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a b s t r a c t

The suffix array is a crucial data structure for efficient string analysis. Over the course of twenty-six
years, sequential suffix array construction algorithms have achieved O(n) time complexity and in-
place sorting. In this paper, we present the Tunnel algorithm, the first large-scale parallel suffix array
construction algorithm with a time complexity of O

(
n
p

)
based on the parallel random access machine

(PRAM) model. The Tunnel algorithm is built on three key ideas: dividing the problem of size O(n) into
p sub-problems of reduced size O

(
n
p

)
by replacing long suffixes with shorter prefixes of size at most

a constant D; introducing a Tunnel mechanism to efficiently induce the order of a set of suffixes with
long common prefixes; developing a strategy to transform a partially ordered suffix set into a total
order relation by iteratively applying the Tunnel inducing method. We provide a detailed description
of the algorithm, along with a thorough analysis of its time and space complexity, to demonstrate its
correctness and efficiency. The proposed Tunnel algorithm exhibits scalable performance, making it
suitable for large string analytics on large-scale parallel systems.

© 2023 Elsevier B.V. All rights reserved.
c
s

1. Introduction

Suffix arrays were initially introduced by Manber and My-
rs [1] as a space-efficient alternative to suffix trees [2]. They have
ince found applications in various domains such as string pro-
essing, data compression, text indexing, information retrieval,
nd computational biology. As the volume of string data con-
inues to grow, the development of high-performance suffix ar-
ay construction algorithms (SACAs) has become a critical and
hallenging problem.
Thirteen years after the introduction of suffix arrays, three

esearch groups—Ko and Aluru [3], Kärkkäinen and Sanders [4],
nd Kim et al. [5]–independently achieved the first linear time
lgorithm for suffix sorting over integer alphabets. This sig-
ificant breakthrough reduced the time complexity of suffix
rray construction algorithms from O(n log(n)) to O(n). These
equential algorithms are asymptotically optimal in terms of time
omplexity.
Moreover, several lightweight algorithms [6–9] with small

orking space requirements were subsequently developed. No-
ably, Nong et al. [10] achieved O(1) space complexity for con-
tant alphabets, and Li et al. [11] achieved O(1) in-place sorting
or integer alphabets with read-only inputs. It took approximately
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thirteen years to reduce the working space from O(n) to O(1).
These advancements in space efficiency have further enhanced
the practicality and applicability of SACAs.

Numerous parallel SACAs have been developed to leverage the
power of parallel computing. For instance, Futamura et al. [12]
made early attempts to implement a parallel SACA using the
sequential prefix-doubling method. Shun’s problem-based bench-
mark suite (PBBS) [13] utilized the task-parallel Cilk Plus pro-
gramming model to implement a parallel multicore skew
algorithm. Osipov [14] and Deo and Keely [15] implemented par-
allel versions of the Difference Cover 3 algorithm [16] or skewed
algorithm on GPUs. Homann et al. [17] introduced the mkESA tool
for multithreaded CPUs, which parallelized the sequential induce
copy method. Lao et al. [18,19] implemented a parallel recursive
algorithm for multicore computers.

Although these parallel methods have demonstrated improved
practical performance compared to their sequential counterparts,
none of them can efficiently handle very large strings using a
large number of processors (p) in O

(
n
p

)
time. To achieve scalable

performance, there is a need for a parallel SACA with O
(

n
p

)
time

omplexity. This paper aims to address this gap and presents
ignificant contributions in the following areas.

• We propose a high-level parallel suffix sorting framework.
This framework aims to divide a large string’s suffix sorting
problem with time T (n, p) into many evenly-sized reduced
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sub-problems with time T
(

n
p , 1

)
, and the large problem

can be solved by handling many reduced sub-problems on
p processors in parallel. In other words, it satisfies T (n, p) =
T

(
n
p , 1

)
.

• We develop a parallel-inducing sort mechanism Tunnel. The
Tunnel mechanism can support parallel sorting of a group
of suffix subsets based on another group of suffix sub-
sets whose order can be determined by their much shorter
prefixes.
• We design a total order strategy. A partial order relation

can be evolved into a total order relation by iteratively
employing our parallel-inducing sort method on different
suffix subsets.
• We present the first parallel suffix array construction algo-

rithm, Tunnel, with a time complexity of O
(

n
p

)
. Tunnel is

optimal in terms of asymptotic time complexity.

These contributions collectively address the need for a scal-
ble and efficient parallel suffix array construction algorithm,
roviding a framework, mechanisms, and strategies that enable
he sorting of large strings in parallel with a time complexity of(

n
p

)
.

2. Problem description

We first give some basic definitions and notations to present
he problem clearly.

efinition 1. Suffix Array: Given a string S = S[0..n − 1] with
n characters, the string’s suffix array (SA) is an array of integers
providing the indices of suffixes of S in lexicographical order. This
means that ∀i < j, we have Suf(SA[i]) < Suf(SA[j]), where Suf(k)
means the suffix starting at position k.

In this paper, SA[i] is also called the rank of Suf (i). For sim-
plicity, we also use index i to stand for suffix i if the context is
clear.

Definition 2. Integer Alphabet with Read-Only Input: The al-
phabet Σ is a set of characters (Σ ⊆ Z) that can be used to
build a string. Given a string S = S[0..n − 1] with n characters,
∀S[i], 0 ≤ i < n, we have S[i] ∈ Σ . The integer alphabet with
read-only input means that the given input string S cannot be
changed during building its suffix array. Since different characters
can be encoded as different integers, we assume ∀S[i], we have
S[i] ∈ {x|1 ≤ x ≤ |Σ |}.

In this paper, our problem is based on an integer alphabet with
read-only input instead of a constant alphabet, which has only
constant characters, or an integer alphabet whose input strings
can be updated during the sorting procedure. Either the constant
or the integer alphabet is a special case of our problem.

The proposed problem is as follows: Given a very large string S
built from an integer alphabet Σ with length n and a parallel ran-
dom access machine (PRAM) with p processors, can we design a
parallel algorithm to construct the suffix array of S in O

(
n
p

)
time

ithout modifying the input string during the sorting procedure?
In other words, the goal is to develop an efficient large-

cale parallel algorithm that constructs the suffix array of S on
p processors, ensuring that the time complexity is proportional
to n

p while preserving the integrity of the original string S. The
algorithm should exploit the parallelism offered by the PRAM
model to achieve scalable performance on large-scale inputs.
651
3. Essential idea and algorithm framework

Unlike existing parallel SACAs, our approach does not aim to
explore parallelism within the framework of sequential SACAs.
Instead, we propose a parallel framework that divides the en-
tire problem into multiple reduced sub-problems. We then de-
velop an approach to achieve three sub-objectives, solving the
final problem step by step by simultaneously handling different
sub-problems in parallel.

The essential idea and novelty of our method encompass three
major aspects:

• Develop a sampling method to select suffixes from the orig-
inal string of length n and generate p substrings, each with
a length of approximately O

(
n
p

)
, where p represents the

total number of processors. This ensures that the size of each
sub-problem remains within the range of O

(
n
p

)
.

• Devise a parallel-inducing sort method that generates par-
tial suffix arrays with a partial order. The parallel-inducing
sort method guarantees a linear execution time in relation
to the size of the largest sub-problem.
• Design a workflow strategy that leverages the partial or-

der relation obtained at each step to generate new sub-
problems, thereby progressively achieving a total order
relation and efficiently solving the final problem.

In the remainder of this paper, we will use the symbol D to
epresent a given constant value.

efinition 3. D-Substring and D-String: For a string S with
length(S) = n and its suffix subset SubSet, ∀Suf(i) ∈ SubSet, its
D-Substring D-Sub(i) is the longest prefix of Suf(i) that satisfies
two requirements: (1) the length of D-Sub(i) cannot exceed D;
(2) D-Sub(i) cannot have any overlapping with other suffixes in
SubSet. The D-String D-Str(SubSet) is defined as the concatenated
string of all D-Substrings of suffixes in SubSet according to their
indices in S.

Fig. 1 provides a simple example illustrating how a suffix is
mapped to a much shorter D-Substring and how a subset of
suffixes is mapped to a much shorter D-String. For a given string
S = ‘‘bananananana’’ and a suffix subset SubSet = {1, 2, 5, 11},
based on Definition 3, D-Sub(1) = ‘‘a’’ as it has only one character
since the next suffix is also in the subset. D-Sub(2) = ‘‘na’’ has two
characters since the maximum length of a D-Substring is D which
sets to 2 in the example.

Definition 4. Partial Suffix Array: Given a suffix subset SubSet
of a string S with |SubSet| = Ns, the partial suffix array (PSA) is
an array of integers that provides the indices of suffixes in SubSet
in lexicographical order. This means that ∀ 0 ≤ i < j < Ns, we
have Suf(PSA[i]) < Suf(PSA[j]). At the same time, Suf(PSA[i]) and
Suf(PSA[j]) must be two suffixes in SubSet.

A partial suffix array indicates the order of suffixes within a
suffix subset. However, the order of suffixes not included in the
subset remains unknown.

In this paper, we generate different D-strings to represent the
reduced sub-problems. D-strings significantly reduce the size of
the original problem.

