
Contour Algorithm for Connectivity

Zhihui Du, Oliver Alvarado Rodriguez, Fuhuan Li, Mohammad Dindoost and David A. Bader
Department of Data Science

New Jersey Institute of Technology
Newark, USA

{zhihui.du,oaa9,fl28,md724,bader}@njit.edu

Abstract—Finding connected components in a graph is a
fundamental problem in graph analysis. In this work, we present
a novel minimum-mapping based Contour algorithm to efficiently
solve the connectivity problem. We prove that the Contour
algorithm with two or higher order operators can identify all con-
nected components of an undirected graph within O(log dmax)
iterations, with each iteration involving O(m) work, where
dmax represents the largest diameter among all components
in the given graph, and m is the total number of edges in
the graph. Importantly, each iteration is highly parallelizable,
making use of the efficient minimum-mapping operator applied
to all edges. To further enhance its practical performance, we
optimize the Contour algorithm through asynchronous updates,
early convergence checking, eliminating atomic operations, and
choosing more efficient mapping operators. Our implementation
of the Contour algorithm has been integrated into the open-source
framework Arachne. Arachne extends Arkouda for large-scale
interactive graph analytics, providing a Python API powered
by the high-productivity parallel language Chapel. Experimental
results on both real-world and synthetic graphs demonstrate the
superior performance of our proposed Contour algorithm com-
pared to state-of-the-art large-scale parallel algorithm FastSV
and the fastest shared memory algorithm ConnectIt. On average,
Contour achieves a speedup of 7.3x and 1.4x compared to FastSV
and ConnectIt, respectively. All code for the Contour algorithm
and the Arachne framework is publicly available on GitHub 1,
ensuring transparency and reproducibility of our work.

Index Terms—connected components, graph analytics, big
data, parallel algorithm

I. INTRODUCTION

A graph is one of the fundamental mathematical structures

used to model pairwise relations between abstract objects.

Many problems in science, society, and economics can be

modeled by graphs. The sizes of graph data collections con-

tinue to grow which makes the need for fast graph algorithms

critical, especially under online and real-time scenarios.

Finding connected components [4], [6], [13], [15] is a fun-

damental problem in graph analytics and an important first step

for other graph algorithms. Many graph algorithms are based

on the assumption that we already know a graph’s connected

components. In this work, we focus on the connectivity of

undirected graphs. The connected components problem can

be expressed as assigning each vertex with a label. If two

vertices are in the same component or there is a path between

them, they will be marked with the same label. Otherwise, the

vertices will be marked with different labels [7].

1https://github.com/Bears-R-Us/arkouda-njit

There are three kinds of algorithms for identifying con-

nected components of an undirected graph. The first is a graph

traversal-based method. Breadth-First Search (BFS) [14] and

label propagation [11], [19], [27] are two typical examples.

BFS will search from a set of just visited vertices (current

frontier, initially with one root vertex) and then extend to other

unvisited vertices (next frontier) connected to visited vertices

until all vertices are visited. The basic idea of label propagation

is that each vertex is initially assigned a unique label. Then,

each vertex subsequently compares its label with the labels of

its neighbors and updates its label to be the smallest among

them. This process is repeated until no label can be updated.

There are many variants to improve the performance further.

This method has high performance for low-diameter graphs.

However, if a graph has a long diameter, a lot of time and

iterations will be needed.

The second is the tree hooking-compressing-based method

[2], [16], [22], [30]. This kind of method will start by

initializing all vertices as singletons. Then, some tree hooking

operations are employed to merge smaller components into

larger components. Compressing operations will reduce the

tree’s height until all vertices are directly connected to a root

vertex. The major feature of such a method is formulating the

discovery of a big component as a forest building. Combining

the tree hooking and compressing, a much smaller number of

iterations will be needed to identify all the components, even

if the given graph has a large diameter.

The third is the union-find or disjoint set-based method [10],

[12], [18]. It models components as disjoint sets. The union

operation will merge different sets and the find operation will

return the representative member of a set. Unlike the previous

two methods, union-find is not an iteration-based method. It

can directly identify all connected components in one iteration

of the tree-based method. However, for large-scale parallelism

scenarios, union-find methods often lead to an unbalanced

workload that can significantly affect their performance.

We abstract the connectivity as a contour lines discov-

ery problem and develop simple and lightweight minimum-

mapping operators to work on different edges to efficiently

identify all the components in parallel. The minimum-mapping

operator can map the connected vertices to the same contour

line. Identifying one component is similar to identifying one

contour line with the same minimum mapping label. There-

fore, we name our algorithm “Contour” [8]. The minimum-

mapping operator can be employed on different edges in

66

2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/23/$31.00 ©2023 IEEE
DOI 10.1109/HiPC58850.2023.00022

parallel with high efficiency. Compared to tree hooking-

compressing or union-find-based methods, this can signifi-

cantly improve parallel performance and simplify implemen-

tation.

The major contributions of this work are as follows.

1) A novel Contour algorithm that formulates finding con-

nected components as a contour lines discovery prob-

lem. Based on this perspective, simple and lightweight

minimum-mapping operators are developed to map the

vertices in the same component to the same label in

parallel. The proposed method is suitable for large

graphs with different graph topologies.

2) A proof is given to show that for a graph with dmax

as its maximum diameter, the Contour algorithm can

converge in O(log(dmax)) iterations.

3) The proposed method has been integrated into the graph

package, Arachne. It is publicly available through the

open-source Arkouda framework from GitHub to ana-

lyze large graphs using the popular Python interface.

4) Extensive experimental results show that the proposed

Contour algorithm can achieve significant speedup com-

pared to state-of-the-art real-world and synthetic graphs

methods.

II. CONTOUR ALGORITHM

A. Problem Description

Given an undirected graph G =< V,E >, where V is the

set of vertices, and E is the set of edges. Let m = |E| be

the total number of edges and n = |V | be the total number of

vertices in G. Without loss of generality, here we assume that

vertex IDs are from 0 to n− 1.

