
Parallel Triangles and Squares Count
for Multigraphs Using Vertex Covers

Luca Cappelletti1(B) , Tommaso Fontana1 , Oded Green3 ,
and David Bader2

1 University of Milan, Milan, Italy
luca.cappelletti1@unimi.it

2 New Jersey Institute of Technology, Newark, USA
3 Georgia Tech, Atlanta, GA, USA

Abstract. Triangles and squares count are widely-used graph analytic
metrics providing insights into the connectivity of a graph. While the lit-
erature has focused on algorithms for global counts in simple graphs, this
paper presents parallel algorithms for global and per-node triangle and
square counts in large multigraphs. The algorithms have linear improve-
ments in computational complexity as the number of cores increases.
The triangle count algorithm has the same complexity as the best-known
algorithm in the literature. The squares count algorithm has a lower exe-
cution time than previous methods. The proposed algorithms are evalu-
ated on six real-world graphs and multigraphs, including protein-protein
interaction graphs, knowledge graphs and large web graphs.

Keywords: Graph · Multigraph · Triangles · Squares · Count

1 Introduction

The study of complex networks and their properties has been an active area
of research in recent years. One of a network’s most fundamental and well-
studied properties is its clustering coefficient [13], which measures the fraction
of triangles in a network, where a triangle is defined as three nodes that are all
connected. The computation of the clustering coefficient [7] is a crucial step in
many graph analytics tasks, including community detection and link prediction.

The original vertex-cover-based algorithms for counting triangles and
squares, as described in [4], used vertex covers to reduce the number of set inter-
sections and avoid unnecessary element comparisons. While these algorithms
were shown to be much more efficient than traditional baselines, there are still
several areas for improvement.

Self-loops or multiple edges between nodes, i.e., when the graph is a multi-
graph, are common in real-world and knowledge graphs. Both original algorithms
assume that these features were either removed or not present. Other algorithms
in the literature that handle multigraphs are approximated and implicitly remove
the multi-edges instead of considering them [6,11]. All these algorithms only

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Mikyška et al. (Eds.): ICCS 2023, LNCS 14076, pp. 635–646, 2023.
https://doi.org/10.1007/978-3-031-36027-5_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36027-5_50&domain=pdf
http://orcid.org/0000-0002-1269-2038
http://orcid.org/0000-0002-9806-3493
http://orcid.org/0000-0003-3658-1233
http://orcid.org/0000-0002-7380-5876
https://doi.org/10.1007/978-3-031-36027-5_50

636 L. Cappelletti et al.

provide the global counts of triangles and squares, respectively, but in many use
cases, the per-node count would be more valuable.

This paper presents an updated parallel version of the algorithms presented
in [4], addressing the above-mentioned shortcomings. Specifically, our algorithms
support graphs containing self-loops and multigraphs and provide the number
of triangles and squares per node. The updated algorithms’ asymptotic worst-
case computational complexities are equal to or lower than the original algo-
rithms in real-world sparse graphs. All algorithms are implemented as part of
the GRAPE [1] library, and the experiments are provided as library tutorials.1

2 Notation

A graph G = (V, E) is composed of a set of nodes V and a set of edges E. A
node v ∈ V has neighbours N(v) and has degree d(v) equal to the cardinality of
its neighbours, |N(v)|. When we sequentially iterate over a node’s neighbors, we
assume that they are sorted, as is common in several graph data structures.

In a multigraph, the neighbors of a node v ∈ V , N(v) may be a multiset,
i.e., a set with repeated elements. Given a node w ∈ V and a multiset N(v), we
denote the multiplicity function m

N(v)(w) : V → N of as the number of times a
node w appears in the neighbourhood N(v).