Definition 5. Order of Suffix Sets: Given two non-empty suffix
sets Set1 and Set2 of a string S, if for all x ∈ Set1 and y ∈ Set2, their
lexicographical order satisfies x < y (or x > y), then we define
Set1 < Set2 (or Set1 > Set2).

Ensuring the correct order of a group of suffix sets is an
important step in our workflow strategy. This step plays a crucial

role in achieving the total order of the suffix set.
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Fig. 1. An example of D-Substrings and D-String with D = 2 based on the given
tring S = ‘‘bananananana’’ and a suffix subset = {1, 2, 5, 11}.

Fig. 2. Key idea and the high-level workflow description of the proposed
ethod.

.1. High-level algorithm overview

Our method, based on the concepts of the D-string and the
rder of suffix sets, is succinctly illustrated in Fig. 2. The figure
resents the core idea of our approach.
The problem is formulated as a sorting challenge for a set

f suffixes within a given string. To tackle this challenge, we
mploy three major sorting steps. In each step, we divide the
omplete set of suffixes into multiple subsets of roughly equal
ize by using different D-strings to replace the original string.
his not only reduces the number of suffixes but also shortens
heir length. Our algorithm features a novel parallel-inducing
ort method, which operates on all the subsets and ensures that
652
the suffixes are correctly ordered in each subset. This parallel-
inducing sort is the heart of our algorithm and will be thoroughly
described in Section 4. The parallel-inducing sort transforms the
subsets with an unknown suffix order into subsets with ordered
suffixes, effectively establishing many partial order relations over
the complete suffix set. By applying the parallel-inducing sort on
different subsets three times, we can establish the total order
relation over the complete set of suffixes.

The first step of our method, shown in yellow in Fig. 2, gen-
erates the order of suffixes for given suffix subsets. Once the
order of suffixes in each subset is determined, we divide them
into equal-sized intervals, with the suffixes between connected
intervals serving as ‘‘splitters’’. By adding the splitters from other
subsets and applying our parallel-inducing sort method once
more, we can further refine the intervals, enabling us to distin-
guish the order of suffixes within different intervals based on the
order of the splitters. This is the second step, marked in blue in
Fig. 2.

In the third step, marked in red in Fig. 2, we merge the
intervals with the same splitters to create new groups of ordered
suffix subsets. However, the order of suffixes within each subset
remains unknown. To determine this order, we once again apply
our parallel-inducing sort method on the subsets whose order is
already known. This results in both the ordering of the subsets
and the suffixes within each subset. Finally, we merge these
ordered subsets to obtain the final ordered suffixes or suffix array.

Algorithm 1: Framework of Tunnel Algorithm
1 Function Tunnel(String, p)
2 Step (1) Sort unordered subsets
3 1.1 Evenly divide all suffixes of String into p suffix subsets

SubSet0 ,...,SubSetp-1,∀0 ≤ i ≤ p-1, |SubSet i| = O( np ) and add them into
the SetList1

4 1.2 Call the parallel-inducing sort function to generate the partial suffix
array for each set SubPSA=PIS(SetList1)

5 Step (2) Sort the subsets with splitters
6 2.1 Select p splitters from each processor pi based on SubPSA; add

them into the splitter set SplitSet; add all splitters into each subset
7 2.2 Call the parallel-inducing sort function again to generate the partial

suffix array of all subsets, including the splitters SplPSA=PIS(SetList2)
8 Step (3) Sort ordered subsets
9 3.1 Assign all suffixes into p ordered subsets that meet

OSubSet0<...<OSubSetp−1 according to SplPSA; add them into SetList3
10 3.2 Call the parallel-inducing sort function to generate the partial suffix

array meeting total order TolPSA=PIS(SetList3)
11 3.3 Generate the final SA based on TolPSA
12 return SA
3 end

We have developed a novel algorithm, Tunnel, to efficiently
onstruct the suffix array of a given string. In Alg. 1, we present
he framework of this parallel suffix array construction method.
his framework transforms the large-scale problem, where the
ize of the problem is represented by n and the number of pro-
cessors by p on a PRAM machine, into p smaller parallel problems
f size O

(
n
p

)
that can be handled by one processor each.

The framework in Alg. 1 follows the three big steps outlined
in Fig. 2. The first step is described in lines 2 to 4, where all n
suffixes of the string S are evenly divided into p subsets. The PIS
function is then applied in line 4 to generate the partial suffix
arrays for each of the p subsets. The second step is described
in lines 5 to 7, where (p − 1) splitters together with the largest
suffix are selected from the partial suffix arrays and merged with
the existing subsets. The PIS function is then applied again to
generate the SpliPSA partial suffix array that reflects the order of
suffixes in each subset, including the splitters.

In the third step, described in lines 8 to 11, the splitters are
used to assign all suffixes into p ordered subsets. The PIS function
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Table 1
Example string ‘‘bananabananaanannana’’ with its suffix indices.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a b a n a n a a n a n n a n a

Table 2
An input string of step 1 and the output partial order results.

P 0

suffix index 0 1 4 5 8 9 12 13 16 17
D-substring b an n ab n an a na n an
D-string bannaabnanananan
partial suffix array 5 17 9 1 12 0 4 16 8 13

P 1

suffix index 2 3 6 7 10 11 14 15 18 19
D-substring n an b an n aa a nn n a
D-string nanbannaaannna
partial suffix array 19 11 3 7 14 6 18 10 2 15

is then applied again to generate the TolPSA partial suffix array
hat meets the total order requirement. Finally, the partial suffix
rrays are merged into one array, SA, in line 11.

.2. An illustration example

Consider the example of our proposed algorithm applied to
n input string, ‘‘bananabananaanannana’’, with 20 suffixes. This
lgorithm employs two processors and has a value of D = 2

(here, we let p = D just for simplicity. Under large-scale parallel
scenarios, we have p≫ D). Table 1 lists the suffix indices for this
nput string.

The proposed framework begins by assigning the suffixes to
wo processors. In this example, we employ the CYCLIC(D) distri-
ution (see Section 6.1) to assign suffixes to different processors,
implifying the subsequent parallel-inducing sort procedure.
In our example, processor 0 is assigned the following suffixes:

0, 1, 4, 5, 8, 9, 12, 13, 16, 17], while processor 1 is assigned: [2,
, 6, 7, 10, 11, 14, 15, 18, 19].
Based on their respective suffix subsets, both processors com-

ute the corresponding D-substrings and generate their D-strings
o represent their suffixes.

Based on Definition 3, the D-substrings on processor 0 are
‘‘b’’, ‘‘an’’, ‘‘n’’, ‘‘ab’’, ‘‘n’’, ‘‘an’’, ‘‘a’’, ‘‘na’’, ‘‘n’’, ‘‘an’’, and they will
form a D-string ‘‘bannabnanananan’’. Processor 1’s D-substrings
are ‘‘n’’, ‘‘an’’, ‘‘b’’, ‘‘an’’, ‘‘n’’, ‘‘aa’’, ‘‘a’’, ‘‘nn’’, ‘‘n’’, ‘‘a’’ and the
D-string is ‘‘nanbannaaannna’’. Table 2 presents the input suf-
fixes, D-substrings, D-strings, and the partial suffix array of suf-
fixes on each processor after executing the parallel-inducing sort
procedure.

The first round of parallel-inducing sort results in the ordered
suffixes on processor 0 as [5, 17, 9, 1, 12, 0, 4, 16, 8, 13], and on
processor 1 as [19, 11, 3, 7, 14, 6, 18, 10, 2, 15]. However, the
final ordering of the total suffix set can only be determined after
the subsequent processing, as the ordering between suffixes from
different processors has not been established yet.

In the second step, suffix 12 serves as the splitter on pro-
cessor 0, dividing the ordered suffixes into two approximately
equal parts, while suffix 14 serves as the splitter on processor
1. Together with the two largest suffixes [13, 15] on the two
processors, suffixes in [12, 13, 14, 15] are added to the original
suffix set on both processors 0 and 1.

On processor 0, the resulting suffixes are [0, 1, 4, 5, 8, 9,
12, 13, 14, 15, 16, 17] with the D-substrings ‘‘b’’, ‘‘an’’, ‘‘n’’,
‘‘ab’’, ‘‘n’’, ‘‘an’’, ‘‘a’’, ‘‘n’’, ‘‘a’’, ‘‘n’’, ‘‘na’’, ‘‘an’’ and the D-string
‘bannabnananannaan’’.

On processor 1, the suffixes are [2, 3, 6, 7, 10, 11, 12, 13, 14,
5, 18, 19] with the D-substrings ‘‘n’’, ‘‘an’’, ‘‘b’’, ‘‘an’’, ‘‘n’’, ‘‘a’’, ‘‘a’’,

‘n’’, ‘‘a’’, ‘‘nn’’, ‘‘n’’, ‘‘a’’ and the D-string ‘‘nanbannaanannna’’.