A label array L[0..n − 1] with size n can be used to store

all the labels of different vertices. Initially, we assign each

vertex’s ID as its label. Identifying all connected components

in G means that we will assign the vertices of the same

components with the same vertex label. The label array is also

regarded as a pointer graph [22]. ∀v ∈ V,L[i] = v means that

there is a direct edge from vertex i to v. The pointer graph

will be updated after each iteration. It is a forest of rooted

trees plus self-loops that occur only in the root. Finally, if

graph G has S components, L will represent S stars after all

components are found. A star here is a unique type of graph

characterized by a single root vertex connected to all other

vertices, with no additional edges present.

B. Minimum-Mapping Operator

∀v ∈ V , L[v] is the mapped vertex or label of v. Lu[0..n−1]
is used to store the updated value of different vertices after

once iteration. If there is a path between w and v or w and v
are connected, and the values of their labels are different, we

should assign them the same label. Here we use the minimum

value among L[w] and L[v] to update the old label values in

Lu array.

First, we define the conditional vector assignment operator

as follows.

Definition 1 (Conditional Vector Assignment).⎡
⎣x1

...
xk

⎤
⎦ >←− z. (1)

It means that given a vector X =

⎡
⎣x1

...
xk

⎤
⎦ , ∀i ∈ N, 1 ≤ i ≤ k,

xi = z if xi > z.

Based on the definition of conditional vector assignment,

we will further define our minimum-mapping operators.

Definition 2 (One-Order Minimum-Mapping Operator). Given
two connected vertices w, v ∈ V , let z1 = min(L[w], L[v]).
We define the one-order minimum-mapping operator as fol-
lows.

MM1(Lu, L, w, v) :

[
Lu[w]
Lu[v]

]
>←− z1 (2)

MM1(Lu, L, w, v) means that before the mapping operator,

Lu = L. After employing the mapping operator, Lu[w] and

Lu[v] will be updated if either of them is larger than z1.

Higher h>1 order minimum-mapping operators

MMh(Lu, L, w, v) can also be defined similarly.

Definition 3 (h-Order Minimum-Mapping Operator). Given
two connected vertices w, v ∈ V , let zh = min(Lh[w], Lh[v]),
where ∀x ∈ V,Lh[x] = L[Lh−1[x]], L1[x] = L[x]. We define
the h-order minimum-mapping operator as follows.

MMh(Lu, L, w, v) :

⎡
⎢⎢⎢⎢⎣

Lu[w]
Lu[v]
...

Lu[L
h−1[w]]

Lu[L
h−1[v]]

⎤
⎥⎥⎥⎥⎦

>←− zh. (3)

A higher-order minimum-mapping operator may include

more mapped vertices based on the two given vertices. So it

may find the final minimum contour quickly. However, it will

also perform many more operations. In this paper, we take the

two-order minimum-mapping operator as the default operator

because it can achieve a quick convergence (logarithmic time

complexity) with a minimum-mapping operator involving a

much smaller number of vertices and operations. We will

also show the different effects of its variants and combination

patterns in Section IV.

C. Algorithm Description

Based on the proposed minimum-mapping operator in Sec-

tion II-B, our Contour algorithm is given in Alg. 1. The

complete algorithm is straightforward and easy to parallelize.

For lines from 1 to 4, we initialize the label array L and the

corresponding update array Lu with each vertex’s ID. From

line 5 to line 10, we update the label array L until convergence

or there are no changes in the array. From lines 6 to 8, for

each edge e = 〈w, v〉 ∈ E, we will execute the two-order

minimum-mapping MM2(w, v) in parallel. MM2(w, v) may

update the value of Lu[w], Lu[v], Lu[L[w]], Lu[L[v]] if they

67

are larger than the minimum value z2. In line 9, all the old

values in L will be updated with the new values in Lu.

Since all the conditional assignments can be executed in

parallel, to avoid write races, we can use the atomic compare-

and-swap (CAS) 2 operation to implement our conditional

assignment as follows.

while (oldxi = atomic read(xi) > z) {
CAS(xi, oldxi, z)

}
(4)

Algorithm 1: Minimum-Mapping based Contour Al-

gorithm

Contour(G)
/* G = 〈E, V 〉 is the input graph with edge

set E and vertex set V . */
1 forall i in 0..n-1 do
2 L[i] = i
3 Lu[i] = i
4 end
/* Initialize the label array L,Lu */

5 do
6 forall (e = 〈w, v〉 ∈ E) do
7 MM2(Lu, L, w, v)
8 end
9 L = Lu

10 while (There is any label change in L)
11 return L

Let Lh
k [x] be the label of vertex x employing the h-

order minimum-mapping operator after the kth iteration, then

Lu,k[w] = min(L2
k−1[w], L

2
k−1[v1], L

2
k−1[v2], ..., L

2
k−1[vm],

where v1, v2, ..., vm are the vertices that directly connect with

w, or directly connect with the vertices that are mapped to w.

We give the following definition to show how the vertices in

the same component are mapped to the same minimum label

step by step.

Definition 4 (Equal Minimum Set). Given label x, after the
kth iteration, its one-order equal minimum set EMS(k)1x =
{v|∀v ∈ V,Lk[v] = x}. Its two-order equal minimum set
EMS(k)2x = {v|∀v ∈ V,L2

k[v] = x}.

We use the equal minimum set to indicate the vertices

mapped to the same vertex label.

Definition 5 (Merged Minimum Set). Let MMS(0) = V .
After the kth iteration, k ≥ 1, the one-order merged minimum
set is defined as MMS(k)1 = {v|∀v ∈ V,EMS(k)1v 	= φ}.
Similarly, the two-order merged minimum set MMS(k)2 =
{v|∀v ∈ V,EMS(k)2v 	= φ}.

From the definition, we can see that for k ≥
0,MMS(k)1 ⊇ MMS(k)2 ⊇ MMS(k + 1)1. In other

words, the merged minimum set’s size will become smaller

until it only contains the minimum vertices of different con-

nected components.

