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We study quantum interior-point methods (QIPMs) for second-order cone programming (SOCP),
guided by the example use case of portfolio optimization (PO). We provide a complete quantum circuit-
level description of the algorithm from problem input to problem output, making several improvements
to the implementation of the QIPM. We report the number of logical qubits and the quantity and/or depth
of non-Clifford T gates needed to run the algorithm, including constant factors. The resource counts we
find depend on instance-specific parameters, such as the condition number of certain linear systems within
the problem. To determine the size of these parameters, we perform numerical simulations of small PO
instances, which lead to concrete resource estimates for the PO use case. Our numerical results do not
probe large enough instance sizes to make conclusive statements about the asymptotic scaling of the
algorithm. However, already at small instance sizes, our analysis suggests that, due primarily to large
constant prefactors, poorly conditioned linear systems, and a fundamental reliance on costly quantum
state tomography, fundamental improvements to the QIPM are required for it to lead to practical quantum
advantage.
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I. OVERVIEW

A. Introduction

The practical utility of finding optimal solutions to well-
posed optimization problems has been known since the
days of antiquity, with Euclid considering the minimal
distance between two points using a line. In the modern
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era, optimization algorithms for business and financial use
cases continue to be ubiquitous. Partly as a result of this
utility, algorithmic techniques for optimization problems
have been well studied since even before the invention of
the computer, including a famous dispute between Legen-
dre and Gauss on who was responsible for the invention
of least-squares fitting [1]. With the advent of the quantum
era, there has been great interest in developing quantum
algorithms that solve optimization problems with provable
speed-ups over classical algorithms. Some of the earliest
proposals rely on quantum annealing [2] or more recent
work in variational algorithms [3,4] to solve combina-
torial optimization problems. Quantum algorithms have
also been developed that allow for more efficient con-
vex optimization, including algorithms for semidefinite,
second-order cone, and linear programs [5–14], as well as
algorithms for solving systems of linear equations [15–19],
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which can be used for quantum data fitting [20]. Using
these techniques, specific financial use cases such as solv-
ing the portfolio-optimization problem have been studied
[21–24].

Unfortunately, it can be difficult to evaluate whether
these quantum algorithms will be practically useful. In
some cases, the algorithms are heuristic and their perfor-
mance can only be measured empirically once it is possible
to run them on actual quantum hardware. In other cases, the
difficulty in evaluating practicality stems from the inher-
ent complexity of combining many distinct ingredients,
each with their own caveats and bottlenecks. To make an
apples-to-apples comparison and quantify advantages of a
quantum algorithm, a truly end-to-end resource analysis
that accounts for all costs from problem input to problem
output must be performed.

In this work, we perform such an end-to-end analysis
for a quantum interior-point method (QIPM) for solving
second-order cone programs (SOCPs), which was origi-
nally proposed in Ref. [13], based on earlier QIPMs for
semidefinite and linear programs [10]. In particular, we
focus on a concrete use case with very broad application
but of primary interest in the financial services sector:
portfolio optimization (PO). In general, PO is the task of
determining the optimal resource allocation to a collection
of possible classes, so as to optimize a given objective.
In finance, one seeks to determine the optimal allocation
of funds across a set of possible assets that maximizes
returns and minimizes risk, subject to constraints. Impor-
tantly, many variants of the PO problem can be cast as
an SOCP and subsequently solved with a classical inte-
rior point method (CIPM) or QIPM. Indeed, CIPMs are
efficient not only in theory but also in practice; they are
the method of choice within fast numerical solvers for
SOCPs and other conic programs (see, e.g., Ref. [25]),
which encompass a large variety of optimization problems
that appear in industry. Notably, QIPMs structurally mir-
ror CIPMs and seek improvements by replacing certain
subroutines with quantum primitives. Thus, compared to
other proposed quantum algorithms for conic programs not
based on widely used classical techniques (e.g., solvers
that leverage the multiplicative weights update method [5–
8]), QIPMs are uniquely positioned to provide not only
a theoretical asymptotic advantage but also a practical
quantum solution for this common class of problem.

However, the QIPM is a complex algorithm that deli-
cately combines some purely classical steps with multiple
distinct quantum subroutines. The runtime of the QIPM
is stated in terms of several parameters that can only be
evaluated once a particular use case has been specified;
depending on how these parameters scale, an asymptotic
speed-up may or may not be achievable. Additionally,
any speed-up is contingent on access to a large quan-
tum random access memory (QRAM), an ingredient that
in prior asymptotic-focused analyses has typically been

assumed to exist without much further justification or cost
analysis.

Our resource analysis is detailed and takes care to study
all aspects of the end-to-end pipeline, including the QRAM
component. We report our results in terms of relevant prob-
lem parameters and then we perform numerical experi-
ments to determine the size and scaling of these parameters
for actual randomly chosen instances of the PO problem,
based on historical stock data. This approach allows us
to estimate the exact resource cost of the QIPM for an
example PO problem, including a detailed breakdown of
costs by various subroutines. This estimate incorporates
several optimizations to the underlying subroutines and
technical improvements to how they are integrated into the
QIPM. Consequently, our analysis allows us to evaluate
the prospect that the algorithm could exhibit a practical
quantum advantage and it clearly reveals the computa-
tional bottlenecks within the algorithm that are most in
need of further improvement.

While we focus on the QIPM and in particular on its
application to the PO problem, our work has more gen-
eral takeaways for quantum algorithms and for quantum
computing applications. First, our results emphasize the
importance of end-to-end analysis when evaluating a pro-
posed application. Furthermore, our modular treatment of
the underlying algorithmic primitives produces quantita-
tive and qualitative takeaways that would be relevant for
end-to-end treatments of a large number of other algo-
rithms that also rely on these subroutines, especially those
in the area of machine learning, where data access via
QRAM and quantum linear-algebra techniques are often
required [26].

B. Results

Our resource analysis focuses on three central quantities
that determine the overall cost of algorithms implemented
on fault-tolerant quantum computers: the number of logi-
cal qubits, the total number of T gates (the “T-count”), and
the number of parallel layers of T gates (the “T-depth”)
needed to construct quantum circuits for solving the prob-
lem. The T-depth acts as a proxy for the overall runtime of
the algorithm, whereas the T-count and the number of log-
ical qubits are important for determining how many physi-
cal qubits would be required for a full fault-tolerant imple-
mentation. We justify the focus on T gates by pointing
out that, in many prominent approaches to fault-tolerant
quantum computation (such as lattice surgery [27–30]),
quantum circuits are decomposed into Clifford gates and T
gates and the cost of implementing the circuit is dominated
by the number and depth of the T gates. The fault-tolerant
Clifford gates can be performed transversally or even in
software, whereas the T gates require the expensive pro-
cess of magic state distillation [31,32]. We stop short of
a full analysis of the algorithm at the physical level, as
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TABLE I. The asymptotic leading-order contributions to the total quantum resources for an end-to-end PO (including constant
factors), in terms of the number of assets in the portfolio (n), the desired precision to which the portfolio should be optimized (ε), the
maximum Frobenius condition number of matrices encountered by the QIPM (κF ), and the minimum tomographic precision necessary
for the algorithm to succeed (ξ ). The T-depth and T-count expressions represent the cumulative cost of O(ξ−2n1.5 log(n) log(ε−1))

individual quantum circuits performed serially, a quantity that we estimate evaluates to 6× 1012 circuits at n = 100 (for a detailed
accounting, see Table X). The right-hand column uses a numerical simulation of the quantum algorithm (see Sec. VI) to compute the
instance-specific parameters in the resource expression and estimate the resource cost at n = 100 and ε = 10−7.

Resource QIPM complexity Estimated at n = 100

Number of logical qubits 800n2 8× 106

T-depth (1× 1010)κF n1.5ξ−2 log2(n) log2(ε
−1) log2(κF n14/27ξ−1) 2× 1024

T-count (5× 1011)κF n3.5ξ−2 log2(n) log2(ε
−1) log2(κFξ

−1) 7× 1029

we believe the logical analysis already suffices to evalu-
ate the overall outlook for the algorithm and identify its
main bottlenecks.

At the core of any interior-point method (IPM) is the
solving of a linear system of equations. The QIPM per-
forms this step using a quantum linear-system solver
(QLSS) together with pure-state quantum tomography. The
cost of QLSS depends on a parameter κF , the Frobenius
condition number ‖G‖F‖G−1‖ of the matrix G that must be
inverted (where ‖·‖F denotes the Frobenius norm and ‖·‖
denotes the spectral norm), while the cost of tomography
depends on a parameter ξ , a precision parameter. We eval-
uate these parameters empirically by simulating the QIPM
on small instances of the PO problem.

In Table I, we report a summary of our overall resource
calculation, in which we show the asymptotically leading
term (along with its constant prefactor) in terms of param-
eters κF and ξ , as well as n, the number of assets in the PO
instance, and ε, the desired precision to which the port-
folio should be optimized. We find (numerically) that κF
grows with n and that ξ shrinks with n; we estimate that, at
n = 100 and ε = 10−7, our implementation of the QIPM
would require 8× 106 qubits and 7× 1029 total T gates
spread out over 2× 1024 layers. Needless to say, these
resource counts are decidedly out of reach both in the near
and far term for quantum hardware, even for a problem of
modest size by classical standards. Even if quantum com-
puters one day match the gigahertz-level clock speeds of
modern classical computers, 1024 layers of T gates would
take millions of years to execute. By contrast, the PO prob-
lem can be easily solved in a matter of seconds on a laptop
for n = 100 stocks.

We caution that the numbers we report should not be
interpreted as the final word on the cost of the QIPM
for PO. We are certain that further examination of the
algorithm could uncover many improvements and opti-
mizations that would reduce the costs compared to our
calculations. On the other hand, we note that our results do
already incorporate several innovations we have made to
reduce the resource cost, including a basic attempt at pre-
conditioning the linear system. Moreover, the pessimistic
outlook our results convey is robust in the sense that the

calculation would need to decrease by many orders of mag-
nitude for the algorithm to be practical, suggesting that
fundamental changes are necessary to multiple aspects of
the algorithm, rather than merely superficial optimizations.

Besides the main resource calculation, we make several
additional contributions and observations:

(1) We provide explicit quantum circuits for the impor-
tant subroutines of the QIPM, namely, the state-
of-the-art QLSS based on the discrete adiabatic
theorem [18] and pure-state tomography, which
complement the explicit circuits for block-encoding
(using QRAM) that a subset of the authors have
already reported separately in Ref. [33]. These cir-
cuits, and their precise resource calculations, could
be useful elsewhere, as these subroutines are ubiq-
uitous in quantum algorithms. For additional details,
see Secs. IV F and V.

(2) We break down the resource calculation into its con-
stituents to illustrate which parts of the algorithm
are most costly. We find that many independent
factors create significant challenges toward realiz-
ing quantum advantage with QIPMs and our work
underscores those aspects of the algorithm that must
be improved for it to be useful. We also note that
the conditions under which QIPMs would be most
successful (namely, when κF is small) also allow
for classical IPMs based on iterative classical linear-
system solvers to be competitive. For additional
details, see Sec. VII.

(3) We numerically simulate several versions of the
full QIPM solving the PO problem on portfolios as
large as n = 120 stocks and we report the empiri-
cal size and scaling of the relevant parameters, κF
and ξ . There is considerable variability in the trends
that we observe, depending on which version of the
QIPM is chosen, and when the QIPM is terminated,
which makes it difficult to draw robust conclusions.
However, we find that both κF and ξ−1 appear to
grow with n. Note that previous numerical experi-
ments on a similar formulation of the PO problem
[22] have suggested that κF does not grow with the
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problem size but those authors scaled the number of
“time epochs” while keeping n constant. Addition-
ally, we observe that the “infeasible” version of the
QIPM originally proposed in Ref. [13] empirically
performs similarly to more sophisticated “feasible”
versions [14], despite not enjoying the same theo-
retical guarantees of fast convergence. Finally, con-
trary to theoretical expectation, we observe that κF
and ξ−1 do not diverge as ε → 0 in our examples.
For additional details, see Sec. VI.

(4) We make various technical improvements to the
underlying ingredients of QIPMs. A subset of
the present authors have previously reported [33]
a quadratic improvement in the minimum depth
required for the problem of preparing an arbitrary
L-dimensional quantum state or block-encoding an
arbitrary L× L matrix, along with explicit quan-
tum circuits and exact resource expressions. In this
paper, we additionally contribute the following:

(a) Tomographic precision. Performing tomogra-
phy on the output of a QLSS necessarily causes
the classical estimate of the solution to the lin-
ear system to be inexact. We illustrate how
the allowable amount of tomography precision
can be determined adaptively rather than rely-
ing on theoretical bounds. Nonetheless, we also
improve the constant prefactor in the tomo-
graphic bounds. The total number of state-
preparation queries needed to learn an unknown
L-dimensional pure state to ξ error using the
tomography method of Refs. [10,13] is, to lead-
ing order, at most 115L ln(L)/ξ 2 [34].

(b) Norm of the linear system. Since QLSSs output
a normalized quantum state, tomography does
not directly yield the norm of the solution to the
linear system. The norm can be learned through
more complicated protocols but we observe that
in the context of QIPMs, a sufficient estimate
for the norm can be learned classically.

(c) Preconditioning. We propose a simple precon-
ditioning method that is compatible with the
QIPM, while reducing the parameter κF . Our
numerical simulations suggest that the reduction
is more than an order of magnitude for the PO
problem.

(d) Feasible QIPM. We implement a “feasible” ver-
sion of the QIPM proposed in Ref. [14], which
relies on finding a basis for the null space of
the SOCP matrix. We have identified an explicit
basis for the PO problem, thereby avoiding
the need for a costly QR decomposition. How-
ever, we observe that finding the basis via QR
decomposition leads to more stable numerical
results.

The outline for the remainder of the paper is as follows. In
Sec. II, we describe and define the PO problem in terms
of Markowitz portfolio theory. In Sec. III, we describe
second-order cone programming (SOCP) problems, illus-
trate how PO can be represented as an instance of SOCP,
and discuss how IPMs can be used for solving SOCPs.
In Sec. IV, we review the quantum ingredients needed to
turn an IPM into a QIPM. In particular, we review QLSSs,
block-encoding for data loading, and quantum state tomog-
raphy for data readout. We also present slightly better
bounds on the required tomography procedure than were
previously known. In Sec. V, we describe the full imple-
mentation of using QIPM and quantum algorithms for
SOCP for the PO problem, including a detailed resource
estimate for the end-to-end problem. In Sec. VI, we show
numerical results from simulations of the full problem
and in Sec. VII, we reflect on the calculation we have
performed, identifying the main bottlenecks and drawing
conclusions about the outlook for quantum advantage with
QIPM.

The QIPM has many moving parts requiring several
mathematical symbols. While all symbols are defined as
they are introduced in the text, we also provide a full
list of symbols for the reader’s reference in Appendix A.
Throughout the paper, we denote all vectors in bold low-
ercase letters to contrast with scalar quantities (unbolded
lowercase) and matrices (unbolded uppercase). The only
exception to this rule will be the symbols N , K , and L,
which are positive integers (despite being uppercase) and
which denote the number of rows or columns in certain
matrices related to an SOCP instance.

II. PORTFOLIO OPTIMIZATION (PO)

A. Background

Portfolio optimization is the process widely used by
financial analysts to assign allocations of capital across a
set of assets within a portfolio, given optimization criteria
such as maximizing the expected return and minimizing
the financial risk. The creation of the mathematical frame-
work for modern portfolio theory (MPT) is credited to
Harry Markowitz [35,36], for which he received the 1990
Alfred Nobel Memorial Prize in Economic Sciences [37].
Markowitz describes the process of selecting a portfolio
in two stages, where the first stage starts with “obser-
vation and experience” and ends with “beliefs about the
future performances of available securities.” The second
stage starts with “the relevant beliefs about future per-
formances” and ends with “the choice of portfolio.” The
theory is also known as mean-variance analysis. For fur-
ther history, Markowitz’s 1999 essay [38] gives the early
history of portfolio theory, from 1600 to 1960.

Typically, PO strategies include diversification, which
is the practice of investing in a wide array of asset types
and classes as a risk-mitigation strategy. Some popular
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asset classes are stocks, bonds, real estate, commodities,
and cash. After building a portfolio, we expect a return (or
profit) after a specific period of time. Risk is defined as the
fluctuations of the asset value. MPT describes how high-
variance assets can be combined with other uncorrelated
assets through diversification to create portfolios with low
variance on their return. Naturally, among equal-risk port-
folios, investors prefer those with higher expected return,
and among equal-return portfolios, they prefer those with
lower risk.

B. Mathematical formulation

Within a portfolio, wi represents the amount of an asset
i we are holding over some period of time. Often, this
amount is given as the price of the asset in dollars at the
start of the period. When the price is positive (wi > 0), we
call this a long position; and when the price is negative
(wi < 0), we call this a short position with an obligation to
buy this asset at the end of the period [39]. The optimiza-
tion variable in our PO problem is the vector of n assets
w ∈ R

n in our portfolio.
The price of each asset i varies over time. We define

ui to be the relative change (positive or negative) during
the period of interest. Then, we define the return of the
portfolio for that period as r̄ = uᵀw dollars. The relative
changes u ∈ R

n follow a stochastic process and we can
model this with a random vector with mean û and covari-
ance �. The return r̄ is then a random variable with mean
ûᵀw and covariance wᵀ�w.

To capture realistic problem formulations, we add one
or more mathematical constraints to the optimization prob-
lem corresponding to the problem-specific considerations.
For example, two common constraints in PO problems are
that we want no short positions (wi ≥ 0 for all i, denoted
by w ≥ 0) and that the total investment budget is limited
(1ᵀw = 1, where 1 denotes the vector of ones). This forms
the classical PO problem from Markowitz’s mean-variance
theory:

min
w

wᵀ�w

such that ûᵀw ≥ r̄min,
1ᵀw = 1,

w ≥ 0.

(1)

This formulation is a quadratic optimization problem
where we minimize the risk, while achieving a target return
of at least r̄min with a fixed budget and no short positions.
In practice, the PO problem is often reformulated in other
ways, e.g., to maximize return subject to a fixed amount
of risk or to optimize an objective function that weighs
risk against return. In our application, we follow the lat-
ter approach, formulated as follows, where q is a tunable

risk-aversion coefficient:

min
w
−ûᵀw+ q

√
wᵀ�w

such that 1ᵀw = 1,
w ≥ 0.

(2)

This optimization problem is no longer a QO problem but
it can be mapped to a conic problem, as described later,
in Sec. III B. Depending on the problem, additional con-
straints can be added [40]. To illustrate the flexibility of
this analysis, we include a maximum-transaction constraint
and use the following problem formulation in our analysis
in the rest of the paper:

min
w
−ûᵀw+ q

√
wᵀ�w

such that 1ᵀw = 1,
|w− w̄| ≤ ζ ,

w ≥ 0,

(3)

where w̄ denotes the current portfolio, so that |w− w̄| is
the vector of transaction quantities for each asset, which
are constrained to be smaller than the values contained in
the vector ζ . Note that the authors of Ref. [22] chose a for-
mulation more akin to Eq. (1) for their numerical study of
the QIPM for PO. For more information on the theory of
convex optimization problems and algorithms for solving
them, we direct the reader to Refs. [41,42]. For more infor-
mation about optimization methods in finance, we refer to
Refs. [43–45].

III. SECOND-ORDER CONE PROGRAMMING
(SOCP) AND INTERIOR-POINT METHODS (IPMs)

A. Definitions

Second-order cone programming (SOCP) is a type of
convex optimization that allows for a richer set of con-
straints than linear programming (LP), without many of
the complications of semidefinite programming (SDP).
Indeed, SOCP is a subset of SDP but SOCP admits IPMs
that are essentially just as efficient as IPMs for LP [46].
Many real-world problems can be cast as SOCP, including
the PO problem in which we are interested.

For any k-dimensional vector v, we may write v =
(v0; ṽ), where v0 is the first entry of v and ṽ contains the
remaining k − 1 entries.

Definition 1.—A k-dimensional second-order cone (for
k ≥ 2) is the convex set

Qk = {
(x0; x̃) ∈ R

k | x0 ≥ ‖x̃‖
}

, (4)

where ‖·‖ denotes the vector two-norm (standard
Euclidean norm). For k = 1, Q1 = {x0 ∈ R | x0 ≥ 0}.
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Definition 2.—In general, a second-order cone program
is formulated as

min
x

cᵀx

such that Ax = b, (5)

x ∈ Q,

where Q = QN1 × · · · ×QNr is a Cartesian product of
r second-order cones of combined dimension N = N1 +
. . .+ Nr and A is a full-rank K × N matrix encoding K
linear equality constraints, with K ≤ N .

Note that the special case of linear programming is
immediately recovered if Ni = 1 for all i. We say that a
point x is primal feasible whenever Ax = b and x ∈ Q.
It is strictly primal feasible if, additionally, it lies in the
interior of Q.

