{0l,. Not pictured are additional ancillas that
begin and end in 10{ and are utilized to implement the
unitary U, in shallower depth.

[0145] FIG. 51is a diagram illustrating an example decom-
position of the CR(s) gate (top) and controlled-CR%(s) gate
(bottom), as defined in eq. (55), into single qubit rotation
gates and CNOTs (top) or Toffolis (bottom). The gate R (¢)
is defined to map 10{ - cos(9/2)I0{ +sin(¢/2)I11{ and 11(
> —sin(¢/2)10{ +cos(¢/2)I1{ . The rotation angle

6 = 2 arctan (ﬂ),

J®

where f(s) given in eq. (59). The CR'(s) gate is identical but
with the control bit sign flipped. Note that the R (17/4) gates
are Clifford conjugate to a single T or T' gate.

[0146] FIG. 6 is a diagram illustrating an example decom-
position of the V unitary (top) and controlled-V unitary
(bottom), as defined in eq. (57), into calls to a standard
block-encoding unitary U, and other elementary gates,
using a single ancilla qubit initialized to the 10) state. Not
pictured are additional ancillas that begin and end in 10) and
are utilized to implement the unitary Uy in shallower depth.

)

TABLE V shows quantum resources used to create the state
output by the quantum linear system solver, given in eq. (36)
(QLSS, left) or the state used to compute the signs during the
tomography subroutine, given in eq. (49) (Controlled QLSS,

right) for a square linear system of size L=2¢. Note that
these resource quantities do not yet account for the k
classical repetitions used in order to perform tomography on
the output state. The parameters Q and d each scale linearly
with the condition number of the linear system, as defined in
proposition 2. The symbols N, Tp,.» and T, denote
the number of logical qubits, the T-depth, and the T-count,
respectively, for performing a controlled-block-encoding, as
reported in table IIl. The symbols Tjg,, and T,
analogous quantities for state-preparation, as reported in
table IV. The parameters €,,, €, and €, €(0,1] are error
parameters corresponding to the gate synthesis precision
used for the CR%(s) and CR'(s) rotations, controlled state-
preparation step used by tomography, and the QSVT phases,
respectively.

are

ar?
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TABLE V

Resource QLSS Controlled QLSS
# Qubits Noeve +5 Noepe +6
T-depth 12Q logs(1/e,,,) + 2(Q + DT pepe + 12Q logs(1/e,,) + 2(Q + )Ty, +

4Q+ dTp,, + Q4L +31D) + 4Q + d)Tp,, + Q@44 +36) +

3d log,(1/e) + d(32€ - 2) 6d log,(1/e,) + d(32€ - 2) +

12 log,(1/e,,,) + 3(€-1)

T-count 12Q logs(1/e,,,) + 2(Q + ATy + 12Q logs(1/€,,) + 2(Q +

DT cepe + HQ + DTy, +
QAL +51) +

HQ+ DTy + Q4L +31) +
3d log(1/e,) + d(324 — 2)

6d log,(1/e) + d(32£ - 2) +

12 (L= Dlogy(l/e,) +

16L —£-1)

tsp.

3. Estimate for End-to-End Portfolio Optimization Problem

[0147] Recall that the full QIPM algorithm is an iterative
algorithm, where each iteration involves approximately
solving a linear system by preparing many copies of the
same quantum states. The duality gap p, which measures the
proximity of the current interior point to the optimal point,
begins at 1 and decreases by a constant factor 6 with each
iteration. Thus, the number of iterations to reach a final
duality gap € is given by:

Ny = [In(@/in (@) = {Ll <[2oyZn (€ )r].

m[1 - 20«1/5]

Recall from the discussion in section III C 3 that the output
of the QIPM will achieve an O(e) approximation to the
optimal value of the objective function.

[0148] Pulling this all together, the resources to perform
the full QIPM algorithm can be estimated, including the
multiplicative factors used to perform tomography as well as
the number of iterations to converge to the optimal solution.
Note that the relevant condition number k(G) and linear-
system precision & may vary from iteration-to-iteration as
the Newton matrix G changes. The overall runtime can be
upper bounded using the maximum observed value of
K(G), which is denoted by k,, and minimum observed
value of & across all iterations. At each iteration, to achieve
overall precision &, the tomography precision € is chosen to
be just smaller than & (e.g., choose €=0.98), while all other
error parameters (€,,, €,,, €, etc.) are chosen to be small
constant fractions of &, such that a total error budget of § is
not exceeded. As the non-tomographic error parameters all
appear underneath logarithms, these small constant factors
will drop out of a leading order analysis, and it suffices to
replace all of these error parameters with &.

[0149] The overall runtime may then be expressed in
terms of K., &, L (the size of the Newton system), and r (the
number of second-order cone constraints) up to leading
order and including (e.g., all) constant factors, which are
reported in table VI. Recall that for the infeasible version of
the QIPM acting on the self-dual embedding, L=2N+K+3,
where N is the number of SOCP variables and K is the
number of linear constraints. Note that in the leading order
expression, it is assumed that the contributions proportional
to Q=0 (k) dominate over terms proportional to Q=0 (k)
at practical choices of § due to the large constant prefactor
in the definition of Q (see proposition 2 and surrounding

discussion). The left column of table I from the introduction
is formed using the expressions in table VI, and substituting
the corresponding relations between L and n, where n is the
number of stocks in the portfolio optimization problem
given in eq. (10). That is, substitute r=3n+1 and L=2N+K+
3=8n+3m+6=14n+6 when m=2n is taken, where N is the
number of SOCP variables, K is the number of SOCP
constraints, n is the number of stocks, and m is the number
of time epochs used to create the matrix M as described in
section IL.

[0150] TABLE VI shows leading order contribution to the
logical qubit count, T-depth, and T-count for the entire
QIPM, including constant factors. The parameter L. denotes
the size of the Newton linear system and r denotes the
number of second-order cone constraints, while € denotes
the final duality gap that determines when the algorithm is
terminated. For the infeasible QIPM running on an n-asset
instance of portfolio optimization, as given in eq. (10),
L=14n+6 and r=3n+1; these substitutions yield the results in
table I. The parameter K, denotes the maximum observed
Frobenius condition number and & denotes the minimum
observed tomographic precision parameter across all itera-
tions.

TABLE VI
Resource QIPM complexity
# Qubits 412
T-depth (7 % 108YKkLATE2 log,(e™) logx(L) logs(kLI“27E-1)
T-count 2 x IOS)KFL3\/f§’2 log,(e™!) log,(L) logy(k:£™1)

VL. NUMERICAL EXPERIMENTS WITH
HISTORICAL STOCK DATA

[0151] The resource expressions in table VI include con-
stant factors but leave parameters K, and & unspecified.
These parameters depend on the specific SOCP being
solved. As a final step, numerical simulations of small PO
problems can be used to study the size of these parameters
for different PO problem sizes. This information enables us
to give concrete estimates for the resources used to solve
realistic PO problems with our implementation of the QIPM
and sheds light on whether there could be an asymptotic
quantum advantage.

[0152] The numerical experiments simulate the entirety of
Algorithm 1. The (e.g., only) quantum part of the algorithm
is to carry out the subroutine ApprSolve (G, h, &). The
quantum algorithm for this subroutine can be simulated by
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solving the linear system exactly using a classical solver and
then adding noise to the resulting estimated values to
simulate the output of tomography. Since the tomography
scheme illustrated in section IV D repeatedly prepares the
same state and draws k samples from measurements in the
computational basis, the result is a sample from the multi-
nomial distribution. In the numerical simulations herein,
samples from this same multinomial distribution are drawn,
thus capturing tomographic noise in a more precise way than
by simply adding uniform Gaussian noise, as was done in
conventional work. For simplicity, this disclosure assumes
that the part of the tomography protocol that calculates the
signs of each amplitude correctly computes each sign. To
numerically estimate resource counts, it is helpful to under-
stand what level of precision & is used to stay close enough
to the central path throughout the algorithm, as well as how
large the Frobenius condition number k. of the Newton
system is. Noteworthy, it may be desirable to know how
these quantities scale with system size and duality gap L,
which decreases by a constant factor with each iteration of
the QIPM.

[0153] Section III C 5 discussed three formulations of the
QIPM (see table II). The first (I1-QIPM) is closely related to
the original formulation, which does not guarantee that the
intermediate points generated by the IPM are feasible. The
other two are instantiations of the inexact-feasible formula-
tion, which uses pre-computing a basis for the null-space of
the SOCP constraint matrix. The first of these computes a
valid basis by hand (IF-QIPM), while the second uses a QR
decomposition to determine the basis (IF-QIPM-QR). All
three versions were simulated, and it was determined that the
II-QIPM stayed close to the central path, despite the lack of
a theoretical guarantee that this would be the case. Here the
results of the II-QIPM are presented. For comparison, in the
section Additional Information E, some numerical results
are presented for the feasible QIPMs, which do benefit from
a theoretical convergence guarantee, but have other draw-
backs.

[0154] As discussed in section V A, a simple precondi-
tioner is implemented that reduces the condition number by
about at least an order of magnitude with negligible addi-
tional classical cost. Resources estimates are reported
assuming a preconditioned matrix.

A. Example Instance

[0155] FIG. 7 presents as an example the results of one of
the simulations. A portfolio optimization instance of eq. (3)
was constructed by randomly choosing n=30 stocks from the
Dow Jones U.S. Total Stock Market Index (DWCF). The
following parameters were, for example, arbitrarily set to
g=1, £=0.05-1, and it was assumed the previous portfolio w
allocates weight to each stock in proportion to its market
capitalization. The returns of the 30 stocks on the first
m=2n=60 days in the dataset were used to construct an
average return vector U and an mxn matrix M for which
M*M==, the covariance matrix for the stock returns, as
described in section IIT B.

[0156] The infeasible QIPM acting on the corresponding
SOCP in eq. (10) was also simulated. The figure illustrates
how the simulation successfully follows the central path to
the optimal solution after many iterations. The duality gap
decreases with each step, and, notably, the infeasibility and
distance to the central path also decrease (exponentially)
with iteration. Also plotted is the tomography precision that
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was used to ensure that each iteration stayed sufficiently
close to the central path (determined adaptively as described
in the pseudocode in Algorithm 1). The plot exemplifies
how, despite the lack of theoretical convergence guarantees,
our simulations suggest that in practice the II-QIPM acting
on the PO SOCP will yield valid solutions.

[0157] FIG. 7 is a plot illustrating simulation results of the
QIPM on an SOCP instance corresponding to portfolio
optimization on n=30 randomly chosen stocks using m=60
time epochs. The duality gap p (defined in eq. (14)), the
distance to the central path d (defined in eq. (26)), and the
infeasibility (defined as the norm of the residual on the
right-hand-side in eq. (19)) each decrease exponentially with
the number of iterations. The tomography precision & to stay
near the central path (defined adaptively as outlined in
Algorithm 1) initially decreases and then plateaus at about
1072,

[0158] Remarkably, for this instance, observe that both the
Frobenius condition number k. and the inverse tomography
precision £~ initially increase but ultimately plateau with
the iteration number, even as the duality gap gets arbitrarily
small (see FIG. 8 for data on k). This scaling behavior was
a generic feature of the simulations across all the instances
simulated. This contrasts with the worst-case expectation
that the condition number can increase as KO (1/u) or K=
O (1/u*) (depending on the formulation of the Newton
system). Prior literature does not say much about whether
the quantity £=* should be expected to diverge. One might
expect that, since the neighborhood of the central path gets
smaller as p gets smaller (e.g., radius is proportional to p in
eq. (27)), the precision requirement to stay close to the
central path would get more stringent in proportion to L.
However, recall that the step size from one iteration to the
next also shrinks with p, and that & represents the size of the
error on the normalized Newton system solution; thus the
neighborhood does not shrink relative to the distance to the
optimum and the length of the next step, and there is no
immediate reason that £7*, as defined, must diverge as u—0.
However, one does expect that in the worst case, if the
condition number k diverges, then £~ should also diverge,
as errors of constant size on the estimate of u/||u| can lead to
residual errors of divergent size k& on the normalized
product Gu/||Gu||.