2https://chapel-lang.org/docs/primers/atomics.html

Definition 6 (Rooted Tree and its Neighbor). After the kth

iteration, k ≥ 1, the root vertices of different root trees in the
pointer graph R(t) = {v|v ∈ MMS(k) ∧ Lk[v] = v}. R(t)
is also called the root tree set of the pointer graph. ∀v1, v2 ∈
R(t), if ∃〈v1′ , v2′〉 ∈ E, and v1′ belongs to in root tree v1,
v2′ belongs to root tree v2, then we call v1 the neighbor of
v2, vice versa.

Our mapping operator has the following two effects on the

rooted trees. (1) Compressing. If the original height of a rooted

tree is x and we employ h order minimum mapping operator to

it, its height will be reduced to no more than x+h−1
h �. Every

vertex in the rooted tree will point to its h order father or the

root. (2) Minimum Merging. Any vertex vm in one rooted tree

may be merged into its neighbor rooted tree as the son of root

or other vertices. At the same time, the subtree (if exists) with

vm as its root will be compressed and merged into its neighbor-

rooted tree. Both compressing and merging can happen at

the same time in one minimum-mapping operation. Minimum

merging is very flexible and different from the existing tree-

hooking or set union methods. One rooted tree can merge part

of another rooted tree instead of the complete rooted tree. At

the same time, it is simple and easy to implement.

The framework of Alg. 1 has some similarities to label

propagation or tree hooking-compressing. However, the label

propagation method can be regarded as a special case of our

method when the mapping order is one. Compared with the

existing tree hooking-compressing methods, they only allow

merging two rooted trees. However, our method can merge

any part of two rooted trees.

The following section will prove that our Alg.1 can converge

in logarithmic iterations.

D. Time complexity analysis

Lemma 1 (Root Tree Constraint). Let P =
〈s0, . . . , sn−1〉, n ≥ 2, be a path with s0 as the smallest
vertex, and consider running Alg. 1 on P (here we assume
the mapping operator can be employed up to twice in each
iteration). After the kth iteration, let the root tree set be
R(k), we have (32)

k−1
∑

v∈R(k) Hk(v) ≤ n−1, where Hk(v)

is the height of root tree v after the kth iteration.

Proof. Let’s do induction on k.

For k = 1, if all vertices are in increasing order along

the path P , then MMS(1)1 = s0 and H1(s0) = n − 1,∑
v∈R(1) H1(v) = n− 1. So, the inequation holds.

Otherwise, if there are multiple root trees vm1
, ..., vmj

in

the pointer graph and we let ns be the number of vertices in

root tree vms , where 1 ≤ s ≤ j. So, we have
∑s=j

s=1 ns = n

and H1(vms
) ≤ ns−1. Therefore,

∑s=j
s=1 H1(vms

) ≤ n− j <
n− 1. So, the inequality holds for the base case.

Let t ≥ 1; we assume that when t = k, the inequation holds.

Now we prove when k = t+ 1, the inequation also holds. If

R(t) = {s0} and Ht(s0) > 1, then after the (t+ 1) iteration,

Ht+1(s0) ≤ (23)Ht(s0), so the inequation holds.

We discuss two cases if |R(t)| > 1.

68

(1) If ∀v ∈ R(t), Ht(v) > 1∧v ∈ R(t+1), then Ht+1(v) ≤
(23)Ht(v).

(2) If ∃v ∈ R(t) ∧ Ht(v) = 1 ∧ Lk+1[v] = v′ ∧ v 	= v′,
then root tree v will be merged into the root tree vm that

contains vertex v′ after the (t+1)th iteration. If Hk(vm) = 1,

then Hk+1(vm) = 1 < 2
3 (Hk(v) + Hk(vm)) = 2

3 × 2 = 4
3 .

If Hk(vm) > 1, we know that Ht+1(vm) ≤ 2
3Ht(vm) <

2
3 (Ht(vm) +Ht(v)).

If ∃v ∈ R(t) ∧Ht(v) = 1 ∧ Lk+1[v] = v, it means that v
is less than its neighbour vertex vx ∈ R(t). So, v will merge

its neighbor root tree or partial vertices of its neighbor root

tree. Since merging the complete root tree is the same as in

the above case, we only consider the case when only partial

vertices are merged into v. In this case, the neighbor root tree

vn must have Ht(vn) > 1. Otherwise, the neighbor root tree

will be merged into the v root tree. Here, we can employ the

mapping operator twice. If Ht+1(vn) = 1, then Ht+1(vn) +
Ht+1(v) = 2. We have 2

3 (Ht(vn) +Ht(vn)) ≥ 2
3 (1+ 2) = 2.

If Ht+1(vn) > 1, then we have Ht+1(vn) ≤ 1
3Ht(vn) so

Ht+1(vn) + 1 ≤ 2
3 (Ht(vn) + 1) when Ht+1(vn) > 1.

Hence, considering all the cases, we also have the same

conclusion.

Lemma 2 (Path Convergence). Let P = 〈s0, . . . , sn−1〉, n ≥
2, be a path with s0 as the smallest vertex, and consider
running Alg. 1 on P . Marking all vertices as s0 will need
at most �log 3

2
(n− 1)�+ 1 iterations.

Proof. Based on Lemma 1, k ≤ �log 3
2

(n−1)∑
v∈R(k) Hk(v)

� + 1,

when
∑

v∈R(k) Hk(v) = 1, the maximum value of k should

be �log 3
2
(n − 1)� + 1. So, after at most �log 3

2
(n − 1)� + 1

iterations, all vertices on P will be marked as s0.

Lemma 3 (Diameter Convergence). For a connected graph
G with diameter d, Alg. 1 will take at most (�log 3

2
(d)� + 1)

iterations to spread the minimum vertex label to all the other
vertices.

