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Abstract—This paper presents an algorithm for detecting at-
tributed high-degree node isomorphism. High-degree isomorphic
nodes seldom happen by chance and often represent duplicated
entities or data processing errors. By definition, isomorphic nodes
are topologically indistinguishable and can be problematic in
graph ML tasks. The algorithm employs a parallel, “degree-
bounded” approach that fingerprints each node’s local properties
through a hash, which constrains the search to nodes within hash-
defined buckets, thus minimising the number of comparisons.
This method scales on graphs with billions of nodes and edges.
Finally, we provide isomorphic node oddities identified in real-
world data.

Index Terms—graph, node isomorphism, parallel algorithm

I. INTRODUCTION

Isomorphic graphs are a fundamental concept in graph

theory, i.e. graphs that can be transformed into one another

through a bijective node re-labelling function called graph

isomorphism. There are no known polynomial time algorithms

for detecting graph isomorphism; therefore, detecting them

is computationally expensive [1]. This paper focuses on the

more tractable problem of detecting attributed isomorphic

node groups (INGs) within a graph. Nodes in an ING are

topologically identical, as they cannot be distinguished based

on their connections to other nodes in the graph (see Figure 1).

Intuitively, swapping nodes within INGs does not change the

graph topology. INGs can reveal peculiar node properties or

quality control (QC) issues in real-world graphs. They may

represent the same duplicated entity or elements that have

become topologically identical due to data processing errors or

lack of information. For example, in protein-protein interaction

graphs such as STRING’s, INGs may hint at the presence of

isoform proteins [2]: generally, only one representative isoform

protein is kept in the graph; therefore, detecting isoform groups

would hint to preprocessing issues. By definition, nodes in

INGs are topologically indistinguishable and, therefore, can

be problematic in graph ML tasks.

In the literature, there exist fuzzy approaches to detect

semantically duplicated nodes using their metadata, generally

characterized by a quadratic complexity with respect to the

number of nodes [3]. We present a novel parallel exact algo-

rithm for detecting INGs in graphs with billions of attributed

nodes and edges on a commodity desktop with, except for

pathological cases, linear complexity with the number of

nodes.

Fig. 1. Isomorphic and non-isomorphic nodes: the nodes A and B are iso-
morphic as they share all the neighbours and are topologically interchangeable.
C and D are non-isomorphic, as they have a distinct topology.

Our algorithm is implemented in Rust with Python bindings

as part of the open-source GRAPE graph processing and ML

library [4]. The experiments code is available on GitHub 1.

II. ISOMORPHIC NODES

A graph G = (V,E) (or multigraph) is constituted of a

set of nodes V and a set of edges E. A node v ∈ V has

neighbours N (v) and degree d(v) = |N (v)|.
Two nodes a, b ∈ V are isomorphic if they have the same

neighbours, except for {a, b} themselves, which we denote as
̂Nw(v) = N (v) \ {v, w}. Furthermore, if a ∈ N (b), then b ∈
N (a) and vice-versa. Therefore, we can define the equivalence

relationship between a and b as:

a ∼= b⇐⇒ ( ̂Nb(a) = ̂Na(b)) ∧ (b ∈ N (a)⇐⇒ a ∈ N (b))

Additional properties, such as edge labels and weights, should

be compared when available.

III. DEGREE-BOUNDED APPROACH

Real-world graphs tend to have many low-degree nodes and

a small number of high-degree nodes, following a scale-free

degree distribution [5]. Given this distribution, it is improbable

that two randomly chosen high-degree nodes would have the

same neighbours. The probability of two nodes having the

same neighbours decreases significantly with the degree of

those nodes. Therefore, if two high-degree nodes have the

same neighbours, they may be an ING oddity and warrant

further investigation. This property can be exploited to reduce

1https://github.com/AnacletoLAB/grape/blob/main/tutorials/Billion-scale%
20attributed%20isomorphic%20nodes%20with%20GRAPE.ipynb
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the number of nodes to be examined by restricting the search

to nodes v ∈ V with degree d(v) ≥ dmin.