In the per-node version of the algorithms, we use atomic instructions [5].
Atomic instructions are low-level hardware operations guaranteed to complete
without affecting other memory operations. They are helpful in multi-threaded
and concurrent programming, allowing multiple threads to access and modify
shared memory locations without the risk of race conditions and data corruption.
An atomic fetch add is a specific type of atomic operation that retrieves the
current value stored in a memory location and adds a specified value to it,
returning the original value. This operation is used to increment the value of
a shared memory location in a thread-safe manner without the risk of two or
more threads interfering with each other. In real-world sparse graphs, the risk
of multiple write attempts using atomic fetch add is very low, as the graph is
sparse, and thus there are fewer interactions between nodes. We will denote
atomic fetch-add operations as +=A.

3 Computation of Vertex Covers

A vertex cover V̂ ⊆ V is a subset of vertices in a graph such that each edge has
at least one endpoint in the vertex cover. The algorithms use vertex covers to
minimize the number of required set intersections. Any vertex cover suffices for
the purpose, and there are different heuristics to obtain them. Three heuristics
were explored based on different node sorting methods and whether to add one
or both nodes of an edge to the vertex cover. Obtaining a vertex cover has a
complexity of O(|E |), which is negligible compared to the algorithms’ complexity.

1 https://github.com/AnacletoLAB/grape/tree/main/tutorials.

https://github.com/AnacletoLAB/grape/tree/main/tutorials

Parallel Triangles and Squares Count for Multigraphs Using Vertex Covers 637

The paper explores three vertex cover schemas: Natural, Decreasing node
degree, and Increasing node degree. The natural schema uses the order of nodes
as they are loaded into the graph and adds both the edge source and destina-
tion. The Decreasing node degree schema sorts the nodes by decreasing node
degree, prioritizing nodes with more edges, and only inserts the source nodes.
The Increasing node degree schema sorts the nodes by increasing node degree,
prioritizing nodes with fewer edges, and only inserts the source nodes.

4 Counting Triangles

We start by describing the global triangle count (Algorithm 1), which takes as
input a graph G = (V, E) and a vertex cover V̂ ⊆ V .

The counter t is initialized to zero, representing the number of triangles times
three. It loops in parallel over all vertices in the cover v1 ∈ V̂ (Line 2). The key
insight is that, by definition, every triangle has at least two nodes in the vertex
cover [4]. Requiring the first two nodes to be in cover allows us to reduce the
total necessary comparisons in the inner loops. For each vertex v1, it loops over
all of its neighbors in the vertex cover v2 ∈ N(v1) ∩ V̂ (Line 3). Since we assume
the neighbors are sorted if v2 is greater than or equal to v1 (in the case of self-
loops), the loop is stopped early (Line 4), and thus halves the computational
requirements. For v2, the algorithm loops over all common neighbors of v1 and
v2, v3 ∈ N(v1) ∩ N(v2), which are the nodes that close the triangle (Line 6). To
avoid self-loops, the iteration is skipped if v3 equals v1 or v2, which are excluded
from the set. To account for triangles composed by multigraph edges, we compute
the multiplicities product of the v3 node in the neighborhoods of the other two
nodes, i.e., c = m

N(v1)(v3)mN(v2)(v3) (Line 7). If v3 is in the cover, the counter t
is incremented by c (Line 9) because it will be re-encountered two other times.
Conversely, if v3 is not in the vertex cover V̂ , the counter t is incremented by 3c
(Line 11) because the node will not be visited again. The algorithm concludes
by returning the number of triangles, i.e., the counter divided by three t/3. Since
the computation of each outer loop are independent, distributed approaches such
as map-reduce are possible.

Time Complexities. The computation of the algorithm can be distributed up
to p = |V̂ | cores. The two inner loops require O(d2cover) to iterate over all the
in-cover neighbors of v1, which requires at most dcover to compute. The v3 loop
iterates the intersection of the neighbors of v1 and v2, which requires at most
dcover. The time complexity of the algorithm is O(

|V̂ |d2cover/p).