Proof. Let the smallest vertex in G be s0, then all shortest

paths from s0 to other vertices cannot be larger than d. Based

on Lemma 2, the vertices on any shortest path from s0 to

other vertices can be mapped to s0 within (�log 3
2
(d)� + 1)

iterations. So the conclusion holds.

Theorem 1 (Graph Convergence). For any graph G, let dmax

be the maximum diameter of all graph G’s components. Alg.
1 will take at most (�log 3

2
(dmax)� + 1) iterations to identify

all the components.

Proof. Let Gc be any connected component of G and d
be its diameter with d ≤ dmax. Based on Lemma 3, we

know that after (�log 3
2
(d)� + 1) iterations, all vertices in Gc

will be mapped to their minimum vertices. Since dmax is

the maximum diameter of all graph G’s components, after

�log 3
2
(dmax)�+1) iterations, all connected components of G

must have been mapped to their minimum vertices. So, Alg.

1 will take at most �log 3
2
(dmax)� + 1) iterations to identify

all the components.

III. INTEGRATION WITH ARACHNE AND PERFORMANCE

OPTIMIZATION

A. Integration Method

Our method is integrated into Arachne [21], a large-scale

graph analytics package on top of Arkouda [17], [20]. Arkouda

is an open-source framework in Python created to be a NumPy

replacement at scale. It replaces the ndarray abstraction with

the pdarray. Our work aims to extend Arkouda for graph

analytics, where we use the underlying pdarray to implement

and execute our algorithms. Through this, we create an end-

to-end response system from Chapel to Arkouda. In Python,

our calling method is called graph cc(graph) where the user

passes to a function a graph. We added this method to Ark-

ouda’s front-end file called graph.py. The calling messages are

added into arkouda server.chpl. The Chapel method is invoked

when the function is called in Python, and the messages are

passed from Python to Chapel through ZMQ 3. The messages

are recognized at the back-end by arkouda server.chpl, and

the proper functions are invoked and executed in the chapel

back-end.

B. Algorithm Optimization

Alg. 1 presents the fundamental concept of our method.

However, we can further optimize it to enhance its practical

performance when we integrate the method into Arachne.

1) Asynchronous Update: The essence of the asynchronous

Contour algorithm is to update the label array L immediately,

eliminating the need for maintaining an update label array

Lu. An asynchronous update will not affect the correctness

or final convergence of the algorithm. However, the practical

performance will be very different. This approach offers

several advantages:

(1) Faster convergence speed: Vertices can be mapped to

lower labels more rapidly.

(2) Reduction of unnecessary operations: The step L = Lu

in Alg. 1 becomes unnecessary and can be removed.

(3) Memory usage reduction: The Lu array is no longer

required and can be eliminated.

Experimental results in Section IV demonstrate that asyn-

chronous updates significantly improve the performance of the

algorithm.

2) Early Convergence Check: With the definition of our

minimum mapping operator, for any edge e = (v, w) ∈ E,

if (L[v] 	= L2[v]||L[w] 	= L2[w]||L[v] 	= L[w]), we need to

continue to the next iteration. However, if these conditions

are not met, even if there are updates in the current iteration,

we can confidently conclude that the algorithm has converged,

and we can exit the iteration directly. This early convergence

check allows us to save additional iterations.

By performing this convergence check, we can efficiently

terminate the algorithm once the convergence condition is met,

reducing unnecessary computations and improving the overall

efficiency of the algorithm.

3https://zeromq.org/

69

3) Eliminating Atomic Operations: In union-find algo-

rithms, atomic operations are essential to ensure correctness.

However, in iteration-based methods, atomic operations can

impact the number of iterations but not the correctness of the

algorithm. These atomic operations can be computationally

expensive compared to simple assignments.

Utilizing asynchronous updates can accelerate the con-

vergence speed and reduce the total number of iterations.

Consequently, we have the opportunity to replace costly

atomic updates with simple assignments, further enhancing the

practical performance of the algorithm.

By removing atomic operations and employing simple as-

signments, we can achieve better computational efficiency

without compromising the correctness of the algorithm. It is

similar to the effect of replacing synchronization updates with

asynchronous updates. These optimizations contribute to the

overall improvement in practical performance.

4) Selecting Suitable Minimum Mapping Operators: The

choice of minimum mapping operators and their combination

patterns can also significantly impact the performance of the

algorithm for a given graph. We will provide recommendations

based on experimental results in subsection IV-E. Here, we

introduce six different variants of our Contour algorithm:

C-Syn: This is the synchronous method described in Alg.

1 without employing any other optimization methods. Except

for the minimum mapping operator, it is almost the same as

the FastSV algorithm. It can only achieve limited speedup

compared with FastSV.

C-1: This variant employs the one-order minimum mapping

operator.

C-2: This variant employs the two-order minimum mapping

operator.

C-m: For large-diameter graphs, we may use a higher-order

minimum mapping operator greater than two to reduce the

total number of iterations.

C-11mm: This variant combines operators. It starts with

the one-order mapping operator for a few iterations and then

switches to a higher-order operator until convergence.

C-1m1m: This variant alternates between the one-order and

higher-order operators until convergence.

In subsection IV-E, we will provide specific analysis and

guidance on selecting the most suitable variant based on the

characteristics of the graph to achieve optimal performance.

C. State-of-the-Art Algorithms

In addition to our Contour algorithm, we have incorpo-

rated two state-of-the-art algorithms, namely FastSV [30] and

ConnectIt [10], into Arachne. This integration allows us to

expand our algorithm repository and conduct performance

comparisons.

The seminal Shiloach-Vishkin (SV) algorithm [22] is ca-

pable of identifying graph components in O(log(n)) time on

a CRCW PRAM machine with (m + n) parallel processors.

Various variants and improvements [3] based on the original

SV algorithm exist, and FastSV represents the latest and most

advanced version for large-scale parallel systems. However,

the synchronization introduced between different hooking and

compressing steps, along with the need to assign the current

label array L with the updated label array Lu before the next

iteration, significantly affects its performance compared to our

simple and flexible minimum mapping operators.