[0159] FIG. 8 includes plots of the Median Frobenius
condition K number for 128 randomly sampled stock port-
folios from the DWCF index as a function of the duality gap
for portfolios of size 60, 80, 100, and 120 stocks. The shaded
regions indicate the 16th to 84th percentile. Observe that the
condition number appears to plateau at small values of the

duality gap.

B. Scaling of Condition Number

[0160] To understand the problem scaling with portfolio
size, example problem instances are generated by randomly
sampling n stocks from the DWCEF, using returns over m=2n
time epochs (days) to construct our SOCP as in eq. (10).
Parameters q, C, w, it and M are all chosen in the same way
as described above. The Frobenius condition number of the
Newton matrix is plotted as well as the preconditioned
Newton matrix as a function of the duality gap in FIG. 8 for
portfolios of size n&{60, 80, 100, 120}. As previously
mentioned, the condition number appears to plateau at a
certain value of the duality gap, especially for the precon-
ditioned matrix.
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[0161] To help understand the asymptotic scaling of the
quantum algorithm it may be helpful is to determine how the
condition number scales as a function of the number of
assets, as the runtime of the QLSS algorithm grows linearly
with the condition number. FIG. 9 plots the Frobenius
condition number K. as a function of n, the number of
stocks, observed at duality gaps u={107', 1073, 107, 107"}
At duality gaps of 10~ and 1077, the condition number K.
has plateaued as observed in FIG. 8. A non-linear fit to the
data is performed using a power law i, an” model, where a
and b are fit parameters, and the exponents b are reported in
table VII. All exponents appear to be near or less than unity.

[0162] FIG. 9 is a plot of the Median Frobenius condition
number K for 128 randomly sampled stock portfolios from
the DWCEF index as a function of portfolio size for duality
gaps of 107!, 1073, 107>, and 107". The shaded regions
correspond to the 16th to 84th percentile. The lines represent
power-law fits of the form an’, where the values for b are
reported in table VII. In all four cases, the exponent is less
than 1 and in the latter three cases it is greater than 0.9
suggesting a nearly linear-in-n trend.

C. Scaling of Tomography Precision

[0163] While the depth of the individual quantum circuits
that compose the QIPM scales only with the Frobenius
condition number, the QIPM also includes a number of
repetitions of this circuit for tomography that scales as 1/£2,
the inverse of the tomography precision squared. To see how
this scales with problem size, an analysis for 72 is per-
formed similar to the analysis performed for x.. These
results are presented in FIG. 10 for the same four duality
gaps of {107, 1073, 107>, 1077}. To reduce the iteration-
to-iteration variation in the tomography precision (which
results from our adaptive approach to tomography in Algo-
rithm 1), in calculating £~2 at duality gap u, one may take the
average over the value of £72 at the five iterations with
duality gap nearest to . The median of £-2 can be fit at each
value of'n to a linear model on a log-log plot, corresponding
to a relationship E~2=an®. The implied exponent b is in table
VIII. In this case, it is hard to draw robust conclusions from
the fits. The fit suggests that the median of £72 is increasing
with n on the interval n&[10, 120]. However, the most
striking feature of the data is that the instance-to-instance
variation of £72 is significantly larger than that of k.. In fact,
at u=1077, the 84th percentile of in stances at n=10, the
smallest size simulated, had a larger value of £ than the
50th percentile of instances at n=120, the largest size simu-
lated.

[0164] FIG. 10 is a plot of the median value of the square
of the inverse tomography precision £~2 used to remain in
the neighborhood of the central path for 128 randomly
sampled stock portfolios from the DWCF index as a func-
tion of portfolio size for duality gaps of 107, 1073, 10, and
1077. To reduce iteration-to-iteration variation, an artifact of
the adaptive approach to tomography, average over the
observed value of £72 at the five iterations for which the
duality gap is nearest the indicated value. The shaded
regions correspond to the 16th to 84th percentile. Here
logarithmic axes are used since (unlike for k) instance-to-
instance variation covers multiple orders of magnitude even
for a fixed value of n. The dashed lines correspond to a linear
fit to the log-log data, where the slope is reported in table
VIIL
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TABLE VII

Estimated exponent parameters for the Frobenius condition number
Kz obtained from the fits that are plotted in FIG. 9.

Duality Gap Condition Number Scaling
10-! O (n0-60=0-02
10-3 0 (n094=004
10-5 O (n0-92=0.04
10-7 O (0912003

TABLE VIII

Estimated exponent parameters for 1/Z2 obtained
from the fits that are plotted in FIG. 10.

Duality Gap Tomography Scaling
10-1 O (n~0-19+0.05
10-3 O (n 102006
10-5 O (n079=0-11
107 O(n116=0.10y

D. Asymptotic Scaling of Overall Runtime

[0165] Above fits for 1, and £72 as a function of n on the
range n €[10, 120] are provided. Here the quantity n' -1 ,./E>
is studied, which determines the asymptotic scaling of the
runtime of the QIPM. FIG. 11 plots this quantity at the same
four duality gap values pe{107%, 1073, 107>, 1077}. The
implied exponents arising from linear fits on a log-log axis
are reported in table IX. They are generally consistent with
summing the exponents from the previously reported fits.
The data inherit from E=2 the feature that the instance-to-
instance variation is orders of magnitude larger than the
median. Taken at face value, the fits suggest that the scaling
of the median algorithmic runtime on the interval n&[10,
120] is similar to the n®? scaling of classical IPMs using
Gaussian elimination, and worse than the asymptotic n**’
arising from classical IPMs using fast matrix-multiplication
techniques to solve linear systems (note that this scaling
does not apply until n becomes very large, so it is not a good
practical comparator). However, the large variance and
imperfect fits do not give confidence that these trends can be
reliably extrapolated to larger n. Accordingly, when actual
resource counts are computed in the next subsection, the
inventors stick to n=100.

[0166] Ultimately, it is not essential to pin down the
asymptotic scaling of the algorithm, because a determination
of this work is that, even if a slight asymptotic polynomial
speedup exists, the size of the constant prefactors involved
in the algorithm preclude an actual practical speedup, bar-
ring significant improvements to multiple aspects of the
algorithm. The next subsection elaborates on this point in a
more quantitative fashion.

[0167] FIG. 11 is a plot of the median value of the
estimated algorithm scaling factor computed as the median
of n'~ K ./ for 128 randomly sampled stock portfolios from
the DWCEF index as a function of portfolio size for duality
gaps of 107, 107, 107>, and 107", As in FIG. 10, over 5
consecutive points are averaged to reduce iteration-to-itera-
tion variance deriving from adaptive tomography. Also, the
actual number of observed samples are used that were used
to achieve sufficient tomographic precision in place of the
tomographic factor /2. The shaded regions correspond to



US 2024/0144066 Al

the 16th to 84th percentiles. The lines correspond to a linear
fit to the log-log data, where the slope is reported in table IX.
[0168] TABLE IX shows exponent parameter estimates
from the fits to the line generated by plotting n'-*x./Z? in
FIG. 11, which determines the overall scaling of the runtime
of'the QIPM. For comparison, CIPMs using Gaussian elimi-
nation have runtime O (n**) and CIPMs using faster meth-

ods for solving linear systems have runtime O (n**7).
TABLE IX
Duality Gap Algorithm Scaling
10—1 a n2.01:0.05
10—3 V] n3.56:0.07
10—5 o n3.36:0.14
10—7 0(n3.75:0.12)

E. Numerical Resource Estimates

[0169] Rather than examine algorithmic scaling, actual
resource counts for the QIPM applied to PO are computed.
It is these resource counts that may matter most from a
practical perspective. The total circuit size is estimated in
terms of the number of qubits, T-depth, and T-count for a
portfolio of 100 assets. This size is chosed because it is small
enough that the entire quantum algorithm can be simulated
classically. However, at this size, solving the PO problem is
not classically hard; generally speaking, the PO problem
becomes challenging to solve with classical methods when
n is on the order of 10° to 10*. A similar concrete calculation
can be performed at larger n by extrapolating trends
observed in the numerical simulations herein, but there is not
confidence that the fits on n€[10, 120] reported above are
reliable predictors for larger n.

[0170] Recall that the only step in the QIPM performed by
a quantum computer is the task of producing a classical
estimate to the solution of a linear system to error &. The
complexity of this task as it is performed within the QIPM
depends on § as well as the Frobenius condition number K.
The first step of the calculation is to fix values for § and
at n=100. They are choosen by taking the median over the
128 samples in the numerical simulation at duality gap
p=10"".

[0171] Once Kz and & are fixed, concrete values for the
various other error parameters can be determined that appear
in the algorithm such that overall error £ can be achieved.
Tomography dominates the complexity and overall error, but
there are a number of other factors that contribute to the
error in the final solution. The sources of error are enumer-
ated and labeled here for completeness:

[0172] &g Error in block-encoding the matrix G
[0173] &,: Error in the unitary that prepares the state [h
[0174] e,,: Gate synthesis error for single-qubit rota-

tions used by CR®(s) and CR!(s) (see FIG. 5)

[0175] &: Tomography error

[0176] & Gate synthesis error for each single-qubit
rotation used for QSVT eigenstate filtering (see FIG. 2)

[0177] e, Error due to polynomial approximation in
eigenstate filtering

[0178] «,,: Error in preparing the state 2 /il
} used for computing the signs in the tomography
routine )
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[0179] Section IV described a quantum circuit that pre-
pares a state I¥) (after postselection) for which ||I¥) —Iv
) lI=€rsp- If the block-encoding unitaries, state-preparation
unitaries, and single-qubit rotations were perfect, then the
only contribution to £, s would be from eigenstate filtering
and we may have €, o=t . Note the relationship d=2k.
In(2/e,,,) from proposition 2. Since the block-encoding
unitary Ug, the state-preparation unitary U, and the single-
qubit rotations are implemented imperfectly, there is addi-
tional error. In preparing the state, the unitary U is called
2Q+2d times and the unitary U, is called 4Q+4d times,
where Q is given in proposition 2. Additionally, there are 2Q
combined appearances of CR°(s) and CR'(s) gates, where
each appearance includes two single-qubit rotations. Note
that the appearances of CR°(s) and CR'(s) within the
eigenstate filtering portion of the circuit do not contribute to
the error because at s=1 these gates can be implemented
exactly. Additionally, there are another d single-qubit rota-
tions used to implement the eigenstate filtering step. Since
operator norm errors add sublinearly, one can thus say that

€015p<E 5t (20+2d)e HAQ+Ad)e, +408 ,, + 24 . (66)
[0180] Now, the result of proposition 4 implies that, in
order to assert that the classical estimate ¥' output by
tomography satisfies ||¥'—v||<E, it suffices to have

Z=ze+1.58

\/ZS,SPH.58[sqsp+(2Q+2d)sG+(4Q+4d)sh+4Qsa,+dsZ], (67)

where for convenience recall the definitions (ignoring the
0 (/Kz) term) of Q and d as
0=2Ckp (68)

d=2xp In(2/e (69)

‘ISP)

Recalling that the dominant term in the complexity of the
algorithm scales as £~ but logarithmically in the other error
parameters, to minimize the complexity assign the majority
of the error budget to &: let €=0.9%, and split the remaining
0.1 across the remaining six terms of eq. (67). There is
room for optimizing this error budget allocation, but the
savings would be at most a small constant factor in the
overall complexity.