638 L. Cappelletti et al.

Algorithm 1: Triangle counts

Input : G = (V, E), cover V̂ ⊆ V
Output: Graph-wide triangles t

1 t ← 0;

2 for v1 ∈ V̂ do in parallel

3 for v2 ∈ N(v1) ∩ V̂
4 if v2 ≥ v1 then
5 break;

6 for v3 ∈ N(v1) ∩ N(v2) \ {v1, v2 }
7 c=m

N(v1)(v3) · mN(v2)(v3);

8 if v3 ∈ V̂ then
9 t+=c;

10 else
11 t+=3c;

12 return t / 3;

4.1 Per Node Triangle Count

In the per-node count (Algorithm 2) we have a vector of atomic counters t, one
for each node. The triangle count for v1 is always incremented by the multiplicity
factor c (Line 8). If v3 is not in the cover V̂ , the triangle count for v2 and v3 is also
incremented by c. Using atomic additions ensures that each node’s triangle count
is updated safely, even with concurrent access from multiple threads. Finally, the
algorithm returns the vector t of triangle counts per node.

The time complexity of the per-node algorithm remains O(
|V̂ |d2cover/p). However,

to achieve perfect parallelization using atomic instructions, the processes should
simultaneously modify the same counters as little as possible. This is possible in
sparse real-world graphs. Still, the algorithm will behave worse than sequentially
in degenerate cases, such as cliques, as simultaneous modification will result in
the eviction of cache lines and CPU stalls, adding time overhead.

Algorithm 2: Per node count

Input : G = (V, E), cover V̂ ⊆ V
Output: Vector of triangles t per node

1 t ← vector with |V | atomic zeros;

2 for v1 ∈ V̂ do in parallel

3 for v2 ∈ N(v1) ∩ V̂
4 if v2 ≥ v1 then
5 break;
6 for v3 ∈ N(v1) ∩ N(v2) \ {v1, v2 }
7 c=m

N(v1)(v3) · mN(v2)(v3);

8 t[v1]+=Ac;

9 if v3 � V̂ then
10 t[v2]+=Ac;
11 t[v3]+=Ac;

12 return t;

5 Counting Squares

We describe the global square count (Algorithm 3), for a graph G = (V, E) and
a vertex cover V̂ ⊆ V .

Parallel Triangles and Squares Count for Multigraphs Using Vertex Covers 639

The algorithm from [4] employed a double iteration on the vertex cover to
check all the pairs of nodes in the cover and the intersection of their neighbors.
We can speed up the square counts on sparse graphs by skipping the pairs of
nodes that would produce empty intersections. In our approach, we iterate once
v1 ∈ V̂ on the vertex cover and on the second-order neighbors of v1 in the vertex
cover, i.e., v3 ∈ V̂v1 where V̂v1 =

⋃
v2∈N(v1) N(v2) ∩ V̂ . By definition, we will only

iterate on a pair of nodes in the cover with at least one common neighbor. We
want to efficiently iterate on the set of unique second-order neighbors in the cover
V̂v1 ; to do so, we need to keep track of the visited nodes V̄ to avoid counting
squares multiple times. In our implementation to represent V̄ , we used a bitmap
with |V | bits for each thread which is cleared at the start of each new root node
v1. The algorithm initializes the counter s to zero, representing the number of
squares times two. It loops in parallel over all vertices in the vertex cover v1 ∈ V̂
(Line 2). For each vertex v1, it loops over all of its neighbors v2 ∈ N(v1) (Line 3).
If v2 equals v1, we skip to the next neighbor to avoid self-loops. For each v2, we
iterate on all its neighbor in the vertex cover v3 ∈ N(v2)∩V̂ . Since we assume the
neighbors are sorted if v3 is greater than v1, the loop is stopped early (Line 6),
which is done to avoid checking twice the same node and roughly halves the time
requirements. We have to skip self-loops v3 = v2, backward edges v3 = v1, and
already visited nodes v3 ∈ V̄ . Then, we add v3 to the visited nodes V̄ (Line 8).