The dual to the program in Eq. (5) is a maximization
problem over a variable y ∈ R

K , given as follows:

max
y

bᵀy

such that Aᵀy+ s = c, (6)

s ∈ Q.

We say that a pair (s; y) is dual feasible whenever Aᵀy+
s = c and s ∈ Q. For any point (x; y; s) with x, s ∈ Q, we
define the duality gap as

μ(x, s) := 1
r

xᵀs = 1
r
(cᵀx− bᵀy), (7)

where r is the number of cones, as in Definition 2, and
the second equality holds under the additional assump-
tion that the point is primal and dual feasible. The fact
that x, s ∈ Q implies that μ(x, s) ≥ 0. Moreover, assum-
ing that both the primal and dual problems have a strictly
feasible point, the optimal primal solution x∗ and the
optimal dual solution (y∗; s∗) are guaranteed to exist and
satisfy cᵀx∗ = bᵀy∗, and hence μ = x∗ᵀs∗/r = x∗ᵀ(c−
Aᵀy∗)/r = (cᵀx∗ − bᵀy∗)/r = 0 [46]. Thus, the primal-
dual condition of optimality can be expressed by the
system

Ax = b,

Aᵀy+ s = c,
(8)

xᵀs = 0,

x ∈ Q, s ∈ Q.

B. Portfolio optimization as SOCP

The PO problem can be solved by reduction to SOCP
[45] and this reduction is often made in practice. Here, we

describe one way of translating the PO problem, as given
in Eq. (3), into a second-order cone program.

The objective function in Eq. (3) has a nonlinear term
q
√

wᵀ�w, which we linearize by introducing a new scalar
variable t and a new constraint t ≥ √wᵀ�w. We obtain the
equivalent optimization problem:

min
x=(w;t)

[−û; q]ᵀ(w; t)

such that 1ᵀw = 1,

|wi − w̄i| ≤ ζi, (9)

wi ≥ 0,

t2 ≥ wᵀ�w.

Our goal now is to write the constraints in Eq. (9) as
second-order cone constraints. Given an m× n matrix M
for which � = MᵀM , the constraint on t can be expressed
by introducing an m-dimensional variable η subject to the
equality constraint η = Mw and the second-order cone
constraint (t; η) ∈ Qm+1.

The matrix M can be determined from� via a Cholesky
decomposition, although for large matrices �, this com-
putation may be costly. Alternatively, if � and μ̂ are
calculated from stock-return vectors u(1), . . . , u(m) during
m independent time epochs (e.g., returns for each of m
days or each of m months), then a valid matrix Mᵀ is
given by (u(1) − û, . . . , u(m) − û), i.e., the columns of Mᵀ

are given by the deviation of the returns from the mean
in each epoch. This was the approach taken in Ref. [22]
and is also the approach we take in our numerical exper-
iments, presented later. The downside to this approach is
that the number of time epochs must grow with the number
of assets. We note that, in practice, computing the matrix
� can be a research topic unto itself, which is beyond the
scope of this paper [48].

The absolute-value constraints are handled by introduc-
ing a pair of n-dimensional variables φ and ρ, subject to
equality constraints φ = ζ − (w− w̄) and ρ = ζ + (w−
w̄). The absolute-value constraints are then imposed as
positivity constraints φi ≥ 0, ρi ≥ 0, which we include as
second-order cone constraints of dimension 1 [49].

In summary, we may write the PO problem from Eq. (3)
as the following SOCP that minimizes over the variable
x = (w; φ; ρ; t; η) ∈ R

3n+m+1:

min
x

[−û; 0; 0; q; 0]ᵀ(w; φ; ρ; t; η) =: cᵀx

such that
(10)

⎛

⎜
⎝

1ᵀ 0ᵀ 0ᵀ 0 0ᵀ

I I 0 0 0
I 0 −I 0 0

M 0 0 0 −I

⎞

⎟
⎠

⎛

⎜⎜⎜
⎝

w
φ

ρ

t
η

⎞

⎟⎟⎟
⎠
=

⎛

⎜
⎝

1
w̄+ ζ

w̄− ζ

0

⎞

⎟
⎠ ,
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(w; φ; ρ; t; η) ∈ Q1 × · · · ×Q1
︸ ︷︷ ︸
n positivity constraints

×Q1 × · · · ×Q1
︸ ︷︷ ︸
2n budget constraints

×Qm+1
︸ ︷︷ ︸

risk

,

where I denotes an identity block, 0 denotes a submatrix of
all 0s, 0 is a vector of all 0s, 1 is a vector of all 1s, and the
size of each block of A can be inferred from its location in
the matrix. Thus, the total number of cones is r = 3n+ 1
and the combined dimension is N = 3n+ m+ 1 [50]. The
SOCP constraint matrix A is a K × N matrix, with K =
2n+ m+ 1. This SOCP is very similar to that considered
by Kerenidis, Prakash, and Szilágyi [22]; however, rather
than optimize a weighted combination of risk and return,
they optimized risk subject to a fixed value for return and
they did not include the budget constraints.

Note that many of the rows of the K × N matrix A are
sparse and contain only one or two nonzero entries. How-
ever, the final m rows of the matrix A will be dense and
will contain n+ 1 nonzero entries due to the appearance
of the matrix M containing historical stock data; in total, a
constant fraction of the matrix entries will be nonzero, so
sparse-matrix techniques will provide only limited benefit.

Finally, we can observe that the primal SOCP in Eq. (10)
has an interior feasible point as long as ζ has strictly posi-
tive entries. To see this, choose w to be any strictly positive
vector that satisfies |w− w̄| < ζ and let φ = ζ + (w̄−
w), ρ = ζ − (w̄− w), and η = Mw and let t be equal to
any number strictly greater than ‖η‖. It can be verified that
the dual program likewise has a strictly feasible point; this
guarantees that the optimal primal-dual pair for the SOCP
exists and satisfies Eq. (8).

C. Interior-point methods for SOCP

1. Introduction

IPMs are a class of efficient algorithms for solving con-
vex optimization problems including LPs, SOCPs, and
SDPs, where (in contrast to the simplex method) interme-
diate points generated by the method lie in the interior of
the convex set and they are guaranteed to approach the
optimal point after a polynomial number of iterations of
the method. Each iteration involves forming a linear sys-
tem of equations that depends on the current intermediate
point. The solution to this linear system determines the
search direction and the next intermediate point is formed
by taking a small step in that direction. We will consider
path-following primal-dual IPMs, where, if the step size
is sufficiently small, the intermediate points are guaranteed
to approximately follow the central path, which ends at the
optimal point for the convex optimization problem.

2. Central path

To define the central path, we first establish some
notation related to the algebraic properties of the second-
order cone. Following formulations in the prior literature
[13,46], we let the product u ◦ v of two vectors u =
(u0; ũ), v = (v0; ṽ) ∈ Qk be defined as

u ◦ v = (uᵀv; u0ṽ+ v0ũ) (11)

and we denote the identity element for this product by
the vector e = (1; 0) ∈ Qk. For the Cartesian product Q =
QN1 × . . .×QNr of multiple second-order cones, the vec-
tor e is defined as the concatenation of the identity element
for each cone and the circle product of two vectors is given
by the concatenation of the circle product of each con-
stituent. A consequence of this definition is the that eᵀe
is equal to the number of cones r.

Now, for the SOCP problem of Eq. (5), the central
path (x(ν); y(ν); s(ν)) is the one-dimensional set of cen-
tral points, parametrized by ν ∈ [0,∞), which satisfies the
conditions

Ax(ν) = b,

Aᵀy(ν)+ s(ν) = c,

x(ν) ◦ s(ν) = νe,

x(ν) ∈ Q, s(ν) ∈ Q.

(12)

We can immediately see that the central-path point
(x(ν); y(ν); s(ν)) has a duality gap that satisfies μ(x(ν),
s(ν)) = ν and that when ν = 0, Eq. (12) recovers Eq. (8).

3. Finding an initial point on the central path via
self-dual embedding

Path-following primal-dual IPMs find the optimal point
by beginning at a central point with ν > 0 and following
the central path to a very small value of ν, which is taken to
be a good approximation of the optimal point. For a given
SOCP, finding an initial point on the central path is non-
trivial and, in general, can be just as hard as solving the
SOCP itself. One solution to this problem is the homo-
geneous self-dual embedding [51,52], where one forms a
slightly larger self-dual SOCP with the properties that (i)
the optimal point for the original SOCP can be determined
from the optimal point for the self-dual SOCP and (ii) the
self-dual SOCP has a trivial central point that can be used
to initialize the IPM.

To do this, we introduce new scalar variables τ , θ ,
and κ, which are used to give more flexibility to the
constraints. Previously, we required Ax = b. In the larger
program, we relax this constraint to read Ax = bτ − (b−
Ae)θ , such that the original constraint is recovered when
τ = 1 and θ = 0 but x = e is a trivial solution when τ = 1
and θ = 1. Similarly, we relax the constraint Aᵀy+ s =
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c to read Aᵀy+ s = cτ − (c− e)θ , which has the trivial
solution y = 0, s = e when τ = θ = 1. We complement
these with two additional linear constraints to form the
program

min
(x;y;τ ;θ ;s;κ)

(r+ 1)θ

such that (13)

⎛

⎜⎜
⎝

0 Aᵀ −c c̄
−A 0 b −b̄
cᵀ −bᵀ 0 −z̄
−c̄ᵀ b̄ᵀ z̄ 0

⎞

⎟⎟
⎠

⎛

⎜
⎝

x
y
τ

θ

⎞

⎟
⎠+

⎛

⎜
⎝

s
0
κ

0

⎞

⎟
⎠ =

⎛

⎜
⎝

0
0
0

r+ 1

⎞

⎟
⎠

x, s ∈ Q; τ , κ ≥ 0; y, θ free,

where b̄ = b− Ae, c̄ = c− e, z̄ = cᵀe+ 1, and r = eᵀe is
the number of cones in the original SOCP. While Eq. (13)
is not exactly of the form given in Eq. (5), we may still
think of it as a primal SOCP. Since the block matrix in
Eq. (13) is skew symmetric and the objective-function
coefficients are equal to the right-hand side of the equal-
ity constraints, when we compute the dual program [cf.
Eq. (6)], we arrive at an equivalent program; we conclude
that Eq. (13) is self-dual [51]. Thus, when applying path-
following primal-dual IPMs to Eq. (13), we need only keep
track of the primal variables, i.e., x, y, τ , θ , s, κ. Taking
into account the addition of τ and κ, which are effec-
tively an extra pair of primal-dual variables, we redefine
the duality gap [cf. Eq. (7)] as

μ(x, τ , s, κ) := 1
r+ 1

(xᵀs+ κτ). (14)

Note that if the point (x; y; τ ; θ ; s; κ) is feasible, i.e., if
it satisfies the four linear constraints in Eq. (13), then we
have the identity

μ(x, τ , s, κ) = −xᵀAᵀy+ xᵀcτ − xᵀc̄θ + κτ

r+ 1

= −bᵀyτ + b̄ᵀyθ + xᵀcτ − xᵀc̄θ + κτ

r+ 1

= b̄ᵀyθ − xᵀc̄θ + z̄τθ
r+ 1

= θ , (15)

where the first, second, third, and fourth rows of Eq. (13)
are invoked above in lines one, two, three, and four, respec-
tively. This equality justifies the redefinition in Eq. (14):
noting that the primal objective function in Eq. (13) is
(r+ 1)θ and (since the program is self-dual) the associated
dual objective function is −(r+ 1)θ , we see that the gap
between primal and dual objective functions, divided by

the number of conic constraints (2r+ 2), is exactly equal
to θ .

The central path for the augmented SOCP in Eq. (13)
is defined by the feasibility conditions for the SOCP com-
bined with the relaxed complementarity conditions x ◦ s =
νe and κτ = ν. Thus, we see that the point (x = e; y =
0; τ = 1; θ = 1; s = e; κ = 1) is not only a feasible point
for the SOCP in Eq. (13) but also a central point with
ν = 1.

Finally, a crucial property [51] of the self-dual SOCP in
Eq. (13) is that the optimal point for the original SOCP in
Eq. (5) can be derived from the optimal point for the SOCP
in Eq. (13). Specifically, let (x∗sd; y∗sd; τ ∗; θ∗; s∗sd; κ∗) be the
optimal point for Eq. (13) (it can be shown that θ∗ = 0).
Then, if τ ∗ > 0, (x∗; y∗; s∗) = (x∗sd/τ

∗; y∗sd/τ
∗; s∗sd/τ

∗) is
an optimal primal-dual point for Eqs. (5) and (6). If τ ∗ = 0,
then at least one of the original primal SOCPs in Eq. (5)
and the original dual SOCP in Eq. (6) must be infeasible
[51,52]. As previously demonstrated, the specific SOCP
for PO in Eq. (10) is primal and dual feasible, so τ ∗ �= 0
for that example.

What if we only have a point that is approximately
optimal for the self-dual SOCP? We can still deduce an
approximately optimal point for the original SOCP. Sup-
pose that we have a feasible point for whichμ(x, τ , s, κ) =
ε. The point (x/τ ; y/τ ; s/τ) is O(ε) close to feasible for
the original SOCP in the sense that the equality constraints
are satisfied up to O(ε) error:

∥∥∥A
x
τ
− b

∥∥∥ = ε

τ
‖b− Ae‖, (16)

∥∥∥Aᵀ y
τ
+ s
τ
− c

∥∥∥ = ε

τ
‖c− e‖. (17)

Moreover, since κ > 0 and θ = ε, we can assert using the
third row of Eq. (13) that the difference in objective func-
tion achieved by the primal and dual solutions is also O(ε),
i.e.,

cᵀ x
τ
− bᵀ y

τ
≤ |c

ᵀe+ 1|
τ

ε. (18)

In summary, by using the self-dual SOCP of Eq. (13),
we obtain a trivial point from which to start the IPM and
given an (approximately) optimal point we obtain either an
(approximately) optimal point to the original SOCP or a
certificate that the original SOCP was not feasible to begin
with.

4. Iterating the IPM

Each iteration of the IPM takes as input an intermediate
point (x; y; τ ; θ ; s; κ) that is feasible (or in some formula-
tions, nearly feasible), has duality gap (xᵀs+ κτ)/(r+ 1)
equal to μ, and is close to the central path with parameter
ν = μ. The output of the iteration is a new intermedi-
ate point (x+�x; y+�y; τ +�τ ; θ +�θ ; s+�s, κ +
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�κ) that is also feasible and close to the central path, with
a reduced value of the duality gap. Thus, iterating many
times leads to a solution with a duality gap arbitrarily close
to zero.

One additional input is the step size, governed by
a parameter σ < 1. The IPM iteration aims to bring
the next intermediate point onto the central path with
parameter ν = σμ. This is accomplished by taking
one step using Newton’s method, where the vector
(�x;�y;�τ ;�θ ;�s;�κ) is uniquely determined by
solving a linear system of equations called the Newton sys-
tem. The first part of the Newton system is the conditions
that must be met for the new point to be feasible, given in
the following system of N + K + 2 linear equations:

⎛

⎜⎜
⎝

0 Aᵀ −c c̄
−A 0 b −b̄
cᵀ −bᵀ 0 −z̄
−c̄ᵀ b̄ᵀ z̄ 0

⎞

⎟⎟
⎠

⎛

⎜
⎝

�x
�y
�τ

�θ

⎞

⎟
⎠+

⎛

⎜
⎝

�s
0
�κ

0

⎞

⎟
⎠

=

⎛

⎜⎜
⎝

−Aᵀy+ cτ − c̄θ − s
Ax− bτ + b̄θ
−cᵀx+ bᵀy+ z̄θ
c̄ᵀx− b̄ᵀy− z̄τ

⎞

⎟⎟
⎠ . (19)

Note that if the point is already feasible, the right-hand side
is equal to zero.

The second part of the Newton system is the linearized
conditions for arriving at the point on the central path with
duality gap σμ. That is, we aim for (x+�x) ◦ (s+�s) =
σμe and (κ +�κ)(τ +�τ) = σμ. By ignoring second-
order terms (i.e., the O(�x ◦�s) and O(�κ�τ) terms),
these become

x ◦�s+ s ◦�x = σμe− x ◦ s,

κ�τ + τ�κ = σμ− κτ .
(20)

The above expression can be rewritten as a matrix equation
by first defining the arrowhead matrix U for a vector u =
(u0; ũ) ∈ Qk as

U =
(

u0 ũᵀ

ũ u0I

)
= ueᵀ + euᵀ + u0I − 2u0eeᵀ. (21)

When u ∈ Q lies in the direct product of multiple second-
order cones, the arrowhead matrix is formed by placing
the appropriate matrices of the above form on the block
diagonal. The arrowhead matrix has the property that, for
any vector v, Uv = u ◦ v.

Using this notation, the Newton equations in Eq. (20)
can be written as

(
S 0 0 0 X 0
0 0 κ 0 0 τ

)

⎛

⎜⎜⎜⎜⎜
⎝

�x
�y
�τ

�θ

�s
�κ

⎞

⎟⎟⎟⎟⎟
⎠
=

(
σμe− X s
σμ− κτ

)
,

(22)

where X and S are the arrowhead matrices for vectors x
and s.

Equations (19) and (22) together form the Newton
system. We can see that there are 2N + K + 3 con-
straints to match the 2N + K + 3 variables in the vector
(�x;�y;�τ ;�θ ;�s;�κ). In Ref. [53], it is shown that,
as long as the duality gap is positive and (x; y; τ ; θ ; s; κ)
is not too far from the central path (which will be the case
as long as σ is chosen sufficiently close to 1 in every itera-
tion), the Newton system has a single unique solution. Note
that one can choose different search directions than the one
that arises from solving the Newton system presented here;
this consists of first applying a scaling transformation to
the product of second-order cones, then forming and solv-
ing the Newton system that results, and finally applying the
inverse scaling transformation. Alternative search direc-
tions are explained in Appendix D but in the main text we
stick to the basic search direction illustrated above, since in
our numerical simulations the simple search direction gave
equal or better results than more complex alternatives and
it enjoys the same theoretical guarantee of convergence
[53].

5. Solving the Newton system

The Newton system formed by combining Eqs. (19)
and (22) is an L× L linear system of the form Gu = h,
where L = 2N + K + 3. Classically, this can be solved
exactly in a number of ways, the most straightforward
being Gaussian elimination, which scales as O(L3). Using
Strassen-like tricks [54], this can be asymptotically accel-
erated to O(Lω), where ω < 2.38 [55], although in practice
the runtime is closer to O(L3). Meanwhile, the linear
system can be approximately solved using a variety of iter-
ative solvers, such as conjugate gradient descent or the
randomized Kaczmarz method [56]. The complexity of
these approaches depends on the condition number of the
Newton matrix. Section IV discusses quantum approaches
to solving the Newton system.

It is important to distinguish between methods that
exactly solve the Newton system and methods that solve it
inexactly, because inexact solutions typically lead to infea-
sible intermediate points. As presented above, the Newton
system in Eqs. (19) and (22) can tolerate infeasible inter-
mediate points; the main consequence is that the right-hand
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side of Eq. (19) becomes nonzero. This inexact formula-
tion was the one pursued by Kerenidis, Prakash, and Szilá-
gyi [13], who first examined QIPMs for SOCP (although
they did not implement the self-dual embedding as we have
done). However, it was pointed out in Refs. [11,14] that
the theoretical convergence analysis that Ref. [13] relies
upon requires intermediate points to be exactly feasible
(i.e., the right-hand side of Eq. (19) is always zero) and that
analyses allowing for infeasibility generally have poorer
guaranteed convergence time [although in practice they
can be just as fast [42]]. As discussed in Sec. IV, exact
feasibility is difficult to maintain in quantum IPMs, since
the Newton system cannot be solved exactly.