[0181] Note that elsewhere in the draft, £ has been referred
to as “tomography precision” since & will dominate the
contribution to . Here, the resource calculation uses differ-
entiating & from &, but when speaking conceptually about the
algorithm, one can focus on § as it is the more fundamental
parameter: it represents the precision at which the classical-
input-classical-output linear system problem is solved,
allowing apples-to-apples comparisons between classical
and quantum approaches.

[0182] With values for K, &g, €, €4, £, and &,, now
fixed, the resource count can be completed using the expres-
sions in table V. Note that for gate synthesis error, the
following formula is used R =3 log,(1/¢,), where R,, is the
number of T gates used to achieve an ¢,-precise Clifford+T
gate decomposition of the rotation gate. Putting this all
together yields the resource estimates for a single run of the
(uncontrolled) quantum linear system solver in table X at
n=100. We report these estimates both in terms of primitive
block-encoding and state-preparation resources, as well as
the raw numerical estimates. For the total runtime, the
resources used for the controlled state-preparation routine
may also be estimated. These quantities are estimated, but to
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the precision of the reported estimates, the numbers are the
same as the controlled version, so they are excluded for
brevity.

[0183] To estimate total runtime, our estimates are multi-
plied by the tomography factor k (for controlled and for
uncontrolled) as well as the number of iterations N, =]
In(€)/1In(0)], where € is the target duality gap (which is
taken to be €=1077), and 0=1.0-1/(20 v2r). While k will
vary from iteration to iteration, in the calculation it is
assumed that the total number of repetitions is given by the
simple product (2k)N,,, which, noting that the value of &
plateaus after a certain number of iterations, will give a
roughly accurate estimate. Note that these 2kN,, repetitions
need not be done coherently, in the sense that the entire
system is measured and reprepared in between each repeti-
tion. One can bound the tomography factor k to be k<57.5
L In(L)/E?, where £ is determined empirically. However, our
numerical simulations of the algorithm yield an associated
value of k used to generate the estimate to precision &, so this
numerically determined value can be used directly. The
observed median value of k=3.3x10® from simulation is
multiple orders of magnitude smaller than the theoretical
bound. Using this substitution for k and N,,, the results are
shown in the right column of table I in the introduction.

[0184] To aid in understanding which portions of the
algorithm dominate the complexity, a breakdown of the
resources is shown in FIG. 12. The width of the boxes is
representative of the T-depth, while the height of the boxes
represents the T-count. The number of classical repetitions,
composed of tomography samples as well as IPM iterations
used to reach a target duality gap, contributes the largest
factor to the algorithmic runtime. Of these two, quantum
state tomography contributes more than the iterations used
to reach the target duality gap. Our exact calculation con-
firms that for the individual quantum circuits involved in the
QLSS, the discrete adiabatic portion of the algorithm domi-
nates over the eigenstate filtering step in its contribution to
the overall quantum circuit T-depth. Within the adiabatic
subroutine, the primary driver of the T-depth and T-count is
the application of the block-encoding operator Q times (see
e.g., eq. (61)), where Q is proportional to the Frobenius
condition number. An additional source of a large T-count
arises from block-encoding the linear system, which causes
the T-count to scale as O (L?).

[0185] TABLE X shows estimated number of logical
qubits N, T-depth T, and T-count T - used to perform the
quantum linear system solver (QLSS) subroutine within the
QIPM running on a PO instance with n=100 stocks. This
calculation uses the empirically observed median value for
the condition number at duality gap pu=10"", which was
K;=1.6x10* The full QIPM repeats this circuit k=0 (nln(n)
£~?) times in each iteration to generate a classical estimate
of the output of the QLSS, and also performs N,=0 (n°?)
iterations, where the linear system being solved changes
from iteration to iteration. In the left column, the resources
are written as numerical prefactors times the resources used
to perform the controlled-block-) encoding of the matrix G
(denoted by a subscript cbe), and the state-preparation of the
vector |h) (denoted by a subscript sp), defined in tables I1I
and IV. Written this way, one can see the large prefactors
occurring from the linear system solver portion of the
algorithm. In the right column the exact resources are
computed, including those coming from the block-encoding.
The notation AeB is short for Ax10%.
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TABLE X
QLSS Prefactors Total
Ng = Noepe + 3 Ng = 8e6
Tp = (1e8)Tpp. + (368) T, + (5e10) Tp =4ell
Te=(1e8)Try, + (3e8)T¢y, + (5e10) T =217

VII. CONCLUSIONS

A. Bottlenecks

[0186] The resource quantities reported are large, even for
the classically easy problem size of n=100 assets in the
portfolio optimization instance. Our detailed analysis allows
us to see exactly how this large number arises, which is
helpful for understanding how to improve it. Several inde-
pendent factors leading to the large resource estimates are
outlined below.

[0187] The block-encoding of the classical data may be
called many times by the QLSS. This data is arranged
in an Lx[ matrix (note that for a PO instance of size n
with m=2n, the Newton linear system has size roughly
L~14n). These block-encodings can be implemented up
to error g4 in O (log(L/es)) T-depth using circuits for
quantum random access memory (QRAM) as a sub-
routine. While the asymptotic scaling is favorable, after
close examination of the circuits for block-encoding, in
practice the T-depth can be quite large: at n=100 and e
107'° (it may be necessary to take &, very small since
the condition number of G is quite large), block-
encoding to precision & has a T-depth of nearly 1000.
Notably, this T-depth arises even after implementing
several new ideas to minimize the circuit depth.

[0188] The condition number K determines how many
calls to the block-encoding are to be made, and it is
observed that K may be quite large for the application
of portfolio optimization. Even after an precondition-
ing, 1 is on the order of 10* already for small SOCP
instances corresponding to n=100 stocks, and empirical
trends suggest it grows nearly linearly with n. However,
additional preconditioning may significantly reduce the
effective value of Kk in this algorithm.

[0189] The constant factor in front of the O (k) in
QLSSs is also quite large: the theoretical analysis
proves an upper bound on the prefactor of 3x10%.
Numerical simulations previously performed suggested
that, in practice, it can be one order of magnitude
smaller than the theoretical value. Thus, the constant
prefactor may be taken to be 2000 in the numerical
estimates herein, which still contributes significantly to
the estimate.

[0190] Pure state tomography includes preparing many
copies of the output Iv) of the QLSS. This disclosure
improved the constant prefactors in the theoretical
analysis beyond what was known, but even with this
improvement, the number of queries used to produce an
estimate v' of the amplitudes of v} up to error e in £ ,
norm is 115 L In(L)/e?, which for n=100 and £=1073 is
on the order of 10! (although our simulations suggest
2k=7x10® suffice in practice).

[0191] QIPMs, like CIPMs, are iterative algorithms; the
number of iterations in our implementation is roughly
20y2r In(E7"), a number chosen to utilize theoretical
guarantees of convergence (note that r~3n). Taking
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n=100 and €=10"7, our implementation would use
8x10® iterations. The number of iterations may be
significantly decreased if more aggressive choices are
made for the step size. For example, similar to the
adaptive approach to tomographic precision, one may
set longer step sizes first, and shorten the step size when
the iteration does not succeed. This sort of optimization
may apply equally to CIPMs and QIPMs.
[0192] Remarkably, the five factors described above con-
tribute roughly equally to the overall T-depth calculation; the
exception being the number of copies used to do tomogra-
phy, which is a much larger number than the others. Another
comment regarding tomography is that, in principle, the k
tomographic samples can be taken in parallel rather than in
series. Running in parallel leads to a huge overhead in
memory: one can reduce the tomographic depth by a mul-
tiplicative factor P at the cost of a multiplicative factor P
additional qubits. Note that even preparing a single copy
uses the large number of nearly ten million logical qubits at
n=100. Moreover, it is unlikely that improvements to tomog-
raphy alone may make the algorithm practical, as the other
four factors still contribute roughly 10'° to the T-depth.
[0193] Besides the rather large constant factors pointed
out above for tomography and especially for the QLSS, note
that the multiplicative “log factors” that are typically hidden

underneath @ notation in asymptotic do tomography, which
is a much larger number than the analyses contribute mean-
ingfully here. For instance, the entire block-encoding depth
is O(log(n/es)), which, in practice, is as large as 1000.
Moreover, there is an additional In(E~')=~16 coming from
the iteration count, and a In(L)~7 from tomography.
[0194] This quantitative analysis of bottlenecks for
QIPMs can inform likely bottlenecks in other applications
where QLSS, tomography, and QRAM subroutines are used.
While some parameters such as K and § are specific to the
application considered here, other observations such as the
numerical size of various constant and logarithmic factors
(e.g., block-encoding depth) would apply more generally in
other situations.

[0195] FIG. 12 is a diagram illustrating the breakdown of
the quantum resources used for a single coherent run of the
uncontrolled version of the quantum algorithm used to
produce the state eq. (36). As in table X, take the final duality
gap to be u=10"" and the number of assets to be n=100.
Choices for the Frobenius condition number x,=1.6x10*
and number of tomographic repetitions k=3.3x10% are
informed by our numerical experiments, as discussed in
section VI. A similar breakdown for the controlled version
used to produce the state eq. (49) would be basically the
same. The eigenstate filtering sub-circuit follows a similar
alternating structure to the adiabatic evolution, with the U[j]
block-encodings replaced with either U[1] or U[1]", the
reflection operator W replaced with phase rotations, and
only d<<Q total number of iterations (refer to FIG. 2 for
details.)

B. Resource Estimate Given Dedicated QRAM Hardware

[0196] The bottlenecks above focused mainly on the
T-depth and did not take into account the total T-count or the
number of logical qubits, which are also large. Indeed, the
estimate of 8 million logical qubits, as reported in table I, is
drastically larger than estimates for other quantum algo-
rithms, such as Shor’s algorithm and algorithms for quantum
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chemistry, both of which can be on the order of 10 logical
qubits. By contrast, the current generation of quantum
processors have tens to hundreds of physical qubits, and no
logical qubits; a long way from the resources used for this
QIPM.

[0197] However, note that, as for other algorithms using
repeated access to classical data, the vast majority of the
gates and qubits in the QIPM arise in the block-encoding
circuits, which are themselves dominated by QRAM-like
data-loading subcircuits. These QRAM-like sub-circuits
have several special features. Firstly, they are largely com-
posed of controlled-swap gates, each of which can be
decomposed into four T gates that can even be performed in
a single layer, given one additional ancilla and classical
feed-forward capability. Furthermore, in some cases, the
ancilla qubits can be “dirty”, i.e., initialized to any quantum
state, and, if designed correctly, the QRAM circuits can
possess a natural noise resilience that may reduce the
resources used for error correction. Implementing these
circuits with full-blown universal and fault-tolerant hard-
ware could be unnecessary given their special structure. Just
as classical computers have dedicated hardware for RAM,
quantum computers may have dedicated hardware opti-
mized for performing the QRAM operation. Preliminary
work on hardware based QRAM data structures (as opposed
to QRAM implemented via quantum circuits acting on
logical qubits) shows promise in this direction.