We initialize the multiplicity counters of neighbors of v1 in cover vin, out of
cover vout, and the sums of the squared multiplicities vin2, vout2 . We iterate over
each common neighbour of v1 and v3 excluding the nodes v1, v3 themselves. We
compute the product of multiplicities of v4 in v1 and v2. If the node v4 is in cover
v4 ∈ V̂ , this multiplicity and its square are added to the counters vin and vin2 ,
conversely, they are added to vout and vout2 .

We add to the s counter the four counters to obtain the number of squares
involving v1, v3, v4, v2 is counted as part of v4 nodes. Since we will not encounter
multiple times the nodes outside of the cover forming squares with v1 and v3, we
need to account for the squares they form with themselves v2out−vout2 , which are
all pairs of distinct nodes, the squares they form with the in cover nodes 2voutvin,
and the squares formed by nodes in cover (v2in − v

in2)/2, which will be encountered
twice. The algorithm concludes by returning the number of squares, s/2.

Time Complexity. The algorithm’s three inner loops require O(d2coverdgraph)
because the algorithm will iterate over all the in-cover neighbors of v1, which
requires at most dcover to compute. The v3 loop has to compute the neighbors
of v2, which takes at most dgraph. The v4 loop computes the intersection of the
neighbors of v1 and v2, which will require at most dcover. Therefore, the time
complexity of the algorithm is O(

|V̂ |d2coverdgraph/p), for p ≤ |V̂ |. This analysis ignored
the costs relative to the set V̄ due to its strict dependency on the implementation
details and because it was negligible in our experiments. This analysis ignored
the costs relative to the set V̄ due to its strict dependency on the implemen-
tation details. A sensible choice may be to use a bitmap paired with a vector,
the bitmap for fast reading and updating, and the vector to keep track of the

640 L. Cappelletti et al.

words of memory to reset. These require O(1) time for reading and updating it.
The time needed to reset it is proportional to the number of elements in it. This
would add a multiplicative factor to the complexity, which in the worst case is
O(dcoverdgraph). In practice, this operation is bottle-necked by the memory band-
width of RAM, so even for large bitmaps, the resetting is practically negligible
compared to loops.

Algorithm 3: Square counts

Input : G = (V, E), cover V̂ ⊆ V
Output: Number of squares s

1 s ← 0;

2 for v1 ∈ V̂ do in parallel
3 V̄ ← ∅;
4 for v2 ∈ N(v1) \ {v1 }

5 for v3 ∈ N(v2) ∩ V̂ \ {v1, v2 } \ V̄
6 if v3 > v1 then
7 break;

8 V̄ ← {v3 } ∪ V̄ ;
9 vin, vout, vin2, vout2 ← 0;

10 for v4 ∈ N(v1) ∩ N(v3) \ {v1, v3 }
11 c=m

N(v1)(v4) · mN(v3)(v4);

12 if v4 ∈ V̂ then
13 vin+=c;

14 vin2+=c
2;

15 else
16 vout+=c;

17 vout2+=c
2;

18 s+=v2out-vout2 + (v2
in

− v
in2

)/2 + 2voutvin;

19 return s
/2;

5.1 Per Node Version

We have a vector of atomic counters s, one for each node. Since the number of
squares contributed by v1, v3 and all v4 ∈ N(v1) ∩ N(v3) is obtained from the
factor of multiplicities of each v4 ∈ N(v1) ∩ N(v3), we need first to compute the
counters of the nodes in cover vin and the nodes out of cover vout), and afterward
dispense the number of squares among the nodes properly. The necessity to
iterate twice on the neighbors v4 ∈ N(v1) ∩ N(v3) effectively duplicates the
time requirements of the per-node algorithm. The counts of the node v1 and
v3, which are the root vertex cover nodes, are incremented by the number of
squares they form with the in-vertex and out-of-vertex nodes, vout ·vin. Each node
v4 ∈ N(v1) ∩ N(v3) count is incremented depending on the multiplicity factor c
and whether it is in cover or not. Nodes in the cover will be re-encountered,
while nodes outside will be only encountered once alongside the root nodes v1
and v3. We double the number of squares deriving from other out-of-cover nodes
to account for the latter nodes encountered once. Since in the number of out-of-
cover nodes vout, we also count the node’s multiplicity factor c, we must subtract
that twice. We observe that by summing the obtained square, the total will
be four times the total number of squares obtained from the global algorithm.
Analogously to the global version, the per-node algorithm is distributable. The
time complexity of the per-node algorithm remains O(