Union-find algorithms were developed to handle disjoint set

data structures and can achieve almost linear time complexity

[29]. Patwary et al.’s [18] experimental results reveal that

Rem’s simple union-find algorithm delivers superior practical

performance. Dhulipala et al. developed the ConnectIt frame-

work, which incorporates hundreds of different connected

components algorithms, and their experimental results on large

graphs demonstrate that Rem’s algorithm is the best within

their shared memory system. In Arachne, we have integrated

the optimal union-find algorithm from the ConnectIt frame-

work for comparison. Our experimental results (see subsection

IV-F) demonstrate that our Contour algorithm can effectively

exploit parallel resources to achieve improved performance.

IV. EXPERIMENTS

A. Dataset Description

Our dataset comprises a selection of publicly available syn-

thetic and real-world datasets, sourced from reputable repos-

itories. We have drawn graphs from the SuiteSparse Matrix

Collection4, Stanford Large Network Dataset Collection5, and

the MIT GraphChallenge graph datasets6.

To ensure comprehensive testing and performance compari-

son, we have carefully chosen a combination of real-world and

synthetic graphs, as outlined in Table I. Including both types of

graphs allows us to highlight and evaluate the efficacy of our

Contour algorithm compared with state-of-the-art algorithms.

The real-world graphs in our dataset may vary in character-

istics. They typically exhibit degree distributions that follow a

power-law distribution. These features provide a diverse set of

challenges and scenarios to thoroughly assess the algorithms’

performance.

Additionally, we have included a set of synthetic graphs

known as Delaunay. These graphs are constructed based on

Delaunay triangulations of randomly generated points in the

plane. Unlike graphs with power law distribution, Delaunay
graphs have vertices with degrees that are relatively close to

each other. Including synthetic graphs allows us to observe

how the algorithm’s performance varies with graph size.

By incorporating a diverse range of datasets, our evalua-

tion encompasses various real-world scenarios and provides

valuable insights into the scalability and effectiveness of our

Contour algorithm, as well as its comparison with state-of-

the-art methods.

B. Experimental Platform

Experiments were done on a 32-node cluster system.

Each node is a CentOS Linux release 7.9.2009 (Core) high-

performance server with 2 x Intel Xeon E5-2650 v3 @

4https://sparse.tamu.edu/
5https://snap.stanford.edu/data/
6https://graphchallenge.mit.edu/data-sets

70

TABLE I: Real World and Synthetic graphs
Graph Name Graph ID Number of Edges Number of Vertices

ca-GrQc 0 28980 5242

ca-HepTh 1 51971 9877

facebook combined 2 88234 4039

wiki 3 103689 8277

as-caida20071105 4 106762 26475

ca-CondMat 5 186936 23133

ca-HepPh 6 237010 12008

email-Enron 7 367662 36692

ca-AstroPh 8 396160 18772

loc-brightkite edges 9 428156 58228

soc-Epinions1 10 508837 75879

com-dblp 11 1049866 317080

com-youtube 12 2987624 1134890

amazon0601 13 2443408 403394

soc-LiveJournal1 14 68993773 4847571

higgs-social network 15 14855842 456626

com-orkut 16 117185083 3072441

road usa 17 28854312 23947347

kmer A2a 18 180292586 170728175

kmer V1r 19 232705452 214005017

uk 2002 20 298113762 18520486

delaunay n10 21 3056 1024

delaunay n11 22 6127 2048

delaunay n12 23 12264 4096

delaunay n13 24 24547 8192

delaunay n14 25 49122 16384

delaunay n15 26 98274 32768

delaunay n16 27 196575 65536

delaunay n17 28 393176 131072

delaunay n18 29 786396 262144

delaunay n19 30 1572823 524288

delaunay n20 31 3145686 1048576

delaunay n21 32 6291408 2097152

delaunay n22 33 12582869 4194304

delaunay n23 34 25165784 8388608

delaunay n24 35 50331601 16777216

2.30GHz CPUs with ten cores per CPU. Each server has

512GB of RAM. A high-performance Infiniband network

system connects all nodes.

C. Number of Iterations

In Fig. 1, we observe that for different graphs, the C-
1 operator consistently requires the largest total number of

iterations. Notably, Graph 17 road usa exhibits the highest

iteration count at 2369 iterations. This behavior is expected as

C-1 represents the lowest-order minimum mapping operator,

only considering directly connected vertices or those within a

search distance of 1.

Comparatively, C-2 performs significantly better than C-1 in

iteration numbers, involving all vertices that are at a distance

of 2 from each edge e = (v, w). Consequently, even a minimal

increase in the order of the minimum mapping operator leads

to a significant reduction in the total number of iterations for

long-diameter graphs. For instance, Graph 17 road usa only

requires 5 iterations when using C-2.

Further increasing the minimum mapping order to C-m (here

m = 1024) yields additional reductions in the total number of

iterations, but the improvement is not as significant. Across

all graphs, C-m achieves a maximum reduction of 3 itera-

tions compared to C-2. Therefore, we observe the following

relationship for the total number of iterations: Number of
Iterations (C-m) ≤ Number of Iterations (C-2) ≤ Number of
Iterations (C-1).

Next, we analyze the behaviors of the combined minimum

mapping operators C-11mm and 1m1m. Among the 38 graphs,

the majority (21) exhibit the same number of iterations for

both operators. For the remaining 13 graphs, 1m1m shows a

slightly higher number of iterations than C-11mm. Thus, C-
11mm generally demonstrates a slightly better performance

than 1m1m in terms of iteration count. Additionally, C-11mm
exhibits a total iteration count that is close to C-2.

Comparing C-Syn with FastSV, we find them to be quite

similar in terms of the total number of iterations. However,

C-Syn possesses a more efficient and simplified minimum

mapping operator, contributing to the slight advantage in

iteration count over FastSV. The optimized C-2 operator sig-

nificantly reduces the number of iterations compared to C-Syn
in most cases, validating the effectiveness of our optimization

in reducing iterations, as also reflected in subsection IV-D.