Reference [14] proposed a workaround by which exact
feasibility can be maintained despite an inexact linear-
system solver, which the authors call an inexact-feasible
IPM (IF-IPM). For the IF-IPM, we assume that we have
access to a basis for the null space of the feasibility
constraint equations, i.e., a linearly independent set of
solutions to Eq. (19) when the right-hand side is zero. We
arrange these basis vectors as the columns of a matrix B;
since there are N + K + 2 linear feasibility constraints and
2N + K + 3 variables, the matrix B should have N + 1
columns. In the case of PO, a matrix B satisfying this
criterion can be deduced by inspection, as discussed in
Appendix C; however, this choice does not yield a B with
orthogonal columns. Generation of a B with orthonormal
columns can be done by performing a QR decomposi-
tion of the matrix in Eq. (19), which would incur a large
one-time classical cost of O((N + K)3) operations [57].
In either case, since B is a basis for the null space of
the constraint equations, there is a one-to-one correspon-
dence between vectors �z ∈ R

N+1 and vectors that satisfy
Eq. (19) via the relation (�x;�y;�τ ;�θ ;�s;�κ) =
B�z. Thus, our Newton system can be reduced to
[(

S 0 0 0 X 0
0 0 κ 0 0 τ

)
B
]
�z =

(
σμe− Xs
σμ− κτ

)
, (23)

(�x;�y;�τ ;�θ ;�s;�κ) = B�z. (24)

The above Newton system can be solved by first comput-
ing�z by inverting the quantity in brackets in the first line
and applying it to the right-hand side and then computing

(�x;�y;�τ ;�θ ;�s;�κ) by performing the multiplica-
tion B�z. This matrix-vector product can be accomplished
classically in O(N 2) operations. Note that matrix-matrix
products where one of the matrices is an arrowhead matrix
(S or X ) can also be carried out in O(N 2) classical time, as
the form of arrowhead matrices given in Eq. (21) implies
that the product can be computed by summing several
matrix-vector products. Finally, note that since the second
and fourth block columns of the first matrix in Eq. (22)
are zero, the second and fourth block rows of B [e.g., in
Eq. (C1)] can be completely omitted from the calculation.

Thus, we see three main choices for how to run the IPM
when the solution to linear systems is inexact: first, by
solving Eqs. (19) and (22) directly and allowing intermedi-
ate solutions to be infeasible; second, by finding a matrix B
by inspection as described in Appendix C and then solving
Eqs. (23) and (24); and, third, by finding a matrix B via QR
decomposition and then solving Eqs. (23) and (24). When
the linear system is solved using a quantum algorithm, as
discussed in Sec. IV, we refer to the algorithms that result
from each of these three options by II-QIPM, IF-QIPM,
and IF-QIPM-QR, respectively. The pros and cons of each
method are summarized in Table II.

6. Neighborhood of the central path and polynomial
convergence

The prior literature establishes that if sufficiently small
steps are taken (i.e., if σ is sufficiently close to 1), then
each intermediate point stays within a small neighborhood
of the central path. We now review these conclusions. Fol-
lowing Ref. [53], for a vector u = (u0; ũ) ∈ Qk, we define
the matrix

Tu =
⎛

⎝
u0 ũᵀ

ũ
√

u2
0 − ‖ũ‖2I + ũũᵀ

u0+
√

u2
0−‖ũ‖2

⎞

⎠ , (25)

which, as for the arrowhead matrix, generalizes to the
product of multiple cones by forming a block diagonal of
matrices of the above form. We use the distance metric

TABLE II. The choices on which version of the Newton system to solve lead to different versions of the QIPM, even with the same
underlying quantum subroutines.

II-QIPM IF-QIPM IF-QIPM-QR

Newton system Eqs. (19) and (22) Eqs. (23) and (24) Eqs. (23) and (24)
Size of Newton system (L) 2N + K + 3 N + 1 N + 1

Feasible intermediate points No Yes Yes
Theoretical convergence guarantee Ill-conditioned null-space Requires classical QR

Caveats requires O(r2) [rather than basis leads to large condition decomposition, which could
O(√r))] iterations number of Newton system dominate overall runtime
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defined in Ref. [53]:

dF(x, τ , s, κ)

=
√

2
√
‖Txs−μ(x, τ , s, κ)e‖2+(τκ−μ(x, τ , s, κ))2.

(26)

The distance metric induces a neighborhood N , which
includes both feasible and infeasible points, as well as the
neighborhood NF , which includes only feasible points:

N (γ ) = {(x; y; τ ; θ ; s; κ) :

dF(x, τ , s, κ) ≤ γμ(x, τ , s, κ)}, (27)

NF(γ ) = N (γ ) ∩ PF , (28)

where PF denotes the set of feasible points for the self-dual
SOCP. Note that the vector Txs can be computed classically
in O(N ) time given access to the entries of x and s. Thus,
whether or not a point lies in N (γ ) can be determined in
O(N ) time.

Reference [53, Corollary 1] then implies that, so long as
0 ≤ γ ≤ 1/3 and (x; y; τ ; θ ; s; κ) ∈ NF(γ ), then we have

(x+�x; y+�y; τ +�τ ; θ +�θ ; s+�s; κ +�κ)

∈ NF(�), (29)

where

� = 4(γ 2 + 2(r+ 1)(1− σ)2)
(1− 3γ )2σ

. (30)

Thus, if � ≤ γ , and assuming that the Newton system is
solved exactly, every intermediate point will lie in NF(γ ).
This condition is met if, e.g., γ = 1/10 and σ = 1−
(20
√

2
√
(r+ 1))−1. Since each iteration reduces the dual-

ity gap by a factor σ , the duality gap can be reduced to
ε after roughly only 20

√
2(r+ 1) ln(1/ε) iterations. If the

Newton system is solved inexactly but such that feasi-
bility is preserved (e.g., by solving inexactly for �z and
then multiplying by B, as described above), then an error δ
on the vector (x; τ ; s; κ) can be tolerated and the result-
ing vector can still be within the neighborhood at each
iteration.

On the other hand, if the Newton system is not solved
exactly, then the resulting vector may not be feasible.
Since NF(γ ) is defined as a subset of the feasible space,
the analysis of Ref. [53] breaks down (as pointed out in
Refs. [11,14]). Thus, the II-QIPM version of the QIPM
does not enjoy the theoretical guarantee of convergence
in O(√r) iterations that the IF-QIPM and IF-QIPM-QR
versions do (see Table II). The best guarantees for the
II-QIPM would imply convergence only after O(r2) iter-
ations [11,14]. Nevertheless, it is unclear whether a small
amount of infeasibility makes a substantial difference in

practice: we have simulated multiple versions of the QIPM
and observed similar overall performance when interme-
diate solutions were allowed to be infeasible, despite an
inferior theoretical guarantee of success. Thus, in Secs. V
and VI, where we present the full QIPM implementa-
tion, resource count, and numerical analysis, we focus
on the II-QIPM. In Appendix E, we present some of the
results of our numerical simulations of the IF-QIPM and
IF-QIPM-QR algorithms.

IV. QUANTUM INTERIOR-POINT METHODS
(QIPMs)

A. Basic idea of QIPM

As discussed in Sec. III, each iteration of an IPM SOCP
solver involves forming and solving a linear system of
equations that depends on the intermediate point at the
current iteration. For classical IPM implementations for
SOCP, the linear systems of equations are typically solved
exactly; e.g., the numerical SOCP-solving package ECOS
solves linear systems with a sparse LDL (Cholesky) fac-
torization [25]. For arbitrary dense systems, the runtime
of solving an L× L system in this way is O(L3) [58]
but by exploiting sparsity the actual runtime in prac-
tice could be much faster, by an amount that is hard to
assess. Alternatively, it would, in principle, be possible
to employ classical iterative approximate linear-system
solvers such as conjugate gradient descent or the random-
ized Kaczmarz method. The choice of the linear-system
solver thereby determines the overall complexity of the
IPM SOCP solver. The idea of QIPM, as pioneered in
Refs. [10,11], is to use a quantum subroutine to solve the
linear system of equations [15]. Notably, all other steps of
IPMs stay classical and remain the same as described in
Sec. III. As a QLSS does not solve the exact same math-
ematical problem as classical linear-system solvers and,
moreover, a QLSS needs coherent (quantum) access to the
classical data as given by the entries of the relevant matri-
ces, there are various additional tools that we will discuss
that allow us to embed QLSS subroutines as a step of IPM
SOCP solvers.

First, we discuss in Sec. IV B the input and output model
of QLSSs and present the complexity of state-of-the-art
QLSSs. Then, in Sec. IV C, we give constructions based
on QRAM to load classical data as input into a QLSS and
discuss the complexity overhead arising from that step.
Subsequently, in Sec. IV D, we present so-called pure-
state quantum tomography, which allows us to convert the
output of the QLSS into an estimate of the classical solu-
tion vector of the linear system of equations. Finally, in
Sec. IV E, we put all the steps together and state the over-
all classical and quantum complexities of using QLSSs as a
subroutine in IPM SOCP solvers. As described in previous
work [22], the ultimate idea is to compare these costs to
the complexities of classical IPM SOCP solvers and point
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out regimes where quantum methods can potentially scale
better than any purely classical methods (e.g., in terms of
the SOCP size N , the matrix condition number κ , etc.)

We note that the content of this section largely corre-
sponds to collecting various state-of-the-art results from
the prior literature. These ingredients are used together
with the conceptual framework of Refs. [10,11,14,22] to
lift the QIPMs presented there to superior efficiency. In
Sec. V, we present a few novel enhancements to the
implementation of the QIPM and fully explicit end-to-
end quantum circuits with corresponding novel finite-size
complexities.

B. Quantum linear-system solvers

For our purposes, a linear system of equations is given
by a real invertible L× L matrix G together with a real vec-
tor h = (h1, . . . , hL) and one is looking to give an estimate
of the unknown solution vector u = (u1, . . . , uL) defined
by Gu = h. We define the (Frobenius) condition number

κF(G) := ‖G‖F
∥∥G−1

∥∥ , (31)

where ‖ · ‖F denotes the Frobenius norm and ‖ · ‖ for a
matrix argument denotes the spectral norm.

For this setting, the input to a QLSS is then comprised
of: (i) a preparation unitary Uh that creates the � := log L�
qubit quantum state

|h〉 := ‖h‖−1 ·
L∑

i=1

hi |i〉 via |h〉 = Uh |0〉⊗� , (32)

where ‖ · ‖ for a vector argument denotes the vector two-
norm (standard Euclidean norm); (ii) a block-encoding
unitary UG in the form

UG :=
( G
‖G‖F ·
· ·

)
(33)

on �+ �G qubits for some �G ∈ N; and (iii) an approx-
imation parameter εQLSP ∈ (0, 1]. The quantum linear-
system problem (QLSP) is stated as follows. For a triple
(G, h, εQLSP) as above, the goal is to create an �-qubit
quantum state |ṽ〉 such that [59]

∥∥∥ |ṽ〉 − |v〉
∥∥∥ ≤ εQLSP for |v〉 :=

∑L
i=1 ui |i〉∥∥∥

∑L
i=1 ui |i〉

∥∥∥
, (34)

defined by Gu = h with u = (u1, . . . , uL), by employing,
as few times as possible, the unitary operators UG, Uh,
their inverses U†

G, U†
h, controlled versions of UG, Uh, and

additional quantum gates on potentially additional ancilla
qubits. The QLSP together with the first QLSS was
introduced in Ref. [15] and then gradually improved in

Refs. [16,17,19,60,61]. The state-of-the-art QLSS [18],
using the fewest calls to UG, Uh and their variants, is
based on ideas from discrete adiabatic evolution [62]. We
note the following explicit complexities from Ref. [18,
Theorem 9], adapted to our setting.

Proposition 1.—The QLSP for (G, h, ε1) can be solved
with a quantum algorithm on log2(L)� + 4 qubits for

ε1 ≤ C · κF(G)
Q
+O

(√
κF(G)
Q

)
(35)

for some constant C ≤ 44864 using Q ≥ κF(G) controlled
queries to each of UG and U†

G and 2Q queries to each of Uh

and U†
h and constant quantum gate overhead.

We note that a stronger version of the above proposi-
tion works with the (regular) condition number κ(G) :=
‖G‖‖G−1‖ but it requires a block-encoding of the form
Eq. (33), in which the normalization factor is ‖G‖ rather
than ‖G‖F . For general matrices of classical data, we do
not know of a method to produce such a block-encoding.
In our case, we work with the Frobenius version κF(G),
since we do have a straightforward method to perform UG
with normalization factor ‖G‖F , described in Sec. IV C. It
is then sufficient to give upper bounds for the remaining
κF(G) to run the algorithm from Proposition 1. In prac-
tice, we will give such upper bounds by using appropriate
heuristics (cf. Sec. V on implementations).

Note that Proposition 1 implies a solution to the QLSP
in Eq. (34) with an asymptotic query complexity of
O(κF/εQLSP) to UG, Uh, and their variants and under stan-
dard complexity-theoretic assumptions this is optimal in
terms of the scaling O(κ) [15] but not in terms of the
scaling O(εQLSP). To get to an improved O(log(1/εQLSP))

scaling, the authors of Ref. [18] further rely on the
eigenstate-filtering method of Ref. [61, Sec. 3] that addi-
tionally invokes a quantum singular-value transform based
on a minimax polynomial. We note the following overall
complexities from Ref. [18, Theorem 11], adapted to our
setting.

Proposition 2.—The QLSP problem for (G, h, ε2) can be
solved with a quantum algorithm on log2(L)� + 5 qubits
that produces a quantum state

√
p |05〉 |ṽ〉 +

√
1− p |⊥〉 |fail〉 (36)

with 〈05|⊥〉 = 0 and success probability p ≥ 1/2. With
that, the sought-after ε2-approximate solution quantum
state |ṽ〉 can be prepared using Q+ d controlled queries
to each of UG and U†

G, and 2Q+ 2d queries to each of Uh

and U†
h, where

Q = 1
√

2−√2
CκF(G)+O

(√
κF(G)

)
, (37)
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d = 2κF(G) ln(2/ε2). (38)

Here, C ≤ 44864 is the same constant as in Proposition 1.
This version of the algorithm essentially uses Propo-

sition 1 with a constant choice of ε1 ≤
√

2−√2, which
ensures that the state prepared has overlap at least 1/

√
2

with the ideal state |v〉. Then, it uses eigenstate filtering
to measure whether the final state is the correct solution
state. On average, we need to repeat the algorithm no more
than twice to produce the desired state, |ṽ〉. The resulting
scaling that Proposition 2 implies for the QLSP problem
in Eq. (34) is O(κ log(1/εQLSP)). Following the findings
from Ref. [18, Sec. V], we note that in practice the Q =
1.31CκF(G) dominates over d and all other terms can be
safely neglected for typical settings—even for finite-scale
analyses. Moreover, the constant C is typically an order
of magnitude smaller than the estimates given in Ref. [18,
Sec. IV.E]; numerical estimates produced a smaller value
of 2305. No direct estimates for general matrices G are
available from Ref. [18] but we will henceforth assume
C = 2305 for our numerical estimates. Additionally, note
that for the eigenstate-filtering step via quantum singular-
value transform (QSVT), the minimax polynomial from
Ref. [61, Sec. 3] and its corresponding quantum signal-
processing angles have to be computed. This is done as part
of classical preprocessing [63, Sec. III] (see also Ref. [64]).

Note that the implementation of the QLSS in each
of Propositions 1 and 2 assumes perfect implementa-
tion of the underlying circuits, without additional gate-
synthesis errors. In practice, however, these circuits will
not be implemented perfectly and hence we will later
include additional sources of error (e.g., block-encoding
error, imperfect rotation gates, etc.) that also contribute to
εQLSP. We include these additional contributions in, e.g.,
Sec. IV D.

In the following, we continue by laying out the addi-
tional classical and quantum resources needed to employ
QLSS for estimating, in an end-to-end fashion, the classi-
cal solution vector v = (v1, . . . , vL) instead of the quantum
state |v〉.

C. Block-encoding via quantum random access
memory (QRAM)

In many quantum algorithms (and, in particular, for our
use case), one needs coherent access to classical data for
use in the algorithm. Block-encodings of matrices provide
a commonly used access model for the classical data by
encoding matrices into unitary operators, thereby provid-
ing oracular access to the data. As mentioned above, for
a matrix G ∈ R

L×L, a unitary matrix UG block-encodes G
when the top-left block of UG is proportional to G, i.e.,

UG =
(

G/α ·
· ·

)
, (39)

where α ≥ ‖G‖ is a normalization constant, chosen as α =
‖G‖F for our use case. The other blocks in UG are irrele-
vant but they must be encoded such that UG is unitary. For
our purposes, we focus on real matrices G but the extension
to complex matrices is straightforward. A block-encoding
makes use of unitaries that implement (controlled) state
preparation, as well as QRAM data structures for loading
the classical data. Specifically, we refer to QRAM as the
quantum circuit that allows query access to classical data
in superposition,

∑

j

ψj |j 〉 |0〉 QRAM−→
∑

j

ψj |j 〉 |aj 〉 , (40)

where j is the address in superposition with amplitude
ψj and |aj 〉 is the classical data loaded into a quantum
state. There are several models of QRAM that one can
use that differ in the way in which the data is loaded. The
two most notable QRAM models are the select-swap (SS)
model, which is particularly efficient in terms of T-gate
utilization [65], and the bucket-brigade (BB) model [66],
which has reduced susceptibility to errors when operated
on potentially faulty hardware [67].

The block-encoding unitary UG acts on �+ �G qubits,
where � = log2(L)� and, in our construction, �G = �. To
build it, we follow the prescription of Refs. [47,68,69], in
which one forms UG as the product of a pair of controlled-
state-preparation unitaries UL and UR. Specifically,

UG = U†
RUL, (41)

UR : |0〉⊗l |j 〉 �→ |ψj 〉 |j 〉 , (42)

UL : |0〉⊗l |k〉 �→ |k〉 |φk〉 , (43)

where the �-qubit states |ψj 〉 and |φk〉 are determined from
the matrix elements Gjk of G as follows:

|ψj 〉 =
∑

k

Gjk

‖Gj ,·‖ |k〉 , (44)

|ψk〉 =
∑

j

‖Gj ,·‖
‖G‖F

, (45)

where Gj ,· denotes the j th row of G. That is, controlled on
the second �-qubit register in the state |j 〉, UR prepares the
�-qubit state |ψj 〉 into the first �-qubit register and UL per-
forms the same operation for the states |φk〉modulo a swap
of the two registers. Both UL and UR utilize an additional
�′ QRAM ancilla qubits that begin and end in the state
|0〉. These controlled-state-preparation unitaries UR and UL
are implemented by combining a QRAM-like data-loading
step with a protocol for state preparation of �-qubit states.
There are several combinations of state-preparation proce-
dure and QRAM model that one can choose, with varying
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TABLE III. The logical quantum resources required to block-encode (left column) and control block-encode (right column) an L× L
matrix G to precision εG ∈ [0, 1], where we assume that L = 2�. Here, we have suppressed terms doubly and triply logarithmic in L
and 1/εG (see Ref. [33]).

Resource Block-encoding Controlled block-encoding

Number of qubits NQbe := 4L2 − 3L+ 2�− 1 NQcbe := NQbe + L
T-depth TDbe := 10�+ 24 log2(1/εG)+ 44 TDcbe := TDbe + 4
T-count TCbe := (12 log2(1/εG)+ 56)L2 − 24L− 12 log2(1/εG)− 32�− 32 TCcbe := TCbe + 16(L− 1)

benefits and resource requirements. In Ref. [33], a subset of
the authors of the present work have studied the resources
required to implement these block-encodings and provided
explicit circuits for their implementation. For our immedi-
ate purposes, we will simply import the relevant resource
estimates from that work in Table III, and we refer the
interested reader to Ref. [33] for further details [70]. For
our purposes, we will work with the minimum depth cir-
cuits that achieve a T-gate depth of O(log L), at the price
of using a total number of O(L2) qubits for the data struc-
ture implementing the block-encoding unitary UG. Finally,
the �-qubit unitary Uh defined by |h〉 = Uh |0〉⊗� corre-
sponds to the special case of quantum state preparation and
is directly treated by the methods outlined in Ref. [33, Sec.
III.C]. The resources required to synthesize Uh up to error
εh are also reported in Table III.

The minimum-depth block-encodings of Ref. [33] also
incur some classical costs. Specifically, the quoted depth
values are only achievable assuming that a number of
angles have been classically precomputed and, for each
angle, a gate sequence of single-qubit Clifford and T gates
that synthesizes a single-qubit rotation by that angle up to
small error. Calculation of one of the angles can be done
by summing a subset of the entries of G and computing
an arcsin. Meanwhile, circuit synthesis requires apply-
ing a version of the Solovay-Kitaev algorithm [71,72].
For the block-encoding procedure, L(L− 1) angles and
their corresponding gate sequences must be computed,
which requires a total runtime of L2polylog(1/εG) [72],
although this computation is amenable to parallelization.
For the state-preparation procedure, L− 1 angles and their
sequences are needed.

D. Quantum state tomography

We have described how we can produce a quantum state
|ṽ〉 approximating the (real-valued) solution |v〉 of a linear
system up to precision εQLSP. As mentioned in Sec. IV B, in
the actual circuit implementation, the approximation error
εQLSP accounts for both the inherent error from eigenstate
filtering captured in Proposition 2 as well as additional
gate-synthesis error arising from imperfect implementa-
tion of block-encoding unitaries and single-qubit rotations.
The next step is to approximately read out the amplitudes
of |ṽ〉 into classical form. To start out, we will prove the
following proposition, which tells us how many copies
of a quantum state are needed to provide a good enough
classical description of it, up to a phase on each ampli-
tude. This proposition and its proof are adapted from Ref.
[73, Proposition 13], with somewhat sharpened constant
factors.