|V̂ |d2coverdgraph/p).

Parallel Triangles and Squares Count for Multigraphs Using Vertex Covers 641

Algorithm 4: Per node count

Input : G = (V, E), cover V̂ ⊆ V
Output: Number of squares s per node

1 s ← vector with |V | atomic zeros;

2 for v1 ∈ V̂ do in parallel
3 V̄ ← ∅;
4 for v2 ∈ N(v1) \ {v1 }

5 for v3 ∈ N(v2) ∩ V̂ \ {v1, v2 } \ V̄
6 if v3 > v1 then
7 break;

8 V̄ ← {v3 } ∪ V̄ ;
9 vin, vout ← 0;

10 for v4 ∈ N(v1) ∩ N(v3) \ {v1, v3 }
11 c=m

N(v1)(v4) · mN(v3)(v4);

12 if v4 ∈ V̂ then
13 vin+=c;
14 else
15 vout+=c;

16 s[v1]+=Avoutvin;
17 s[v3]+=Avoutvin;
18 for v4 ∈ N(v1) ∩ N(v3) \ {v1, v3 }
19 c=m

N(v1)(v4)mN(v3)(v4);

20 if v4 ∈ V̂ then
21 s[v4]+=Ac(vout + vin − c);
22 else
23 s[v4]+=Ac(2(vout − c) + vin);

24 return s;

6 Experiments

Experiments were conducted on a computer with an AMD Ryzen 9 3900x CPU
(12 cores, 24 threads) and 128 GB RAM using six real-world graphs, including
protein-protein interaction graphs, knowledge graphs, and web graphs. Table 1
summarizes the datasets, including the graph ID used in all result tables.

Table 1. Summary of the datasets’ main characteristics

Graph id Graph name Nodes Edges dgraph

1 Saccharomyces Cerevisiae [12] 7K 1M 2.7K

2 Homo Sapiens [12] 20K 6M 7.5K

3 Mus Musculus [12] 22K 7M 7.6K

4 KGCOVID19 [9] 570K 18M 122K

5 Friendster [10] 65M 1.8G 5K

6 ClueWeb09 [2,10] 1.6G 7.8G 6.4M

6.1 Impact of Vertex Cover Schema

In this section, we present the results of our evaluation of the performance of
the triangle and square counting algorithms for various vertex covers. Table 2

642 L. Cappelletti et al.

provides information on the vertex cover size and time requirements of six dif-
ferent graphs using the three vertex cover schemas described in Sect. 3: natural,
decreasing, and increasing. The size of the vertex cover for each graph using each
schema is given in the |V̂ | column and the maximum degree of each vertex in the
graph is given in the dcover column, the percentage of vertices covered by the
vertex cover is given in the % column. Finally, the time it took to compute the
vertex cover using the given schema is in the Time column. The table indicates
that the vertex cover size can vary depending on the schema. The decreasing
schema typically produces the smallest vertex cover, and the increasing schema
produces the largest. The time it takes to compute the vertex cover also varies
depending on the schema used, with the decreasing schema typically being the
slowest and the increasing schema typically being the fastest, beating even the
natural approach, which does not involve any sorting procedures, contrarily
to the other two schemas. The table also shows that as the size of the graph
increases, the time it takes to compute the vertex cover generally increases as
well. Nevertheless, it remains a fraction of the time necessary to compute the
same graph’s triangles or squares counts.