ConnectIt, as a non-iteration-based method, requires one

union operation on all edges and one compression operation

on all vertices. Consequently, we assign the iteration count for

ConnectIt as 1 for all graphs.

In summary, the average number of iterations, from low

to high, are as follows: C-m=2.19, C-2=3.19, C-11mm=3.89,

C-1m1m=4.31, C-Syn=6.83, FastSV=6.97, C-1=83.86.

D. Execution Time

In Fig. 2, we observe the execution times of different

methods. Notably, there is a general trend that as the size

of graphs increases (measured by the total number of edges

and vertices), the execution time also increases. This pattern is

expected since our server has a fixed number of 20 cores. As

the graph size grows, each core has to handle a larger number

of edges, leading to increased execution times. However, the

execution times may vary due to differences in graph topology.

Analyzing the Delaunay graphs, which share similar topol-

ogy, we find that as the graph size grows from delaunay n10 to

delaunay n24 (both the number of edges and vertices increase

about 16000 times), the execution time of C-2 increases by

895 times, C-1m1m increases by 1072 times, C-m increases

by 1268 times, ConnectIt increases by 1303 times, C-11mm
increases by 1329 times, C-Syn increases by 2705 times, and

FastSV increases by 4096 times.

Additionally, we observe that, in most cases, FastSV ex-

hibits longer execution times compared to all other methods.

Only when the diameters of some graphs are particularly large

does the execution time of C-1 surpass FastSV. Moreover, C-
Syn consistently shows longer execution times compared to

other Contour variants. As mentioned previously, this is due

to C-Syn employing synchronous updates instead of immediate

asynchronous updates, which hinders the quick spreading of

small labels to other vertices, thereby reducing its convergence

speed.

In summary, the execution times of the algorithms generally

follow the trend of increasing with graph size. However,

specific algorithm characteristics, such as synchronous vs.

asynchronous updates, also play a significant role in determin-

ing execution times. The overall performance of our Contour
algorithm outperforms FastSV, highlighting the effectiveness

of our optimization strategies in reducing execution times.

71

Fig. 1: Number of Iterations of FastSV, ConnectIt, and Different Contour Variants.

Fig. 2: Execution Time of FastSV, ConnectIt, and Different Contour Variants.

E. Speedup compared with FastSV

In Fig. 3, we observe the speedups of all the methods

compared to FastSV. The average speedups, from highest to

lowest, are as follows: C-m with a speedup of 7.3, C-11mm
with 6.6, ConnectIt with 6.49, C-1m1m with 6.33, C-2 with

6.33, C-1 with 4.62, and C-Syn with 2.87. This indicates

that high-order minimum mapping operators often perform

significantly better than FastSV.

However, C-1 shows particularly good speedup when the

size and diameter of the graphs are small. The reason behind

this behavior is that when the diameter of a graph is small, C-
1 can converge quickly within a few iterations. Additionally,

for each iteration, the total workload for each core is very

low because of the small graph size and C-1’s focus on only

checking one-path neighbors. This operation exhibits excellent

locality, which can be explained clearly by the work-depth

model [5] well. Consequently, under these conditions, C-1
achieves better performance. However, for larger graphs or

graphs with higher diameters, C-1 cannot maintain this better

speedup compared to other variants due to a higher overall

workload or larger number of iterations.

C-m achieves the best average speedup, but it may not be

suitable for all cases because each iteration will have a higher

cost. As mentioned above, C-1 excels in scenarios with small

diameters and sizes, while C-m is most effective for large-

diameter or large-size graphs. It reduces the total number of

iterations to minimize the overall cost.

C-2, on the other hand, exhibits a relatively small cost

in each iteration as it only checks reachable vertices within

two steps. Simultaneously, it can significantly reduce the total

number of iterations for graphs with large diameters. Thus,

C-2 stands as a stable and simple operator that fits well in

most cases.

C-1m1m is also a stable operator, but its policy differs from

C-2. It alternates between two extreme operators, C-1 and C-
m. C-1 reduces the cost of each iteration, while C-m focuses

on minimizing the total number of iterations. Combining these

two operators optimizes the overall performance.

The strategy behind C-11mm is different. It attempts to

72

Fig. 3: Speedups of ConnectIt and Different Contour Variants compared with FastSV.

handle graphs with the smallest cost first. If, after several

iterations, the graph does not converge, C-11mm employs the

C-m operator to reduce the total number of iterations rapidly.

When a graph contains both very small and very large diameter

components, C-11mm quickly converges the small diameter

components with minimal cost before efficiently handling the

large diameter components using the C-m operator.

In summary, the speedup of the algorithms compared to

FastSV exhibits variations based on the size and character-

istics of the graphs. Different operators are more suitable for

different scenarios, depending on graph size, and diameter. The

overall performance of our Contour algorithm outperforms

FastSV in many cases, particularly when utilizing high-order

minimum mapping operators, validating the effectiveness of

our approach.

F. Speedup compared with ConnectIt

In Fig. 4, we examine the speedups of our Contour algo-

rithm compared to another state-of-the-art algorithm, Connec-
tIt. We will expose another perspective that can significantly

affect the performance of different algorithms.

Across the 36 graphs, C-m outperforms ConnectIt on 31

graphs, with an average speedup of 1.41. Similarly, C-2
achieves better performance on 26 graphs, with an aver-

age speedup of 1.2. Both C-1m1m and C-11mm outperform

ConnectIt on 23 graphs, with average speedups of 1.37 and

1.35, respectively. All of these Contour variants achieve better

performance on more than half of the graphs. C-1 shows better

performance on 14 graphs, with an average speedup of 1.11.

C-Syn, on the other hand, only outperforms ConnectIt on 2

graphs, with an average speedup of 0.62.