653
Table 3
An input string of step 2 and the output partial order results.

P 0

suffix index 0 1 4 5 8 9 12 13 14 15 16 17
D-substring b an n ab n an a n a n na an
D-string bannabnananannaan
partial suffix array 5 17 9 1 12 14 0 4 16 8 13 15

P 1

suffix index 2 3 6 7 10 11 12 13 14 15 18 19
D-substring n an b an n a a n a nn n a
D-string nanbannaanannna
partial suffix array 19 11 3 7 12 14 6 18 10 2 13 15

Table 4
Ordered suffix intervals after step 2.
Processor Unordered

Suffixes
Splitter Splitter Un-

ordered
Suffixes

Splitter Splitter

P 0 5,17,9,1 12 14 0,4,16,8 13 15

P 1 19,11,3,7 12 14 6,18,10,2 13 15

Another round of parallel-inducing sort is performed on the
two D-strings, resulting in the sorted suffixes [5, 17, 9, 1, 12, 14,
0, 4, 16, 8, 13, 15] on processor 0 and [19, 11, 3, 7, 12, 14, 6, 18,
10, 2, 13, 15] on processor 1.

Table 3 shows the input suffixes, D-substrings, D-strings, and
partial suffix arrays for the two processors after the parallel-
inducing sort procedure is applied. By using the splitters [12, 13,
14, 15], the suffixes are divided into six ordered intervals (see
Table 4), enabling the assignment of the suffixes into two ordered
subsets [5, 17, 9, 1, 19, 11, 3, 7, 12, 14] and [0, 4, 16, 8, 6, 18, 10,
2, 13, 15]. Here, the subsets are ordered, but the suffixes in each
subset may not be fully ordered.

The parallel-inducing sort is applied again to the two proces-
sors in the third step. On processor 0, the suffixes [1, 3, 5, 7, 9,
11, 12, 14, 17, 19] are associated with the D-substrings ‘‘an’’, ‘‘an’’,
‘‘ab’’, ‘‘an’’, ‘‘an’’, ‘‘a’’, ‘‘an’’, ‘‘an’’, ‘‘an’’, ‘‘a’’. The D-string for this
step is ‘‘ananabananaananana’’. On processor 1, the suffixes are
[0, 2, 4, 6, 8, 10, 13, 15, 16, 18] with the D-substrings ‘‘ba’’, ‘‘na’’,
‘‘na’’, ‘‘ba’’, ‘‘na’’, ‘‘na’’, ‘‘na’’, ‘‘n’’, ‘‘na’’, ‘‘na’’. The D-string for this
step is ‘‘bananabanananannana’’.

The result of the parallel-inducing sort on these two D-strings
yields the ordered suffixes [19, 11, 5, 17, 9, 3, 7, 1, 12, 14] on
processor 0 and [6, 0, 18, 10, 4, 16, 8, 2, 13, 15] on processor
1. The final suffix array is the combination of these two ordered
sets: [19, 11, 5, 17, 9, 3, 7, 1, 12, 14, 6, 0, 18, 10, 4, 16, 8, 2, 13,
15].

Table 5 displays the input suffixes, D-substrings, D-strings,
and the final order of the suffixes after the third step of the
parallel-inducing sort procedure.

In summary, this example demonstrates a step-by-step pro-
cess to determine the final order of suffixes through the division
of suffixes into two processors, the calculation of D-substrings
and D-strings, and multiple rounds of the parallel-inducing sort.

4. Algorithm kernel development

In this section, we will explore the inner workings of our
innovative method called Parallel-Inducing Sort, which serves as
the cornerstone of our Tunnel algorithm. This powerful technique
enables efficient parallel sorting of large strings and is invoked
multiple times during the execution of our algorithm.

To grasp the essence of our approach, we will begin by intro-
ducing the underlying data structure employed in our method.
Understanding this structure is crucial for comprehending the
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Table 5
Input string of step 3 and the output total order results.

P 0

suffix index 1 3 5 7 9 11 12 14 17 19
D-substring an an ab an an a an an an a
D-string ananabananaananana
partial suffix array 19 11 5 17 9 3 7 1 12 14

P 1

suffix index 0 2 4 6 8 10 13 15 16 18
D-substring ba na na ba na na na n na na
D-string bananabanananannana
partial suffix array 6 0 18 10 4 16 8 2 13 15

inner workings of our algorithm. Subsequently, we will provide
a comprehensive explanation of the kernel algorithm and its var-
ious components. By delving into the details of these components
and their interactions, we can develop a clear understanding
of how the Parallel-Inducing Sort method functions and how it
ignificantly contributes to the overall efficiency of the Tunnel
lgorithm.
Before delving into the key data structures, let us establish

ome concept definitions to provide a clear expression of our
deas.

.1. Definition

efinition 6. D-Prefix: For a suffix Suf (i) of a string S with
length n, where 0 ≤ i < n, the D-prefix, denoted as D-Pre(i), is
defined as the longest prefix of Suf (i) that contains no more than
D characters.

Our algorithm is driven by the rationale that when the D-
refixes of specific suffixes differ, we can utilize these D-prefixes
nstead of the entire suffixes to establish their relative order. By
everaging this approach, we simplify the sorting problem and
educe the size of the suffixes involved, which forms the core
oncept underpinning our algorithm.

efinition 7. Distinguishable Suffix and Equivalent Suffix: Let
ufSet be a set of suffixes in string S. For any Suf(x) in SufSet,
f the D-prefix of Suf(x) differs from the D-prefixes of all other
uffixes in SufSet, then Suf(x) is referred to as a distinguishable
uffix in SufSet. Otherwise, it is classified as an equivalent suffix
n SufSet.

According to Definition 7, it is possible for the same suffix to be
onsidered distinguishable within one set of suffixes, while being
egarded as equivalent within another set of suffixes. This is a
hallenge for our algorithm, and we will delve into the specific
etails of how we intend to address this issue.

efinition 8. Modulus-Equal Suffixes and Modulus-Equal Suf-
ix Set: Suffixes Suf(i) and Suf(j) are considered modulus-
qual suffixes if mod(i,D) = mod(j,D). Given a suffix set SufSet,
he modulus-equal suffix subset with modulus d is defined as
d(SufSet) = {Suf(k)| Suf(k) ∈ SufSet ∧ mod(k,D) = d}, where
≤ d < D.

An important property of modulus-equal suffixes is that their
-prefixes do not overlap with each other. Consequently, we
an concatenate their D-prefixes to restore a longer suffix. By
everaging this property, we can break down a large suffix sorting
roblem into multiple smaller sub-problems, each involving the
orting of significantly smaller D-prefixes. This approach allows
s to induce the relative order of multiple long suffixes based on
he sorting of their corresponding short D-prefixes.
654
efinition 9. Suffix Predecessor and Successor: For two
odulus-equal suffixes Suf(x) and Suf(y), where x < y, Suf(x) is
onsidered a predecessor of Suf(y). Similarly, Suf(y) is referred to
s a successor of Suf(x). The distance between Suf(x) and Suf(y)
s denoted as y − x, and if we let z = y−x

D , then Suf(y) is the zth
successor of Suf(x).

To determine the relative order of two suffixes with shared
D-prefixes, we can compare the order of their first successors.
This comparison process can be carried out recursively until the
successors have distinct D-prefixes. By employing this approach,
we can establish the order of long common prefix suffixes along
with their successors that possess different D-prefixes. However,
this straightforward method is not efficient and does not guaran-
tee linear time complexity. To overcome this limitation, we have
devised a highly efficient inducing method that replaces the step-
by-step successor checking method. This approach significantly
improves the overall efficiency of the algorithm while achieving
the desired results.

Definition 10. Equivalent Group: Given a suffix set Grp with
|Grp| ≥ 2, if all suffixes in Grp have the same D-prefix, then Grp
is named as an equivalent group.

To handle suffixes with common prefixes longer than size
D, we employ equivalent groups to organize such suffixes. For
these suffixes, we utilize a Tunnel mechanism (see Section 4.3)
to determine their relative order based on the D-prefixes of their
successors.

Definition 11. Inducing Set and Unique Inducing Set: Given
an equivalent group (EG) of a string S with length n, for any
positive integer z, the set ISz(EG) = {Suf(x)|∀ Suf(y) ∈ EG, Suf(x)
is the zth successor of Suf(y)} represents the zth inducing set of
EG. Similarly, the set UISz(EG) = ISz-EG- ∪z−1

x=1UISx represents the
zth unique inducing set of EG. Here, z refers to the index of the
corresponding inducing or unique inducing set. All inducing sets
or unique inducing sets form an inducing set series or unique
inducing set series.

To determine the order of suffixes within an equivalent group,
we utilize the D-prefix order of their corresponding suffixes in
their first inducing set. If a new equivalent group emerges in
the first inducing set, we repeat the procedure until no more
equivalent groups are found. This procedure creates an inducing
tunnel through which we can determine the order of suffixes
in the equivalent group. However, if two suffixes within the
equivalent group are modulus-equal suffixes, the successor suffix
may appear again in an inducing set of the equivalent group,
leading to duplicates in the tunnel. These duplicates can increase
the time complexity of our algorithm. To mitigate this issue, we
introduce a unique inducing set (UIS) that excludes any suffixes
already present in their equivalent group or their previous unique
inducing set.

By definition, UISz is a subset of ISz , at the same time, it cannot
contain any element already present in UIS(z − k) and EG, where
1 ≤ k < z. Consequently, any two unique inducing sets will have
no overlapping elements. Our parallel-inducing method employs
unique inducing sets instead of inducing sets to reduce time
complexity.