Table 2. Vertex cover size by vertex cover schema

Natural Decreasing Increasing

Id |V̂ | dcover % Time |V̂ | dcover % Time |V̂ | dcover % Time

1 6240 2729 93% 77 ms 5720 2729 85% 90 ms 6393 2092 95% 70 ms

2 19200 7507 98% 2 ms 18475 7507 94% 2 ms 19384 6940 99% 1 ms

3 20756 7669 94% 3 ms 19524 7669 88% 3 ms 21300 7296 96% 1 ms

4 217K 122K 38% 12 ms 180K 122K 31% 50 ms 540K 22K 94% 22 ms

5 37M 5214 57% 6 s 31M 5214 48% 15 s 65M 3507 99% 6 s

6 456M 6444K 27% 52 s 277M 6444K 16% 171 s 1672M 2M 99% 106 s

Our experiments revealed that the choice of vertex cover has a significant
impact on the performance of the triangle counting algorithm. Table 3 shows the
execution time and the number of counted triangles for each vertex cover, both
in the global and per-node versions. Notably, the algorithm achieved the fastest
performance when using the increasing vertex cover, followed by the natural and
decreasing vertex covers. This can be attributed to the fact that the increasing
vertex cover, while being the least efficient in terms of the number of nodes cov-
ered, effectively excludes the nodes with higher degrees, which can substantially
reduce the algorithm’s time requirements by a quadratic factor. The choice of
vertex cover should therefore be carefully considered when applying our algo-
rithm to real-world graphs, especially those with a high degree of heterogeneity
in their node degrees.

Parallel Triangles and Squares Count for Multigraphs Using Vertex Covers 643

Table 3. Triangle counts time by vertex cover

Number of Triangles Natural Decreasing Increasing

Id Global Per node Global Per node Global Per node

1 48834553 231 ms 208 ms 228 ms 207 ms 226 ms 291 ms

2 399408889 2442 ms 2313 ms 2431 ms 2434 ms 2424 ms 2317 ms

3 713495427 3752 ms 3518 ms 3822 ms 3693 ms 3720 ms 3549 ms

4 402950936 3290 ms 3081 ms 3575 ms 3807 ms 2812 ms 2669 ms

5 4173724142 248 s 248 s 250 s 259 s 250 s 244 s

6 31013019123 293 m 301 m 296 m 305 m 43 m 43 m

In Table 4, we present the results of the square counting algorithm using
three different vertex covers. The table shows the time taken and the number of
squares counted for each strategy. Interestingly, our results suggest that there is
no clear optimal vertex cover strategy for this algorithm. This implies that the
algorithm’s performance is not highly dependent on the choice of vertex cover.

Table 4. Square counts time by vertex cover

Number of Squares Natural Decreasing Increasing

Id Global Per node Global Per node Global Per node

1 17223337716 2 s 6 s 2 s 6 s 2 s 6 s

2 250013165364 40 s 101 s 40 s 99 s 40 s 102

3 659991475347 48 s 126 s 48 s 124 s 49 s 129 s

4 709420799404 104 s 248 s 216 s 516 s 415 s 1058 s

5 465803364346 38.5 h 76 h 37.5 h 35 h 39 h 77 h

6.2 Scalability

To evaluate the scalability of our algorithms, we conducted a series of experi-
ments with varying numbers of threads, including 1, 6, 12 (utilizing all cores),
and 24 (using hyper-threading). As shown in Table 5, our algorithms demon-
strated linear scaling with the number of cores, confirming their effectiveness in
exploiting parallel processing resources. However, we observed some sub-linear
scaling when hyper-threading was utilized. Nonetheless, our results demonstrate
that our algorithms are highly scalable and capable of achieving significant per-
formance improvements when executed on multi-core systems.