IV. ISOMORPHIC NODE GROUPS DETECTION

Checking exhaustively whether any two nodes v, w ∈ V are

isomorphic is expensive. Therefore, to scale, we must reduce

the number of comparisons as much as possible. Our approach

fingerprints each node’s local properties through a hash: this

allows us to limit the comparisons to the nodes within the same

hash-defined bucket and to minimise the number of extensive

comparisons to execute.

The algorithm starts by computing in parallel the vector

of the nodes v ∈ V that have a degree d(v) higher than a

specified minimum degree dmin (lines 3 through 5), alongside

with a hash of the local properties of the node, such as the label

and neighbours, using a provided hash method η : V → N.

Our approach is detailed in Section V.

The algorithm then semi-sorts in parallel H (line 6) to

create contiguous groups of nodes with identical hashes [6].

While sub-optimal, we employed a parallel BlockQuick-

Sort [7] in the experiments. Using a semi-sort may lead to

better performance.

We iterate in parallel over the contiguous groups of γ ∈H
with identical hash. We start by creating the set of candidate

isomorphic groups I ′ (line 9) and iterating on the nodes in

v ∈ γ, and for each one, we check whether v is isomorphic

to any of the budding INGs γ′ ∈ I ′. We use a slight abuse

of notation v ∼= γ′ to mean that we compare the node v with

a node of γ′. If we identify a compatible group, we add the

node to it. Otherwise, we create a new singleton group with

exclusively the node v (lines 10 to 19). Finally, we add to

the INGs set I all of the non-trivial groups γ′ ∈ I ′ (lines 20

to 22).

V. HASHES

The hash strategies should produce for each node a hash

that captures the local properties of a given node to minimise

the number of exhaustive comparisons to execute and must not

cause false negatives. The key insight is that two topologically

indistinguishable isomorphic nodes a ∼= b can have different

neighbourhoods N (a) 	= N (b). Both nodes might appear in

each-others neighbourhoods, e.g. a ∈ N (b), or have self-loops,

e.g. a ∈ N (a). For this reason, to design a viable node-specific

hash function η : V → N such that a ∼= b =⇒ η(a) = η(b), it

is paramount to identify node properties that avoid including

all nodes c ∈ V that might be isomorphic a ∼= c in their

computation, while trying to minimise collisions.

A. Self-loops-excluded degree-based hash

Nodes may have one or more self-loops and be connected

(Figure 2). Such nodes are isomorphic since they have the

same topology. Yet, they do not share the same neighbour-

hoods.

Given a node v, we define its self-loops-excluded degree
d̄(v) as the degree d(v) minus the number of its self-loops:

d̄(v) = d(v)− |{w ∈ N (v) | w = v}|

Algorithm 1: Isomorphic node groups detection

Input : Graph G = (V,E), degree dmin,

hash η : V → N

Output: List of isomorphic node groups I
1 I ← empty vector;

2 H ← empty vector;

3 for node v ∈ V do in parallel
4 if d(v) ≥ dmin then
5 H.append((η(v), v));
6 H ← semi-sort in parallel H;

7 Hiter ← iterator over slices of H with equal hash;

8 for candidate group γ ∈ Hiter do in parallel
9 I ′ ← [];

10 foreach node v ∈ γ do
11 match found ← false;

12 foreach group γ′ ∈ I ′ do
13 if v ∼= γ′ then
14 match found ← true;

15 γ′.append(v);
16 break;

17 if not match found then
18 I ′.append({v});
19 break;

20 foreach group γ′ ∈ I ′ do
21 if |γ′| > 1 then
22 I.append(γ′);
23 return I;

All isomorphic nodes have the same self-loops-excluded

degree. Thus, we can use it as a component for the hash.

The node label may be used in the hash if available.

B. Adjusted neighbours

We can improve the hash by including part of the immediate

node neighbourhood. Given two nodes A and B, the subset

of shared neighbours that are not the isomorphic nodes them-

selves is all nodes with self-loops-excluded degrees different

from d̄(v) (Figure 2). For any node v ∈ V , we define an

adjusted neighbourhood N̄ (v) ⊆ N (v) as follows:

N̄ (v) = {w ∈ N (v) | d̄(v) 	= d̄(w)}
We can use the first k sorted adjusted neighbours as an

additional hash component. The edge labels may be used in

the hash if available. We exclude edge weights from the hash

as they are subject to float errors which might cause false

negatives.