Definition 12. Inducing Successor: Given an equivalent group
(EG), for every Suf(x) ∈ EG, its inducing successor is denoted as
its closest successor Suf(y) = Suf(x + z×D), where Suf(y) is a
distinguishable suffix in IS (EG).
z



Z. Du, S. Zhang and D.A. Bader Future Generation Computer Systems 149 (2023) 650–663

b
i
s
c
e
T

4

d

S
g

e
T
d
m
g
l
g

s
a
p

d
g
P
P
P
t
s

i
e

g
u
S
s

t
a
P
u
O
a
S
t
s

a
e
5
a
s
g
i
f
E

The relative order of suffixes within an equivalent group can
e determined based on the order of their inducing successors
n the corresponding inducing sets instead of sorting all inducing
ets. Therefore, accurately identifying the inducing successor is
rucial for inducing the order of suffixes in an equivalent group
fficiently. In Section 4.3.3, we will explore how our proposed
unnel mechanism effectively identifies the inducing successors.

.2. Data structure design

We propose the following data structure design based on the
efinitions provided above.
Given an input string S with a size of n = length(S) and

uf (e) = S[e..n− 1], where 0 ≤ e ≤ n − 1 is the eth suffix, the
oal is to sort the suffixes in parallel using p processors.
To keep track of the global indices of suffixes assigned to

ach processor, we utilize a two-dimensional array called ParSuf.
he corresponding suffix array is represented by another two-
imensional array called ParSA. Specifically, if ParSuf[i][j] = k, it
eans that the jth local suffix assigned to processor i is the kth
lobal suffix Suf(k). Similarly, if ParSA[i][l] = t, it implies that the
th sorted suffix from smallest to largest on processor i is the tth
lobal suffix Suf(t).
The algorithm consists of three main steps to process different

ubsets of suffixes. Each step requires a pair of ParSuf and ParSA
rrays to maintain the corresponding suffix subsets and their
artial suffix arrays.
In addition to the ParSuf and ParSA arrays, another two-

imensional array, ParEG, is utilized to store the equivalent
roups. For each processor i with Ng different equivalent groups,
arEG[i][g] represents the gth equivalent group on processor i.
arEG[i][g].size indicates the number of suffixes in group g , and
arEG[i][g].head = t specifies that ParSA[i][t] is the first suffix in
he group. The suffixes from ParSA[i][t] to ParSA[i][t+ParEG[i][g].
ize− 1] have the same D-prefix on processor i.

In the output of the first and second step of our parallel induc-
ng algorithm, different ParEG arrays are used to store different
quivalent groups based on the input suffixes.
To generate the inducing successor array of an equivalent

roup ParEG, a corresponding two-dimensional array, ParIS, is
sed to hold the inducing successors. If ParIS[i][j] = t′ and Par-
uf[i][j] = t, it means that the suffix Suf(t′) is the inducing succes-
or of the suffix Suf(t) on processor i.
To generate the ParIS array, we require additional data struc-

ures. A two-dimensional array, ParFlag, is used to indicate if
particular suffix can be an inducing successor. Specifically, if
arFlag[i][j] = True, it means that suffix Suf(ParSuf[i][j]) can be
sed to determine the order of suffixes in an equivalent group.
therwise, ParFlag[i][j] = False. Additionally, a one-dimensional
rray, ShaFlag, is used to store the shared flag information, where
haFlag[s]=True if there exists at least one suffix ParSuf[i][j] such
hat ParSuf[i][j]=s and ParFlag[i][j]=True. Conversely, if no such
uffix exists, ShaFlag[s] is set to False.

4.3. Parallel-inducing sort

In this subsection, we will present the key components of our
Tunnel algorithm’s parallel-inducing sort method. We will begin
by outlining the general structure of the method, followed by a
detailed explanation of the various functions that constitute the
method.

Alg. 2 introduces the PIS function, which implements parallel-
inducing sort on reduced sub-problems. The core concept of this
function is to construct smaller D-strings for each of the p sub-
problems and utilize the D-prefixes to categorize the suffixes into

two groups: distinguishable suffixes with unique D-prefixes and

655
equivalent suffixes with identical D-prefixes. While the order of
distinguishable suffixes can be established unambiguously, the
challenge lies in determining the order of equivalent suffixes,
which is the primary focus of the function. To overcome this
challenge, we generate unique inducing sets for each equivalent
group and identify the inducing successor for each equivalent suf-
fix. Finally, we use these results to induce the order of equivalent
suffixes within each equivalent group. By combining the order of
both distinguishable and equivalent suffixes, we obtain the final
suffix array.

The PIS function, outlined in line 2 of Alg. 2, sorts all the
suffixes in the SetList based on their D-prefixes by calling the
sub-function D_PIS. This operation yields two outputs: D_ParSA
with the ParSA data structure, and D_ParEG with the ParEG data
structure. In line 3, the function BldIT follows the inducing tun-
nel for suffixes in equivalent groups D_ParEG, generating the
unique inducing sets for identifying the inducing successor of
each equivalent suffix.

The unique inducing sets are sorted using the D_PIS function
gain, resulting in a new partial suffix array, U_ParSA, and the
quivalent groups, U_ParEQ for the unique inducing sets. In line
, the LocateIS sub-function is called on these structures, as well
s the original equivalent groups, D_ParEQ, to obtain the inducing
uccessor array, ParIS. The order of the suffixes in the equivalent
roups D_ParEG can be induced by calling the sub-function E_PIS
n line 6, utilizing the inducing successor array, ParIS. Finally, the
inal partial suffix array is obtained by updating D_ParSA with
_ParSA in line 7.

Algorithm 2: Parallel-Inducing Sort
1 Function PIS(SetList)
2 (D_ParSA,D_ParEG)=D_PIS(SetList)
3 UniIndSetList=BldIT(D_ParEG)

/* Build unique inducing set list
UniIndSetList=[UniIndSet0,...,UniIndSetp−1] for all
equivalent groups */

4 (U_ParSA,U_ParEG)=D_PIS(UniIndSetList)
5 ParIS=LocateIS(D_ParEG,U_ParSA,U_ParEG)

/* Get the inducing successor array to induce the order of
suffixes in equivalent groups. */

6 E_ParSA=E_PIS(D_ParEG,ParIS)
7 Build ParSA based on D_ParSA and E_ParSA
8 return ParSA
9 end

In the subsequent subsections, we will delve into the key
components of the PIS algorithm, providing a more in-depth
understanding of its functioning and effectiveness.

4.3.1. Sorting D-prefixes
The initial phase of this function shown in Alg. 3 involves

constructing p significantly smaller D-strings, referred to as DS_S0,
. . . , DS_Sp−1, from the original string S. This division allows each
processor to process one of these D-strings concurrently (as seen
in line 2). The original suffixes are then substituted with their
D-substrings.

The parallel execution of D-prefix based sorting will be carried
out across all processors (from lines 3 to 20). On each processor,
we will utilize the existing optimal sequential SACA algorithm,
SeqOptSA [11], to generate the suffix array for the corresponding
D-string. Since the suffix array will include some suffixes that are
not included in the assigned subset, we call the original suffix
array an extended suffix array. We need to eliminate unnecessary
suffix entries from the extended suffix array to obtain the exact
suffix array SA (as seen in line 5).

Suffixes whose order can be determined based on their D-
prefixes will have the correct rank in the partial suffix array. How-
ever, in cases where multiple suffixes have identical D-prefixes,
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heir ranks in SA may not be accurate. In such scenarios, the
rder of these equivalent suffixes must be determined based on
heir full suffixes. To cluster equivalent suffixes based on their
-prefixes, we use a two-dimensional array, EquGrp, to store
hese groups. The equivalent suffixes of the current group cg for
rocessor i will be stored at EquGrp[i][cg].
Next, we will identify the equivalent groups whose suffixes

ay not be correctly ordered based on their D-prefixes (from
ines 6 to 19). To start, we initialize the equivalent group number
o −1 and set the new group flag, NewGroup, to be True. Then,
e compare each suffix with its previous suffix in the order of
he partial suffix array SA, examining if their D-prefixes are the
ame (from lines 7 to 19). If they are equal (from lines 8 to 15),
or a new equivalent group (from lines 9 to 13), we increment
he group ID EqG by 1 and set the new group flag to False. At
he same time, we set the head position of the current equivalent
roup to j− 1 and initialize the total number of elements in the
roup to 1. Afterward, we increase the total number of elements
n the current equivalent group by 1 (line 14). If the D-prefix of
he current suffix is different from the D-prefix of its previous
uffix, we reset the new equivalent group flag to be True (line
7). Finally, the function returns the partial suffix array SA and
he equivalent group array EquGrp (line 21).

The EquGrp feature plays a crucial role in efficiently traversing
ll equivalent suffixes within the current processor. Additionally,
t can be used to build a valuable one-to-one mapping from the
anks of a partial suffix array to global suffix indices. Leveraging
his information, we can construct a reverse one-to-one mapping,
nabling us to locate the local suffix rank when provided with
global suffix index. This reverse mapping capability proves to
e highly advantageous in various scenarios, facilitating quick
nd precise access to local suffix information. By harnessing the
ower of both mappings, we enhance the effectiveness of our
pproach and achieve more efficient and accurate processing of
uffixes within the system.