Proposition 3.—Let 0 < ε, δ < 1 and let |ψ〉 =∑
j∈[L]

αj |j 〉 be a quantum state. Then,
(
5+√21

)
ε−2 ln(2L/δ)/

3 < 3.1942ε−2 ln(2L/δ) measurements of |ψ〉 in the com-
putational basis suffice to learn an ε-�∞-norm estimate |α̃|
of |α|, with success probability at least 1− δ.

We give the proof in Appendix B 1. Recall that Proposi-
tion 2 gives a unitary U such that

U |05〉 |0�〉 = √p |05〉 |ṽ〉 +
√

1− p |⊥〉 |fail〉 , (46)

with |ṽ〉 =∑N
i=1 ṽi |i〉, 〈05 |⊥〉 = 0, and p ≥ 1/2. The vec-

tor ṽ may have complex coefficients but it approximates a
real vector v up to some error εQLSP in �2 norm. Our goal

TABLE IV. The logical quantum resources required to prepare an arbitrary �-qubit quantum state |h〉 from classical data (left column)
and a single-qubit controlled version (right column) to precision εh ∈ (0, 1]. Here, we have suppressed terms doubly and triply loga-
rithmic in L and 1/εh (see Ref. [33]). For a single-qubit control, there are no additional Clifford gates required, which can be observed
by examining the state-preparation procedure in Ref. [33, Sec. IIID] and noting that we can prepare the state |0〉 |0〉⊗� + |1〉 |ψ〉 with
minor modifications to the procedure that prepares |ψ〉. First, we use the “flag” qubits to control both the angle loading and unloading
steps (rather than just the unloading steps) and, second, we control every flip of the flag qubits in that procedure with the first single-
qubit control, thus turning NOT gates into controlled-NOT (CNOT) gates, which are also Clifford. When the control is on, the procedure
works as before and when the control is off, none of the qubits leave the |0〉 state.

Resource State preparation Controlled state preparation

Number of qubits NQsp := 4L+ �− 6 NQcsp := NQsp + 1
T-depth TDsp := 3�+ 12 log2(1/εh)+ 24 TDcsp := TDsp
T-count TCsp := (12 log2(1/εh)+ 40)L− 12 log2(1/εh)− 16�− 40 TCcsp := TCsp
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is to obtain an estimate ṽ′ = (v′1, . . . , v′N ) such that

‖v− ṽ′‖ ≤ ξ for an error parameter ξ ∈ [0, 1]. (47)

where ξ captures all sources of error. Proposition 3 is not
quite sufficient because it only gives us an estimate of the
absolute value of ṽ. However, the following procedure,
adapted from Ref. [10, Sec. 4], will be sufficient:

(1) Create k = 57.5L ln(6L/δ)/(ε2(1− ε2/4)) many
copies of the quantum state U |05+�〉 = √p |05〉 |ṽ〉 +√

1− p |⊥〉 |fail〉 and measure them all in the com-
putational basis to give empirical estimates {pi}Li=1
of the probabilities p|ṽi|2.

(2) Using controlled applications of U, create k =
57.5L ln(6L/δ)/(ε2(1− ε2/4)) copies of

2−1/2 |05〉 |0〉√p |ṽ〉

+ 2−1/2 |05〉 |1〉
L∑

i=1

√
p ′i |i〉

+ |⊥′〉 |fail′〉 , (48)

which, by applying a Hadamard, can be mapped to

|05〉 |0〉
√

p |ṽ〉 +∑L
i=1

√
p ′i |i〉

2

+ |05〉 |1〉
√

p |ṽ〉 −∑L
i=1

√
p ′i |i〉

2
+ |⊥′〉 |fail′′〉 . (49)

Here, |⊥′〉 is an arbitrary state orthogonal to |05〉 and
|fail′〉 and |fail′′〉 are arbitrary unnormalized states.
The quantities

√
p ′i are (possibly complex) ampli-

tudes that satisfy |√p ′i −
√

pi| ≤ εtsp for all i; they
arise because the state

∑L
i=1

√
p ′i |i〉 can only be pre-

pared up to some error. Next, measure this state in
the computational basis, denoting the measurement
count of the result 06i as k+i and the result 051i as
k−i .

(3) Define

a+i = min
(√

pi,
k+i − k−i√

pi

)
, (50)

a−i = max
(
−√pi,

k+i − k−i√
pi

)
, (51)

and let

ãi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if
√

pi ≤ 2
3
√

2L
ε

√
1− ε2

4 + εtsp,

a+i , if ãi �= 0 and k+i ≥ k−i ,

a−i , if ãi �= 0 and k+i < k−i .

(52)

Output the estimate |ṽ′〉 =∑L
i=1 ãi |i〉 /

√∑L
i=1 ã2

i .

Proposition 4.—Suppose that ‖ṽ− v‖ ≤ εQLSP and that
v is a real-valued vector. Let ε and εtsp be constants that
satisfy ε +√2Lεtsp +

√
2εQLSP ≤ 1/2. Then, the above

algorithm outputs an estimate ṽ′ such that ‖ṽ′ − v‖ < ε +
1.58
√

Lεtsp + 1.58εQLSP with probability 1− δ.
We give the proof in Appendix B 1. The statement is

used to bound the total error parameter ξ by the quantity
ε + 1.58

√
Lεtsp + 1.58εQLSP. We note that a similar pro-

cedure in Ref. [10, Sec. 4] has already been proven to
work, with somewhat worse success probability guaran-
tees and worse constants. Reference [73, Proposition 16]
shows a similar result for complex-valued states but we
use a sharper proof for input states close to real valued.
Proposition 4, together with Proposition 2, produces with
high probability an O(ε) good estimate ṽ′ of v by using
O(L ln(L)/ε2) many samples. If our goal is to resolve the
initial linear system Gu = h, then the vector ṽ′, produced
as in Sec. IV D as an estimate for the normalized vector
v = u/‖u‖, gives an estimate for u via

ũ := ṽ′ · ‖h‖‖Gṽ′‖ ,

for which we find

‖u− ũ‖ ≤ ‖v− ṽ′‖ · (1+ κ(G)) · ‖h‖‖Gṽ′‖ .

Note that as a worst-case guarantee, this picks up an
additional factor κ(G) in error scaling. However, for our
purposes it will be sufficient to work directly with the
normalized estimate ṽ′ for v, the reason being that only
the direction of the solution vector is important to us and
not its exact normalization. There are other methods in
the literature that allow us to perform pure-state quan-
tum tomography with comparable query complexities (see,
e.g., Ref. [74]) but we favor the above method because of
its computational simplicity and the fact that it does not
require us to solve any potentially costly additional opti-
mization problems. Very recently, the sample complexity
has been improved to O(L ln(L)/ε), which comes at the
cost of more complicated quantum circuits and higher con-
stant overheads [73, Theorem 23]. It would be interesting
to work out the more involved finite complexity of this
result and we comment further on the potential impact of
this in Sec. VII.

E. Asymptotic quantum complexity

Putting everything together, the steps of our QLSS for
given real L× L matrix G and real vector h of size L are as
follows:
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(1) Construct the circuits that implement the block-
encoding unitaries UG and Uh up to error εG and
εh via quantum state preparation and QRAM, which
involves a classical preprocessing cost scaling as
L2polylog(1/εG,h). The quantum resources required
are described in Table III. The T-gate depth (what
we call time complexity) is O(log L) and the total
T-gate count is O(L2).

(2) Employ the QLSS unitary from Proposition 2 to
approximately solve the corresponding QLSP, lead-
ing to the quantum state |ṽ〉. The query com-
plexity to UG, Uh, their controlled versions, and
their inverses, is O(κF(G) log(1/ε)). The number of
qubits needed is log L� + 5.

(3) Repeat the previous step O(L ln(L/δ)ε−2) many
times to implement the pure-state quantum tomog-
raphy scheme from Sec. IV D, which also requires
the use of an O(L) qubit QRAM structure and one
ancilla qubit. Tomography leads to the sought-after
classical vector estimate ṽ′ with ‖ṽ′ − v‖ ≤ ε.

The QLSS can then be used for each iteration of an IPM
SOCP solver, which involves forming and solving a linear
system of equations, resulting in the QIPM SOCP solver.
We provide the quantum circuits needed to implement the
solver in Sec. IV F. However, we emphasize that we have
not yet considered the various practical aspects and dif-
ficulties of setting up an end-to-end QIPM SOCP solver,
which is discussed further in Sec. V.

F. Quantum circuits

The following are the quantum circuits needed for the
QLSS of Proposition 1. The QLSS requires applying a
unitary U[s] for many different values of s, where U[s]
is a block-encoding of a certain Hamiltonian related to G
and h, as specified below. The unitary acts on 4+ �+ �G
total qubits, where the final �G qubits are ancillas associ-
ated with UG. The four single-qubit registers are referred
to with labels a1, a2, a3, and a4, the �-qubit register with
label L, and the �G-qubit register with label �G. These
labels are used as subscripts on bras, kets, and operators
to clarify the register to which they apply. The circuit for
U[s] is depicted in Fig. 1 and is described in Ref. [18,
Appendix E]. Specifically, the unitary U[s] is a block-
encoding of the (2+ �)-qubit Hamiltonian c(s) ·H[s] :=
(1− f (s))H0 + f (s)H1 on registers a4a1L, where c(s) is
a normalization factor [defined later in Eq. (60)],

H0 :=

⎛

⎜
⎝

0 0 IL − |h〉 〈h|L 0
0 0 0 −IL

IL − |h〉 〈h|L 0 0 0
0 −IL 0 0

⎞

⎟
⎠

(53)

and

H1 :=

⎛

⎜⎜
⎝

0 0 0 G
0 0 G†(IL − |h〉 〈h|L) 0
0 (IL − |h〉 〈h|L)G 0 0

G† 0 0 0

⎞

⎟⎟
⎠ ,

(54)

and where IL denotes the identity operation on subsystem
L, and the four rows and columns correspond to the sectors
with qubits a4 and a1 set to (0, 0), (0, 1), (1, 0), and (1, 1).
Figure 1 features the expressions

CR0(s) := |0〉 〈0|a4
⊗ R(s)a2 + |1〉 〈1|a4

⊗ Ha2 , (55)

CR1(s) := |1〉 〈1|a4
⊗ R(s)a2 + |0〉 〈0|a4

⊗ Ha2 , (56)

VG := |0〉 〈0|a2
⊗ Za1 ⊗ IL�G

+ |1〉 〈1|a2
⊗

(
0 UG

U†
G 0

)

a1L�G

, (57)

where H denotes the single-qubit Hadamard gate, and R(s)
is given by

R(s) := 1
√
(1− f (s))2 + f (s)2

(
1− f (s) f (s)

f (s) −(1− f (s))

)
,

(58)

f (s) := κF(G)
κF(G)− 1

·
(

1−
(

1+ s
(√
κF(G)− 1

))−2
)

.

(59)

The normalization factor of R(s) above combines with a
factor of 1/

√
2 introduced by the Hadamard gate to give

an overall normalization factor for H(s) of

c(s) = (
2((1− f (s))2 + f (s)2)

)−1/2 ∈ [2−1/2, 1] (60)

and a scheduling function f (s) with f (0) = 0 and f (1) =
1. Note that we have the self-inverse property U[s]2 =
1 ∀s ∈ [0, 1], as demonstrated in Ref. [18, Appendix E].
The overall quantum circuit U for the quantum algorithm
of Proposition 1 is then given as (cf. Ref. [75])

U :=
Q∏

j=1

P[1− j /Q] (61)

with the walk operator

P[s] := WU[s],

where W is the operator that acts as identity on registers
a4a1L (which host the Hamiltonian H[s]) while perform-
ing the reflection (2 |0〉 〈0|a2a3�G

− Ia2a3�G) on the remain-
ing qubits. The unitary U makes Q controlled queries to
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a3 H UQh UQh H

a4 •
CR0(s) CR1(s)

X

a2

VG

a1
UQh UQh

L

�G

FIG. 1. The main component of the quantum circuit for Proposition 1, described in Ref. [18, Appendix E], enacting the unitary
U[s] on registers a3a4a2a1L�G of the scaled Hamiltonian c(s) ·H[s], where H[s] = (1− f (s))H0 + f (s)H1, on registers a4a1L. The
necessary quantum gates and functions are defined in Eqs. (53)–(59), except for subcircuit UQh , which is depicted in Fig. 4. The unitary
U[s] is then used in Eq. (61) to define the overall quantum circuit U for Proposition 1.

each of UG and U†
G and 2Q queries to each of Uh and U†

h,
and it has constant quantum gate overhead.

Next, we give the remaining QSVT eigenstate-filtering
quantum circuit for the refined QLSS of Proposition 2.
We are interested in the null space of c(1) ·H[1], which
has ground-state energy equal to zero and spectral gap at
least c(1)κ−1

F (G) = (√2κF)
−1. As such, we employ the

Chebyshev minimax polynomial

Rl(x, κ−1
F (G)) :=

Tl

(
−1+ 2 x2−κ−2

F (G)/2

1−κ−2
F (G)/2

)

Tl

(
−1+ 2 −κ

−2
F (G)/2

1−κ−2
F (G)/2

) , (62)

where Tl(·) is the lth Chebyshev polynomial of the first
kind, as part of the corresponding QSVT quantum circuit.
From Ref. [61, Lemma 2], Rl has even degree d equal to

d := 2l = 2
⌈
κF(G) ln(2/εqsp)

⌉
for some εqsp ∈ (0, 1)

(63)

where εqsp is the precision to which Rl approximates
the optimal filter operator. The QSP subscript stands for
“quantum signal processing.”

The circuit for the eigenstate-filtering step is depicted in
Fig. 2. To implement it, one has to classically precompute
the corresponding QSP angles {φ1, . . . ,φd}, which is best

done by the methods of Ref. [63] (see also Refs. [68]
and [76]). The query complexity to the block-encoding
U[1] is given by d, the additional gate overhead is as in
Fig. 2, and the total number of qubits is 1+ 4+ �. Finally,
use of the overall quantum circuit U from Proposition
1 with constant approximation parameter ε1 =

√
2−√2

therein (to produce an input state to the quantum circuit
of Fig. 2) gives the overall quantum circuit of the QLSS
from Proposition 2, which then solves the QLSP to error
ε2 = εqsp.

The tomography routine also requires the ability to per-
form controlled versions of the above circuits as described
in Eq. (48) and illustrated in Fig. 3 (which replaces Fig. 1).
The controlled circuits can be accomplished by rather
simple modifications to the circuits in Figs. 1 and 2 as
follows.

Any QSVT circuit can be made controlled by simply
controlling the application of the z rotation gates, since
the rest of the circuit contains only symmetric applica-
tions of unitary gates and their inverses. Thus, we can
create a controlled version of Fig. 2 by simply performing
controlled-σz rotations, which requires two CNOT gates and
an extra single-qubit σz-rotation gate.

Control of the linear-system portion is not enough
to implement Eq. (48). One must also follow this with
a controlled-state-preparation routine, controlled on the
value of the qubit c being in the |1〉 state. The full resource

H e−iφ1σz e−iφ2σz · · · e−iφdσz H

a3

U [1] U†[1]

· · ·
a4 · · ·
a2 · · ·
a1 · · ·
L · · ·

�G · · ·

FIG. 2. The quantum singular-value transform (QSVT) circuit, described in Ref. [68], acting on the block-encoding U[1] of H(1) =
H1/
√

2, as defined in Eq. (54). The circuit features one additional ancilla qubit and depends on the classically precomputed rotation
angles {φ1, . . . ,φd}.
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c • • • •
a3 H UQh UQh H

a4 •
CR0(s) CR1(s)

a2

VG

a1
UQh UQh

L

�G

FIG. 3. The controlled version of the quantum circuit in Fig. 1, controlled on qubit c. Note that not all gates need to be controlled on
c, as their inverses follow in the circuit.

analysis for controlled state preparation has been reported
in Ref. [33] and we refer the reader there for further details.
We report the resource counts here, in Table IV.

V. IPM IMPLEMENTATION AND RESOURCE
ESTIMATES FOR PO

In Sec. IV, we reviewed the ingredients needed to
implement the QIPM, namely, QLSS, block-encoding,
and tomography. Here, we combine those ingredients to
describe how the QIPM is actually implemented, making
several observations that go beyond the prior literature. We
also perform a full resource analysis of the entire protocol
and report resources needed to run the algorithm.

A. Main IPM loop and full pseudocode

A QIPM is formed from an IPM by performing the step
of solving a linear system with a quantum algorithm; the
rest of the steps are classical. In Algorithm 1, we present
pseudocode for the IPM where the single quantum subrou-
tine—approximately solving a linear system—appears in
blue text. The input to Algorithm 1 is an SOCP instance
with N variables, K linear constraints, and r second-order
cone constraints, along with a tolerance parameter ε. Here,
we note that K = O(N ) in the case of the formulation of
the PO problem that we simulate in Sec. VI. The output of
the QIPM is a vector x that is O(ε) close to feasible and
O(ε) close to optimal.

The structure of the QIPM is, in essence, the same
as that proposed by Ref. [13] but we give a more com-
plete specification of the algorithm and make several new
observations:

(a) Classical costs. The IPM requires O(√r log(1/ε))
iterations. In the classical case, when solving the
PO problem via SOCP with an IPM, the cost of an
iteration is dominated by the time needed to solve a
linear system of size L× L, which is O(N 3) if done
via Gaussian elimination, since L ∼ O(N ) in the PO
problem. In the quantum case, this step is performed
quantumly. However, even in the quantum case,

some classical costs are incurred: one must classi-
cally compute the left-hand and right-hand sides of
the Newton system in Eqs. (19) and (22) to be able
to load these classical data into quantum circuits
that perform the QLSS and tomography required to
gain a classical estimate of the solution to the linear
system. In particular, constructing the linear system
requires classical matrix-vector multiplication to
compute the residuals on the right-hand side of the
Newton system in Eq. (19). If the SOCP constraint
matrix A is O(N )× N and the number of cones
r = O(N ), then this classical matrix-vector multi-
plication takes O(N 2) time in each of the O(√N )
iterations. Thus, the QIPM requires at least O(N 2.5)

classical time. Additionally, in our resource counts
we use the minimal depth block-encoding circuits
from Ref. [33], which require N 2polylog(1/ε) clas-
sical time per iteration (although this can be paral-
lelized) to compute angles and corresponding gate
sequences to precision ε. These classical costs limit
the maximum possible speed-up of the QIPM over
the classical IPM but if the quantum subroutine is
sufficiently fast that classical matrix-vector multi-
plication and angle computation is the bottleneck
step, then this is a good signal for the utility of
the QIPM.

(b) Preconditioning. Since the runtime of the QLSS
depends on the condition number of the matrix
G that appears in the linear system Gu = h, it is
worth examining preconditioning techniques [77]
for reducing the condition number. In the imple-
mentation that we propose, we perform a very
simple form of preconditioning. Let D be a diag-
onal matrix, where entry Dii is equal to the norm
of row i of the matrix G. Instead of solving the
linear system Gu = h, we solve the equivalent sys-
tem (D−1G)u = D−1h. Note that D−1G and D−1h
can each be classically computed in O(N 2) time,
roughly equal to the time required to compute h in
the first place [see (a)], so this step is unlikely to
be a bottleneck in the algorithm. In our numerical
experiments, we observe that the condition number
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of D−1G is typically more than an order of magni-
tude smaller than G and sometimes several orders of
magnitude (see Fig. 9 in Sec. VI).

(c) Norm of linear system and step length. As discussed
in Sec. IV B, QLSSs produce a normalized state
|u〉, where u is the solution to Gu = h and quan-
tum state tomography on |u〉 can only reveal the
direction of the solution u and not its norm. The
norm can be estimated separately with a comparable
amount of resources but we observe that in the con-
text of QIPMs, it is not necessary to learn the norm
of the solution. If the direction of the solution is
known, the amount by which to update the vector in
that direction can be determined classically in O(N )
time as follows. If (�x;�y;�τ ;�θ ;�s;�κ) is the
normalized solution to the Newton linear system in
Eqs. (19) and (22), then the amount to step in that
direction is equal to

μ(x, τ , s, κ)(1− σ)(r+ 1)
−(�x)ᵀs− (�s)ᵀx− (�κ)τ − (�τ)κ . (64)

This expression is chosen such that the duality gap
of the new point is exactly a factor of σ smaller than
the old point, up to deviations that are second order
in the step length. Note that if the old point is feasi-
ble and the solution to the linear system is exact,
the second- and higher-order contributions vanish
anyway.