644 L. Cappelletti et al.

Table 5. Square and triangle count times with natural vertex cover per thread number

Triangles Squares

Global Per node Global Per node

Id 1 6 12 24 1 6 12 24 1 6 12 24 1 6 12 24

1 4 s 0.7 s 0.35 s 0.2 s 4 s 0.6 s 0.3 s 0.2 ms 36 s 6 s 3 s 2 s 80 s 16 s 8 s 6 s

2 46 s 8 s 4 s 2 s 42 s 7 s 3.5 s 2 s 12 m 113 s 47 s 40 s 26 m 5 m 147 s 101 s

3 68 s 11 s 6 s 4 s 63 s 10 s 5 s 4 s 14 m 2 m 68 s 48 s 30 m 6 m 3 m 126 s

4 55 s 9 s 5 s 3 s 52 s 9 s 4 s 4 s 27 m 5 m 134 s 104 s 57 m 10 m 5 m 248 s

7 Future Works

This paper presented parallel algorithms for global and per-node triangle and
square counts in large multigraphs. While our proposed algorithms have shown
improvements in computational complexity, there is still room for future work
to optimize further and improve the efficiency of the algorithms.

Firstly, we have identified that the current time complexity of the square
count algorithm is O(

|V̂ |d2coverdgraph/p), and we have not yet found ways to exploit
the vertex cover to reduce the number of checks on 2 of the four vertices of
the graph. Future research could explore the design of better algorithms that
leverage these two nodes to reduce the computational requirements further.

Secondly, while we focused on developing efficient algorithms for triangle and
square counts, we have not explored other algorithms for larger circuits using
vertex cover-based acceleration. By searching for efficient algorithms for larger
circuits, solutions with lower computational requirements could be discovered
that also apply to the count of squares and possibly even triangles.

Thirdly, while our proposed triangle count algorithm can process ClueWeb09
in 40 min, the square count algorithm still cannot process graphs with billions of
nodes in reasonable wall times. Future work could investigate the use of GPU-
accelerated implementations to close this gap and enable faster execution of the
square count on large instances.

In addition to the optimization and improvement of the algorithms, another
important avenue for future work is the exploration of the use of these tools in
the context of real-world applications, such as graph clustering [8]. While our
algorithms provide a fast and efficient way to count triangles and squares and,
therefore, to calculate clustering coefficients, we have not yet fully investigated
their potential in the analysis of biological graphs such as protein-protein interac-
tion graphs. These graphs are of significant interest in bioinformatics and have
important applications in drug discovery and disease diagnosis [3,14]. Future
research could explore the application of our proposed algorithms to these types
of graphs, and investigate how the resulting triangle and square counts and clus-
tering coefficients could be used to gain insights into the structure and function
of large dynamic biological systems. By leveraging the power and efficiency of
our algorithms, we believe that our tools could have important implications for
the analysis of real-world graphs and the discovery of new insights in a variety
of fields.

Parallel Triangles and Squares Count for Multigraphs Using Vertex Covers 645

8 Conclusions

We have presented a set of parallel algorithms for counting triangles and squares
in large multigraphs, which have demonstrated significant improvements in com-
putational complexity compared to the best-known algorithms in the literature.
Our algorithms achieve linear scaling with the number of available cores and
have been evaluated on a range of real-world graphs and multigraphs, including
protein-protein interaction graphs, knowledge graphs, and large web graphs. We
have also shown that different vertex covers for square counts, both in the global
and per-node versions, show no dominant option. In contrast, the increasing
vertex covers heuristic is clearly dominant in the triangle counts. These findings
could have important implications for optimising and designing future algorithms
for counting triangles and squares in large multigraphs.

While our proposed algorithms have demonstrated significant improvements
in computational complexity and efficiency, the limited scalability of the squares
count algorithm on large instances highlights the need for future studies in high-
performance computing settings. These could include exploring the use of GPUs
and computing clusters to optimize the efficiency of the algorithm further and
enable the processing of larger graphs in reasonable wall times.