Algorithm 3: Sorting D-Prefixes
1 Function D_PIS(SetList)
2 Build p D-strings DS_S0 ,...,DS_Sp−1 according to different subsets
3 forall (i in 0..p-1) do
4 ESA[i][] = SeqOptSA(DS_Si)
5 Remove the entries not in Seti from ESA[i][] and build SA[i][]

corresponding to SubSeti
6 EqG = -1; NewGroup = True
7 for (j in 1..|SubSeti|-1) do
8 if (Suf(SA[i][j]) and Suf(SA[i][j-1]) have the same D-prefix) then
9 if (NewGroup == True) then

10 EqG++; NewGroup = False
11 EquGrp[i][EqG].head = j-1
12 EquGrp[i][EqG].size = 1
13 end
14 EquGrp[i][EqG].size++
15 end
16 else
17 NewGroup = True
18 end
19 end
20 end
21 return SA, EquGrp
2 end

4.3.2. Building inducing tunnel
The primary objective of this procedure is to generate unique

nducing suffix sets and evenly distribute them among proces-
ors. While the unique inducing sets within the same equivalent
roup do not overlap, different unique inducing sets from dis-
inct equivalent groups may have some overlap with each other.
ssigning these overlapping unique inducing sets to the same
rocessors can effectively reduce the total number of duplicated
uffixes. However, achieving a balance in workload distribution
656
while minimizing the duplication of suffixes poses a significant
challenge.

Based on Definition 11 about the unique inducing set, the
unique inducing set with a larger index number z may have a
much less number of suffixes than the unique inducing set with
a smaller z. So, we can divide the z indices into three intervals
based on the potential largest number of suffixes in those unique
inducing sets. We can find a constant C that meets the following
equirements.

∑
∈EGi

|UISz(x)| ≤

⎧⎪⎨⎪⎩
O( np ) : z ≤ C

O( n
p2
): C < z ≤ C × p

O(1) : z > C × p

here EGi is the set of equivalent groups in processor i. The
umber of unique inducing sets with an index z ≤ C is very
imited. However, these sets may have a large number of suffixes,
ypically up to the order of O

(
n
p

)
in the worst case. On the other

hand, for the unique inducing sets with an index ranging from
C < z ≤ C × p, the unique inducing sets sharing the same index
z may have approximately O( n

p2
) suffixes at most. In both cases,

when considering each processor, the sum of all suffixes within
the range of unique inducing sets (1 ≤ z ≤ C × p) cannot exceed(

n
p

)
. Therefore, it is practical to assign these unique inducing

ets to the same processors as their corresponding equivalent
roups.
To optimize the processing of unique inducing sets with an

ndex (z) exceeding C × p, we can follow a series of steps. Firstly,
we identify the starting and ending suffixes of these sets, ensuring
that they share the same value for modulo D. Next, we align these
sets based on the degree of overlap they have with subsequent
unique inducing sets. Finally, by distributing the aligned unique
inducing sets across multiple processors, we can achieve load
balancing and effectively reduce redundancy.

Alg. 4 presents the procedure for constructing the inducing
tunnel for all equivalent groups. We leverage parallel processing
to handle all the suffixes concurrently in different processors
(lines 2 to 9). Firstly, in lines 3 to 5, we allocate the unique induc-
ing suffix sets with ranks lower than C×p to their corresponding
equivalent group processors. This step is simple and we will focus
on the second part. It is worth noting that while the sizes of
the remaining unique inducing suffix sets, identified by indices
z > C × p, might be small, their total count can be substantial.

To ensure efficient assignment of these small sets, we have
developed a three-step approach:

Step 1 (Line 6): Determining bounds for unique inducing set
series. We start by computing the lower and upper bounds of the
suffix indices for each unique inducing set series. Due to different
modulus values, these series may have up to D pairs of bounds.

Step 2 (Line 7): Computing the alignment solution for unique
inducing sets. Using the information from the ‘‘Bound’’ array, we
calculate the alignment solution for different unique inducing
sets. This enables us to identify which sets should be aligned and
assigned to the same processor, effectively reducing duplicated
suffixes. We focus on aligning only those unique inducing set
series with overlapping suffixes exceeding n

p . This ensures that
each processor handles suffixes no more than O( np ). However,
ligning additional sets can further reduce the total number of
uplicated suffixes.
Step 3 (Line 8): Ensuring load balance through even distri-

ution. In this crucial step, we tackle load balancing by map-
ing distinct unique inducing sets to individual processors (the
apping method can be used to determine which processor is

esponsible for handling a particular unique inducing set later).
e distribute the aligned unique inducing sets evenly across
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Algorithm 4: Building Inducing Tunnel
1 Function BldIT(ParEG)
2 forall (i in 0..p-1) do
3 forall z in 1..C×p do
4 For any equivalent group g in ParEG[i], Add suffixes of UISz (g)

and g to UniIndSet i
5 end
6 Calculate the Bound array for all z > C × p, any equivalent group g

in ParEG[i], and 0 ≤ d < D; Bound[i][g][d].l represents the lower
bound of modulus-equal suffixes in group g ’s unique inducing
sets, and Bound[i][g][d].u represents the upper bound

7 Calculate alignment solutions based on the major overlapping
range of the Bound array. An alignment solution Align =
{<g1 ,...,gt>, <z1 ,...,zt>} means that groups g1, ..., gt ’s unique
inducing sets will be aligned from indices z1, ..., zx

8 Distribute aligned unique inducing sets among different processors
(assign suffixes on processor i to UniIndSet i )

9 end
10 return UniIndSet
1 end

processors using a cyclic approach. This strategic distribution
ensures that computational load remains well-balanced across
the entire system, enabling each processor to efficiently handle
its assigned workload.

By following this three-step approach, we achieve an efficient
ssignment of small sets, significantly reducing duplication and
nsuring that each processor handles an appropriate number
f suffixes. This method leads to improved performance and
treamlined processing for the given task.
Unique inducing sets that remove the duplicated suffixes from

ts inducing sets can potentially result in our Tunnel mechanism
ot finding the correct inducing successor. To address this, we
ntroduce a quick check in the ‘‘Locating Inducing Successors’’
ocateIS function (set Section 4.3.3) to rectify this problem.

.3.3. Locating inducing successors
Identifying the inducing successors of an equivalent group

erves a crucial purpose and offers a substantial advantage. It
llows us to distinguish a set of suffixes that can be utilized
o determine the order of suffixes within the given equivalent
roup. When the suffixes within an equivalent group share long
ommon prefixes, inducing successors can dramatically decrease
he search time. The method to locate the inducing successors is
utlined in Alg. 5.
In Alg. 5, we assign values to the ParGFlag flag array, using

he ParFlag data structure, based on the information from the
artial suffix array (UniIndSA) and its equivalent group (UniIndEG),
s well as the original equivalent group (ParEG) which we need to
ort. Specifically, ParGFlag[i][j] is set to True if the suffix ParSuf[i][j]
is a distinguishable suffix, and False otherwise.

At the same time, we establish the shared flag array ShaGFlag,
implemented using the ShaFlag data structure, based on the val-
ues present in ParGFlag (line 2). This array serves as a shared rep-
resentation of the flags across all processors. In order to address
the potential occurrence of False flags in the ShaGFlag arising
from two suffixes belonging to different inducing sets on the
same processor, we invoke the Remark subfunction to reset those
elements within ShaGFlag that were erroneously marked as False
o their correct state of True (see Alg. 7 in details).

To initialize the ShaIS array (line 3) in Alg. 5, we assign each
lement with the index of its corresponding suffix, encompassing
ll the suffixes in ParEG and their respective successors. The ShaIS
rray contains the suffixes to be sorted and their successors. It is
hared among all processors.
In line 4, we invoke the TunnelTrans subfunction (see details in

Alg. 6) to update the ShaIS array using the ShaGFlag. This update
657
process is in parallel, and it can make sure that even if the size of
ShaIS is O(n) (the worst case), it can be handled in O

(
n
p

)
time.

However, it is important to note that the same suffixes on
different processors may have different inducing successors. This
may happen for two reasons: the shared splitters and the same
suffixes due to being successors of the suffixes in different EGs
on different processors. Therefore, in line 5, we call the Refine
subfunction (see details in Alg. 7) to refine the information on
the inducing successors. The refined information is then stored
in a new array called ParIS.

In Alg. 5, by leveraging the information from UniIndSA, Uni-
IndEG, ParGFlag, and ShaGFlag, and performing the necessary ini-
tialization, updating, and refining steps, we accurately determine
the inducing successors of the suffixes in ParEG, which are stored
in the ParIS array (line 6) for the following sorting on suffixes in
ParEG.

Algorithm 5: Locating Inducing Successors
1 Function LocateIS(ParEG,UniIndSA,UniIndEG)
2 Build ParGFlag and ShaGFlag arrays; Call Remark(ParEG, UniIndSA,

UniIndEG) to update ShaGFlag
3 Initialize ShaIS with the current suffix itself to include all suffixes in

ParEG and their successors
4 ShaIS=TunnelTrans(ShaIS,ShaGFlag)
5 ParIS=Refine(ShaIS,UniIndEG)
6 return ParIS
7 end

Alg. 6 describes the details of the TunnelTrans function. It plays
a crucial role in identifying inducing successors. Since inducing
successors can only exist within an equal-modulus suffix set, our
first step is to construct these sets (line 2). Subsequently, lines
3 to 24 perform the generation of inducing successors for each
equal-modulus suffix set.