(d) Adaptive tomographic precision and neighborhood
detection. In Ref. [13], the choice of tomography
precision parameter ξ was determined by a formula
that aimed to guarantee staying within the neighbor-
hood of the central path under a worst-case outcome.
We observe that since determining whether a point
is within the neighborhood of the central path can
be done in classical O(N ) time (see Sec. III C 6),
the precision parameter can instead be determined
adaptively for optimal results: start with ξ = 1/2,
solve the linear system to precision ξ , and check if
the resulting point is within the neighborhood of the
central path. If yes, continue to the next iteration; if
no, repeat the tomography with ξ ← ξ/2. Since the
complexity of tomography is O(1/ξ 2), the cost of
this adaptive scheme is proportional to a geometric
series 4+ 16+ 64+ . . .+O(1/ξ 2), of which the
final term will make up most of the cost (accord-
ingly, for simplicity, in our resource calculation we
only account for the final term). This cost could be
much lower than the theoretical value if the typical
errors are not as adverse for the IPM as a worst-case
error of the same size.

The pseudocode in Algorithm 1 illustrates the infeasi-
ble version of the algorithm (II-QIPM from Table II). To

implement the feasible versions (IF-QIPM and IF-QIPM-
QR), minor modifications are made to reflect the process
described in Sec. III.

B. End-to-end quantum resource estimates

The QIPM described in the pseudocode takes 20
√

2
√

r
ln(ε−1) iterations to reduce the duality gap to ε, where r
is the number of second-order cone constraints. In the case
of the PO problem that we study, r = 3n+ 1, where n is
the number of stocks in the portfolio. Choosing the con-
stant prefactor to be 20

√
2 allows us to utilize theoretical

guarantees of convergence (modulo the issue of infeasi-
bility discussed in Sec. III C 5); however, it would not be
surprising if additional optimization of the parameters or
heuristic changes to the implementation of the algorithm
(e.g., adaptive step size during each iteration) were to lead
to constant-factor speed-ups in the number of iterations.
Since the number of iterations would be the same for both
the quantum and classical IPM, these sorts of improve-
ments would not impact the performance of the QIPM
relative to its classical counterpart.

1. Quantum circuit compilation and resource estimate
for quantum circuits appearing within QIPM

The QIPM consists of repeatedly performing a quan-
tum circuit associated with the QLSS and measuring in
the computational basis. Here, we account for all the costs
of each of these individual quantum circuits. There are
two kinds of circuits that are needed: first, the circuit
that creates the output of the QLSS subroutine, given by
the state in Eq. (36) and, second, the circuit that creates
the state needed to determine the signs of the ampli-
tudes during the tomography subroutine corresponding to
a controlled-QLSS subroutine, given in Eq. (48).

To simplify the analysis, we first compile the circuits
from the previous section into a primitive gate set that
consists of Toffoli gates (and multicontrolled versions of
them), rotation gates, block-encoding unitaries, and state-
preparation and controlled-state-preparation unitaries. This
compilation allows us to combine our previous in-depth
resource analysis for these primitive routines [33] with the
additional circuits shown here.

From left to right in the U[s] circuit shown in Fig. 1,
we show the circuits for UQh , CR0(s) (and, equivalently,
CR1(s)), and VG in Figs. 4–6, respectively. In addition to
these circuits, we must also perform controlled versions of
them within the tomography routine to estimate the sign of
the amplitudes. The controlled-U[s] gate is given in Fig. 3.
The implementation of the controlled versions of CR0(s)
(and, equivalently, CR1(s)) and VG are also depicted in
Figs. 5 and 6, respectively.

With these decompositions in place, we now report in
Table V the resources required to perform each of the two
kinds of quantum circuits involved in the QIPM (each of
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Input: SOCP instance (A, b, c), list of cone sizes (N1, . . . , Nr) and tolerance ε
Output: Vector x that optimizes objective function (eq. (5)) to precision ε
/* For portfolio optimization, A, b, c are given in eq. (10). First n entries of x give optimal

stock weights. */

1 (x; y; τ ; θ; s; κ) ← (e;0; 1; 1; e; 1) /* initialize on central path */

2 μ ← 1, σ ← 1 − 1
20

√
2

1√
r
, γ ← 1/10 /* set parameters */

3 while μ ≥ ε: /* Follow central path until duality gap less than ε */

4 G ←

⎛
⎜⎜⎜⎜⎜⎝

0 Aᵀ −c c̄ I 0
−A 0 b −b̄ 0 0
cᵀ −bᵀ 0 −z̄ 0 1

−c̄ᵀ b̄ᵀ z̄ 0 0 0
S 0 0 0 X 0
0 0 κ 0 0 τ

⎞
⎟⎟⎟⎟⎟⎠

/* from eqs. (19) and (22) */

5 h ←

⎛
⎜⎜⎜⎜⎜⎜⎝

−Aᵀy + cτ − c̄θ − s
Ax − bτ + b̄θ

−cᵀx + bᵀy + z̄θ
c̄ᵀx − b̄ᵀy − z̄τ

σμe − X̃S̃e
σμ − κτ

⎞
⎟⎟⎟⎟⎟⎟⎠

/* mat.-vec. mult. performed classically */

6 for j = 1, . . . , L: /* preconditioning via row normalization */
7 g ← √∑

k |Gjk|2 /* norm of jth row of G */
8 hj ← hj/g
9 for k = 1, . . . , L:

10 Gjk ← Gjk/g

11 Classically compute L2 angles and gate decompositions necessary to perform block-encoding of G and
state-preparation of |h〉 (see Ref. [33])

12 ξ ← 1
13 repeat /* try smaller and smaller ξ until central path is found */
14 ξ ← ξ/2
15 (Δx;Δy;Δτ ;Δθ;Δs;Δκ) ← ApprSolve(G, h, ξ)
16 (step length) ← μ(σ−1)(r+1)

(Δx)ᵀs+(Δs)ᵀx+(Δκ)τ+(Δτ)κ

17 (x′; y′; τ ′; θ′; s′; κ′) ← (x; y; τ ; θ; s; κ) + (step length) · (Δx;Δy;Δτ ;Δθ;Δs;Δκ)
18 until (x′; y′; τ ′; θ′; s′; κ′) ∈ N (γ)
19 (x; y; τ ; θ; s; κ) ← (x′; y′; τ ′; θ′; s′; κ′)
20 μ ← σμ

21 return x/τ

22 def ApprSolve(G, h, ξ):
23 L ← 2N + K + 3
24 δ ← 0.1
25 ε ← 0.9ξ

26 k ← 57.5L ln(6L/δ)/(ε2(1 − ε2/4))
27 Run tomography as described in section IVD using k applications and k controlled-applications of the QLSS

algorithm on the system (G, h)
28 return Vector ṽ′ for which ‖ṽ′‖ = 1 and ‖ṽ′ − v‖ ≤ ξ with probability at least 1 − δ, where v ∝ G−1h

Algorithm 1. Quantum interior-point method.

which is performed many times over the course of the
whole algorithm). The resource quantities are reported in
terms of the number of calls Q to the block-encoding
(which scales linearly with the condition number), as well
as the controlled-block-encoding and state-preparation
resources given previously in Tables III and IV. The
expressions also depend on various error parameters that
must be specified to obtain a concrete numerical value.
In Sec. VI, after observing empirical scaling of certain
algorithmic parameters, we make choices for all error
parameters and arrive at a concrete number for a specific
problem size.

2. Resource estimate for producing classical
approximation to linear-system solution

The resource estimates described above capture the
quantum resources required for a single coherent quan-
tum circuit that appears during the algorithm. The output
of this quantum circuit is a quantum state but the QIPM
requires a classical estimate of the amplitudes of this
quantum state. This classical estimate is produced through
tomography, as described in Sec. IV D, by performing
k = 57.5L ln(6L/δ)/(ε2(1− ε2/4)) repetitions each of the
QLSS and controlled-QLSS circuits, where ε is the desired
tomography precision and δ is the probability that the
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a4 • • •
a3

UQh

• •
a1 =

W ′
= •

L U†
h Uh U†

h X • X Uh

FIG. 4. The decomposition of the UQh gate (shown, e.g., in
Fig. 1) into a state-preparation unitary Uh and multicontrolled-
Toffoli gates. The reflection operator W is given by W′ := Ia1L −
2 |1〉 〈1|a1

⊗ |0〉 〈0|L. Not pictured are additional ancillas that
begin and end in |0〉 and are utilized to implement the unitary
Uh in shallower depth.

tomography succeeds. In the implementation given in
Algorithm 1, we fix δ = 0.1. Thus, to estimate the quantum
resources of a single iteration of the QIPM, the previous
resource estimates reported in Table V should each be mul-
tiplied by k. We note that with P processors large enough
to prepare the output of the QLSS, these k copies could be
prepared in k/P parallel steps, saving a factor of P in the
runtime at the expense of a factor-of-P additional space.
Our resources and scaling estimates do not account for any
parallelization and we assume completely serial execution
and runtime.

After multiplication by k, these expressions give the
quantum resources required to perform the single quan-
tum line of the QIPM, ApprSolve. This subroutine has
both classical input and output and can thus be compared
to classical approaches for approximately solving linear
systems.

3. Estimate for end-to-end portfolio-optimization
problem

Recall that the full QIPM algorithm is an iterative
algorithm, where each iteration involves approximately
solving a linear system by preparing many copies of the
same quantum states. The duality gap μ, which measures
the proximity of the current interior point to the optimal
point, begins at 1 and decreases by a constant factor σ with
each iteration. Thus, the required number of iterations to

reach a final duality gap ε is given by

Nit = ln(ε)/ ln(σ )� =
⌈

ln(ε)
ln(1− 1

20
√

2r
)

⌉

≈
⌈

20
√

2 ln(ε−1)
√

r
⌉

. (65)

Recall from the discussion in Sec. III C 3 that the output
of the QIPM will achieve an O(ε) approximation to the
optimal value of the objective function.

Pulling this all together, we now estimate the resources
to perform the full QIPM algorithm, including the multi-
plicative factors needed to perform tomography as well as
the number of iterations to converge to the optimal solu-
tion. Note that the relevant condition number κF(G) and
required linear-system precision ξ will vary from itera-
tion to iteration as the Newton matrix G changes. The
overall runtime can be upper bounded using the maxi-
mum observed value of κF(G), which we denote by κF ,
and the minimum observed value of ξ across all itera-
tions. At each iteration, to achieve overall precision ξ , the
tomography precision ε is chosen to be just smaller than
ξ (we choose ε = 0.9ξ ), while all other error parameters
(εar, εtsp, εz, etc.) are chosen to be small constant fractions
of ξ , such that a total error budget of ξ is not exceeded.
As the nontomographic error parameters all appear under-
neath logarithms, these small constant factors will drop out
of a leading-order analysis and it suffices to replace all of
these error parameters with ξ .

We may then express the overall runtime in terms of
κF , ξ , L (the size of the Newton system), and r (the
number of second-order cone constraints) up to leading
order and including all constant factors, which we report
in Table VI. Recall that for the infeasible version of the
QIPM acting on the self-dual embedding, we have L =
2N + K + 3, where N is the number of SOCP variables
and K is the number of linear constraints. Note that in our
leading-order expression, we have assumed that the con-
tributions proportional to Q = O(κF) dominate over terms
proportional to d = O(κF log(1/ξ)) at practical choices of

a4

CR0(s) =
•

a2 Ry(−θ/2) Ry(θ/2) Ry(−π/4) Ry(π/4)

c • • •
a4

CR0(s) =
•

a2 Ry(−θ/2) Ry(θ/2) Ry(−π/4) Ry(π/4)

(a)

(b)

FIG. 5. The decomposition of the (a) CR0(s) gate and (b) controlled-CR0(s) gate, as defined in Eq. (55), into single-qubit rotation
gates and CNOTs (a) or Toffolis (b). The gate Ry(φ) is defined to map |0〉 �→ cos(φ/2) |0〉 + sin(φ/2) |1〉 and |1〉 �→ − sin(φ/2) |0〉 +
cos(φ/2) |1〉. The rotation angle θ = 2 arctan(1− f (s)/f (s)), where f (s) given in Eq. (59). The CR1(s) gate is identical but with the
control-bit sign flipped. Note that the Ry(±π/4) gates are Clifford conjugate to a single T or T† gate.
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a2

VG

• • • •
a1 Z X

= |0〉 • •
L

U†
G UG

�G

c • • •
a2

VG

• • • •
a1 Z

= |0〉 • •
L

U†
G UG

�G

(a)

(b)

FIG. 6. The decomposition of the (a) VG unitary and (b)
controlled-VG unitary (bottom), as defined in Eq. (57), into calls
to a standard block-encoding unitary UG [33] and other elemen-
tary gates, using a single ancilla qubit initialized to the |0〉 state.
Not pictured are additional ancillas that begin and end in |0〉 and
are utilized to implement the unitary UG in shallower depth.

ξ due to the large constant prefactor in the definition of
Q (see Proposition 2 and the surrounding discussion). The
left column of Table I from the introduction is formed
using the expressions in Table VI and substituting the
corresponding relations between L and n, where n is the
number of stocks in the PO problem given in Eq. (10).
That is, we substitute r = 3n+ 1 and L = 2N + K + 3 =
8n+ 3m+ 6 = 14n+ 6 when we take m = 2n, where N is
the number of SOCP variables, K is the number of SOCP
constraints, n is the number of stocks, and m is the number

of time epochs used to create the matrix M as described in
Sec. II.

VI. NUMERICAL EXPERIMENTS WITH
HISTORICAL STOCK DATA

The resource expressions in Table VI include constant
factors but leave parameters κF and ξ unspecified. These
parameters depend on the specific SOCP being solved. As
a final step, we use numerical simulations of small PO
problems to study the size of these parameters for differ-
ent PO problem sizes. This information enables us to give
concrete estimates for the resources needed to solve real-
istic PO problems with our implementation of the QIPM
and sheds light on whether there could be an asymptotic
quantum advantage.

Our numerical experiments simulate the entirety of
Algorithm 1. The only quantum part of the algorithm is to
carry out the subroutine ApprSolve (G, h, ξ). We simu-
late the quantum algorithm for this subroutine by solving
the linear system exactly using a classical solver and then
adding noise to the resulting estimated values to simulate
the output of tomography. Since the tomography scheme
illustrated in Sec. IV D repeatedly prepares the same state
and draws k samples from measurements in the compu-
tational basis, the result is a sample from the multinomial
distribution. In our numerical simulation, we draw samples
from this same multinomial distribution, thus capturing
tomographic noise in a more precise way than by simply
adding uniform Gaussian noise, as was done in Ref. [22].
For simplicity, we assume that the part of the tomogra-
phy protocol that calculates the signs of each amplitude
correctly computes each sign. To numerically estimate
resource counts, we must understand ultimately what level
of precision ξ is required to stay close enough to the central

TABLE V. The quantum resources required to create the state output by the QLSS, given in Eq. (36) (QLSS, left) or the state needed
to compute the signs during the tomography subroutine, given in Eq. (48) (controlled QLSS, right) for a square linear system of size
L = 2�. Note that these resource quantities do not yet account for the k classical repetitions needed in order to perform tomography on
the output state. The parameters Q and d each scale linearly with the condition number of the linear system, as defined in Proposition
2. The symbols NQcbe, TDcbe, and TCcbe denote the number of logical qubits, the T-depth, and the T-count, respectively, for perform-
ing a controlled block-encoding, as reported in Table III. The symbols TDsp and TCsp are analogous quantities for state preparation,
as reported in Table IV. The parameters εar, εtsp, and εz ∈ (0, 1] are error parameters corresponding to the gate-synthesis precision
required for the CR0(s) and CR1(s) rotations, the controlled-state-preparation step required by tomography, and the QSVT phases,
respectively.

Resource QLSS Controlled QLSS

Number of qubits NQcbe + 5 NQcbe + 6

T-depth 12Q log2(1/εar)+ 2(Q+ d)TDcbe + 4(Q+ d)TDsp
+Q(24�+ 31)+ 3d log2(1/εz)+ d(32�− 2)

12Q log2(1/εar)+ 2(Q+ d)TDcbe + 4(Q+ d)TDsp
+Q(24�+ 36)+ 6d log2(1/εz)+ d(32�− 2)
+12 log2(1/εtsp)+ 3(�− 1)

T-count 12Q log2(1/εar)+ 2(Q+ d)TCcbe + 4(Q+ d)TCsp
+Q(24�+ 31)+ 3d log2(1/εz)+ d(32�− 2)

12Q log2(1/εar)+ 2(Q+ d)TCcbe + 4(Q+ d)TCsp
+Q(24�+ 51)+ 6d log2(1/εz)+ d(32�− 2)
+12(L− 1) log2(1/εtsp)+ 16(L− �− 1)
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TABLE VI. The leading-order contribution to the logical qubit
count, T-depth, and T-count for the entire QIPM, including con-
stant factors. The parameter L denotes the size of the Newton
linear system and r denotes the number of second-order cone
constraints, while ε denotes the final duality gap that deter-
mines when the algorithm is terminated. For the infeasible QIPM
running on an n-asset instance of PO, as given in Eq. (10),
we have L = 14n+ 6 and r = 3n+ 1; these substitutions yield
the results in Table I. The parameter κF denotes the maxi-
mum observed Frobenius condition number and ξ denotes the
minimum observed tomographic precision parameter across all
iterations.

Resource QIPM complexity

Number 4L2

of qubits

T-depth (5× 108)
κF L
√

r
ξ 2 log2

(
1
ε

)
log2(L) log2

(
κF L14/27

ξ

)

T-count (1× 108)
κF L3√r
ξ 2 log2

(
1
ε

)
log2(L) log2

(
κF

ξ

)

path throughout the algorithm, as well as how large the
Frobenius condition number κF of the Newton system is.
Importantly, we would like to know how these quantities
scale with the system size and the duality gap μ, which
decreases by a constant factor with each iteration of the
QIPM.

In Sec. III C 5, we have discussed three formulations of
the QIPM (see Table II). The first (II-QIPM) is closely
related to the original formulation from Ref. [13], which
does not guarantee that the intermediate points generated
by the IPM are feasible. The other two are instantiations
of the inexact-feasible formulation proposed in Ref. [14],
which requires precomputing a basis for the null space
of the SOCP constraint matrix. The first of these com-
putes a valid basis by hand (IF-QIPM), while the second
uses a QR decomposition to find the basis (IF-QIPM-QR).
We have simulated all three versions and have found that
the II-QIPM was always able to stay close to the central
path, despite the lack of a theoretical guarantee that this
would be the case. Here, we present the results of the II-
QIPM. For comparison, in Appendix E, we present some
numerical results for the feasible QIPMs, which do bene-
fit from a theoretical convergence guarantee but have other
drawbacks.

As discussed in Sec. V A, we have also implemented a
very simple preconditioner that we find reduces the con-
dition number by at least an order of magnitude with
negligible additional classical cost. In all cases, we report
resources estimates assuming a preconditioned matrix.

A. Example instance

In Fig. 7, we present as an example the results of one
of our simulations. We construct a PO instance of Eq. (3)

Iteration

FIG. 7. The simulation of the QIPM on an SOCP instance
corresponding to PO on n = 30 randomly chosen stocks using
m = 60 time epochs. The duality gap μ [defined in Eq. (14)],
the distance to the central path dF [defined in Eq. (26)], and the
infeasibility [defined as the norm of the residual on the right-hand
side in Eq. (19)] each decrease exponentially with the number
of iterations. The tomography precision ξ required to stay near
the central path (defined adaptively as outlined in Algorithm 1)
initially decreases and then plateaus at about 10−2.

by randomly choosing n = 30 stocks from the Dow Jones
U.S. Total Stock Market Index (DWCF). We (arbitrarily)
set parameters q = 1 and ζ = 0.05 · 1 and we assume that
our previous portfolio w̄ allocates weight to each stock in
proportion to its market capitalization. The returns of the
30 stocks on the first m = 2n = 60 days in our data set
have been used to construct an average return vector û and
an m× n matrix M for which MᵀM = �, the covariance
matrix for the stock returns, as described in Sec. III B.

We simulate the infeasible QIPM acting on the corre-
sponding SOCP in Eq. (10). The figure illustrates how
the simulation successfully follows the central path to
the optimal solution after many iterations. The duality
gap decreases with each step and, crucially, the infea-
sibility and distance to the central path also decrease
(exponentially) with iteration number. Also plotted is the
tomography precision ξ that was required to ensure that
each iteration stayed sufficiently close to the central path
(determined adaptively as described in the pseudocode in
Algorithm 1). The plot exemplifies how, despite the lack of
theoretical convergence guarantees, our simulations sug-
gest that in practice the II-QIPM acting on the PO SOCP
will yield valid solutions.