The experimental results provide valuable insights into

when to use Contour algorithms and when to use ConnectIt
to achieve better performance. In general, when we have a

sufficient number of parallel cores to significantly reduce the

cost of one iteration, employing our Contour algorithm will

lead to better performance. The Contour algorithm’s efficiency

lies in its ability to reduce the total number of iterations and

workload per iteration, resulting in overall speedup. However,

if the graph size is very large, and the number of parallel cores

is relatively small, each core will have to handle a considerable

number of edges in each iteration, limiting the parallel effect.

This is very similar to sequential instead of parallel computing.

In such scenarios, the performance improvement is driven by

high efficiency instead of high scalability because the system

cannot provide sufficient parallel resources, where ConnectIt
excels with almost linear time complexity, approaching opti-

mality. Thus, ConnectIt can achieve better performance when

the workload per core is significantly high or when the system

lacks parallel resources.

The work-depth model can clarify these results. When the

work per iteration is high and parallel resources are limited,

ConnectIt stands as an ideal choice since it requires only one

iteration. Conversely, when parallel resources can significantly

reduce the work per iteration, Contour algorithms achieve

better overall performance with their ability to tolerate more

iterations.

In conclusion, the choice between Contour algorithms and

ConnectIt depends on the available parallel resources or the

size of different graphs. Our Contour algorithm demonstrates

superior performance when enough parallel resources are

available, but ConnectIt remains a suitable choice for scenarios

with high workloads and limited parallel resources.

G. Distributed Memory Results

The previous sections’ results were based on shared memory

parallel execution. However, when we consider distributed

memory parallel executions involving multiple computing

nodes, the absolute execution times become much longer. In

practical scenarios, using multiple distributed memory com-

puting nodes to solve a problem with a much longer time is

not reasonable if it can be handled by a single shared memory

parallel node with much less time. Therefore, we just give a

brief summary instead of the detailed experimental results as

follows.

73

Fig. 4: Speedups of Different Contour Variants compared with ConnectIt
.

When comparing with FastSV, our Contour algorithm

demonstrates significantly better speedup than that in the

shared memory parallel node setting. Among all the variants

of our Contour algorithm, C-1 achieves much better speedup

when the total number of iterations is relatively low. The

reason for this lies in C-1’s ability to achieve high locality and

reduce additional communication. Communication becomes a

major performance bottleneck in distributed system scenarios,

overshadowing computation.

Taking advantage of high-level parallel language Chapel,

the shared memory ConnectIt algorithm can be run on dis-

tributed systems. Similarly, ConnectIt exhibits better relative

performance compared to Contour when dealing with large-

sized graphs. Due to relatively less communication overhead,

ConnectIt even achieves good performance for middle-sized

graphs. For small and low-diameter graphs, C-1, C-11mm, and

C-1m1m are more efficient and offer better performance.

V. RELATED WORK

For connected component problems, graph traversal meth-

ods [9], [23]–[25] have a major problem where they cannot

achieve high performance when graph diameters are large or a

graph has many small components. Label propagation methods

[11], [19], [23], [25], [27] cannot converge fast when the graph

diameter is large.

The Shiloach-Vishkin (SV) algorithm [22] is the pioneering

tree-based hooking-compressing method to reduce the total

number of iterations efficiently. There are different kinds of

improvements to the SV algorithm. Awerbuch and Shiloach

(AS) [1] use a very efficient parallelization using proper

computational primitives and sparse data structures. The AS

algorithm only keeps the information of the current forest and

the convergence criterion for AS is to check whether each tree

is a star. Afforest [28] is an extension of the SV algorithm that

approaches optimal work efficiency by processing subgraphs

in each iteration. The LACC [2] algorithm uses linear algebraic

primitives to implement connected components and is based

on the PRAM AS algorithm. FastSV [30] further simplifies

and optimizes LACC’s tree hooking and compressing method

to improve the performance. Iteration-based tree hooking-

compressing methods exploit large-scale parallel resources to

reduce the cost of each iteration and the total number of

iterations.

Union-find-based algorithms [10], [12], [18] take advantage

of the disjoint set data structure to reduce the total operations

in one iteration. Tree-based methods try to reduce the number

of iterations, but disjoint set-based methods focus on reducing

the total number of operations. So, tree-based methods are

suitable for large-scale parallel execution but disjoint set-based

methods are good for parallel resources limited scenarios.

There are some works combining different methods together

to optimize the performance further. Slota et al. [26] devel-

oped a distributed memory multi-step method that combines

parallel BFS and label propagation technique. The ParConnect

algorithm [14] is based on both the SV algorithm and parallel

breadth-first search (BFS). ConnectIt [10] provides a frame-

work to provide different sampling strategies and tree hooking

and compression schemes.

Recently, different optimization methods for connected

component problems have been proposed. Thrifty Label Prop-

agation (TLP) algorithm [11] uses the skewed degree distri-

bution of real-world graphs to develop their optimized label

propagation algorithm. Sutton et al. [28] uses sampling to find

the connected components on a subset of the edges, which

can be used to reduce the number of edge inspections when

running connectivity on the remaining edges.

We formulate the connected components as a contour line

discover problem and develop different minimum mapping

operators for different scenarios. Our method is flexible and

simple. It can achieve high performance in different scenarios.

VI. CONCLUSION

In this study, we addressed the fundamental graph problem

of finding connected components using a novel method called

“minimum mapping.” Our approach is characterized by its

74

simplicity, flexibility, and efficient implementation, setting it

apart from existing state-of-the-art methods.

We proved that our method achieves convergence in

O(log2(dmax)) time, where dmax represents the largest diam-

eter among all components in a graph. Experimental results

also show that our algorithm can converge in a small number

of iterations for different graphs.

Experimental results showed that our Contour method sig-

nificantly outperforms the state-of-the-art large-scale parallel

FastSV method. Additionally, our method complements the

state-of-the-art shared memory parallel ConnectIt method.

Notably, we have successfully integrated our method and the

state-of-the-art methods into an open-source graph package,

Arachne. Arachne extends an open-source framework for

Python users, enabling efficient large-scale graph analytics on

supercomputers. This integration empowers high-level Python

users to conduct large graph analytics efficiently, regardless of

their familiarity with supercomputing and large data process-

ing intricacies.