To enable parallel execution, we divide each set into p parts
(line 4). The key idea behind identifying inducing successors is to
transfer the suffixes with a True flag to their predecessors with
False flags. This transfer operation can be performed in parallel
(lines 5 to 8).

To facilitate the parallel transformation across different pro-
cessors, we employ a temporary array tmp to store the suffix from
the subsequent processor. This enables us to update the inducing
successors of the current processor (lines 9 to 17).

By utilizing the inducing successor information from the next
processor, each processor can independently update its local por-
tion of inducing successors in parallel (lines 18 to 22). Finally, in
line 23, we update the inducing successor information in ShaIS for
the suffixes belonging to the current equal-modulus suffix set.

Through the TunnelTrans function, we efficiently identify in-
ducing successors by constructing equal-modulus suffix sets, per-
forming parallel transfers of suffixes, updating local inducing
successor information, and ultimately updating the inducing suc-
cessor information in ShaIS for the current equal-modulus suffix
set.

In Alg. 7, the Refine function is introduced to ensure that each
processor possesses the correct inducing successors. There are
three issues that need to be addressed in this function.

The first issue arises when dealing with two suffixes, sx and
sy, which belong to different unique inducing sets. Although their
-prefixes can be used to differentiate them from other suffixes
ithin the same unique inducing set, sx and sy share the same

D-prefix. Consequently, if both suffixes are assigned to the same
processor, they will be incorrectly identified as equivalent suf-
fixes instead of distinct ones. To resolve this problem, we present
a solution that entails the generation and sorting of the initial
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Algorithm 6: Building Shared Inducing Successors
1 Function TunnelTrans(ShaIS,ShaGFlag)

/* building connection between the suffix in an equivalent
group and its inducing successor. */

2 Build Modulus-Equal Suffix Set List MESSL based on ShaIS
3 for (ms in MESSL) do
4 Divide ms into p even blocks
5 forall (i in 0..p-1) do
6 for all the elements in the current block whose flag is True,

transfer its value to all of its predecessors whose flag is False
7 for all the elements in the current block whose flag is False

and has not been updated, assign its value with -1
8 end
9 tmp[p− 1] ← the first element of block p− 1

10 for (i from p-2 to 0) do
11 if (the first element fe of block (i+1) is not -1) then
12 tmp[i]=fe
13 end
14 else
15 tmp[i]=tmp[i+1]
16 end
17 end
18 forall (i in 0..p-1) do
19 if (block i has element whose flag is False and its value is -1)

then
20 Let its value be tmp[i]
21 end
22 end
23 Update ShaIS based on the ms value of each block
24 end
25 return ShaIS
6 end

inducing set for every equivalent group. By examining whether
only sx or sy is present in the inducing set, we can determine
hether they should be marked as distinguishable suffixes. To

ncorporate this update, we call the Remark function after con-
tructing the ShaGFlag arrays in Alg. 5 (line 2). Placing the Remark
ubfunction within Alg. 7 helps to illustrate the different refining
ethods clearly.
The second issue pertains to the usage of unique inducing

ets instead of inducing sets to identify the inducing successors.
nique inducing sets assume that for two modulus-equal suffixes
uf(a) and Suf(b), where a < b, if they are equivalent suffixes,
hen Suf(b) and Suf(2×b − a) are also equivalent suffixes. To
alidate this assumption, we only need to individually examine
he successor suffixes (lines 3 to 12 in Alg. 7). Specifically, line
states that if Suf(a) is a predecessor of Suf(b) and they are in
ne equivalent group, but Suf(b) and Suf(2×b− a) have different
-prefix, or they are not in an equivalent group, then if ShaIS[a]
b, we know it is not correct, and we should let ShaIS[a] = b

ecause Suf(b) can distinguish itself from others in its inducing
et. Similarly, line 9 indicates that if ShaIS[b] > 2×b−a, we should
et ShaIS[b] = 2×b−a because Suf(2×b−a) can distinguish itself
rom others in its inducing set. These updates serve to rectify the
nducing successors if our initial assumptions were incorrect.

By incorporating these updates, we can ensure that the in-
ucing successors are accurately determined, even if the unique
nducing sets do not include duplicate suffixes compared with the
orresponding inducing sets.
The third issue relates to the fact that different processors

ay have different inducing successors rather than sharing the
ame ones. Currently, the construction of the ShaIS array is done
onservatively, marking a suffix’s shared flag as True as long as
ny processor identifies it as such. However, it is possible for
ifferent processors to have different inducing successors if one
uffix’s successor is marked as True on one processor but False on
another. To address this, we propose updating the value of ParIS[t]
when the local flag ParGFlag[i][j] is False, but the corresponding
suffix ParSuf[i][j] = t and the shared flag ShaFlag[t] is True (lines
658
13 to 20). This update allows each processor to maintain its own
inducing successors.

In lines 14 to 20, we iterate through all the suffixes simul-
taneously on each processor. This iterative process handles each
suffix one by one. In lines 15 to 16, we initially assign the inducing
successor from ShaIS to ParIS. The variable t keeps track of the
index of the current suffix.

In lines 17 to 19, we check if the current suffix is marked as
an equivalent suffix (False) in ParGFlag but as a distinguishable
suffix (True) in ShaGFlag. If this condition is met, we update the
value of ParIS[i][j] using the inducing successor indicated by the
next successor ShaIS[t + D].

Once ParIS is assigned from ShaIS, we can further optimize
the inducing successors using the elements in ParIS. For any two
equivalent suffixes ParSuf[i][j] and ParSuf [i′][j′], if ParSuf[i′][j′] is
the first successor of ParSuf[i][j], then ParIS[i][j] can directly use
the suffix in ParIS[i′][j′] as its inducing successor.

Suffixes with the same long common prefixes can form a long
tunnel. To efficiently transfer the inducing successor in parallel,
we can use a method similar to TunnelTrans (line 21). This method
allows for efficient parallel transfer of the inducing successor in
cases where long common prefixes exist among the suffixes.

By implementing these updates, we ensure that each pro-
cessor can maintain its own set of inducing successors, thereby
improving the overall efficiency of the sorting algorithm in the
subsequent steps.

Algorithm 7: Inducing Successor Refining
1 Function Refine(ShaIS, ParEG)
2 forall (i in 0..p-1) do
3 Let NumEqG ← Number of equivalent groups on processor i based

on ParEG[i]
4 for (j in 0..NumEqG-1) do
5 Let g be the set of suffixes in ParEG[i][j] group
6 forall (Suf(a), Suf(b) ∈ g and Suf(b) is the closest successor of

Suf(a)) do
7 if (the D-prefix of Suf(b) and Suf(2 × b-a) are different)

then
8 ShaIS[a]=min(b,ShaIS[a])
9 ShaIS[b]=min(2×b-a,ShaIS[b])

10 end
11 end
12 end
13 Numi ← total number of suffixes in ParSuf on processor i;

ParIS[i]=-1
14 for j in 0..Numi -1 do
15 t=ParSuf[i][j]
16 ParIS[i][j]=ShaIS[t]
17 if ((ParGFlag[i][j]==False) && (ShaGFlag[t]==True) ) then
18 ParIS[i][j] = ShaIS[t+D]
19 end
20 end
21 Update ParIS from tail to head using the method as in TunnelTrans

for all equivalent suffixes
22 end
23 return ParIS
4 end
5 Function Remark(ParEG,UniIndSA,UniIndEG)

26 forall (i in 0..p-1) do
27 Building and sorting IndSet i based on ParEGi and UniIndEGi
28 forall (sx ∈ IndSeti) do
29 if (sx is a distinguishable suffix) then
30 Remark ShaGFlag(sx) as True
31 end
32 end
33 end
4 end

4.3.4. Parallel sorting equivalent groups
In this section, we will demonstrate how we can leverage

inducing successors to efficiently induce the order of suffixes in
equivalent groups simultaneously using Alg. 8.
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The E_PIS function will produce the partial suffix array for the
uffixes belonging to the equivalent groups ParEG. The equivalent
roups will be processed in parallel by each processor (lines 2
o 13). Firstly, the processor will retrieve the total number of
quivalent groups (line 3). Then, for each equivalent group, we
ill sort its suffixes based on their inducing successors (lines 5
o 8).

By leveraging the inducing successors of each equivalent
roup, the sorting process becomes highly efficient and straight-
orward. In line 5, we calculate the z value for the inducing sets
hat contain the corresponding inducing successors. A higher z
alue indicates a longer common prefix for the suffix.
To effectively sort the equivalent group in line 6, we first

dentify such a suffix based on the given inducing successor: (1)
t must have the same z value as the inducing successor. (2) It
epresents a group of suffixes that share the same equivalent
roup as the inducing successor in the z− 1 unique inducing set.

We refer to such a suffix as a ‘‘group suffix’’ since it signifies a
group of suffixes that differ from the inducing successor.

We can sort the inducing successors and their group suffixes
just based on their D-Prefix (line 7). Consequently, in line 8, we
build the partial suffix array for suffixes in the same group. If the
suffixes form different groups, then we need to determine the
order of different groups. We proceed to sort them recursively in
lines 9 to 11. For this, we select one suffix from each group, add
them to the set of the current processor, and perform the sorting
process again in lines 14–16.