[0198] Our estimates suggest that the size of the QRAM
used to solve an n=100 instance of PO is one megabyte, and
the QRAM size for n=10* (i.e., sufficiently large to poten-
tially be challenging by classical standards) is roughly 10
gigabytes, which is comparable to the size of classical RAM
one might use on a modern laptop. These numbers could
perhaps be reduced by exploiting the structure of the New-
ton matrix, as certain blocks are repeated multiple times in
the matrix, and many of the entries are zero (see egs. (10)
and (19)). Exploiting the sparsity of the matrix can lead to
reduced logical qubit count and T-count, but not reduced
T-depth. In fact, it may lead to non-negligible increases in
the T-depth, since the shallowest block-encoding construc-
tions can be hyper-optimized for low-depth, and are explic-
itly not compatible with exploiting sparsity.

[0199] With this in mind, one can ask the following
hypothetical question: suppose access to a sufficiently large
dedicated QRAM element in our quantum computer, and
furthermore that the QRAM ran at a 4 GHz clock speed
(which is comparable to modern classical RAM); would the
algorithm become more practical in this case? Under the
conservative simplifying assumption that each block-encod-
ing and state-preparation unitary uses just a single call to
QRAM and the rest of the gates are free, a rough answer can
be given by referring to the expression in table X, which
states that 4x10® total block-encoding and state-preparation
queries are used. Thus, even if the rest of the estimates stay
the same, the number of QRAM calls involved in just a
single QLSS circuit for n=100 would be 4x10%. Accounting
for the fact that the QIPM involves an estimated 6x10"2
repetitions of similarly sized circuits, the overall number of
QRAM calls used to solve the PO problem would be larger
than 10?!, and the total evaluation time would be on the
order of ten thousand years. Thus, even at 4 GHz speed for
the QRAM, the problem remains decidedly intractable.
Nonetheless, if the QIPM is made practical, it may involve
specialized QRAM hardware in combination with improve-
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ments to the algorithm itself. Separate from the QLSS, a
relatively small number of state preparation queries is used
in tomography to create the state in eq. (50), but this number
does not scale with K and it is neglected in this back-of-
the-envelope analysis.

C. Comparison Between QIPMs and CIPMs and Comments
on Asymptotic Speedup

[0200] The discussion above suggests that the current
outlook for practicality with a QIPM is pessimistic, but
simultaneously highlights several avenues by which to
improve the results. Even with such improvements, if
QIPMs are to one day be practical, they may need to at least
have an asymptotic speedup over CIPMs. Here we comment
on this possibility. A step of both QIPMs and CIPMs is the
problem of computing a classical estimate of the solution to
a linear system, a task that is also of broad use beyond
interior point methods. Thus, we can compare different
approaches to solving linear systems, and our conclusions
are relevant in any application where linear systems are
solved. Accordingly, in table XI, the asymptotic runtime of
several approaches to solving an LxL linear system to
precision are given, including the (QLSS+tomography)
approach utilized by QIPMs, as well as two classical
approaches. Whereas prior literature primarily compared
against Gaussian elimination (which scales as O (L?)), this
disclosure notes a comparison against the randomized Kacz-
marz method, which scales as O (L, In(E™")). This scaling
comes from the fact that 2« In(E™!) iterations are used, and
each iteration involves computing several inner products at
cost O(L). It is observed that the worst-case cost of an
iteration is 4L floating point multiplications, meaning all the
constant prefactors involved are more-or-less mild. Thus,
the asymptotic quantum advantage of the QIPM is limited to
an amount equal to O (min(E%k,, E2L.?/k ), which is at most
O (L) when Kz «L and £=0O(1). Encouragingly, our numeri-
cal results are consistent with k. xL.. However, our results
are not consistent with =0 (1), suggesting instead that & is
decreasing with L.

[0201] TABLE XI shows a comparison of time complexi-
ties of different approaches for exactly or approximately
solving an LxL linear system with Frobenius condition
number K. to precision §. The comparison highlights how a
quantum advantage only persists when K- is neither too large
nor too small. The constant pre-factor roughly captures the
T-depth determined for the quantum case (the same pre-
factor from Tab. VI after discounting the 20v/2 IPM iteration
factor) and the number of multiplications in the classical
case.

TABLE XI

Pre-factor
Solver Type Complexity estimate
QLSS + Quantum, LKE72 5 x 107
Tomography Approximate In(L) In (K E711.1427)
Gaussian Classical, L3 2
Elimination Exact
Randomized Classical, Lx/InE™Y) 8
Kaczmarz Approximate

[0202] IfkxLand&=0(1),itis determined a total QIPM
runtime of O (n*?), improving over classical O (n*) for a
portfolio with n stocks. This speedup is a material asymp-
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totic improvement over the classical complexity, but lever-
aging this speedup for a practical advantage might still be
difficult. Firstly, the difference in the constant prefactor
between the quantum and classical algorithms would likely
negate the speedup unless n is taken to be very large.
Secondly, the speedup would necessarily be sub-quadratic.
In the context of combinatorial optimization, where qua-
dratic speedups can be obtained easily via Grover’s algo-
rithm, even a quadratic speedup is unlikely to exhibit actual
quantum advantage after factoring in slower quantum clock
speeds and error-correction overheads.

[0203] Our results suggest that determining a practical
quantum advantage for portfolio optimization might require
structural improvements to the QIPM itself. In particular, it
may be helpful to explore whether additional components of
the IPM can be quantized, and whether the costly contribu-
tion of quantum state tomography could be completely
circumvented. Naively, circumventing tomography entirely
is challenging, as it is useful (e.g., important) to retrieve a
classical estimate of the solution to the linear system at each
iteration in order to update the interior point and construct
the linear system at the next iteration. Nevertheless, tomog-
raphy represents a formidable bottleneck.

[0204] While our results are pessimistic on the question of
whether quantum interior point methods will deliver quan-
tum advantage for portfolio optimization (and other appli-
cations), it is our hope that by highlighting the precise issues
leading to daunting resource counts, our work can inspire
innovations that render quantum algorithms for optimization
more practical. Finally, we conclude by noting that detailed,
end-to-end resource estimations of the kind performed here
may be helpful (e.g., important) for commercial viability of
quantum algorithms and quantum applications. While it is
helpful to discover and prove asymptotic speedups of quan-
tum algorithms over classical, an asymptotic speedup alone
does not imply practicality. For this, a detailed, end-to-end
resource estimate is used, as the quantum algorithm may
nevertheless be far from practical to implement.

VIII. ADDITIONAL INFORMATION

Additional Information A: Notation

[0205] Here we list the symbols that appear in this dis-
closure for reference.

[0206] Symbols related to portfolio optimization
[0207] n: number of stocks in the portfolio
[0208] w: length-n vector indicating fraction of portfo-

lio allocated to each stock (the object to be optimized)

[0209] w: length-n vector indicating current portfolio
allocation
[0210] C: length-n vector indicating maximum allow-

able change to portfolio
[0211]
[0212] 2: nxn covariance matrix capturing deviations
from average returns
[0213] q: parameter in objective function that deter-
mines relative weight of risk vs. return (eq. (3))
[0214] M: mxn matrix corresponding to the square-root
of 2, ie. =M™
[0215] m: number of rows in M, often equal to the
number of time epochs (section III B)

0: length-n vector of average returns
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[0216]

[0217]
[0218]

[0219] e: identity element for Q or Q* (depending on
context)

[0220] N: total number of variables in the SOCP

[0221] K: total number of linear constraints in the
SOCP

[0222] r: number of second-order cone constraints in the
program

[0223] x: length-N vector; primal variable to be opti-
mized, constrained to Q

[0224] y:length-K vector; dual variable to be optimized

[0225] s: length-N vector, appears in dual program,
constrained to Q

[0226] A: KXxN matrix encoding linear constraints (eq.
&)

[0227] b: length-K vector encoding right-hand side of
linear constraints (eq. (5))

[0228] c: length-N vector encoding objective function
(eq- (5))

[0229] pu(x, s): duality gap of the primal-dual point (x, s)
(eq- (7))

[0230] T, x, O: additional scalar variables introduced to
implement self-dual embedding (e.g., see section III C
3)

[0231] u(x, T, s, K): duality gap of the point (x, T, s, K)
of the self-dual SOCP (eq. (14))

[0232] X, S: arrowhead matrices for vectors X and s (eq.
2L

[0233] B: basis for null space of self-dual constraint
martrix

[0234] Symbols related to second-order cone programs for
portfolio optimization

[0235] ¢: length-n variable introduced during reduction
from PO to SOCP; part of x (eq. (10))

[0236] p: length-n variable introduced during reduction
from PO to SOCP; part of x (eq. (10))

[0237] t: scalar variable introduced during reduction
from PO to SOCP; part of x (eq. (10))

[0238] m: length-m variable introduced during reduc-
tion from PO to SOCP; part of x (eq. (10))

[0239] Symbols related to interior point methods (IPMs)

[0240] v: parameterizes central path (eq. (12))

[0241] dj(x, T, S, K): distance of the point (x, T, s, K) to
the central path of the self-dual SOCP (eq. (13))

[0242] N, N, £, neighborhoods of the “central
path” (egs. (27) and (28))

[0243] : radius of neighborhood of central path

[0244] o: step length parameter

[0245] L.: size of (square) Newton matrix

[0246] <: input to [PM specifying error tolerance, algo-
rithm terminates once duality gap falls beneath

[0247] Relations Between Parameters

[0248] Self-dual embedding has 2N+K+3 parameters
and N+K+2 linear constraints

[0249] Newton matrix has size L=2N+K+3 for infea-
sible approach and L=N+1 for feasible approach

[0250] For PO formulation in eq. (10), N=3n+m+1,
r=3n+1, K=2n+m+1

[0251] In our numerical experiments, we choose m=2n

Symbols related to second-order cone programs

0¥ : second-order cone of dimension k (eq. (4)
Q': product set of several second-order cones
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[0252] Symbols related to quantum linear system solvers
[0253] G: LxL matrix encoding linear constraints
[0254] h: length-L vector encoding right-hand-side of

linear constraints
[0255] u: solution to linear system Gu=h
[0256] v: normalized solution to linear system w/|fu|
[0257] €,,5p: error in solution to linear system
[0258] ¥: normalized output of the QLSS, which should
satisfy [[v=¥|<e,, sp

[0259] £ {log, L

[0260] U,: block-encoding unitary for G

[0261] £ .: number of ancilla qubits used by Ug,

[0262] U,: state-preparation unitary for |h)

[0263] %,(G): Frobenius condition number |G| G~
of G

[0264] Q: number of queries to U, and U, (proposition
b

[0265] C: constant prefactor of K (proposition 1)

[0266] d: the degree of the polynomial used in eigen-

state filtering (proposition 2)
[0267] Symbols related to block encoding and state prepa-
ration
[0268] e block-encoding error for matrix G
[0269] e, state-preparation error for vector h
[0270] e,,: Gate synthesis error for rotations needed by
CRYs) and CR'(s)
[0271] €. Gate synthesis error for rotations needed by
the QSP phases
[0272] ¢, Error due to polynomial approximation in
eigenstate filtering
[0273] &,,: Error in preparing the state Ei:IL\/EIi
} needed for the tomography routine
[0274] Ny, Tppe. and T,,,: number of logical qubits,
T-depth, and T-count required for block-encoding.
[0275] Npeper Tpepes and Tep: number of logical
qubits, T-depth, and T-count required for controlled-
block-encoding.
[0276] N, T, and T,: number of logical qubits,
T-depth, and T-count required for state preparation.
[0277] Ny Tpegr and Te.g,: number of logical
qubits, T-depth, and T-count required for controlled-
state preparation.
[0278] Symbols related to tomography
[0279] k: number of measurements on independent cop-
ies of the state
[0280] o: probability of failure
[0281] e: guaranteed error of tomographic estimate
[0282] &: overall precision of solution to linear system,
dominated by tomographic error

Additional Information B: Deferred Proofs

1. Quantum State Tomography

[0283] Proof of proposition 3. Consider a single coordi-
nate o; with associated probability pjzlocjlz, and suppose k
samples are taken to determine an estimate p; of p;. By
Bernstein’s inequality,

& J B

P|p. - pi| > &;] < 2exp| - ——k
A =il o) =200



US 2024/0144066 Al
27

and so for a given component-wise target deviation in the
probability €;, choosing

2(p; +¢/3)

2la,1* +&/3 B2)
k= —zln(2/6’): M
&

In(2/6")

guarantees that Pr[Ip—p;1>¢;]<8".