Remarkably, for this instance, we also observe that
both the Frobenius condition number κF and the inverse-
tomography precision ξ−1 initially increase but ultimately
plateau with the iteration number, even as the duality gap
gets arbitrarily small (see Fig. 8 for data on κF ). This
scaling behavior was a generic feature of our simulations
across all the instances that we simulated. This contrasts
with the worst-case expectation that the condition number
can increase as κF = O(1/μ) or κF = O(1/μ2) (depend-
ing on the formulation of the Newton system) [13,14].
The prior literature does not say much about whether the
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quantity ξ−1 should be expected to diverge. One might
expect that since the neighborhood of the central path gets
smaller as μ gets smaller [e.g., the radius is proportional
to μ in Eq. (27)], the precision requirement to stay close
to the central path would get more stringent in proportion
to μ. However, it is important to recall that the step size
from one iteration to the next also shrinks with μ and that
ξ represents the size of the error on the normalized New-
ton system solution; thus the neighborhood does not shrink
relative to the distance to the optimum and the length of
the next step and there is no immediate reason that ξ−1, as
we have defined it, must diverge as μ→ 0. However, one
does expect that in the worst case, if the condition num-
ber κ diverges, then ξ−1 should also diverge, as errors of
constant size ξ on the estimate of u/‖u‖ can lead to resid-
ual errors of divergent size κξ on the normalized product
Gu/‖Gu‖. We hope that future work can better elucidate
why κF and ξ−1 do not diverge on these instances [78].

B. Scaling of condition number

To understand the problem scaling with the portfolio
size, we generate example problem instances by randomly
sampling n stocks from the DWCF, using returns over
m = 2n time epochs (days) to construct our SOCP as in
Eq. (10). Parameters q, ζ , w̄, û, and M are all chosen in
the same way as described above. We plot the Frobenius
condition number of the Newton matrix as well as the pre-
conditioned Newton matrix as a function of the duality gap
in Fig. 8 for portfolios of size n ∈ {60, 80, 100, 120}. Here,
we confirm our previous remark that the condition num-
ber appears to plateau at a certain value of the duality gap,
especially for the preconditioned matrix.

Key to understanding the asymptotic scaling of the
quantum algorithm is to determine how the condition num-
ber scales as a function of the number of assets, as the
runtime of the QLSS algorithm grows linearly with the

Duality gap
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FIG. 8. The median Frobenius condition κF number for 128
randomly sampled stock portfolios from the DWCF index as a
function of the duality gap for portfolios of size 60, 80, 100, and
120 stocks. The shaded regions indicate the 16th to 84th per-
centiles. We observe that the condition number appears to plateau
at small values of the duality gap.
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FIG. 9. The median Frobenius condition number κF for 128
randomly sampled stock portfolios from the DWCF index as a
function of the portfolio size for duality gaps of 10−1, 10−3,
10−5, and 10−7. The shaded regions correspond to the 16th to
84th percentiles. The lines represent power-law fits of the form
anb, where the values for b are reported in Table VII. In all four
cases, the exponent is less than 1 and in the latter three cases it is
greater than 0.9, suggesting a trend that is nearly linear in n.

condition number. In Fig. 9, we plot the Frobenius con-
dition number κF as a function of n, the number of stocks,
observed at duality gaps μ ∈ {10−1, 10−3, 10−5, 10−7}. At
duality gaps of 10−5 and 10−7, the condition number κF
has plateaued as observed in Fig. 8. We perform a non-
linear fit to the data using a power-law κF = anb model,
where a and b are fit parameters, and we report the expo-
nents b in Table VII. All exponents appear to be near or
less than unity.

C. Scaling of tomography precision

While the depth of the individual quantum circuits
that compose the QIPM scales only with the Frobe-
nius condition number, the QIPM also requires a num-
ber of repetitions of this circuit for tomography that
scales as 1/ξ 2, the inverse of the tomography preci-
sion squared. To see how this scales with problem size,
we have performed an analysis for ξ−2 similar to the
one we have previously performed for κF . These results
are presented in Fig. 10 for the same four duality gaps
of {10−1, 10−3, 10−5, 10−7}. To reduce the iteration-to-
iteration variation in the tomography precision (which
results from our adaptive approach to tomography in
Algorithm 1), in calculating ξ−2 at duality gap μ, we have
taken the average over the value of ξ−2 at the five iterations

TABLE VII. The estimated exponent parameters for the Frobe-
nius condition number κF obtained from the fits that are plotted
in Fig. 9.

Duality gap Condition-number scaling

10−1 O(n0.60±0.02)

10−3 O(n0.94±0.04)

10−5 O(n0.92±0.04)

10−7 O(n0.91±0.05)
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FIG. 10. The median value of the square of the inverse-
tomography precision ξ−2 required to remain in the neighbor-
hood of the central path for 128 randomly sampled stock portfo-
lios from the DWCF index as a function of the portfolio size for
duality gaps of 10−1, 10−3, 10−5, and 10−7. To reduce iteration-
to-iteration variation, an artifact of the adaptive approach to
tomography, we average over the observed value of ξ−2 at the
five iterations for which the duality gap is nearest to the indi-
cated value. The shaded regions correspond to the 16th to 84th
percentiles. Here, logarithmic axes are used, since (unlike for κF )
instance-to-instance variation covers multiple orders of magni-
tude even for a fixed value of n. The dashed lines correspond
to a linear fit to the log-log data, where the slope is reported in
Table VIII.

with a duality gap nearest to μ. We have fitted the median
of ξ−2 at each value of n to a linear model on a log-log
plot, corresponding to a relationship ξ−2 = anb, and we
report the implied exponent b in Table VIII. In this case,
it is hard to draw robust conclusions from the fits. The fit
suggests that the median of ξ−2 is increasing with n on the
interval n ∈ [10, 120]. However, the most striking feature
of the data is that the instance-to-instance variation of ξ−2

is significantly larger than that of κF . In fact, at μ = 10−7,
the 84th percentile of instances at n = 10, the smallest size
we have simulated, has a larger value of ξ−2 than the 50th
percentile of instances at n = 120, the largest size we have
simulated.

D. Asymptotic scaling of overall runtime

Above, we have provided fits for κF and ξ−2 as a func-
tion of n on the range n ∈ [10, 120]. Here, we study the
quantity n1.5κF/ξ

2, which determines the asymptotic scal-
ing of the runtime of the QIPM. In Fig. 11, we plot
this quantity at the same four duality-gap values μ ∈

TABLE VIII. The estimated exponent parameters for 1/ξ 2

obtained from the fits that are plotted in Fig. 10.

Duality gap Tomography scaling

10−1 O(n−0.19±0.05)

10−3 O(n1.10±0.06)

10−5 O(n0.79±0.11)

10−7 O(n1.16±0.10)

{10−1, 10−3, 10−5, 10−7}. The implied exponents arising
from linear fits on a log-log axis are reported in Table IX.
They are generally consistent with summing the exponents
from the previously reported fits. The data inherit from
ξ−2 the feature that the instance-to-instance variation is
orders of magnitude larger than the median. Taken at face
value, the fits suggest that the scaling of the median algo-
rithmic runtime on the interval n ∈ [10, 120] is similar to
the n3.5 scaling of classical IPMs using Gaussian elimi-
nation and worse than the asymptotic n2.87 arising from
classical IPMs using fast matrix-multiplication techniques
to solve linear systems [54,55] (note that this scaling does
not apply until n becomes very large, so it is not a good
practical comparator). However, the large variance and
imperfect fits do not give us confidence that these trends
can be reliably extrapolated to larger n. Accordingly, when
we compute actual resource counts in Sec. VI E, we stick
to n = 100 and do not speculate on precise estimates for
larger (more industrially relevant) n. Our numerical experi-
ments fail to provide significant evidence for an asymptotic
polynomial quantum speed-up but nor do they definitively
rule it out. Toward that end, note that if the version of
tomography we have studied were to be replaced with the
more advanced recently proposed tomography scheme of
Ref. [73], the runtime of the QIPM would instead grow
as n1.5κF/ξ , while introducing some additional gate over-
head. Our fits from Table VIII suggest that this could
reduce the asymptotic exponent but by no more than about
O(n0.6) or so.

Ultimately, we do not believe it is essential to pin down
the asymptotic scaling of the algorithm, because the main
finding of our work is that even if a slight asymptotic
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FIG. 11. The median value of the estimated algorithm scaling
factor computed as the median of n1.5κF/ξ

2 for 128 randomly
sampled stock portfolios from the DWCF index as a function of
the portfolio size for duality gaps of 10−1, 10−3, 10−5, and 10−7.
As in Fig. 10, we average over five consecutive points to reduce
iteration-to-iteration variance deriving from adaptive tomogra-
phy. Here, we also use the actual number of observed samples
that were required to achieve sufficient tomographic precision in
place of the tomographic factor n/ξ 2. The shaded regions corre-
spond to the 16th to 84th percentiles. The lines correspond to
a linear fit to the log-log data, where the slope is reported in
Table IX.
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TABLE IX. The exponent parameter estimates from the fits
to the line generated by plotting n1.5κF/ξ

2 in Fig. 11, which
determines the overall scaling of the runtime of the QIPM.
For comparison, CIPMs using Gaussian elimination have run-
time O(n3.5) and CIPMs using faster methods for solving linear
systems have runtime O(n2.87).

Duality gap Algorithm scaling

10−1 O(n2.01±0.05)

10−3 O(n3.56±0.07)

10−5 O(n3.36±0.14)

10−7 O(n3.75±0.12)

polynomial speed-up exists, the size of the constant prefac-
tors involved in the algorithm precludes an actual practical
speed-up, barring significant improvements to multiple
aspects of the algorithm. In Sec. VI E, we elaborate on this
point in a more quantitative fashion.

E. Numerical-resource estimates

Rather than examine algorithmic scaling, we now com-
pute actual resource counts for the QIPM applied to PO.
Ultimately, it is these resource counts that matter most
from a practical perspective. We estimate the total cir-
cuit size in terms of the number of qubits, T-depth, and
T-count for a portfolio of 100 assets. We have chosen
this size because it is small enough that we can simulate
the entire quantum algorithm classically. However, at this
size, solving the PO problem is not classically hard; gen-
erally speaking, the PO problem becomes challenging to
solve with classical methods only once n is on the order
of 103–104. A similar concrete calculation could be per-
formed at larger n by extrapolating trends observed in our
numerical simulations but we are not confident that the fits
on n ∈ [10, 120] reported above are reliable predictors for
larger n.

Recall that the only step in the QIPM performed by a
quantum computer is the task of producing a classical esti-
mate to the solution of a linear system to error ξ . The
complexity of this task as it is performed within the QIPM
depends on ξ as well as the Frobenius condition number
κF . The first step of our calculation is to fix values for ξ
and κF at n = 100. We choose them by taking the median
over the 128 samples in our numerical simulation at duality
gap μ = 10−7.

Once κF and ξ are fixed, we must now determine con-
crete values for the various other error parameters that
appear in the algorithm such that overall error ξ can
be achieved. Tomography dominates the complexity and
overall error but there are a number of other factors that
contribute to the error in the final solution. We enumerate
and label the sources of error here, for completeness:

(a) εG: error in block-encoding the matrix G

(b) εh: error in the unitary that prepares the state |h〉
(c) εar: gate-synthesis error for single-qubit rotations

needed by CR0(s) and CR1(s) (see Fig. 5)
(d) ε: tomography error
(e) εz: gate-synthesis error for each single-qubit rotation

needed for QSVT eigenstate filtering (see Fig. 2)
(f) εqsp: error due to polynomial approximation in

eigenstate filtering
(g) εtsp: error in preparing the state

∑L
i=1
√

pi|i〉 needed
for computing the signs in the tomography routine

In Sec. IV, we have described a quantum circuit that
prepares a state |ṽ〉 (after postselection) for which
‖|ṽ〉 − |v〉‖ ≤ εQLSP. If the block-encoding unitaries, state-
preparation unitaries, and single-qubit rotations were per-
fect, then the only contribution to εQLSP would be from
eigenstate filtering and we would have εQLSP ≤ εqsp. Note
the relationship d = 2κF ln(2/εqsp) from Proposition 2.
Since the block-encoding unitary UG, the state-preparation
unitary Uh, and the single-qubit rotations are implemented
imperfectly, there is additional error. In preparing the state,
the unitary UG is called 2Q+ 2d times and the unitary
Uh is called 4Q+ 4d times, where Q is given in Proposi-
tion 2. Additionally, there are 2Q combined appearances of
CR0(s) and CR1(s) gates, where each appearance requires
two single-qubit rotations. Note that the appearances of
CR0(s) and CR1(s) within the eigenstate-filtering portion
of the circuit do not contribute to the error, because at s = 1
these gates can be implemented exactly. Finally, there are
another d single-qubit rotations required to implement the
eigenstate-filtering step. Since operator norm errors add
sublinearly, we can thus say that

εQLSP ≤ εqsp + (2Q+ 2d)εG + (4Q+ 4d)εh

+ 4Qεar + 2dεz. (66)

Now, the result of Proposition 4 implies that in order to
assert that the classical estimate ṽ′ output by tomography
satisfies ‖ṽ′ − v‖ ≤ ξ , it suffices to have

ξ ≥ ε + 1.58
√

Lεtsp + 1.58
[
εqsp + (2Q+ 2d)

εG + (4Q+ 4d)εh + 4Qεar + dεz

]
, (67)

where, for convenience, we recall the definitions (ignoring
the O(√κF) term) of Q and d as

Q = 1.31CκF , (68)

d = 2κF ln(2/εqsp). (69)

Recalling that the dominant term in the complexity of the
algorithm scales as ε−2 but logarithmically in the other
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TABLE X. The estimated number of logical qubits NQ, the T-
depth TD, and the T-count TC required to perform the QLSS
subroutine within the QIPM running on a PO instance with
n = 100 stocks. This calculation uses the empirically observed
median value for the condition number at duality gap μ = 10−7,
which was κF = 1.6× 104. The full QIPM repeats this circuit
k = O(n ln(n)ξ−2) times in each iteration to generate a classi-
cal estimate of the output of the QLSS and also performs Nit =
O(n0.5) iterations, where the linear system being solved changes
from iteration to iteration. In the left column, we write the
resources as numerical prefactors times the resources required to
perform the controlled block-encoding of the matrix G (denoted
by a subscript “cbe”) and the state preparation of the vector |h〉
(denoted by a subscript “sp”), defined in Tables III and IV. Writ-
ten in this way, one can see the large prefactors occurring from
the linear-system-solver portion of the algorithm. In the right col-
umn, we compute the exact resources, including those coming
from the block-encoding.

QLSS prefactors Total

NQ = NQcbe + 5 NQ = 8× 106

TD = (1× 108)TDcbe + (2× 108)TDsp

+ (4× 1010)
TD = 3× 1011

TC = (1× 108)TCcbe + (2× 108)TCsp

+ (4× 1010)
TC = 1× 1017

error parameters, to minimize the complexity we assign
the majority of the error budget to ε: we let ε = 0.9ξ
and we split the remaining 0.1ξ across the remaining six
terms of Eq. (67). There is room for optimizing this error-
budget allocation but the savings would be at most a small
constant factor in the overall complexity.

Note that elsewhere in the paper, we have referred to ξ
as “tomography precision,” since ε will dominate the con-
tribution to ξ . Here, the resource calculation requires that
we differentiate ε from ξ but when speaking conceptually
about the algorithm, we focus on ξ , as it is the more fun-
damental parameter: it represents the precision at which
the classical-input–classical-output linear-system problem
is solved, allowing apples-to-apples comparisons between
classical and quantum approaches.

With values for κF , εG, εh, εqsp, εz, and εtsp now fixed,
we can proceed to complete the resource count using
the expressions in Table V. Note that for gate-synthesis
error, we use the formula Ry = 3 log2(1/εr), where Ry is
the number of T gates needed to achieve an εr-precise
Clifford-plus-T-gate decomposition of the rotation gate
[72]. Putting this all together yields the resource estimates
for a single run of the (uncontrolled) QLSS in Table X,
at n = 100. We report these estimates both in terms of
primitive block-encoding and state-preparation resources,
as well as the raw numerical estimates. For the total run-
time, we must also estimate the resources required for the
controlled-state-preparation routine. We have estimated
these quantities but to the precision of the estimates that

we report, the numbers are the same as for the controlled
version, so we exclude them for brevity.

To estimate the total runtime, our estimates must be mul-
tiplied by the tomography factor k (for controlled and for
uncontrolled) as well as the number of iterations Nit =
ln(ε)/ ln(σ )�, where ε is the target duality gap (which
we take to be ε = 10−7) and σ = 1.0− 1/(20

√
2r). While

k will vary from iteration to iteration, in our calculation
we assume that the total number of repetitions is given by
the simple product (2k)Nit, which, noting that the value
of ξ plateaus after a certain number of iterations, will
give a roughly accurate estimate. Note that these 2kNit
repetitions need not be done coherently, in the sense that
the entire system is measured and reprepared in between
each repetition. One can bound the tomography factor k to
be k ≤ 57.5L ln(L)/ξ 2, where ξ is determined empirically.
However, our numerical simulations of the algorithm yield
an associated value of k needed to generate the estimate
to precision ξ , so we can use this numerically determined
value directly. We find that the observed median value
of k = 3.3× 108 from simulation is multiple orders of
magnitude smaller than the theoretical bound. Using this
substitution for k and Nit, we find the results shown in the
right column of Table I in Sec. I A.

To aid in understanding which portions of the algorithm
dominate the complexity, we show a breakdown of the
resources in Fig. 12. The width of the boxes is repre-
sentative of the T-depth, while the height of the boxes
represents the T-count. The number of classical repeti-
tions, composed of tomography samples as well as IPM
iterations needed to reach a target duality gap, contributes
the largest factor to the algorithmic runtime. Of these two,
quantum state tomography contributes more than the iter-
ations needed to reach the target duality gap. Our exact
calculation confirms that for the individual quantum cir-
cuits involved in the QLSS, the discrete adiabatic portion
of the algorithm dominates over the eigenstate-filtering
step in its contribution to the overall quantum circuit T-
depth. Within the adiabatic subroutine, the primary driver
of the T-depth and T-count is the need to apply the block-
encoding operator Q times [see, e.g., Eq. (61)], where Q is
proportional to the Frobenius condition number. An addi-
tional source of a large T-count arises from the need to
block-encode the linear system, which causes the T-count
to scale as O(L2).

VII. CONCLUSIONS

A. Bottlenecks

The resource quantities that we report are prohibitively
large, even for the classically easy problem size of n = 100
assets in the PO instance. Our detailed analysis allows us to
see exactly how this large number arises, which is essential
for understanding how best to improve it. We outline the
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Adiabatic evolution: TD ≈ 3 × 1011; TC ≈ 1 × 1017

U [0]

W

U [1/Q]

W

U [2/Q]

W · · ·
Q ≈ 5 × 107

U [1 − 1/Q]

W

Adiabatic block-encode

TD ≈ 6 × 103

TC ≈ 2 × 109
VG

TD ≈ 3 × 103

TC ≈ 2 × 109

CR(s)
TD ≈ 5 × 102

TC ≈ 5 × 102

UQh

TD ≈ 3 × 103

TC ≈ 3 × 106

Reflection
TD ≈ 8 × 101

TC ≈ 8 × 101

· · ·

Eigenstate filtering
TD ≈ 2 × 109

TC ≈ 8 × 1014

k × Nit ≈ (3 × 108) × (8 × 103) ≈ 3 × 1012 classical repetitions
+ same number of repetitions for controlled version

FIG. 12. The breakdown of the quantum resources required for a single coherent run of the uncontrolled version of the quantum
algorithm needed to produce the state given in Eq. (36). As we did in Table X, here we take the final duality gap to be μ = 10−7 and
the number of assets to be n = 100. Our choices for the Frobenius condition number, κF = 1.6× 104, and the number of tomographic
repetitions, k = 3.3× 108, are informed by our numerical experiments, as discussed in Sec. VI. A similar breakdown for the controlled
version needed to produce the state given in Eq. (48) would be essentially the same. The eigenstate-filtering subcircuit follows a very
similar alternating structure to the adiabatic evolution, with the U[j ] block-encodings replaced with either U[1] or U[1]†, the reflection
operator W replaced with phase rotations, and only a d � Q total number of iterations (for details, see Fig. 2).

several independent factors leading to the large resource
estimates:

(a) The block-encoding of the classical data is called
many times by the QLSS. These data are arranged
in an L× L matrix (note that for a PO instance of
size n with m = 2n, the Newton linear system has
size roughly L ≈ 14n). These block-encodings can
be implemented up to error εG in O(log(L/εG)) T-
depth using circuits for QRAM as a subroutine
[33]. While the asymptotic scaling is favorable,
after close examination of the circuits for block-
encoding, we find that in practice the T-depth can
be quite large: at n = 100 and εG = 10−10 (it is
necessary to take εG very small since the condition
number of G is quite large), block-encoding to pre-
cision εG has a T-depth of nearly 1000. Importantly,
this T-depth arises even after implementing several
new ideas to minimize the circuit depth, presented
by a subset of the authors separately in Ref. [33].