When all independent subgroups have been sorted but the
order between different subgroups is unknown, we utilize the
suffixes selected from each independent subgroup to call PIS
recursively (lines 14–16). This step ensures that the suffix order
between different subgroups is determined.

Once the suffix order between different subgroups is known,
we merge them and construct the final suffix array in line 17.
Finally, in line 18, we return the completed suffix array.

These steps collectively enable a highly efficient and stream-
lined sorting process, optimizing the organization of suffixes
based on inducing successors of suffixes with long common
prefixes.

Algorithm 8: Parallel Sorting Equivalent Groups
1 Function E_PIS(ParEG, ParIS)
2 forall (i in 0..p-1) do
3 Let NumEqG ← Number of equivalent groups on processor i based

on ParEG[i]
4 for (j in 0..NumEqG-1) do
5 Calculate the z value (the rank of an inducing set) of each

suffix’s inducing successor
6 Identify the group suffix of each inducing successor with the

same z value
7 Sort all inducing successors and group suffixes based on their

D-Prefix
8 Build partial suffix array ESA[g]i,j for suffixes in each group g
9 if (there are multiple groups) then

10 Choose any one suffix from each group and add it to
GSetList[i]

11 end
12 end
13 end
14 if (GSetList is not empty) then
15 GSA=PIS(GSetList)
16 end
17 Build RSA based on ESA and GSA
18 return RSA
9 end

5. Complexity analysis

In this section, we evaluate the performance of our parallel
lgorithm using the widely recognized Parallel Random Access
659
Machine (PRAM) model [20]. The proposed algorithm has a time
complexity of O

(
n
p

)
and a space complexity of O(n). We will

prove that each step of the algorithm can be executed in O
(

n
p

)
ime, utilizing at most O(n) of working space.

emma 1. All substeps of Algorithm 1, excluding the PIS function,
an be performed in O

(
n
p

)
time and O(n) space.

roof. Regarding substep 1.1 of step 1, dividing the n suffixes of
he given string S into p parts, each with O

(
n
p

)
elements, can be

done straightforwardly in O
(

n
p

)
time. The space required for the

esulting p D-strings will be O(p× D× n
p ) = O(D× n) = O(n).

For substep 2.1, selecting (p − 1) splitters for each processor
based on its returned partial suffix array and grouping them
(together with the largest suffix on each processor) into different
subsets can also be accomplished in O

(
n
p

)
time. Here, it is

assumed that p3 < n. When (p2 − p) new suffixes are added
to each subset, each subset will contain O

(
n
p

)
+ O(p2 − p) ≤

O
(

n
p

)
+ O

(
n
p

)
= O

(
n
p

)
elements, resulting in a total working

space of O(p× n
p ) = O(n).

The number of elements between the two closest splitters
annot be larger than O

(
n
p2

)
. Therefore, when p intervals of

elements divided by the same splitters are combined into one
subset, its size cannot be larger than O

(
n
p

)
. At the same time,

the elements of each subset will be no larger than O
(

n
p

)
. Based

on this conclusion, it is possible to construct p ordered subsets
according to the p2 selected suffixes in substep 3.1, in O

(
n
p

)
time

nd with O(n) working space.
Therefore, the conclusion holds. □

Therefore, we can conclude that the Tunnel algorithm has
time complexity of O

(
n
p

)
and a space complexity of O(n)

when executed on p processors. This holds true provided that the
parallel-inducing function PIS can generate the partial suffix array
for each subset of size O

(
n
p

)
in O

(
n
p

)
time while using O(n)

working space.
We will analyze the time and space complexity of the PIS

function as follows.

Corollary 1.1. Consider a string S of length n, where its suffixes are
divided into p subsets, each with a size not exceeding O

(
n
p

)
. Then,

the D-prefixes of each subset can be sorted in O
(

n
p

)
time using p

processors and with a working space of O(n).

Proof. To sort the D-prefixes of the p suffix subsets of string S
with length n, we can first build D-strings by concatenating the D-
substrings corresponding to the suffixes in each subset. This can
be done in parallel and will take O

(
n
p

)
time with O(n) space.

Then, we can apply the optimal sequential suffix array algorithm
SeqOptSA to compute the corresponding extended suffix arrays in
O

(
n
p

)
time. The extended suffix arrays will contain extra indices,

hich can be removed in O
(

n
p

)
time. Thus, the D-prefixes of the

given suffix subsets can be sorted in O
(

n
p

)
time and with O(n)

space. □
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orollary 1.2. All equivalent groups can be generated in O
(

n
p

)
ime and O(n) space in Alg. 3.

roof. The information on the equivalent groups can be stored in
n equivalent group array EquGrp[p][ n2 ] with O( n2 ) = O(n) space,

as the suffixes can be grouped into a maximum of n
2 groups. Using

he returned partial suffix array, each processor can compare the
-prefix of a suffix with its neighbor to determine if they are the
ame. The total time required for these comparison operations by
ny processor is O(D × n

p ) = O( np ). Building the reverse one-to-

ne mapping based on EquGrp will also need at most O
(

n
p

)
time

nd O
(

n
p

)
space for each processor in parallel. Hence, generating

all equivalent groups can be completed in O
(

n
p

)
time and using

(n) space. □

emma 2. Alg. 3 can be executed in O
(

n
p

)
time and O(n) space.

roof. Corollaries 1.1 and 1.2 demonstrate that sorting D-prefixes
nd generating all equivalent groups can be performed in O

(
n
p

)
ime and O(n) space. Therefore, Alg. 3 can also be executed in(

n
p

)
time and O(n) space. □

emma 3. Alg. 4 generates p unique inducing subsets UniIndSet0,...,
niIndSetp−1, with each set containing no more than O

(
n
p

)
suffixes

n O
(

n
p

)
time and O(n) space.

Proof. Generating all unique inducing subsets is straightforward,
but ensuring that the size of each set assigned to a processor is no
more than O

(
n
p

)
and that the work is done in O

(
n
p

)
time, even

ith overlap between sets generated from different equivalent
roups, requires further consideration.
We can divide the task into two parts to analyze the time

omplexity and space requirements.
In the first part, we consider the case where the maximum

ank of the unique inducing sets is no more than C × p. In this
cenario, the total number of suffixes in the unique inducing sets
f each processor cannot exceed O

(
n
p

)
. This is because, for any

nique inducing set with rank z, all the suffixes generated from
the equivalent group within one processor will be no more than
O(C × n

p ) + O((C × p − C) × n
p2
) = O( np ). The calculation can be

completed in O
(

n
p

)
time and requires O(n) space.

In the second part, we consider the worst-case scenario where
he remaining unique inducing sets (z ≥ C × p) contain O(n) suf-
ixes. The unique inducing sets with the same z on each processor
ill have a constant number of suffixes. Calculating the bound
rray for all unique inducing set series within a single processor
equires traversing all the elements of the equivalent groups in
hat processor. This operation can be completed in O(1) time
ecause each processor will have a constant number of suffixes.
he space for each processor will also be O(1) because at most D
uch an array will be needed, and each array has two elements
lower bound and upper bound).

During the alignment solution calculation step, We only need
o align the unique inducing set series whose total number of
uplicated suffixes is large than n

p (much more than p). The
method is straightforward. If two unique inducing set series will
have overlapping suffixes starting from indices z1 and z2, we
just align the two series from z and z . The aligned unique
1 2

660
inducing sets will be merged together and assigned to the same
processor. This will make sure the total number of suffixes in
different unique inducing sets cannot be larger than O(n). Once
alignment will increase the size of a unique inducing set at most
D times. So, aligning unique inducing sets from p processors will
cause the size of the merged unique inducing set to be at most
O(p). The total number of unique suffixes cannot be large than
n. So each processor will have at most O( np ) unique suffixes.
The total number of duplicated suffixes across different processor
cannon be large than n

p . So each processor will have at most
O( np ) duplicated suffixes. This can make sure the total number of

uffixes assigned to each processor will be no more than O
(

n
p

)
.

herefore, the second part can also be completed in O
(

n
p

)
time

nd O(n) space.
Therefore, the conclusion holds for both parts combined. □

emma 4. The D-prefix substrings of subsets UIndSet0, . . . ,
indSetp− 1 can be sorted in O

(
n
p

)
time on p processors with O(n)

space.

Proof. Based on Lemma 3, UindSet0, . . . ,UindSetp− 1 are p suffix
subsets, and each of them has at most O

(
n
p

)
suffixes. Based on

Lemma 2, they can be sorted in O
(

n
p

)
time on p processors with

O(n) space. □

emma 5. For Alg. 5, the inducing successor array ParIS can be
enerated in O

(
n
p

)
time and O(n) space.

Proof. Since each processor handles a subset of suffixes, the
space required for ParIS on each processor is no larger than
O

(
n
p

)
. Therefore, O(n) space is sufficient. All the arrays, such

s ParGFlag and ShaGFlag, also need O(n) space. The assignment
o such arrays is straightforward and can be done in parallel in(

n
p

)
time.