[0284] Now pick £j=\/3_ylocjle+w2 for some yet undeter-
mined y>0. With this choice

2 (|ozj|2 + ;) (B3)

In(2/8
= n(2/8")

2(|aj|2 + \/gm %82]

= In(25)

(\/3’y|(}’]‘|8+’y€2)2
2 P’ Y2
2(|aj| +2 584»58)
P W
< = >
2
3ye (laj|:|+ '58]

2
=~ 1n(2/e),
Iy n(2/8")

In(2/6")

and hence it suffices to choose

k= In(2/6")
=—=1In .
3ye?

Letting 8'=8/L, the union bound implies that for
2
k= 377 In(2L/5),

all estimates f; satisfy Ip,—p;/<¢;. Now bound the distance
between loyl and lol. First,

ljl -l < {p; +& 1l B4
< (ol + re)—lal
= e

[0285] Next, bound I(le—ldjl. If p<e; then

(V5 NI @

2 2
o= =< \/37 lajle +ye® & lajl < Ta,

while if p; > &,
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-continued
lors] = 1as] =< les] = pr - B6)
= o)l - I = By lasle - ye?
BN
3 ,

which follows because the function fi (x):x—\/xz—\/3_x—1 has
its maximum at

(E8) L

T2
Therefore with the choice
=)
ve{—F| -
we can guarantee that H(Scjl—l(xjHSS, which corresponds to

N ®7)

= neL/®

2
=——=In(2L/§) =
e (2L /6)

measurements.

[0286] Proof of proposition 4. Define

&g = \/;_Lé:,,l —82/4.

Then k 2.875¢2 In(6L/3). Consider the following three
assertions:

[0287] 1. The estimates p; satisfy I\/E—I\N/il\/ﬂSe'B for
all i.

[0288] 2. The estimates p;"=k;*+/k satisfy

<g'/3,

o 7]
“lﬁ_f

and the estimates p, =k, /k satisfy

<& /3,

‘\/E_N;T&;«/p_”

for all i.

[0289] 3. The actual amplitudes \/E of the state created
in the second step satisfy I\/E—\/EISS

sp*
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[0290] From proposition 3, we know that Assertion 1
holds with probability at least 1-6/3, and Assertion 2 holds
with probability at least 1-26/3. Therefore both assertions
hold with probability at least 1-6. Moreover, Assertion 3
holds by assumption. From here on it is assumed that all
three assertions hold.

[0291] Let a, be the real part and b, be the imaginary part
of the quantity Vp¥,. Let ri+=l\/§\7i+\/ﬁl, and r;=p¥,~
\/EI. Note that r;* and r,~ are proportional to the absolute
value of the ideal amplitudes of the state created in eq. (50).
One can show that

-y (B8)
- 4+ pi .

i

Define f(x, y):(xz—yz)/\/[Ti; then a,=f(r,*/2, r,7/2). Note that
the estimates
/2

p.* give good approximations of r;*/2 and

cp ®9)

which follows from Assertions 2 and 3. The amplitudes di
that define the estimate output by the tomography algorithm
are given in eq. (52), which can now be rewritten as

0, «/;s%a’Jra,sp; else
%=\ minpi. AP Np). ANPE e )20
max(=pe. A(NPT . NP, ANPE ) <0

[0292] We prove that the & values approximate the a;
values, specifically

IG—ase+e,,+b,l. (BID

tsp

We will prove the claim above using a case-by-case analysis.
Assume that a,.20; the case a,<0 will proceed similarly.

[0293] First, consider the case

2

w/p,v < 58/ + Eisp-

In this case d,=0 and

’
&
a; < 1[p|1”/,v| < \/p,v + 3 <& +& 50 |a| <& +&.
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[0294] Second, consider the case f i(\/f, \/ E)Zai. From
the definition of &, and Assertion 1, we have

’
d,vs\/;s«/;h”/,vH%,

and thus

& & & B12
ﬁi—ais\,plﬁil—aﬂr?:\/a?er,z—a,v+35|b,v|+?. ®B12)
We also have (again invoking Assertion 1)
g & B13
a,v—ﬁ,vsa,v—\/p,v sai—1/p|ﬁ1|+353and thus, B
jar—ai = I+ 2
i — @l = b+ —.
a, d, 3

[0295] Additionally, consider the case fi(\/?, \/E)<ai.
Defining

w2

&==& +&g,

we can lower bound fi(\/p_i*, \/p_i_): [text missing or
illegible when filed]

® (B14)
R

:a,v—é:z\/;.

(?) indicates text missing or illegible when filed

Here in the second line we used eq. (B9) and the fact that

We now upper bound r;*+r;”:

r++r’=\/(a,v+ p,v)Zer,zJr\/(a,v—\/;)Zer,z ®15)
<la; + i |+ |as = \pr | + 21841

= 2max(ay, \p: ) +2Ib]

<2(yp +€3+1b:),

where in the fourth line we used a< ai2+bi2=\/§lx7ils
\p+E/3 (Assertion 1).
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Therefore,

[0296]

o+ B16)
AWpt AP ) =a—a—
v_éz(\/Z +& 13+ b
' 24/pi

=,

=g -&- i(a’/3 +154)
Di

= a; — (&' + &g + b)),

where in the fourth line we used é/\/ﬁﬁl. This implies

i —a;| = a; —d; < a; —min(ﬁ(\lﬁ, \/E)a \/;) =&+ + bl B17)

Here, we used ai—\/[TiS\/ﬁlf/il—\/ESE'B.
[0297] We’ve shown that |4,—a,/<g'+e, ,+Ib,! for all cases.
Therefore,

lz—al3 < >"[(e' + &) +20bIE + i) + b7 B18)

S L(E +85) +2(6 + &) LZb? + Zb%

= [\/f(g’ + &) + ’be]

and hence

2
>

la =, =t =al + la= o, B9

s«/f(a’Jra,Sp)Jr ’Zb,z + ’Z(\/p_vi—a,v)z

<L+ &sp) T V2P Egrsp,

where we used X; ((Vi—ai/\/§)2+bi2/p)S£QLSPZ. Since ¥'e<d,
for some proportionality factor A we have |AV'—v||
V2L(e'+e,,
etry will show that if

)+\/7£QLSP, where we used p<'%. A bit of geom-

-A"P

R o DN =
<

b'P

(y=Dc" Qs —ve Q4
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C
— 4

lle—dll, =y <1 and ||d|l, = 1, then
llell,

=gy)=
2

2 sin (%Sinfly) = 1“ +y - .,h -y.

Applying this with c=A¥' and d=v we obtain

o dg (B20)
17 =¥y + (‘/ZEISP + ‘IEEQLSP)Z|x:«/ﬁ(8’+8mp)+*/78QLSP <

&+ 1-58‘/Z€rsp + 1-583QLSP

as claimed. In the second inequality we used the convexity
of g; in the third inequality we used the fact that g(\/ﬁe')ze,
VIL(e+€,, HVZE o sp <€+ 2E,, P ENDE ) 5pSVo, and
\2g'(12)<1.58.

sp

Additional Information C: Null Space Matrix for Portfolio
Optimization

[0298] In section III C, an inexact-feasible interior point
method was described that uses as input a matrix B with
columns that form a basis for the null space of the feasibility
equations for the self-dual SOCP that appear in eq. (19). A
straightforward way to find such a B in general may be to
perform a QR decomposition of the constraint matrix, cost-
ing classical O(N?) runtime (or, using techniques for fast
matrix multiplication, between O(N?) and O(N?) time). The
upshot is that B can only be computed once and does not
change with each iteration of the algorithm, but depending
on other parameters of the problem, this classical runtime
may dominate the overall complexity. Alternatively, in many
specific cases including ours, a valid matrix B can be
determined by inspection. For example, suppose that we
have a (N-K)xN matrix Q, with full column rank for which
AQ,=0, a KX(K-1) matrix P with full column rank for
which B”P=0, and a point x,, for which Axg=b. Then, letting
v=b"B/|b|/%, a valid choice for B is

Oy e Xo €n
T Q4 r+1)_ T xXo—Z_
b— -—Fb —b

el (& el

0 1 1

0 1 0
apt WDy, EREZL

2] ] ]
1-yr+1) —yz(r+1)c"xo—ye xo
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The leftmost column in the above block matrix corresponds
to K—1 basis vectors formed by choosing y to be a vector
perpendicular to b and x=0, 1=06=0. The second column
corresponds to N—K vectors formed by choosing x to be in
the null space of A, and letting T=0=0, with

T
c X

-2
I8l

y

The third column corresponds to the vector formed by
choosing x=e, T=0=1, and then

B —(r+ 1
el

y

The final column corresponds to choosing x=x,, t=1, 6=0,
and

In each case, the choices of x, y, T, and 6 uniquely determine
the values of s and x. Note that in practice the second and
fourth block rows of B can be ignored because in eq. (22)
they are left-multiplied by a matrix whose second and fourth
block columns are zero.

[0299] What remains is to specify P, Q,, and x, for the
case of portfolio optimization, given in eq. (10). Finding a
valid matrix P is straightforward. Note that from eq. (10), we
have b=(1; w+{; w—{; 0). For j=1, ..., 2n, let p; have a 1
in its first entry, and a—1/b;,, in its (j+1)th entry, with zeros
elsewhere. For j=2n+1, . . . , 2n+m, let p; have a single 1 in
its (j+D)th entry, and zeros elsewhere. Thus, the p; are
independent and prj=0 for all j. Then define the matrix P by
P=(p;, . . -, Ponewm)- Similarly, the columns of a valid matrix
Q, can be generated as follows: given a choice of w such
that 17w=0, choose ¢=—w, p=w, t=0, and N=Mw. As there
are n—1 linearly independent choices of w (e.g. the vectors
(I;=1;0;0; .. .50),(0; 1;=1;0;...;0), (0;0; 1515 . .
. 1 0), etc.), this leads to n—1 linearly independent columns
of Q,. Afinal nth column can be formed by choosing t=1 and
w=0=p=0 and N=0. Next, the point X, can be chosen by
letting w=w, =p={, t=0, and n=Mw.