Overall, our work contributes to the growing body of research on graph ana-
lytics and provides a valuable tool for researchers and practitioners working in
a range of fields. By enabling fast and efficient counting of triangles and squares
in large multigraphs, our algorithms have the potential to facilitate new insights
and discoveries in areas such as bioinformatics, social network analysis, and web
mining, among others. We hope that our work will inspire further research in
this area and lead to new developments in the field of graph analytics.

References

1. Cappelletti, L., et al.: GRAPE: fast and scalable Graph Processing and Embedding
(2021). arXiv: 2110.06196 [cs.LG]

2. Clarke, C.L., Craswell, N., Soboroff, I.: Overview of the trec: web track, p. 2009.
Technical report DTIC Document (2009)

3. Friedel, C.C., Zimmer, R.L.: Inferring topology from clustering coefficients in
protein-protein interaction networks. BMC Bioinf. 7(1), 1–15 (2006)

4. Green, O., Bader, D.A.: Faster clustering coefficient using vertex covers. In: 2013
International Conference on Social Computing, pp. 321–330. IEEE (2013)

5. Part Guide: Intel® 64 and IA-32 architectures software developer’s manual. In:
Volume 3A: System Programming Guide 2.11 (2011)

6. Jha, M., Comandur, S., Pinar, A.: When a graph is not so simple: counting tri-
angles in multigraph streams. Technical report Sandia National Lab. (SNL-CA),
Livermore, CA (United States) (2013)

7. Li, Y., Shang, Y., Yang, Y.: Clustering coefficients of large networks. Inf. Sci. 382,
350–358 (2017)

8. Nascimento, M.C.V., Carvalho, A.C.P.L.F.: A graph clustering algorithm based
on a clustering coefficient for weighted graphs. J. Braz. Comput. Soc. 17, 19–29
(2011)

http://arxiv.org/abs/2110.06196

646 L. Cappelletti et al.

9. Reese, J.T., et al.: KG-COVID-19: a framework to produce customized knowl-
edge graphs for COVID-19 response. Patterns 2(1), 100155 (2021). ISSN: 2666–
3899. https://doi.org/10.1016/j.patter.2020.100155. https://www.sciencedirect.
com/science/article/pii/S2666389920302038

10. Rossi, R.A., Ahmed, N.K.: Networkrepository: a graph data repository with inter-
active visual analytics. In: 29th AAAI Conference on Artificial Intelligence, Austin,
Texas, USA, pp. 25–30 (2015)

11. Stefani, L.D., et al.: Triest: counting local and global triangles in fully dynamic
streams with fixed memory size. ACM Trans. Knowl. Disc. Data (TKDD) 11(4),
1–50 (2017)

12. Szklarczyk, D., et al.: The STRING database in 2021: customizable protein-protein
networks, and functional characterization of user-uploaded gene/measurement sets.
Nucleic Acids Res. 49(D1), D605–D612 (2021)

13. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small- world’networks. Nature
393(6684), 440–442 (1998)

14. Zaki, N., Efimov, D., Berengueres, J.: Protein complex detection using interaction
reliability assessment and weighted clustering coefficient. BMC Bioinf. 14(1), 1–9
(2013)

https://doi.org/10.1016/j.patter.2020.100155
https://www.sciencedirect.com/science/article/pii/S2666389920302038
https://www.sciencedirect.com/science/article/pii/S2666389920302038

	Parallel Triangles and Squares Count for Multigraphs Using Vertex Covers*-1pc
	1 Introduction
	2 Notation
	3 Computation of Vertex Covers
	4 Counting Triangles
	4.1 Per Node Triangle Count

	5 Counting Squares
	5.1 Per Node Version

	6 Experiments
	6.1 Impact of Vertex Cover Schema
	6.2 Scalability

	7 Future Works
	8 Conclusions
	References