For the function TunnelTrans in Alg. 6, the process involves
assing the closest True flag suffix to the current suffix within
ach equivalent group. We optimize the passing path by dividing
ong paths into multiple parallel subpaths, which allows parallel
rocessing. Each processor performs suffix passing on different
ubpaths, ensuring efficient utilization of resources.
During the process, we use temporary memory spaces to

ransfer indices across different processors. Since the suffixes
ssigned to each processor are at most O

(
n
p

)
, the first scan

procedure in TunnelTrans can be completed in O
(

n
p

)
time for all

processors. The subsequent passing of values through temporary
memory spaces can be done sequentially, requiring at most O(p)
time. Finally, during the last scan, each processor assigns the
suffixes with the values stored in the temporary memory space if
they point to that memory space. This third substep requires at
most O

(
n
p

)
time.

For the Refine function in Alg. 7, the first update Remark
subfunction will build IndSet whose space is no more than ParEG
and UniIndSet. So, O(n) space is enough. Sorting it in parallel will
eed O

(
n
p

)
time since the suffixes on each processor will be no

ore than O
(

n
p

)
. The remarking procedure can also be done in

parallel and each processor only need to check O
(

n
p

)
suffixes. So,

Remark subfunction can be done in O
(

n
)
time and O(n) space.
p
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The second update will check every suffix in each equivalent
roup, which takes no more than O

(
n
p

)
time. The third update

nvolves checking the suffixes of different unique inducing sets
ssigned to each processor. Since the total number of suffixes
andled by one processor is at most O

(
n
p

)
, the time complex-

ty for each processor is also O
(

n
p

)
. Therefore, the total time

complexity to locate all inducing successors is O
(

n
p

)
.

In conclusion, the inducing successor array ParIS can be gen-
rated in O

(
n
p

)
time and O(n) space. □

emma 6. For Alg. 8, the process of inducing the order of suffixes
n all equivalent groups based on ParIS can be completed in O

(
n
p

)
ime and O(n) space.

roof. The algorithm efficiently performs the operations required
o calculate the rank z value of each inducing set, group the
uffixes into equivalent groups, sort the suffixes within subgroups
nd determine the order of subgroups.
For each processor, calculating the rank z value of each induc-

ng set can be completed in O
(

n
p

)
time because each processor

andles at most O
(

n
p

)
inducing successors. Grouping the suffixes

into equivalent groups based on the z value of their inducing
successors also takes at most O

(
n
p

)
time. Sorting the suffixes

within different subgroups independently requires O
(

n
p

)
time

ince each subgroup contains only a fraction of the total number
f suffixes in the equivalent groups. For the recursive procedure,
he size of the input will be at most half of the original input
ecause we just select one suffix from each subgroup and each
roup has at least two suffixes. Merging two partial suffix arrays
SA and GSA together will need at most O

(
n
p

)
time. Based on the

Master Theorem [21], the total time complexity is O
(

n
p

)
.

All of these operations can be performed using O
(

n
p

)
space

n each processor. Since each processor can handle its equivalent
roups independently in O

(
n
p

)
time and O

(
n
p

)
space, the overall

xecution time for all processors is no more than O
(

n
p

)
, and

he total space required is no more than O(n). Therefore, the
onclusion holds. □

heorem 7. The execution of Alg. 2 can be completed in O
(

n
p

)
ime on p processors while using O(n) space.

roof. The proof of Theorem 7 is a direct result of Lemmas 2, 3,
, 5, and 6. All components of Alg. 2 can be executed in O

(
n
p

)
ime and O(n) space, as proven in each respective lemma. Hence,
y combining these components, we conclude that Alg. 2 can be
ompleted in O

(
n
p

)
time and O(n) space. □

heorem 8. The suffix array of a string S of length n can be
enerated in parallel using Alg. 1 in O

(
n
p

)
time on p processors with

O(n) space.

Proof. The proof follows from the analysis in Lemma 1 and
Theorem 7, which demonstrate that each step in the algorithm
can be performed in O

(
n
p

)
time and O(n) space. The conclusion

follows by aggregating these results. □
 m
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6. Practical performance optimization

In this section, we discuss some techniques that can improve
the practical performance of the proposed Tunnel algorithm.

6.1. Optimized sampling technique

In substep 1.1 of Algorithm 1, we can utilize a specific sam-
pling method to eliminate the need to generate unique inducing
sets.

Using the constant D, we can assign suffixes to p processors
using a special cyclic distribution called CYCLIC(D). This distribu-
tion follows a specific pattern to allocate the suffixes among the
processors.

First, we assign the suffixes Suf(0), Suf(1), . . . , Suf(D-1) to pro-
cessor 0. Then, the next D suffixes, Suf(D), Suf(D+1), . . . ,
Suf(2×D−1), are assigned to processor 1. This pattern continues,
assigning the subsequent D suffixes, Suf(D × (p − 1)), Suf(D×
(p − 1) + 1), . . . , Suf(D× p − 1), to processor (p − 1). Finally,
the distribution wraps back to processor 0, and this assignment
process repeats until all suffixes have been allocated to the
processors.

For any suffix set ss on processor i, where 0 ≤ i < p, if ss is an
equivalent group, then any of its inducing sets can be found in full
on some other processors. This eliminates the need to generate
unique inducing sets and assign them to different processors, as
they are already available. So, in Alg. 2, we do not need to call the
subfunction BltIT in line and D_PIS in line 4. The LocatIS function
in line 5 can directly use the results from line 2 to calculate the
ParIS. Obviously, this can save some execution time.

6.2. Splitter optimization

In step 2 of Alg. 1, we can adopt a more efficient approach to
sort the splitters and arrange the suffixes accordingly.

One method to improve the efficiency is to directly sort the p2
splitters gathered from various processors. Once all the splitters
are sorted, each processor can sort the intervals that contain
splitters from other processors, while skipping the intervals that
do not include new splitters. This results in a reduced number of
suffixes being sorted, saving valuable processing time.

Another optimization strategy is to decrease the total number
of splitters used. While selecting p2 splitters provides optimal
load balancing, using a smaller number of splitters in practical
scenarios can result in improved performance without sacrificing
load balancing. This is because reducing the number of splitters
also reduces the number of suffixes that need to be sorted.

7. Related work

The field of suffix array construction has seen numerous ad-
vancements since its inception in 1990 by Manber and Myers [1].
The use of ‘‘inducing’’ – leveraging the order of certain suffixes
to induce the order of others – has proven to be a crucial tech-
nique in the sorting of suffixes. Although prefix-doubling [22]
adopts the inducing technique, it cannot reduce the problem size
step by step. This is why it cannot achieve O(n) time complex-
ty. Subsequent works [3–5] have successfully tackled this issue
y constructing a reduced problem and employing the inducing
echnique to sort the suffixes in a recursive manner.

All existing parallel suffix array construction algorithms were
rying to parallelize one or combined sequential algorithms. Fu-
amura et al. [12] gave the early effort to parallel the prefix-
oubling method. Larsson et al. [23] implemented optimized

ethods based on the previous prefix-doubling technology and
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mproved its performance in parallel. Osipov et al. [14] im-
lemented the prefix-doubling algorithm on GPUs. Flick and
luru [24]’s parallel MPI-based implementation of the prefix-
oubling method can achieve very high practical performance on
uman genome datasets. Kulla et al. [25] parallelized the sequen-
ial DC3 method, which regularly samples the string to build a
maller 2

3n problem. Deo et al. [15] further implement the DC3
method on GPUs. Shun [26]’s parallel skew (DC3) algorithm could
achieve good performance on shared-memory multicore com-
puters. Wang et al. [27] implemented a hybrid prefix-doubling
and DC3 method on GPUs to improve the existing GPU methods
significantly. Lao et al. [18,19] employed pipeline technology to
parallelize their previous sequential linear algorithms [10,28] on
multicore computers.

While these parallel algorithms have greatly improved their
practical performance compared to their sequential counterparts,
they still fall short of achieving O

(
n
p

)
time complexity. The

conventional sequential algorithm framework proves to be a hin-
drance to attaining scalable performance in parallel methods. Our
proposed framework and parallel-inducing method break this
barrier and achieve O

(
n
p

)
time complexity.

. Conclusion

This paper introduces the concept of D-strings and presents
a novel parallel-inducing sort technology along with a three-
phase workflow for efficiently sorting large strings. The proposed
algorithm, named Tunnel, represents a significant advancement in
the field of parallel suffix array construction. Notably, it achieves
a remarkable time complexity of O

(
n
p

)
, where n is the size of

the input string and p denotes the number of parallel processors.
Importantly, Tunnel outperforms existing parallel algorithms by
being the first to achieve such time complexity, assuming p3 < n.

The key strength of the Tunnel algorithm lies in its efficient
handling of large read-only strings constructed from an integer
alphabet. By leveraging the order of suffixes in their inducing
set, the algorithm parallelizes the sorting of suffixes with long
common prefixes. It tackles this complex problem through a
meticulous step-by-step process, employing three well-defined
phases. Moreover, it builds upon an optimal sequential suffix
array construction algorithm as an independent execution unit
to calculate the order of all D-prefixes, effectively separating
suffixes with long common prefixes from those with short unique
prefixes.

The simplicity and O
(

n
p

)
time complexity of the proposed

unnel algorithmmake it highly promising for efficiently handling
assive strings while ensuring scalable performance. Notably, it
chieves optimality in terms of asymptotic time complexity. As
art of future work, our goal is to further reduce the total working
pace from O(n), thereby enhancing the algorithm’s efficiency
nd applicability in even larger string contexts.
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