VI. EXPERIMENTS

The experiments were run on an AMD Ryzen 9 3900x CPU
12 cores (24 threads) @ 4Ghz paired with four banks of

32GB DDR4 3200 MT/s RAM (128GB). In all experiments,

where not otherwise specified, we used a minimum degree

of dmin = 100, k = 1000 adjusted neighbours, and as hash

function AHash.
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Fig. 2. Connected isomorphic nodes with self-loops: isomorphic nodes
may be connected or have self-loops. Directly comparing their neighbourhood
would fail, and more complex comparative schemas are necessary.

TABLE I
SUMMARY OF THE DATASETS’ MAIN CHARACTERISTICS

Nodes Edges
Graph id Graph name # Types # Types

1 Saccharomyces
Cerevisiae [2]

7K 23K 1M �

2 Homo Sapiens [2] 20K 62K 6M �
3 Mus Musculus [2] 22K 57K 7M �
4 KGCOVID19 [8] 570K 20 18M 47
5 Friendster [10] 65M � 1.8G �
6 Wikidata [9] 1.3G � 6.2G 9K
7 ClueWeb09 [10],

[11]
1.6G � 7.8G �

A. Datasets

We considered seven real-world graphs. These datasets span

from STRING’s v11.5 weighted protein-protein interaction

graphs [2] to knowledge graphs (KG) such as KGCOVID19

(v20221102) [8] and Wikidata (latest-truthy, 27-10-2021) [9],

and web graphs such as Friendster [10] and ClueWeb09 [10],

[11]. Whenever node or edge attributes are available, we

employ them in node isomorphism detection. The datasets’

main characteristics are summarised in Table I. The first

column of Table I is the graph ID, and it is used in all other

result tables.

B. Impact of hash function

We used four hash functions to evaluate the algorithm’s

sensibility to the used hash. These included xXhash [12],

AHash [13], Siphash2-4 [14], and lastly, a simple custom

hash composed of xor and the addition of a constant. We

observe that the algorithm’s performance is not sensitive to the

hash uniformity guarantees and achieves the best performance

with the simple hash, which has the least computational

requirements and the no uniformity guarantee. The single

thread wall times are in Table II.

C. Scalability

The algorithm generally shows near-linear scalability with

the number of employed cores from 1 to 12. However, both for

large graphs and hyper-threading, we observe marginal perfor-

mance improvements; this may be caused by the algorithm

being primarily memory-bounded by the memory accesses

needed to compute the hashes. The wall times by the number

of threads are in Table III.

TABLE II
SINGLE THREAD TIME (MS) BY HASH

Id Simple AHash SipHash2-4 xXhash

1 25.3± 0.8 27.4± 0.6 44.7± 0.8 139± 4.5
2 136± 3 149.7± 1.3 242± 1.8 747± 15
3 148± 4 163.6± 2.7 266± 4.7 816± 22
4 2k ± 65 2k ± 65 2.5k ± 81 3.4k ± 98
5 143k ± 722 144k ± 647 243k ± 1.5k 344k ± 2k
6 389± 427 420k ± 873 446k ± 962 586± 1k
7 122k ± 685 126k ± 753 202k ± 1.4k 370k ± 2k

TABLE III
WALL TIME (MS) BY NUMBER OF THREADS

Id 1 6 12 24

1 27.4± 0.6 4± 0.17 2± 0 2± 0.4
2 150± 1.3 25± 0.1 12± 0.6 10± 0.3
3 164± 3 27± 0.5 13± 0.5 11± 0.2
4 2k ± 65 717± 19 374± 11 224± 10
5 144k ± 647 25k ± 270 14k ± 483 13k ± 133
6 420k ± 873 70k ± 890 43k ± 103 38k ± 230
7 126k ± 753 73k ± 359 56k ± 432 38k ± 200

D. Impact of adjusted neighbours

We explore values of adjusted k neighbours from 0, i.e.

using only the self-loop-excluded degree, to 1000. Higher val-

ues of k increase the hash compute time but might reduce the

number of collisions. Graphs with similar high-degree nodes,

like Wikidata, benefit the most from a high k. Otherwise, we

observe that using a small number of neighbours (10) generally

improves the performance, but higher values such as 100 or

1000 rapidly deteriorate them. The single thread wall times

are in Table IV, and values bigger than twelve hours (43M
ms) are considered out-of-time (OOT).