ACKNOWLEDGMENT

We appreciate the help from the Arkouda and the Chapel

community when we integrated the algorithms into Arkouda.

This research was funded in part by NSF grant number CCF-

2109988.

VII. REFERENCES

[1] Baruch Awerbuch and Yossi Shiloach. New connectivity and MSF
algorithms for shuffle-exchange network and PRAM. IEEE Transactions
on Computers, 36(10):1258–1263, 1987.

[2] Ariful Azad and Aydın Buluç. LACC: A linear-algebraic algorithm for
finding connected components in distributed memory. In 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 2–12. IEEE, 2019.

[3] D.A. Bader and G. Cong. A fast, parallel spanning tree algorithm
for symmetric multiprocessors. In 18th International Parallel and
Distributed Processing Symposium, 2004. Proceedings., pages 38–,
2004.

[4] Guy E Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism
in randomized incremental algorithms. Journal of the ACM (JACM),
67(5):1–27, 2020.

[5] Guy E Blelloch and Bruce M Maggs. Parallel algorithms. In Algorithms
and theory of computation handbook: special topics and techniques,
pages 25–25. 2010.

[6] Ka Wong Chong and Tak Wah Lam. Finding connected components in
O(log n log log n) time on the EREW PRAM. Journal of Algorithms,
18(3):378–402, 1995.

[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, fourth edition, 2022.

[8] Richard Courant and Herbert Robbins. What is Mathematics?: an
elementary approach to ideas and methods. Oxford University Press,
USA, 1996.

[9] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. Theoretically
efficient parallel graph algorithms can be fast and scalable. ACM
Transactions on Parallel Computing (TOPC), 8(1):1–70, 2021.

[10] Laxman Dhulipala, Changwan Hong, and Julian Shun. Connectit:
A framework for static and incremental parallel graph connectivity
algorithms. arXiv preprint arXiv:2008.03909, 2020.

[11] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck.
Thrifty label propagation: Fast connected components for skewed-degree
graphs. In 2021 IEEE International Conference on Cluster Computing
(CLUSTER), pages 226–237. IEEE, 2021.

[12] Zvi Galil and Giuseppe F Italiano. Data structures and algorithms
for disjoint set union problems. ACM Computing Surveys (CSUR),
23(3):319–344, 1991.

[13] Costantino Grana, Daniele Borghesani, and Rita Cucchiara. Optimized
block-based connected components labeling with decision trees. IEEE
Transactions on Image Processing, 19(6):1596–1609, 2010.

[14] Chirag Jain, Patrick Flick, Tony Pan, Oded Green, and Srinivas Aluru.
An adaptive parallel algorithm for computing connected components.
IEEE Transactions on Parallel and Distributed Systems, 28(9):2428–
2439, 2017.

[15] David R Karger, Noam Nisan, and Michal Parnas. Fast connected
components algorithms for the EREW PRAM. In Proceedings of the
fourth annual ACM symposium on Parallel algorithms and architectures,
pages 373–381, 1992.

[16] Arvind Krishnamurthy, Steven Lumetta, David E Culler, and Katherine
Yelick. Connected components on distributed memory machines. Third
DIMACS Implementation Challenge, 30:1–21, 1997.

[17] Michael Merrill, William Reus, and Timothy Neumann. Arkouda:
interactive data exploration backed by Chapel. In Proceedings of the
ACM SIGPLAN 6th on Chapel Implementers and Users Workshop, pages
28–28, 2019.

[18] Md Mostofa Ali Patwary, Jean Blair, and Fredrik Manne. Experiments
on union-find algorithms for the disjoint-set data structure. In Exper-
imental Algorithms: 9th International Symposium, SEA 2010, Ischia
Island, Naples, Italy, May 20-22, 2010. Proceedings 9, pages 411–423.
Springer, 2010.

[19] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear
time algorithm to detect community structures in large-scale networks.
Physical review E, 76(3):036106, 2007.

[20] William Reus. CHIUW 2020 Keynote Arkouda: Chapel-Powered, In-
teractive Supercomputing for Data Science. In 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 650–650. IEEE, 2020.

[21] Oliver Alvardo Rodriguez, Zhihui Du, Joseph T. Patchett, Fuhuan Li,
and David A. Bader. Arachne: An Arkouda package for large-scale
graph analytics. In The 26th Annual IEEE High Performance Extreme
Computing Conference (HPEC), Virtual, September 19-23, 2022, 2022.

[22] Yossi Shiloach and Uzi Vishkin. An O(logn) parallel connectivity
algorithm. Journal of Algorithms, 3(1):57–67, 1982.

[23] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
pages 135–146, 2013.

[24] Julian Shun and Guy E Blelloch. A simple parallel cartesian tree
algorithm and its application to parallel suffix tree construction. ACM
Transactions on Parallel Computing (TOPC), 1(1):1–20, 2014.

[25] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri.
BFS and coloring-based parallel algorithms for strongly connected
components and related problems. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 550–559. IEEE,
2014.

[26] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri.
A case study of complex graph analysis in distributed memory: Im-
plementation and optimization. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 293–302. IEEE,
2016.

[27] Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. Short-
cutting label propagation for distributed connected components. In
Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, pages 540–546, 2018.

[28] Michael Sutton, Tal Ben-Nun, and Amnon Barak. Optimizing parallel
graph connectivity computation via subgraph sampling. In 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 12–21. IEEE, 2018.

[29] Robert E Tarjan and Jan Van Leeuwen. Worst-case analysis of set union
algorithms. Journal of the ACM (JACM), 31(2):245–281, 1984.

[30] Yongzhe Zhang, Ariful Azad, and Zhenjiang Hu. FastSV: A distributed-
memory connected component algorithm with fast convergence. In
Proceedings of the 2020 SIAM Conference on Parallel Processing for
Scientific Computing, pages 46–57. SIAM, 2020.

75