Additional Information D: Alternative Search Directions

[0300] The solution (Ax; Ay; At; AO; As; Ax) to the
Newton systems in eqs. (19) and (22) is one possible search
direction for the interior point method. Alternative search
directions can be found by applying a scale transformation
to the convex set. For the k-dimensional second-order cone

Q¥ . define the set

gk:{M:bo,T*(é _OI)T:((l) —01)}' v

For the product Q of multiple cones, let the set § include of

direct sums of entries from G¥. This definition implies that
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the matrices Ge G map the set Q onto itself. Thus for a
fixed choice Ge G, consider a change of variables x'=Gx,
s'=G™'s, y'=y. Let X' and S' be the arrowhead matrices for x'
and s', and, following the same logic as above, the following
Newton system is arrived at:

Ax (D2)
Ay
SGT 000 xXG' 0Y|Ar cue—-X'S'e
( 0 0«0 0 ‘r] Al =( Ol — KT )
As
Ax

The solution to this linear set of equations (along with the
feasibility equations of eq. (19)) is distinct for different
choices of G. The choice G=I recovers eq. (22) and is called
the Alizadeh-Haeberly-Overton (AHO) direction. Note that
the IPM can reduce the duality gap by a constant factor after
oH 1) iterations for any choice of G. However, some choices
of G can yield additional potentially desirable properties; for
example, the Nesterov-Todd search direction scales the cone
such that x'=s'. However, in the numerical simulations of the
QIPM, no obvious benefits of choosing a search direction
were observed other than the AHO direction.

Additional Information E: Numerical Results for Feasible
QIPMs

[0301] Section VI presented numerical results for the
“II-QIPM,” for which intermediate points could be infea-
sible. Here we also present some results for two variants of
the “feasible” QIPM, denoted by “IF-QIPM” and “IF-
QIPM-QR,” as summarized in table II. The [F-QIPM uses
the null space basis B outlined in Additional Information C,
whereas the [F-QIPM-QR version uses a null space basis B
determined using a QR decomposition. In all cases, the
algorithm was simulated for enough iterations to reduce the
duality gap to 107>, whereas for the II-QIPM it was simu-
lated down to 1077

[0302] In FIGS. 13 to 15, the analogous results for the
feasible [PMs are presented as were displayed in FIGS. 9 to
11 for the infeasible case. The [F-QIPM-QR has the best
performance, though this should be weighed against the fact
that an expensive QR decomposition was classically pre-
computed to implement this method. However, the advan-
tage of the [F-QIPM-QR method is not large enough for any
of the qualitative conclusions in section VII to change. The
[F-QIPM method has the worst performance, which may be
due to the fact that the null-space basis found by inspection
turns out to be a very ill-conditioned matrix (its condition
number was observed to be in the vicinity of 1000). Addi-
tionally, the [F-QIPM appears to have the largest instance-
to-instance variation of any of the methods, leading to lower
quality numerical fits.

[0303] FIG. 13 includes two plots of the Median Frobe-
nius condition number for 128 randomly sampled stock
portfolios from the DWCF index as a function of portfolio
size for duality gaps of 1.0, 0.1, 0.01, and 0.001. The error
bars show the 68th percentile, which corresponds to one
standard deviation if the distribution is Gaussian. A linear
trend appears to work quite well for the [F-QIPM-QR case,
but the [F-QIPM is quite noisy. For each duality gap, a
power-law fit of the form an” is also ploted. The values of b
are in table XII.
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[0304] FIG. 14 includes two plots of the Median value of
the square of the required inverse tomography precision
used to remain in the neighborhood of the central path for
128 randomly sampled stock portfolios from the DWCF
index as a function of portfolio size for duality gaps of 1.0,
0.1, 0.01, and 0.001. The error bars show the 68th percentile,
which corresponds to one standard deviation if the distri-
bution is Gaussian. For each duality gap, a linear fit on the
log-log data is also plotted. The corresponding slope is in
table XIII.

[0305] FIG. 15 includes two plots of the Median value of
the estimated algorithm scaling factor computed as the
median of n'~ /&> for 128 randomly sampled stock port-
folios from the DWCF index as a function of portfolio size
for duality gaps of 1.0, 0.1, 0.01, and 0.001. The error bars
show the 68th percentile, which corresponds to one standard
deviation if the distribution is Gaussian. For each duality
gap, a linear fit on the log-log data is also ploted. The
corresponding slope is in table XIV.

[0306] TABLE XII sjpws fit parameters for the Frobenius
condition number for the four horizontal-axis locations
considered on the scaling plot of FIG. 13. The uncertainties
correspond to one standard deviation errors on the parameter
estimates from the fit. We note that both versions have
similar empirical scaling, although the fits are better for
IF-QIPM-QR. The constant prefactors are superior for the
IF-QIPM-QR version, but calculating the QR decomposition
requires a one-time classical cost proportional to O (L?).

[0307] TABLE XIII shows fit parameters for the square of
the inverse of the required tomography precision to stay near
the central path, corresponding to FIG. 14. The uncertainties
correspond to one standard deviation errors on the parameter
estimates from the fit.

[0308] TABLE XIV shows estimated scaling of the quan-
tum algorithm as a function of portfolio size for the two
feasible versions of the quantum algorithm, corresponding
to FIG. 15. The uncertainties correspond to one standard
deviation errors on the parameter estimates from the fit.

TABLE XII
Dual. Gap IF-QIPM IF-QIPM-QR
1.0 KF (G)~n0.57:0.60 KF (G)~n0.228:0.002
0.1 Kp (G)~n®-38:028 Kp (G)-n®-66:003
0.01 Kp (G)~n0812053 Kp (G)~n0732003
0.001 Kp (G)~n 1012077 Kp (G)~n0982004
TABLE XIII
Dual. Gap IF-QIPM IF-QIPM-QR
1.0 %—2~ 0(n—0.01:0.02 %—2~ 0 n—0.11:0.07
0.1 %—2~ O(H—O.QQ:OAI %—2~ 0 n—0.46:0.11
0.01 %—2~ O(HO.SS:O.QI) %—2~ O(HO.SQ:O.IS
0.001 %—2~ o (HO.QS:O.GG) %—2~ o (HO.QO:O.IS)
TABLE XIV
Dual. Gap IF-QIPM IF-QIPM-QR
1.0 0 H1.41:0.01 0 H2.07:0.15
0.1 0(n1.23:0.40) 0(n1.77:0.15)
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TABLE XIV-continued

Dual. Gap IF-QIPM IF-QIPM-QR
0.01 O (287091 O (3132018
0.001 O(n3-24=064 O (n50=0.10)

[0309] The above sections describe example embodiments
for purposes of illustration only. Any features that are
described as essential, necessessary, required, important, or
otherwise implied to be required should be interpreted as
only being required for that embodiment and are not nec-
essarily included in other embodiments.

[0310] Additionally, the above sections often use the
phrase “we” (and other similar phases) to reference an entity
that is performing an operation (e.g., a step in an algorithm).
These phrases are used for convenience. These phrases may
refer to a computing system (e.g., computing system 1700)
that is performing the described operations.

IX. EXAMPLE METHODS

[0311] FIG. 16 is a flowchart of an example method 1600,
specifically a quantum interior point method (QIPM), for
solving a second-order cone program (SOCP) instance using
a quantum computing system, according to one or more
embodiments. As previously described, a QIPM includes
one or more quantum operations that provide a computa-
tional advantage over other methods of solving SOCP
instances. Specifically, the algorithmic complexity for the
quantum method can be better (in some ways) than the
classical method. The classical method scales as n*-® log
(1/€) and the quantum algorithm scales as n' -’k log (1/€)/
g

[0312] In the example of FIG. 16, the method 1600 is
performed from the perspective of a computing system (e.g.,
1700) including a quantum computing system (e.g., 1720).
The method 1600 can include greater or fewer steps than
described herein. Additionally, the steps can be performed in
different order, or by different components than described
herein. In some embodiments, the method 1600 is performed
by the computing system executing code stored on a (e.g.,
non-transitory) computer-readable storage medium that
causes the computing system to perform the steps of method
1600. Algorithm 1 is an example of method 1600. In some
embodiments, one or more steps of the method can be used
to determine solutions for optimization problems other than
a SOCP.

[0313] At step 1610, the computing system receives the
SOCP instance (e.g., see input of Algorithm 1). The SOCP
instance may include quantities (A, b, ¢) as described with
respect to eq. 10. The computing system may also receive a
list of cone sizes (N;, . . ., N,) and a tolerance € (also
referred to as precision €). In some embodiments, comput-
ing system receives the SOCP instance with N>0 variables,
K>0 linear constraints, r>0 second-order cone constraints,
and the tolerance parameter E, where matrix A of the SOCP
instance is a KxN matrix encoding linear constraints, vector
b is a length-K vector encoding right-hand side of linear
constraints, and vector ¢ is a length-Nvector encoding an
(e.g., objective) function (e.g., see eq. (5)).

[0314] At step 1620, the computing system defines a
Newton system for the SOCP instance by constructing
matrix G and vector h (e.g., steps 4 and 5 of Algorithm 1).
Matrix G and vector h describe constrains for a linear system
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Gu=h based on the SOCP instance. Defining the system in
this way enables the benefits of the quantum approach over
classical approaches to be realized.

[0315] At step 1630, the computing system preconditiones
matrix G and vector h via row normalization to reduce a
condition number of matrix G (e.g., steps 6-10 of Algorithm
1). Among other advantages, preconditioning matrix G and
vector h reduces their computational complexity (due to the
reduced condition number), which reduces computational
time.

[0316] Preconditioning matrix G and vector h may include
determining a diagonal matrix D where at least one (e.g.,
each or every) entry D;; is equal to the norm of row i of
matrix G. After determining the the matrix D, matrix G and
vector h may be redefined according to: G=D7'G and
h=D""h, where D~'G has a condition number less that the
condition number of previous/original matrix G. More infor-
mation on preconditioning can be found above at, for
example, sections [ B and V A.

[0317] At step 1640, the computing system iteratively
determines u until a predetermined iteration condition is
met. For example, see steps 13-18 of Algorithm 1, where in
this context u is (x'; y'; T 0% s'; %’ ) and the predetermine
iteration condition is (x'; y; T 0'; s #') € N (V). The
iterations may include:

[0318] The iterations of step 1640 may include causing the
quantum computing system to apply matrix G and vector h
to a quantum linear system solver (QLSS) to generate a
quantum state (e.g., part of step 15 of Algorithm 1). Causing
the quantum computing system to apply matrix G and vector
h to the QLSS to generate the quantum state may include
k>0 applications of the QLSS and k controlled-applications
of the QLSS to generate the quantum state. Causing the
quantum computing system to apply matrix G and vector h
to the QLSS may include causing the quantum computing
system to execute a quantum circuit. More information on
the QLSS can be found above at, for example, section [V B.
[0319] The QLSS may operate on a block encoded version
of matrix G and a state-prepared version of vector h. To do
this, the method 1600 may include causing matrix G to be
block encoded onto the quantum computing system and the
vector h to be state encoded onto the quantum computing
system. As previously described, block-encodings enable
quantum algorithms (the QLSS in this case) to coherently
access classical data (G and h in this case). More informa-
tion on block encoding can be found above at, for example,
sections I B and IV C.