(b) The condition number κF determines how many
calls to the block-encoding must be made and we
observe that κF is quite large for the application
of PO. Even after an attempt at precondition-
ing, κF is already on the order of 104 for small
SOCP instances corresponding to n = 100 stocks
and empirical trends suggest that it grows nearly
linearly with n. However, we believe that addi-
tional preconditioning could significantly reduce the
effective value of κF in this algorithm.

(c) The constant factor in front of the O(κF) in state-
of-the-art QLSSs is also quite large: the theoretical
analysis proves an upper bound on the prefactor
of 1.2× 105. Numerical simulations performed in
Ref. [18] have suggested that, in practice, it can
be one order of magnitude smaller than the the-
oretical value. Following these numerics, we take
the constant prefactor to be 1.31× 2305 in our
numerical estimates, which still contributes signif-
icantly to the estimate. Future work should aim
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to reduce this constant or, alternatively, investi-
gate whether other approaches, such as those based
on variable-time amplitude amplification (VTAA)
[60,79], could achieve better performance despite
being asymptotically suboptimal [80].

(d) Pure-state tomography requires preparing many
copies of the output |v〉 of the QLSS. We have
improved the constant prefactors in the theoretical
analysis beyond what was known but even with this
improvement, the number of queries needed to pro-
duce an estimate v′ of the amplitudes of |v〉 up to
error ε in �2 norm is 115L ln(L)/ε2, which for n =
100 and ε = 10−3 is on the order of 1011 (although
our simulations suggest that 2k = 7× 108 suffice in
practice). We note that this is another avenue for
substantial improvement. For instance, the results
of Ref. [73] could be used (for more details, see
Ref. [34]).

(e) QIPMs, like CIPMs, are iterative algorithms; the
number of iterations in our implementation is
roughly 20

√
2r ln(ε−1), a number chosen to utilize

theoretical guarantees of convergence (note that r ≈
3n). Taking n = 100 and ε = 10−7, our implemen-
tation would require 8× 103 iterations. We suspect
that the number of iterations could be significantly
decreased if more aggressive choices were made
for the step size. For example, similar to our adap-
tive approach to tomographic precision, one could
try longer step sizes first and shorten the step size
when the iteration does not succeed. This sort of
optimization would apply equally to CIPMs and
QIPMs.

Remarkably, the five factors described above all contribute
roughly equally to the overall T-depth calculation; the
exception being the number of copies needed to do tomog-
raphy, which is a much larger number than the others.
Tomography would be the obvious place to begin to try
to reduce the resource depth, perhaps by implementing the
scheme recently proposed in Ref. [73] and by making mod-
ifications to the QIPM that might allow the parameter ξ to
be larger in practice, or by using an iterative refinement
method [14]. Another comment regarding tomography is
that, in principle, the k tomographic samples can be taken
in parallel rather than in series. Running in parallel leads
to a huge overhead in memory: one can reduce the tomo-
graphic depth by a multiplicative factor P at the cost of a
multiplicative factor P additional qubits. Note that even
preparing a single copy requires a daunting number of
nearly 1× 107 logical qubits at n = 100. Moreover, it is
unlikely that improvements to tomography alone could
make the algorithm practical, as the other four factors still
contribute roughly 1016 to the T-depth.

Besides the rather large constant factors pointed out
above for tomography, and especially for the QLSS, we

also note that the multiplicative “log factors” that are
typically hidden underneath Õ notation in asymptotic
analyses contribute meaningfully here. For instance, the
entire block-encoding depth is O(log(n/εG)), which, in
practice, is as large as 1000. Moreover, there is an addi-
tional ln(ε−1) ≈ 16 coming from the iteration count and a
ln(L) ≈ 7 from tomography.

This quantitative analysis of bottlenecks for QIPMs
can inform likely bottlenecks in other applications where
QLSS, tomography, and QRAM subroutines are required.
While some parameters such as κF and ξ are specific to
the application we have considered here, other observa-
tions such as the numerical size of various constant and
logarithmic factors (e.g., the block-encoding depth) would
apply more generally in other situations.

B. Resource estimate given dedicated QRAM
hardware

The above bottlenecks have focused mainly on the T-
depth and have not taken into account the total T-count
or the number of logical qubits, which are also large.
Indeed, our estimate of 8× 106 logical qubits, as reported
in Table I, is drastically larger than estimates for other
quantum algorithms, such as Shor’s algorithm [81] and
algorithms for quantum chemistry (see, e.g., Ref. [82]),
both of which can be on the order of 103 logical qubits.
By contrast, the current generation of quantum processors
have tens to hundreds of physical qubits and no logical
qubits; a long way from the resources required for this
QIPM.

However, it is important to note that, as for other algo-
rithms requiring repeated access to classical data, the vast
majority of the gates and qubits in the QIPM arise in
the block-encoding circuits, which are themselves domi-
nated by QRAM-like data-loading subcircuits [33]. These
QRAM-like subcircuits have several special features. First,
they are largely composed of controlled-SWAP gates, each
of which can be decomposed into four T gates that can even
be performed in a single layer, given one additional ancilla
and classical feed-forward capability [83]. Furthermore, in
some cases, the ancilla qubits can be “dirty” [65,67], i.e.,
initialized to any quantum state, and, if designed correctly,
the QRAM circuits can possess a natural noise resilience
that may reduce the resources required for error correc-
tion [67]. Implementation of these circuits with full-blown
universal and fault-tolerant hardware could be unnecessary
given their special structure. Just as classical computers
have dedicated hardware for RAM, quantum computers
may have dedicated hardware optimized for performing
the QRAM operation. Preliminary work on hardware-
based QRAM data structures (as opposed to QRAM imple-
mented via quantum circuits acting on logical qubits)
shows promise in this direction [84,85].
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Our estimates suggest that the size of the QRAM needed
to solve an n = 100 instance of PO is 1 MB and that the
QRAM size for n = 104 (i.e., sufficiently large to poten-
tially be challenging by classical standards) is roughly 10
GB, which is comparable to the size of the classical RAM
that one might find on a modern laptop. These numbers
could perhaps be reduced by exploiting the structure of
the Newton matrix, as certain blocks are repeated multi-
ple times in the matrix and many of the entries are zero
[86] [see Eqs. (19) and (10)].

With this in mind, we can ask the following hypothetical
question. Suppose that we had access to a sufficiently large
dedicated QRAM element in our quantum computer and,
furthermore, that the QRAM ran at a 4-GHz clock speed
(which is comparable to modern classical RAM). Would
the algorithm become more practical in this case? Under
the crude conservative simplifying assumption that each
block-encoding and state-preparation unitary requires just
a single call to QRAM and the rest of the gates are free,
we can give a rough answer by referring to the expression
in Table X, which states that 3× 108 total block-encoding
and state-preparation queries are needed [87]. Thus, even
if the rest of our estimates stay the same, the number of
QRAM calls involved in just a single QLSS circuit for
n = 100 would be 3× 108. Accounting for the fact that
the QIPM involves an estimated 6× 1012 repetitions of
similarly sized circuits, the overall number of QRAM calls
needed to solve the PO problem would be larger than 1021

and the total evaluation time would be on the order of
1× 104 years. Thus, even at 4-GHz speed for the QRAM,
the problem remains decidedly intractable. Nonetheless,
we believe that if the QIPM were to be made practical,
it would need to involve specialized QRAM hardware
in combination with fundamental improvements to the
algorithm itself.

C. Comparison between QIPMs and CIPMs and
comments on asymptotic speed-up

The above discussion suggests that the current
outlook for practicality with a QIPM is pessimistic but
simultaneously highlights several avenues by which to
improve the results. Even with such improvements, if
QIPMs are to one day be practical, they need to at
least have an asymptotic speed-up over CIPMs. Here, we

comment on this possibility. The core step of both QIPMs
and CIPMs is the problem of computing a classical esti-
mate of the solution to a linear system, a task that is
also of broad use beyond IPMs. Thus, we need only com-
pare different approaches to solving linear systems and our
conclusions are relevant in any application where linear
systems must be solved. Accordingly, in Table XI we give
the asymptotic runtime of several approaches to solving an
L× L linear system to precision ξ , including the QLSS-
plus-tomography approach utilized by QIPMs, as well as
two classical approaches. Whereas the prior literature (see,
e.g., Ref. [13]) has primarily compared against Gaussian
elimination (which scales as O(L3)), we also note a com-
parison against the randomized Kaczmarz method [56],
which scales as O(Lκ2

F ln(ξ−1)). This scaling comes from
the fact that 2κ2

F ln(ξ−1) iterations are needed and each
iteration involves computing several inner products at cost
O(L). We observe that the worst-case cost of an iteration
is 4L floating-point multiplications, meaning that all the
constant prefactors involved are more or less mild. Thus,
the asymptotic quantum advantage of the QIPM is limited
to an amount equal to O(min(ξ 2κF , ξ 2L2/κF)), which is
at most O(L) when κF ∝ L and ξ = O(1). Encouragingly,
our numerical results are consistent with κF ∝ L. However,
our results are not consistent with ξ = O(1), suggesting
instead that ξ is decreasing with L.

If κF ∝ L and ξ = O(1), we would find a total QIPM
runtime of O(n2.5), improving over classical O(n3.5) for a
portfolio with n stocks. This speed-up would be a mate-
rial asymptotic improvement over the classical complexity
but leveraging this speed-up for a practical advantage
might still be difficult. First, the difference in the con-
stant prefactor between the quantum and classical algo-
rithms would likely negate the speed-up unless n was
taken to be very large. Second, the speed-up would nec-
essarily be subquadratic. In the context of combinatorial
optimization, where quadratic speed-ups can be obtained
easily via Grover’s algorithm, even a quadratic speed-up is
unlikely to exhibit actual quantum advantage after factor-
ing in slower quantum clock speeds and error-correction
overheads [88].

Our results suggest that finding a practical quantum
advantage for PO might require structural improvements
to the QIPM itself. In particular, it may be necessary to
explore whether additional components of the IPM can

TABLE XI. A comparison of the time complexities of different approaches for exactly or approximately solving an L× L linear
system with Frobenius condition number κF to precision ξ . The comparison highlights how a quantum advantage only persists when
κF is neither too large nor too small. The constant prefactor roughly captures the T-depth that we have found for the quantum case (the
same prefactor from Table VI after discounting the 20

√
2 IPM iteration factor) and the number of multiplications in the classical case.

Solver Type Complexity Prefactor estimate

QLSS plus tomography Quantum, approximate LκFξ
−2 ln(L) ln(κFξ

−1L14/27) 4× 107

Gaussian elimination Classical, exact L3 1/3
Randomized Kaczmarz [56] Classical, approximate Lκ2

F ln(ξ−1) 8
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be quantized and whether the costly contribution of quan-
tum state tomography could be completely circumvented.
Naively, circumventing tomography entirely is challeng-
ing, as it is vitally important to retrieve a classical estimate
of the solution to the linear system at each iteration in order
to update the interior point and construct the linear system
at the next iteration. Nevertheless, tomography represents
a formidable bottleneck that must be addressed.

While our results are pessimistic on the question of
whether QIPMs will deliver quantum advantage for PO
(and other applications), it is our hope that by high-
lighting the precise issues leading to daunting resource
counts, our work can inspire innovations that render quan-
tum algorithms for optimization more practical. Finally,
we conclude by noting that detailed end-to-end resource
estimations of the kind we performed here are vitally
important for commercial viability of quantum algorithms
and quantum applications. While it is essential to discover
and prove asymptotic speed-ups of quantum algorithms
over classical, an asymptotic speed-up alone does not
imply practicality. For this, a detailed end-to-end resource
estimate is required, as the quantum algorithm may nev-
ertheless be far from practical to implement. As we have
seen, the devil is in the details, and there are many details
behind which the devil can hide.
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APPENDIX A: NOTATION

Here, we list the important symbols that appear in our
paper, for reference.

(1) Symbols related to PO:

(a) n: number of stocks in the portfolio
(b) w: length-n vector indicating fraction of port-

folio allocated to each stock (the object to be
optimized)

(c) w̄: length-n vector indicating current portfolio
allocation

(d) ζ : length-n vector indicating maximum allow-
able change to portfolio

(e) û: length-n vector of average returns
(f) �: n× n covariance matrix capturing devia-

tions from average returns

(g) q: parameter in objective function that deter-
mines relative weight of risk versus return
[Eq. (3)]

(h) M : m× n matrix corresponding to the square
root of �, i.e., � = MᵀM

(i) m: number of rows in M , often equal to the
number of time epochs (Sec. III B)

(2) Symbols related to second-order cone programs:

(a) Qk: second-order cone of dimension k [Eq. (4)]
(b) Q: product set of several second-order cones
(c) e: identity element for Q or Qk (depending on

context)
(d) N : total number of variables in the SOCP
(e) K : total number of linear constraints in the

SOCP
(f) r: number of second-order cone constraints in

the program
(g) x: length-N vector; primal variable to be opti-

mized, constrained to Q
(h) y: length-K vector; dual variable to be opti-

mized
(i) s: length-N vector, appears in dual program,

constrained to Q
(j) A: K × N matrix encoding linear constraints

[Eq. (5)]
(k) b: length-K vector encoding right-hand side of

linear constraints [Eq. (5)]
(l) c: length-N vector encoding objective function

[Eq. (5)]
(m) μ(x, s): duality gap of the primal-dual point

(x, s) [Eq. (7)]
(n) τ , κ, θ : additional scalar variables introduced to

implement self-dual embedding (Sec. III C 3)
(o) μ(x, τ , s, κ): duality gap of the point (x, τ , s, κ)

of the self-dual SOCP [Eq. (14)]
(p) X , S: arrowhead matrices for vectors x and s

[Eq. (21)]
(q) B: basis for null space of self-dual constraint

matrix

(3) Symbols related to second-order cone programs for
PO:

(a) φ: length-n variable introduced during reduc-
tion from PO to SOCP; part of x [Eq. (10)]

(b) ρ: length-n variable introduced during reduction
from PO to SOCP; part of x [Eq. (10)]

(c) t: scalar variable introduced during reduction
from PO to SOCP; part of x [Eq. (10)]

(d) η: length-m variable introduced during reduc-
tion from PO to SOCP; part of x [Eq. (10)]

(4) Symbols related to IPMs:

(a) ν: parametrizes central path [Eq. (12)]
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(b) dF(x, τ , s, κ): distance of the point (x, τ , s, κ) to
the central path of the self-dual SOCP [Eq. (13)]

(c) N , NF : neighborhoods of the “central path”
[Eqs. (27) and (28)]

(d) γ : radius of neighborhood of central path
(e) σ : step-length parameter
(f) L: size of (square) Newton matrix
(g) ε: input to IPM specifying error tolerance;

algorithm terminates once duality gap falls
beneath ε

(5) Important relations between parameters:

(a) Self-dual embedding has 2N + K + 3 parame-
ters and N + K + 2 linear constraints

(b) Newton matrix has size L = 2N + K + 3 for
infeasible approach and L = N + 1 for feasible
approach

(c) For PO formulation in Eq. (10), N = 3n+ m+
1, r = 3n+ 1, K = 2n+ m+ 1

(d) In our numerical experiments, we choose m =
2n

(6) Symbols related to QLSSs:

(a) G: L× L matrix encoding linear constraints
(b) h: length-L vector encoding right-hand side of

linear constraints
(c) u: solution to linear system Gu = h
(d) v: normalized solution to linear system u/‖u‖
(e) εQLSP: error in solution to linear system
(f) ṽ: normalized output of the QLSS, which should

satisfy ‖v− ṽ‖ ≤ εQLSP
(g) �: log2 L�
(h) UG: block-encoding unitary for G
(i) �G: number of ancilla qubits used by UG
(j) Uh: state-preparation unitary for |h〉
(k) κF(G): Frobenius condition number ‖G‖F
‖G−1‖ of G

(l) Q: number of queries to UG and Uh (Proposition
1)

(m) C: constant prefactor of κF (Proposition 1)
(n) d: the degree of the polynomial used in eigen-

state filtering (Proposition 2)

(7) Symbols related to block-encoding and state prepa-
ration:

(a) εG: block-encoding error for matrix G
(b) εh: state-preparation error for vector h
(c) εar: gate-synthesis error for rotations needed by

CR0(s) and CR1(s)
(d) εz: gate-synthesis error for rotations needed by

the QSP phases
(e) εqsp: error due to polynomial approximation in

eigenstate filtering

(f) εtsp: error in preparing the state
∑L

i=1
√

pi|i〉
needed for the tomography routine

(g) NQbe, TDbe, and TCbe: number of logical
qubits, T-depth, and T-count required for block-
encoding

(h) NQcbe, TDcbe, and TCcbe: number of logical
qubits, T-depth, and T-count required for con-
trolled block-encoding

(i) NQsp, TDsp, and TCsp: number of logical qubits,
T-depth, and T-count required for state prepara-
tion

(j) NQcsp, TDcsp, and TCcsp: number of logical qubits,
T-depth, and T-count required for controlled-
state preparation

(8) Symbols related to tomography:

(a) k: number of measurements on independent
copies of the state

(b) δ: probability of failure
(c) ε: guaranteed error of tomographic estimate
(d) ξ : overall precision of solution to linear system,

dominated by tomographic error

APPENDIX B: DEFERRED PROOFS

1. Quantum state tomography

Proof of Proposition 3.—Consider a single coordinate
αj with associated probability pj = |αj |2 and suppose
that we take k samples to find an estimate p̃j of pj . By
Bernstein’s inequality,

Pr[|p̃j − pj | > εj ] ≤ 2 exp
(
− ε2

2(pj + ε/3)k
)

(B1)

and so for a given component-wise target deviation in the
probability εj , choosing

k ≥ 2(pj + ε/3)
ε2 ln(2/δ′) = 2(|αj |2 + ε/3)

ε2 ln(2/δ′)

(B2)

guarantees that Pr[|p̃j − pj | > εj ] ≤ δ′.
We now pick εj =

√
3γ |αj |ε + γ ε2 for some yet unde-

termined γ > 0. With this choice,
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2(|αj |2 + ε
3 )

ε2 ln(2/δ′)

=
2(|αj |2 +

√
γ

3 ε + γ

3 ε
2)

(
√

3γ |αj |ε + γ ε2)2
ln(2/δ′)

≤
2(|αj |2 + 2

√
γ

3 ε + γ

3 ε
2)

3γ ε2(|αj | +
√
γ

3 ε)
2

ln(2/δ′)

= 2
3γ ε2 ln(2/δ′) (B3)

and hence it suffices to choose k = (2/(3γ ε2)) ln(2/δ′).
Letting δ′ = δ/L, the union bound implies that for k =
(2/(3γ ε2)) ln(2L/δ), all estimates p̃j satisfy |p̃j − pj | ≤
εj . We now bound the distance between |α̃j | and |αj |. First,

|α̃j | − |αj | ≤
√

pj + ε − |αj |

=
√
|αj |2 +

√
3γ |αj |ε + γ ε2 − |αj |

≤ (|αj | + √γ ε)− |αj |
= √γ ε. (B4)

Next, we bound |αj | − |α̃j |. If pj ≤ εj , then

|αj |2 ≤
√

3γ |αj |ε + γ ε2 ⇔ |αj | ≤
(
√

3+√7)
√
γ

2
ε,

(B5)

while if pj > εj ,

|αj | − |α̃j | ≤ |αj | −
√

pj − εj

= |αj | −
√
|αj |2 −

√
3γ |αj |ε − γ ε2

<
(
√

3+√7)
√
γ

2
ε, (B6)

which follows because the function f (x) = x −√
x2 −√3x − 1 has its maximum at f

((√
3+√7

)
/2
)
=

(√
3+√7

)
/2. Therefore, with the choice γ =

((√
3+

√
7
)
/2
)−2

, we can guarantee that ||α̃j | − |αj || ≤ ε,
which corresponds to

k = 2
3γ ε2 ln(2L/δ) = 5+√21

3ε2 ln(2L/δ) (B7)

measurements. �
Proof of Proposition 4.—Define ε′ = ε

√
1− ε2/4/

√
2L.

Then, k = 28.75ε′−2 ln(6L/δ). Consider the following
three assertions:

(1) The estimates pi satisfy |√pi − |ṽi|√p| ≤ ε′/3 for
all i.

(2) The estimates p+i = k+i /k satisfy

∣∣∣∣∣

√
p+i −

|√p ṽi +
√

p ′i |
2

∣∣∣∣∣
≤ ε′/3

and the estimates p−i = k−i /k satisfy

∣∣∣∣∣

√
p−i −

|√p ṽi −
√

p ′i |
2

∣∣∣∣∣
≤ ε′/3,

for all i.
(3) The actual amplitudes

√
p ′i of the state created in the

second step satisfy |√p ′i −
√

pi| ≤ εtsp.

From Proposition 3, we know that assertion (1) holds
with probability at least 1− δ/3, and that assertion (2)
holds with probability at least 1− 2δ/3. Therefore, both
assertions hold with probability at least 1− δ. Moreover,
assertion (3) holds by assumption. From here on, we will
assume that all three assertions hold.