E. Impact of degree threshold

In all previous experiments, we considered a threshold of

dMIN = 100, which is reasonable for STRING graphs but low

for larger graphs. In this subsection, we explore the impact of

dMIN on the wall time and the number of INGs.

The wall time required decreases substantially while detect-

ing high-degree INGs. The single thread wall times and the

number of INGs are in Tables V and VI, respectively.

F. Discussion of identified ING oddities

We have identified several high-degree INGs (see Table VI).

By using AHash, k = 10, a single thread, dMIN = 1000, and

TABLE IV
SINGLE THREAD TIME (MS) BY k ADJUSTED NEIGHBOURS

Id 0 10 50 100 1000

1 2± 0 2.1± 0.3 5± 0 8± 0.1 27± 0.6
2 11± 0 15± 0.4 24± 0.3 37± 0.4 150± 1.3
3 10± 0 13± 0.4 23± 0.3 36± 0 164± 2.7
4 102± 1.4 53± 1 202± 3 439± 6 2k ± 65
5 10M ± 247k 5k ± 65 25k ± 244 54k ± 1k 144k ± 1k
6 OOT OOT OOT OOT 420k ± 1k
7 OOT 12k ± 63 30k ± 154 57k ± 1k 126k ± 1k

232



TABLE V
SINGLE THREAD TIME (MS) BY DEGREE THRESHOLD dMIN

Id 100 500 1000 10k 100k

1 27.4± 0.6 14± 0 1± 0.1 0 0
2 150± 1.3 112± 1 49± 0 0 0
3 164± 2.7 128± 1 66± 0 0 0
4 2056± 65 1k ± 7 473± 3 8.5± 0 0
5 144k ± 647 43k ± 1k 12k ± 286 0 0
6 420k ± 873 51k ± 33 33k ± 903 4.8k ± 8 2.4k ± 5
7 126k ± 664 42k ± 21 22k ± 10 2.7k ± 2 2.3k ± 2

TABLE VI
NUMBER OF INGS BY DEGREE THRESHOLD dMIN

Id 100 500 1000 10k 100k

1 0 0 0 0 0
2 0 0 0 0 0
3 8 4 1 0 0
4 907 14 3 0 0
5 58 9 8 0 0
6 20756 6462 3749 483 148
7 91294 10872 4298 0 0

accounting for edge weights and node labels, we identified two

isoform proteins in STRING Mus Musculus, namely Rpl7a-

ps3 and Rpl7a-ps8 in 4ms. It may be the case that one of

the two proteins needs to be removed. Similarly, we identified

three INGs in KGCOVID in 6ms, considering both node and

edge labels: the first is the triple Watasenia-luciferin, Renilla-

luciferin and Cypridina-luciferin, all activity related to bio-

luminescence in different marine species. The second group is

a tuple composed of CHEMBL132268 and CHEMBL388581.

It is unclear to the authors why these compounds should be

topologically identical. Finally, the isomorphic tuple composed

of P0DTC9, a protein of SARS-CoV-2 of 2019, and P59595,

the analogous core protein in SARS-CoV-1 from 2002. This is

a notable oddity, as topological edge prediction methods can-

not distinguish the proteins from the two viruses. A solution

to these INGs is to integrate more information into the KG.

The INGs from other graphs are not analogously interpretable.

VII. CONCLUSIONS

The paper presents an algorithm to identify attributed INGs,

which was evaluated for scalability, how it is affected by the

hash function, the number of adjusted k neighbours, and the

threshold dMIN. The results show that the algorithm has near-

linear scalability with the number of cores and that using a

small k improves performance, especially in larger graphs.

Additionally, increasing dMIN reduces wall time while allowing

the detection of less likely INGs.

We identified ING oddities in real-world graphs, such as iso-

forms in STRING Mus Musculus and 3 INGs in KGCOVID.

The algorithm can be deployed in QC pipelines and used

to improve and monitor the quality of graphs.
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