[0320] The interations of step 1640 may include causing
the quantum computing system to perform quantum state
tomography on the quantum state (e.g., part of step 15 (e.g.,
step 27) of Algorithm 1). Causing the quantum computing
system to perform quantum state tomography may include
causing the quantum computing system to execute a quan-
tum circuit. Conceptually, the quantum state tomography
“reads out” the results of calculations “stored” in the quan-
tum state.

[0321] The output of the of the quantum state tomography
may be a unit vector ¥' indicating an iteration direction for
u (e.g., V'is (Ax; Ay; At; AB; As; Au ) of Algorithm 1). The
unit vector ¥' may be characterized by |[¥'—v|<§ with prob-
ability equal to or greater than a predetermined probability
threshold (e.g., probability at least 1-8, where & is, for
example, 0.1), where ve<G™'h and § is a tomography pre-
cision parameter (e.g., see steps 24 and 28 of Algorithm 1).
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[0322] In some embodiments, the quantum state tomog-
raphy is performed according to a tomography precision
parameter & that decreases with each new iteration (e.g., see
& in Algorithm 1). The tomography precision parameter &
may decrease by &/2 with each new iteration (see e.g., step
14 of Algorithm 1). More information on quantum tomog-
raphy can be found above at, for example, sections IV D and
V A.

[0323] The interations of step 1640 may include updating
a value of u based on a current value of u and the output of
the quantum state tomography (e.g., steps 16-17 of Algo-
rithm 1). For example, updating the value of u may include
determining an updated step length 60 based on the unit
vector ¥', and adding the current value of u to the product of:
(1) the updated step length ¢ and (2) the unit vector ¥' (e.g.,
see steps 16-17 of Algorithm 1, where “step length” refers
to the updated step length, & refers to the current step length,
the current value of u is (x; y; T; 0; s; % ), and the updated
value of wis (x'; y'; v; 0'; s, 1’ ). As used herein, a value of
a vector (e.g., u or ¥') may refer to the value of a single
component or of multiple components of that vector.

[0324] In some embodiments, the updated step length G is
given by by:

e, 7,5 WA -a)r+ 1)
—Ax)Ts—(A)Tx— (A, M- ADY

where Ax, As, Ax , and At are components of the unit vector
¥'; X, s, ®, and T are components of current u; p(x, T, s, ¥ )
is a duality gap; G is the current step length; and r is the
number of second-order cone constraints of the SOCP
instance. The updated step length may be determined such
that a duality gap p of the updated value of u is a factor of
G (the current step length) smaller than the current value of
u within a second order deviation in the step length 6. The
duality gap p may describe a difference between the current
value of u and an exact solution to the linear system Gu=h.
More information on step length can be found above at, for
example, sections [ B, V A, and IV A.

[0325] At step 1650, the computing system determines a
solution to the SOCP instance based on the updated value of
u (e.g., steps 19-21 of Algorithm 1). In the example of
Algorithm 1, the solution to the SOCP instance (within
precision €) is vector X of (X; y; T; 0; s; ®)).

[0326] In some embodiments, steps 1620-1640 are
repeated iteratively (e.g., see loop of steps 3-21 of Algorithm
1). For example, a target precision F for the solution to the
SOCP instance is received (referred to as “tolerance” or
“precision” in Algorithm 1), and steps 1620-1640 are
repeated and a duality gap p is iteratively updated based on
the output of the quantum state tomography (e.g., the new
duality gap p is the product of current duality gap p and the
updated step length & (e.g., see also step 20 of Algorithm 1)
until the duality gap p is less than the target precision F (e.g.,
see condition at step 3 of Algorithm 1), where the duality gap
p describes a difference between the current value of u and
an exact solution to the linear system Gu=h. In these
embodiments, matrix G and vector h may be constructed (in
step 1620) further based on the (e.g., updated) value of u
(e.g.,uis (X; y; T; 0; s; ¥ ) and G and h depend at least on
one of these quantities in steps 4 and 5 of Algorithm 1).
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X. DESCRIPTION OF A COMPUTING SYSTEM

[0327] Embodiments described above may be imple-
mented using one or more computing systems. Example
computing systems are described below.

[0328] FIG. 17A is a block diagram that illustrates a
computing system 1700, according to some embodiments.
In the example of FIG. 17A, the computing system 1700
includes a classical computing system 1710 (also referred to
as a non-quantum computing system) and a quantum com-
puting system 1720, however a computing system may just
include a classical computing system or a quantum comput-
ing system. An embodiment of the classical computing
system 1710 is described further with respect to FIG. 18.
While the classical computing system 1710 and quantum
computing system 1720 are illustrated together, they may be
physically separate systems. For example, FIG. 17B illus-
trates an example cloud computing architecture where the
computing system 1710 and the quantum computing system
1720 communicate via a network 1757. The computing
system 1700 may include different, additional, or fewer
elements than illustrated (e.g., multiple quantum computing
systems 1720).

[0329] The classical computing system 1710 may operate
or control the quantum computing system 1720. For
example, the classical computing system 1710 causes the
quantum computing system 1720 to perform one or more
operations, such as to execute a quantum algorithm or
quantum circuit (e.g., the classical computing system 1710
generates and transmits instructions for the quantum com-
puting system 1720 to execute a quantum algorithm or
quantum circuit). For example, the computing system 1710
causes the quantum computing system 1720 to perform one
or more steps of method 1600. Although only one classical
computing system 1710 is illustrated in FIG. 17A, any
number of classical computing system 1710 or other exter-
nal systems may be connected to the quantum computing
system 1720.

[0330] FIG. 17C is a block diagram that illustrates the
quantum computing system 1720, according to some
embodiments. The quantum computing system 1720
includes any number of quantum bits (“qubits™) 1750 and
associated qubit controllers 1740. As illustrated in FIG. 17D,
the qubits 1750 may be in a qubit register 1755 of the
quantum computing system 1720 (or multiple registers).
Qubits are further described below. A qubit controller 1740
is a module that controls one or more qubits 1750. A qubit
controller 1740 may include one or more classical proces-
sors such as one or more CPUs, one or more GPUs, one or
more FPGAs, or some combination thereof. A qubit con-
troller 1740 may perform physical operations on one or
more qubits 1750 (e.g., it can perform quantum gate opera-
tions on a qubit 1740). In the example of FIG. 17C, a
separate qubit controller 1740 is illustrated for each qubit
1750, however a qubit controller 1740 may control multiple
(e.g., all) qubits 1750 of the quantum computing system
1720 or multiple controllers 1740 may control a single qubit.
For example, the qubit controllers 1740 can be separate
processors, parallel threads on the same processor, or some
combination of both.

[0331] FIG. 17E is a flow chart that illustrates an example
execution of a quantum routine on the computing system
1700. The classical computing system 1710 generates 1760
a quantum program to be executed or processed by the
quantum computing system 1720. The quantum program
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may include instructions or subroutines to be performed by
the quantum computing system 1720. In an example, the
quantum program is a quantum circuit. The quantum com-
puting system 1720 executes 1765 the program and com-
putes 1770 a result (referred to as a shot or run). Computing
the result may include performing a measurement of a
quantum state generated by the quantum computing system
1720 that resulted from executing the program. Practically,
this may be performed by measuring values of one or more
of the qubits 1750. The quantum computing system 1720
typically performs multiple shots to accumulate statistics
from probabilistic execution. The number of shots and any
changes that occur between shots (e.g., parameter changes)
may be referred to as a schedule. The schedule may be
specified by the program. The result (e.g., quantum state
data) (or accumulated results) is recorded 1775 by the
classical computing system 1710. Results may be returned
after a termination condition is met (e.g., a threshold number
of shots occur). The classical computing system 1710 may
determine a quantity based on the received results.

[0332] The quantum computing system 1720 exploits the
laws of quantum mechanics in order to perform computa-
tions. A quantum processing device, a quantum computer, a
quantum processor system, and a quantum processing unit
(QPU) are each examples of a quantum computing system.
The quantum computing system 1700 can be a universal or
a non-universal quantum computing system (a universal
quantum computing system can execute any possible quan-
tum circuit (subject to the constraint that the circuit doesn’t
use more qubits than the quantum computing system)). In
some embodiments, the quantum computing system 1700 is
a gate model quantum computer. As previously described,
quantum computing systems use so-called qubits, or quan-
tum bits (e.g., 1750A). While a classical bit has a value of
either 0 or 1, a qubit is a quantum mechanical system that
can have a value of 0, 1, or a superposition of both values.
Example physical implementations of qubits include super-
conducting qubits, spin qubits, trapped ions, arrays of neu-
tral atoms, and photonic systems (e.g., photons in wave-
guides). Additionally, the disclosure is not specific to qubits.
The disclosure may be generalized to apply to quantum
computing systems 1720 whose building blocks are qudits
(d-level quantum systems, where d>2) or quantum continu-
ous variables, rather than qubits.

[0333] A quantum circuit is an ordered collection of one or
more gates. A sub-circuit may refer to a circuit that is a part
of a larger circuit. A gate represents a unitary operation
performed on one or more qubits. Quantum gates may be
described using unitary matrices. The depth of a quantum
circuit is the least number of steps used to execute the circuit
on a quantum computing system. The depth of a quantum
circuit may be smaller than the total number of gates because
gates acting on non-overlapping subsets of qubits may be
executed in parallel. A layer of a quantum circuit may refer
to a step of the circuit, during which multiple gates may be
executed in parallel. In some embodiments, a quantum
circuit is executed by a quantum computing system. In this
sense, a quantum circuit can be thought of as comprising a
set of instructions or operations that a quantum computing
system can execute. To execute a quantum circuit on a
quantum computing system, a user may inform the quantum
computing system what circuit is to be executed. A quantum
computing system may include both a core quantum device
and a classical peripheral/control device (e.g., a qubit con-
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troller 1740) that is used to orchestrate the control of the
quantum device. It is to this classical control device that the
description of a quantum circuit may be sent when one seeks
to have a quantum computer execute a circuit.

[0334] The parameters of a parameterized quantum circuit
may refer to parameters of the gates. For example, a gate that
performs a rotation about the y axis may be parameterized
by a real number that describes the angle of the rotation.
[0335] The description of a quantum circuit to be executed
on one or more quantum computing systems may be stored
in a non-transitory computer-readable storage medium. The
term “computer-readable storage medium” should be taken
to include a single medium or multiple media (e.g., a
centralized or distributed database, or associated caches and
servers) able to store instructions. The term “computer-
readable medium” shall also be taken to include any medium
that is capable of storing instructions for execution by the
quantum computing system and that cause the quantum
computing system to perform any one or more of the
methodologies disclosed herein. The term “computer-read-
able medium” includes, but is not limited to, data reposito-
ries in the form of solid-state memories, optical media, and
magnetic media.

[0336] FIG. 18 is an example architecture of a classical
computing system 1710, according to some embodiments.
The quantum computing system 1720 may also have one or
more components described with respect to FIG. 18. FIG. 18
depicts a high-level block diagram illustrating physical
components of a computer system used as part or all of one
or more entities described herein, in accordance with an
embodiment. A computer may have additional, less, or
variations of the components provided in FIG. 18. Although
FIG. 18 depicts a computer 1800, the figure is intended as a
functional description of the various features which may be
present in computer systems rather than a structural sche-
matic of the implementations described herein. In practice,
and as recognized by those of ordinary skill in the art, items
shown separately could be combined and some items could
be separated.