Let ai be the real part and let bi be the imaginary part
of the quantity

√
p ṽi. Let r+i = |

√
p ṽi +√pi| and let r−i =

|√p ṽi −√pi|. Note that r+i and r−i are proportional to the
absolute value of the ideal amplitudes of the state created
in Eq. (49). One can show that

ai =
(
r+i
)2 − (

r−i
)2

4
√

pi
. (B8)

Define fi(x, y) = (x2 − y2)/
√

pi; then, ai = fi(r+i /2, r−i /2).

We first note that the estimates
√

p±i give us good approx-
imations of r+i /2 and r−i /2:

∣∣∣∣

√
p±i −

r±

2

∣∣∣∣ ≤
ε′

3
ε + εtsp

2
, (B9)

which follows from assertions (2) and (3). The ampli-
tudes ãi that define the estimate output by the tomogra-
phy algorithm are given in Eq. (52), which can now be
rewritten as
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ãi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0,
√

pi ≤ 2
3ε
′ + εtsp; else,

min
(√

pi, fi

(√
p+i ,

√
p−i

))
, fi

(√
p+i ,

√
p−i

)
≥ 0,

max
(
−√pi, fi

(√
p+i ,

√
p−i

))
, fi

(√
p+i ,

√
p−i

)
< 0.

(B10)

We prove that the ãi values approximate the ai values,
specifically

|ãi − ai| ≤ ε′ + εtsp + |bi|. (B11)

We will prove the above claim using a case-by-case anal-
ysis. Assume that ai ≥ 0; the case ai < 0 will proceed
similarly.

First, consider the case
√

pi ≤ 2 ε′/3+ εtsp. In this case,
ãi = 0 and ai ≤ √p|ṽi| ≤ √pi + ε′/3 ≤ ε′ + εtsp, so |ãi −
ai| ≤ ε + εtsp.

Second, consider the case fi(
√

p+i ,
√

p−i ) ≥ ai. From the
definition of ãi and assertion (1), we have ãi ≤ √pi ≤√

p|ṽi| + ε′/3 and thus

ãi − ai ≤ √p|ṽi| − ai + ε
′

3

=
√

a2
i + b2

i − ai + ε
′

3
≤ |bi| + ε

′

3
. (B12)

We also have [again invoking assertion (1)]

ai − ãi ≤ ai −√pi ≤ ai −√p|ṽi| + ε
′

3
≤ ε

′

3
(B13)

and thus, |ai − ãi| ≤ |bi| + ε′/3.

Finally, consider the case fi(
√

p+i ,
√

p−i ) < ai. Defining

ε̃ = 2 ε′/3+ εtsp, we can lower bound fi(
√

p+i ,
√

p−i ):

fi(
√

p+i ,
√

p−i ) =
(2
√

p+i )
2 − (2

√
p+i )

2

4
√

pi

≥ (r
+
i − ε̃)2 − (r−i + ε̃)2

4
√

pi

= (r+i )
2 − (r−i )2
4
√

pi
− ε̃ r+i + r−i

2
√

pi

= ai − ε̃ r+i + r−i
2
√

pi
. (B14)

Here, in the second line, we have used Eq. (B9) and the
fact that r+i ≥

√
pi ≥ 2 ε′/3+ εtsp. We now upper bound

r+i + r−i :

r++r− =
√
(ai +√pi)2 + b2

i +
√
(ai −√pi)2 + b2

i

≤ |ai +√pi| + |ai −√pi| + 2|bi|
= 2 max(ai,

√
pi)+ 2|bi|

≤ 2(
√

pi + ε′/3+ |bi|), (B15)

where in the fourth line we have used ai ≤
√

a2
i + b2

i =√
p|ṽi| ≤ √pi + ε′/3 [assertion (1)]. Therefore,

fi(
√

p+i ,
√

p−i ) = ai − ε̃ r+i + r−i
2
√

pi

≥ ai − ε̃
2(
√

pi + ε′/3+ |bi|)
2
√

pi

= ai − ε̃ − ε̃√
pi
(ε′/3+ |bi|))

≥ ai − (ε′ + εtsp + |bi|), (B16)

where in the fourth line we have used ε̃/
√

pi ≤ 1. This
implies that

|ãi − ai| = ai − ãi

≤ ai −min(fi(
√

p+i ,
√

p−i ),
√

pi)

≤ ε′ + εtsp + |bi|. (B17)

Here, we have used ai −√pi ≤ √p|ṽi| − √pi ≤ ε′/3.

TABLE XII. The fit parameters for the Frobenius condition
number for the four horizontal-axis locations considered on the
scaling plot of Fig. 13. The uncertainties correspond to one-
standard-deviation errors on the parameter estimates from the
fit. We note that both versions have similar empirical scaling,
although the fits are better for IF-QIPM-QR. The constant prefac-
tors are superior for the IF-QIPM-QR version, but calculating the
QR decomposition requires a one-time classical cost proportional
to O(L3).

Duality gap IF-QIPM IF-QIPM-QR

1.0 κF(G) ∼ n0.57±0.60 κF(G) ∼ n0.228±0.002

0.1 κF(G) ∼ n0.58±0.28 κF(G) ∼ n0.66±0.03

0.01 κF(G) ∼ n0.81±0.53 κF(G) ∼ n0.73±0.03

0.001 κF(G) ∼ n1.01±0.77 κF(G) ∼ n0.98±0.04
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TABLE XIII. The fit parameters for the square of the inverse of
the required tomography precision to stay near the central path,
corresponding to Fig. 14. The uncertainties correspond to one-
standard-deviation errors on the parameter estimates from the fit.

Duality gap IF-QIPM IF-QIPM-QR

1.0 ξ−2 ∼ O(n−0.01±0.02) ξ−2 ∼ O(n−0.11±0.07)

0.1 ξ−2 ∼ O(n−0.99±0.41) ξ−2 ∼ O(n−0.46±0.11)

0.01 ξ−2 ∼ O(n0.53±0.91) ξ−2 ∼ O(n0.89±0.15)

0.001 ξ−2 ∼ O(n0.93±0.66) ξ−2 ∼ O(n0.90±0.15)

We have shown that |ãi − ai| ≤ ε′ + εtsp + |bi| for all
cases. Therefore,

‖ã− a‖2
2 ≤

∑

i

[
(ε′ + εtsp)

2 + 2|bi|(ε′ + εtsp)+ b2
i

]

≤ L(ε′ + εtsp)
2 + 2(ε′ + εtsp)

√
L
∑

i

b2
i +

∑

i

b2
i

=
⎛

⎝
√

L(ε′ + εtsp)+
√∑

i

b2
i

⎞

⎠

2

(B18)

and hence

‖ã−√pv‖2 ≤ ‖ã− a‖2 + ‖a−√pv‖2

≤
√

L(ε′ + εtsp)+
√∑

i

b2
i +

√∑

i

(
√

pvi − ai)2

≤
√

L(ε′ + εtsp)+
√

2pεQLSP, (B19)

where we have used
∑

i((vi − ai/
√

p)2 + b2
i /p) ≤ ε2

QLSP.
Since ṽ′ ∝ ã, for some proportionality factor λ we have
‖λṽ′ − v‖ ≤ √2L(ε′ + εtsp)+

√
2εQLSP, where we have

used p ≥ 1/2. A bit of geometry will show that if
‖c− d‖2 ≤ γ < 1 and ‖d‖2 = 1, then ‖c/‖c‖2 − d‖2 ≤
g(γ ) ≡ 2 sin( 1

2 sin−1 γ ) = √1+ γ −√1− γ . Applying
this with c = λṽ′ and d = v, we obtain

‖ṽ′ − v‖2

≤ g(
√

2L(ε′ + εtsp)+
√

2εQLSP)

TABLE XIV. The estimated scaling of the quantum algorithm
as a function of the portfolio size for the two feasible versions of
the quantum algorithm, corresponding to Fig. 15. The uncertain-
ties correspond to one-standard-deviation errors on the parameter
estimates from the fit.

Duality gap IF-QIPM IF-QIPM-QR

1.0 O(n1.41±0.01) O(n2.07±0.15)

0.1 O(n1.23±0.40) O(n1.77±0.15)

0.01 O(n2.87±0.91) O(n3.13±0.18)

0.001 O(n3.54±0.64) O(n3.50±0.10)

< g(
√

2Lε′)

+ (
√

2Lεtsp +
√

2εQLSP)
dg
dx

∣∣∣∣
x=√2L(ε′+εtsp)+

√
2εQLSP

< ε + 1.58
√

Lεtsp + 1.58εQLSP, (B20)

as claimed. In the second inequality, we have used the con-
vexity of g; and in the third inequality, we have used the
fact that g(

√
2Lε′) = ε, √2L(ε′ + εtsp)+

√
2εQLSP < ε +√

2Lεtsp +
√

2εQLSP ≤ 1/2, and
√

2g′(1/2) < 1.58. �

APPENDIX C: NULL-SPACE MATRIX FOR
PORTFOLIO OPTIMIZATION

In Sec. III C, an inexact-feasible IPM has been described
that requires as input a matrix B with columns that form a
basis for the null space of the feasibility equations for the
self-dual SOCP that appears in Eq. (19). A straightforward
way to find such a B, in general, would be to perform a QR
decomposition of the constraint matrix, costing classical
O(N 3) runtime (or, using techniques for fast matrix mul-
tiplication, between O(N 2) and O(N 3) time [89,90]). The
upshot is that B need only be computed once and does not
change with each iteration of the algorithm but, depending
on other parameters of the problem, this classical runtime
could dominate the overall complexity. Alternatively, in
many specific cases, including ours, a valid matrix B can
be determined by inspection. For example, suppose that we
have a (N − K)× N matrix QA with full column rank for
which AQA = 0, a K × (K − 1) matrix P with full column
rank for which b̄ᵀP = 0, and a point x0 for which Ax0 = b.
Then, letting γ = bᵀb̄/||b̄||2, a valid choice for B is

B =

x
y
τ

θ

s
κ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 QA e x0

P b̄
c̄ᵀQA

||b̄||2 − (r+ 1)
||b̄||2 b̄

c̄ᵀx0 − z̄
||b̄||2 b̄

0 0 1 1
0 0 1 0

−AᵀP −Aᵀb̄
c̄ᵀQA

||b̄||2
r+ 1
||b̄||2 Aᵀb̄+ e

−c̄ᵀx0 + z̄
||b̄||2 Aᵀb̄+ c

bᵀP (γ − 1)cᵀQA − γ eᵀQA 1− γ (r+ 1) −γ z̄ + (γ − 1)cᵀx0 − γ eᵀx0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (C1)
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FIG. 13. The median Frobenius condition number for 128 randomly sampled stock portfolios from the DWCF index as a function of
the portfolio size for duality gaps of 1.0, 0.1, 0.01, and 0.001: (a) IF-QIPM; (b) IF-QIPM-QR. The error bars show the 68th percentile,
which corresponds to one standard deviation if the distribution is Gaussian. We find that a linear trend appears to work quite well for
the IF-QIPM-QR case but that the IF-QIPM is quite noisy. For each duality gap, we also plot a power-law fit of the form anb and report
the values of b in Table XII.

The leftmost column in the above block matrix corre-
sponds to K − 1 basis vectors formed by choosing y to
be a vector perpendicular to b̄ and x = 0, τ = θ = 0.
The second column corresponds to N − K vectors formed
by choosing x to be in the null space of A and letting
τ = θ = 0, with y = (c̄ᵀx/||b̄||2)b̄. The third column cor-
responds to the vector formed by choosing x = e, τ =
θ = 1 and then y = −((r+ 1)/||b̄||2)b̄. The final column
corresponds to choosing x = x0, τ = 1, θ = 0, and y =
((c̄ᵀx0 − z̄)/||b̄||2)b̄. In each case, the choices of x, y, τ ,
and θ uniquely determine the values of s and κ . Note that
in practice, the second and fourth block rows of B can be
ignored because in Eq. (22) they are left multiplied by a
matrix the second and fourth block columns of which are
zero.

What remains is to specify P, QA, and x0 for the case
of PO, given in Eq. (10). Finding a valid matrix P is
straightforward. Note that from Eq. (10), we have b =
(1; w̄+ ζ ; w̄− ζ ; 0). For j = 1, . . . , 2n, we let pj have a
1 in its first entry and a −1/bj+1 in its (j + 1)th entry,
with zeros elsewhere. For j = 2n+ 1, . . . , 2n+ m, we let

pj have a single 1 in its (j + 1)th entry and zeros else-
where. Thus, the pj are independent and bᵀpj = 0 for all
j . We then define the matrix P by P = (p1, . . . , p2n+m).
Similarly, we can generate the columns of a valid matrix
QA as follows. Given a choice of w such that 1ᵀw =
0, we choose φ = −w, ρ = w, t = 0, and η = Mw.
As there are n− 1 linearly independent choices of w
[e.g., the vectors (1;−1; 0; 0; . . . ; 0), (0; 1;−1; 0; . . . ; 0),
(0; 0; 1;−1; . . . ; 0), etc.], this leads to n− 1 linearly inde-
pendent columns of QA. A final nth column can be formed
by choosing t = 1 and w = φ = ρ = 0 and η = 0. Finally,
the point x0 can be chosen by letting w = w̄, φ = ρ = ζ ,
t = 0, and η = M w̄.

APPENDIX D: ALTERNATIVE SEARCH
DIRECTIONS

The solution (�x;�y;�τ ;�θ ;�s;�κ) to the Newton
systems in Eqs. (19) and (22) is one possible search direc-
tion for the IPM. Alternative search directions can be found
by applying a scale transformation to the convex set. We
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FIG. 14. Median value of the square of the required inverse-tomography precision required to remain in the neighborhood of the
central path for 128 randomly sampled stock portfolios from the DWCF index as a function of portfolio size for duality gaps of 1.0, 0.1,
0.01, and 0.001: (a) IF-QIPM; (b) IF-QIPM-QR. The error bars show the 68th percentile, which corresponds to one standard deviation
if the distribution is Gaussian. For each duality, gap, we also plot a linear fit on the log-log data, and report the corresponding slope in
Table XIII.
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FIG. 15. The median value of the estimated algorithm scaling factor, computed as the median of n1.5κF/ξ
2 for 128 randomly sampled

stock portfolios from the DWCF index as a function of the portfolio size for duality gaps of 1.0, 0.1, 0.01, and 0.001: (a) IF-QIPM;
(b) IF-QIPM-QR. The error bars show the 68th percentile, which corresponds to one standard deviation if the distribution is Gaussian.
For each duality gap, we also plot a linear fit on the log-log data and report the corresponding slope in Table XIV.

follow Ref. [53] and, for the k-dimensional second-order
cone Qk, we define the set

Gk =
{
λT : λ > 0, Tᵀ

(
1 0
0 −I

)
T =

(
1 0
0 −I

)}
. (D1)

For the product Q of multiple cones, we let the set G
consist of direct sums of entries from Gk. This definition
implies that the matrices G ∈ G map the set Q onto itself.
Thus, for a fixed choice G ∈ G, we may consider a change
of variables x′ = Gᵀx, s′ = G−1s, y′ = y. We let X ′ and S′
be the arrowhead matrices for x′ and s′ and, following the
same logic as above, we arrive at a Newton system

(
S′Gᵀ 0 0 0 X ′G−1 0

0 0 κ 0 0 τ

)

⎛

⎜⎜⎜⎜⎜
⎝

�x
�y
�τ

�θ

�s
�κ

⎞

⎟⎟⎟⎟⎟
⎠

=
(
σμe− X ′S′e
σμ− κτ

)
. (D2)

The solution to this linear set of equations [along with the
feasibility equations of Eq. (19)] will be distinct for dif-
ferent choices of G. The choice G = I recovers Eq. (22)
and is called the Alizadeh-Haeberly-Overton (AHO) direc-
tion. Reference [53] has shown that the IPM can reduce
the duality gap by a constant factor after O(

√
r) itera-

tions for any choice of G. However, some choices of G
can yield additional potentially desirable properties; e.g.,
the Nesterov-Todd search direction scales the cone such
that x′ = s′. However, in our numerical simulations of
the QIPM, we have not observed any obvious benefits of
choosing a search direction other than the AHO direction.

APPENDIX E: NUMERICAL RESULTS FOR
FEASIBLE QIPMs

In Sec. VI, we have presented numerical results for the
“II-QIPM,” for which intermediate points could be infeasi-
ble. Here, we also present some results for two variants of
the “feasible” QIPM, inspired by the work of Ref. [14],
denoted by “IF-QIPM” and “IF-QIPM-QR,” as summa-
rized in Table II. The IF-QIPM uses the null-space basis B
outlined in Appendix C, whereas the IF-QIPM-QR version
uses a null-space basis B determined using a QR decom-
position. In all cases, we have simulated the algorithm
for enough iterations to reduce the duality gap to 10−3,
whereas for the II-QIPM we have simulated down to 10−7.

In Figs. 13–15, we present results for the feasible IPMs
that are analogous to those displayed in Figs. 9–11 for
the infeasible case. We find that the IF-QIPM-QR has the
best performance, though this must be weighed against the
fact that an expensive QR decomposition must be classi-
cally precomputed to implement this method. However,
the advantage of the IF-QIPM-QR method is not large
enough for any of the qualitative conclusions in Sec. VII to
change. The IF-QIPM method has the worst performance,
which we believe is due to the fact that the null-space basis
found by inspection turns out to be a very ill-conditioned
matrix (its condition number was observed to be in the
vicinity of 1000). Additionally, the IF-QIPM appears to
have the largest instance-to-instance variation of any of the
methods, leading to lower-quality numerical fits.
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borger, and Y. Subaşı, Efficient quantum linear solver
algorithm with detailed running costs, arXiv preprint
ArXiv:2305.11352 (2023).

040325-40

https://arxiv.org/abs/0505030
https://arxiv.org/abs/1403.2975
https://arxiv.org/abs/2207.08800
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.22331/q-2019-10-07-190
https://doi.org/10.1103/PhysRevLett.110.250504
https://doi.org/10.1103/PRXQuantum.2.030305
https://doi.org/10.1103/PhysRevA.87.022328
https://doi.org/10.1103/PRXQuantum.2.030319
https://doi.org/10.1038/s41534-019-0144-0
https://doi.org/10.1103/PRXQuantum.2.010103
https://arxiv.org/abs/1812.02056
https://doi.org/10.1016/0024-3795(93)00230-W
https://arxiv.org/abs/2203.10236
https://arxiv.org/abs/2305.11352

	I.. OVERVIEW
	A.. Introduction
	B.. Results

	II.. PORTFOLIO OPTIMIZATION (PO)
	A.. Background
	B.. Mathematical formulation

	III.. SECOND-ORDER CONE PROGRAMMING (SOCP) AND INTERIOR-POINT METHODS (IPMs)
	A.. Definitions
	B.. Portfolio optimization as SOCP
	C.. Interior-point methods for SOCP
	1.. Introduction
	2.. Central path
	3.. Finding an initial point on the central path via self-dual embedding
	4.. Iterating the IPM
	5.. Solving the Newton system
	6.. Neighborhood of the central path and polynomial convergence


	IV.. QUANTUM INTERIOR-POINT METHODS (QIPMs)
	A.. Basic idea of QIPM
	B.. Quantum linear-system solvers
	C.. Block-encoding via quantum random access memory (QRAM)
	D.. Quantum state tomography
	E.. Asymptotic quantum complexity
	F.. Quantum circuits

	V.. IPM IMPLEMENTATION AND RESOURCE ESTIMATES FOR PO
	A.. Main IPM loop and full pseudocode
	B.. End-to-end quantum resource estimates
	1.. Quantum circuit compilation and resource estimate for quantum circuits appearing within QIPM
	2.. Resource estimate for producing classical approximation to linear-system solution
	3.. Estimate for end-to-end portfolio-optimization problem


	VI.. NUMERICAL EXPERIMENTS WITH HISTORICAL STOCK DATA
	A.. Example instance
	B.. Scaling of condition number
	C.. Scaling of tomography precision
	D.. Asymptotic scaling of overall runtime
	E.. Numerical-resource estimates

	VII.. CONCLUSIONS
	A.. Bottlenecks
	B.. Resource estimate given dedicated QRAM hardware
	C.. Comparison between QIPMs and CIPMs and comments on asymptotic speed-up

	. ACKNOWLEDGMENTS
	. APPENDIX A: NOTATION
	. APPENDIX B: DEFERRED PROOFS
	1.. Quantum state tomography

	. APPENDIX C: NULL-SPACE MATRIX FOR PORTFOLIO OPTIMIZATION
	. APPENDIX D: ALTERNATIVE SEARCH DIRECTIONS
	. APPENDIX E: NUMERICAL RESULTS FOR FEASIBLE QIPMs
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