[0337] Illustrated in FIG. 18 are at least one processor
1802 coupled to a chipset 1804. Also coupled to the chipset
1804 are a memory 1806, a storage device 1808, a keyboard
1810, a graphics adapter 1812, a pointing device 1814, and
a network adapter 1816. A display 1818 is coupled to the
graphics adapter 1812. In one embodiment, the functionality
of the chipset 1804 is provided by a memory controller hub
1820 and an I/O hub 1822. In another embodiment, the
memory 1806 is coupled directly to the processor 1802
instead of the chipset 1804. In some embodiments, the
computer 1800 includes one or more communication buses
for interconnecting these components. The one or more
communication buses optionally include circuitry (some-
times called a chipset) that interconnects and controls com-
munications between system components.

[0338] The storage device 1808 is any non-transitory
computer-readable storage medium, such as a hard drive,
compact disk read-only memory (CD-ROM), DVD, or a
solid-state memory device or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, optical disk storage devices, flash
memory devices, or other non-volatile solid state storage
devices. Such a storage device 1808 can also be referred to
as persistent memory. The pointing device 1814 may be a
mouse, track ball, or other type of pointing device, and is
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used in combination with the keyboard 1810 to input data
into the computer 1800. The graphics adapter 1812 displays
images and other information on display 1818. The network
adapter 1816 couples the computer 1800 to a local or wide
area network.

[0339] The memory 1806 holds instructions and data used
by the processor 1802. The memory 1806 can be non-
persistent memory, examples of which include high-speed
random access memory, such as DRAM, SRAM, DDR
RAM, ROM, EEPROM, flash memory.

[0340] As is known in the art, a computer 1800 can have
different or other components than those shown in FIG. 18.
In addition, the computer 1800 can lack certain illustrated
components. In one embodiment, a computer 1800 acting as
a server may lack a keyboard 1810, pointing device 1814,
graphics adapter 1812, or display 1818. Moreover, the
storage device 1808 can be local or remote from the com-
puter 1800 (such as embodied within a storage area network
(SAN)).

[0341] As is known in the art, the computer 1800 is
adapted to execute computer program modules for providing
functionality described herein. As used herein, the term
“module” refers to computer program logic utilized to
provide the specified functionality. Thus, a module can be
implemented in hardware, firmware, or software. In one
embodiment, program modules are stored on storage device
1808, loaded into the memory 1806, and executed, individu-
ally or together, by one or more processors (e.g., 1802).

XI1. ADDITIONAL CONSIDERATIONS

[0342] Some portions of the above disclosure describe the
embodiments in terms of algorithmic processes or opera-
tions. These algorithmic descriptions and representations are
commonly used by those skilled in the computing arts to
convey the substance of their work effectively to others
skilled in the art. These operations, while described func-
tionally, computationally, or logically, are understood to be
implemented by computer programs comprising instructions
for execution, individually or together, by one or more
processors, equivalent electrical circuits, microcodes, or the
like. Furthermore, it has also proven convenient at times, to
refer to these arrangements of functional operations as
modules, without loss of generality. In some cases, a module
can be implemented in hardware, firmware, or software.

[0343] As used herein, any reference to “one embodi-
ment” or “an embodiment” means that a particular element,
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment.
The appearances of the phrase “in one embodiment” in
various places in the specification are not necessarily all
referring to the same embodiment. Similarly, use of “a” or
“an” preceding an element or component is done merely for
convenience. This description should be understood to mean
that one or more of the elements or components are present
unless it is obvious that it is meant otherwise. As used
herein, the terms “comprises,” “comprising,” “includes,”
“including,” “has,” “having” or any other variation thereof,
are intended to cover a non-exclusive inclusion. For
example, a process, method, article, or apparatus that com-
prises a list of elements is not necessarily limited to only
those elements but may include other elements not expressly
listed or inherent to such process, method, article, or appa-
ratus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
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example, a condition A or B is satisfied by any one of the
following: A is true (or present) and B is false (or not
present), A is false (or not present) and B is true (or present),
and both A and B are true (or present).

[0344] In addition, use of the “a” or “an” are employed to
describe elements and components of the embodiments.
This is done merely for convenience and to give a general
sense of the disclosure. This description should be read to
include one or at least one and the singular also includes the
plural unless it is obvious that it is meant otherwise. Where
values are described as “approximate” or “substantially” (or
their derivatives), such values should be construed as accu-
rate +/—10% unless another meaning is apparent from the
context. From example, “approximately ten” should be
understood to mean “in a range from nine to eleven.”

[0345] Alternative embodiments are implemented in com-
puter hardware, firmware, software, and/or combinations
thereof. Implementations can be implemented in a computer
program product tangibly embodied in a machine-readable
storage device for execution by a programmable processor
system including one or more processors that can act indi-
vidually or together; and method steps can be performed by
a programmable processor system executing a program of
instructions to perform functions by operating on input data
and generating output. Embodiments can be implemented
advantageously in one or more computer programs that are
executable on a programmable system including one or
more programmable processors coupled to receive data and
instructions from, and to transmit data and instructions to, a
data storage systemi, at least one input device, and at least
one output device. Each computer program can be imple-
mented in a high-level procedural or object-oriented pro-
gramming language, or in assembly or machine language if
desired; and in any case, the language can be a compiled or
interpreted language. Suitable processors include, by way of
example, both general and special purpose microprocessors.
Generally, a processor will receive instructions and data
from a read-only memory and/or a random-access memory.
Generally, a computer will include one or more mass storage
devices for storing data files; such devices include magnetic
disks, such as internal hard disks and removable disks;
magneto-optical disks; and optical disks. Storage devices
suitable for tangibly embodying computer program instruc-
tions and data include all forms of non-volatile memory,
including by way of example semiconductor memory
devices, such as EPROM, EEPROM, and flash memory
devices; magnetic disks such as internal hard disks and
removable disks; magneto-optical disks; and CD-ROM
disks. Any of the foregoing can be supplemented by, or
incorporated in, ASICs (application-specific integrated cir-
cuits) and other forms of hardware.

[0346] Although the above description contains many
specifics, these should not be construed as limiting the scope
of the disclosure but merely as illustrating different
examples. It should be appreciated that the scope of the
disclosure includes other embodiments not discussed in
detail above. Various other modifications, changes, and
variations which will be apparent to those skilled in the art
may be made in the arrangement, operation, and details of
the methods and apparatuses disclosed herein without
departing from the spirit and scope of the disclosure.
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What is claimed is:

1. A quantum interior point method (QIPM) for solving a
second-order cone program (SOCP) instance using a quan-
tum computing system, the method comprising:

(a) receiving the SOCP instance;

(b) defining a Newton system for the SOCP instance by
constructing matrix G and vector h, where matrix G and
vector h describe constrains for a linear system Gu=h
based on the SOCP instance;

(c) preconditioning matrix G and vector h via row nor-
malization to reduce a condition number of matrix G;

(d) iteratively determining u until a predetermined itera-
tion condition is met, the iterations comprising:
causing the quantum computing system to apply matrix

G and vector h to a quantum linear system solver
(QLSS) to generate a quantum state;
causing the quantum computing system to perform
quantum state tomography on the quantum state; and
updating a value of u based on a current value of u and
the output of the quantum state tomography; and

(e) determining a solution to the SOCP instance based on
the updated value of u.

2. The method of claim 1, wherein preconditioning matrix

G and vector h comprises:

determining a diagonal matrix D where at least one entry
D;; is equal to the norm of row i of matrix G.

3. The method of claim 2, further comprising redefining

matrix G and vector h according to: G=D~'G and h=D""h.

4. The method of claim 3, wherein D™'G has a condition
number less that the condition number of previous matrix G.

5. The method of claim 1, wherein the output of the
quantum state tomography is a unit vector ¥' indicating an
iteration direction for u.

6. The method of claim 5, wherein the unit vector V' is
characterized by |V'—v||<& with probability equal to or
greater than a predetermined probability threshold, where
v<G™'h and & is a tomography precision parameter.

7. The method of claim 5, wherein updating the value of
u comprises:

determining a step length 60 based on the unit vector ¥';
and

adding the current value of u to the product of: (1) the step
length ¢ and (2) the unit vector ¥'.

8. The method of claim 7, wherein the step length is given

by:
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where Ax, As, Ax , and At are components of the unit vector
¥'; X, s, ¥, and T are components of current u; p(x, T, s, ¥ )
is a duality gap; © is the step length; and r is the number of
second-order cone constraints of the SOCP instance.

9. The method of claim 7, wherein the step length G is
determined such that a duality gap p of the updated value of
u is a factor of ¢ smaller than the current value of u within
a second order deviation in the step length &.

10. The method of claim 9, wherein the duality gap p
describes a difference between the current value of u and an
exact solution to the linear system Gu=h.

11. The method of claim 1, wherein the quantum state
tomography is performed according to a tomography preci-
sion parameter & that decreases with each new iteration.
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12. The method of claim 11, wherein the tomography
precision parameter & decreases by &2 with each new
iteration.

13. The method of claim 1, wherein causing the quantum
computing system to apply matrix G and vector h to the
QLSS to generate the quantum state comprises k>0 appli-
cations of the QLSS and k controlled-applications of the
QLSS to generate the quantum state.

14. The method of claim 1, further comprising:

receiving a target precision F for the solution to the SOCP

instance; and

repeating steps (b)-(d) and iteratively updating a duality

gap | based on the output of the quantum state tomog-
raphy until the duality gap p is less than the target
precision &, where the duality gap p describes a differ-
ence between the current value of u and an exact
solution to the linear system Gu=h.

15. The method of claim 14, wherein matrix G and vector
h are constructed further based on the updated value of u.

16. The method of claim 1, wherein causing the quantum
computing system to apply matrix G and vector h to the
QLSS comprises causing the quantum computing system to
execute a quantum circuit.

17. The method of claim 1, wherein the QLSS operates on
a block encoded version of matrix G and a state-prepared
version of vector h.

18. The method of claim 17, further comprising: causing
matrix G to be block encoded onto the quantum computing
system and the vector h to be state encoded onto the
quantum computing system.
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19. A non-transitory computer-readable storage medium
storing code that, when executed by a computing system
including a quantum computing system, causes the comput-
ing system to perform operations comprising:

receiving a second-order cone program (SOCP) instance;

defining a Newton system for the SOCP instance by

constructing matrix G and vector h, where matrix G and
vector h describe constrains for a linear system Gu=h
based on the SOCP instance;

preconditioning matrix G and vector h via row normal-

ization to reduce a condition number of matrix G;
iteratively determining u until a predetermined iteration
condition is met, the iterations comprising:
causing the quantum computing system to apply matrix
G and vector h to a quantum linear system solver
(QLSS) to generate a quantum state;
causing the quantum computing system to perform
quantum state tomography on the quantum state; and
updating a value of u based on a current value of u and
the output of the quantum state tomography; and
determining a solution to the SOCP instance based on the
updated value of u.

20. The non-transitory computer-readable storage
medium of claim 19, wherein preconditioning matrix G and
vector h comprises:

determining a diagonal matrix D where at least one entry

D,, is equal to the norm of row i of matrix G.
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