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Abstract—Detecting anomalies with high accuracy and real time from large amounts of streaming data is a challenge for many
real-world applications, such as smart city, astronomical observations, and remote sensing. This article focuses on a special kind
of stream, catalog stream, whose high-level catalog structure can be used to analyze the stream effectively. We first formulate the
anomaly detection in catalog streams as a constrained optimization problem based on a catalog stream matrix. Then, a novel filtering-
identifying based anomaly detection algorithm (FIAD) is proposed, which includes two complementary strategies, true event identifying
and false alarm filtering, data-oriented general method and domain-oriented specific method together, to detect truly valuable anomalies.
Furthermore, different kinds of attention windows are developed to provide corresponding data for various algorithm components. A
scalable and lightweight catalog stream processing framework CSPF is designed to support and implement the proposed method
efficiently. A prototype system is developed to evaluate the proposed algorithm. Extensive experiments are conducted on the catalog
stream data sets from an operational super large field-of-view high-cadence astronomy observation. The experimental results show that
the proposed method can achieve a false-positive rate as low as 0.04%, reduces the false alarms by 98.6% compared with the existing
methods, and the latency to handle each catalog is 2.1 seconds (much less than the required 15 seconds). Furthermore, a total of 36
transient candidates, including seven microlensing events, 27 superflares, and two dual-superflares, are detected from 21.67 million
stars (involving 1.09 million catalogs) from one observation season.

Index Terms—streaming data analysis, anomaly detection, distributed stream processing, big scientific data.

✦

1 INTRODUCTION

THANKS to the development of large-scale advanced
data facilities [1], [2], [3], monitoring of massive tar-

gets (or hotspot locations) has become feasible. Such data
facilities will continuously generate enormous amounts of
data, hence the stream for the data. Some critical values of
the data will be lost after a small time window. Through
anomaly detection [4] in the monitoring data, we can iden-
tify emergency events in real time, which may have a
significant impact on our daily life, national security and
even human beings’ safety. Figure 1 gives some examples of
such applications. All such applications may generate large-
scale data streams.

Due to massive monitored targets, these applications
usually generate a special stream whose data are organized
as many catalogs. One catalog has many targets, and all the
targets have the same timestamp. It is natural to introduce
a high-level catalog structure into a large data stream for
two significant reasons. The first is that the data are often
collected from independent physical devices, and different
devices will produce different data catalogs. The second
reason is that when many targets are organized into one
catalog, it will be easy to manage millions or even billions
of targets efficiently. Here, we name such streams as cat-
alog streams. The targets could be very different in their
physical or logical characteristics in different applications.
As shown in Figure 1, for transient discovery in time-
domain astronomy [5], targets are millions of stars; for light
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Fig. 1: Application examples of catalog streams. Here each
application includes four cameras and each camera will
generate an independent catalog stream.

analysis in nighttime remote sensing, targets are cities [6];
for bacterial growth observation in microbiology, targets are
many colonies [7]; for traffic flow monitoring in smart cities,
targets are many user-defined small areas, such as road
intersections [8]. However, all of them can be abstracted as
a catalog stream anomaly detection problem.

Generally, there are two essential and challenging re-
quirements when identifying anomalies in catalog streams
and processing data from these emerging applications, high
accuracy and real time.

In catalog streams, effective anomaly detection of-
ten faces three challenges. (1) High noise usually causes
anomaly detection methods to contain many false-positive
events. (2) Data missing, which is hard to avoid in catalog
streams, may cause irregular and unpredictable data series
and trigger false alarms. (3) The high-quality requirement
for an anomaly event, which means detecting the con-
tinuous procedure of an anomaly event instead of a few
discrete points (high coverage), detecting anomaly events at
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their early stage (high instantness), and selecting interesting
anomaly events (high value) is critical to trigger follow-up
actions. So, high accuracy means that our anomaly detection
algorithm should address these data challenges to identify
anomalies from vast streaming data. Reducing the false-
positive rate is critical to achieving accuracy. However,
reducing the false-positive rate is not trivial because it is
hard to distinguish a special event from outliers (maybe
caused by noise, data missing, or uninteresting events). For
example, when we employ the existing anomaly detection
method, the 3.19% false-positive rate in our experiment will
cause too many false alarms due to the enormous volume
of data. The high false-positive rate makes it impossible to
conduct efficient follow-up action and data analysis.

Catalog streams may vary widely in size due to the
difference in monitoring area and time, and they may
have duplicated targets between different catalogs due to
overlapping monitoring areas (a more detailed example in
Figure 2). So, real time means that our stream processing
framework should be able to finish all the stream analysis
procedures with a given time constraint using commercial
off-the-shelf computing resources at a low cost when catalog
streams change dynamically. Under practical scenarios, the
single-node analysis often cannot meet actual performance
requirements. Also, this framework should identify dupli-
cated targets without losing real-time performance. So, it is
another challenging problem to develop a scalable parallel
stream processing framework and lightweight algorithm
implementation to achieve real-time performance.

We have designed a very efficient algorithm to identify
anomalies with a very low false-positive rate by taking ad-
vantage of the intrinsic structure feature in catalog streams
and domain-specific knowledge. Furthermore, we develop
a highly efficient stream processing framework to achieve
real-time anomaly detection that is critical in many applica-
tions. The major contributions are as follows.

• We formulate the problem of anomaly detection in
catalog streams as a constrained optimization prob-
lem on a catalog stream matrix. The high accuracy
and real-time constraints make this problem a grand
challenge in many emerging applications.

• A novel catalog stream anomaly detection algorithm
(FIAD) is proposed. The critical idea of FIAD is
employing two complementary methods to develop
efficient algorithm components on the suitable data
provided by different attention windows to achieve
high accuracy.

• A scalable and lightweight framework (CSPF) is
proposed to enable a distributed and shared-nothing
real-time stream processing and online duplicate de-
tection. CSPF is critical to achieving real-time catalog
stream analysis.

• Extensive experiments are conducted to evaluate the
proposed method using a publicly available astron-
omy observation data set. The proposed method was
implemented in a prototype system and detected
36 transient candidates that may lead to scientific
discoveries from one season’s observation data set.

The rest of the paper is organized as follows. Section 2
presents the detailed problem formulation. Section 3 gives

an overview of our methods. Section 4 and Section 5 present
the implementation of both FIAD and CSPF, respectively.
Section 6 shows our experimental results. Section 7 is the
related work. Section 8 discusses how to adapt our method
to more application fields. Section 9 summaries our work.

2 PROBLEM FORMULATION

In this section, we first define the concept of a catalog stream
and then model all catalog streams of an application using
a catalog stream matrix. Finally, we formulate the problem
as a constrained optimization problem.

2.1 Catalog Stream
A catalog stream CS is a data element series

CS =< Et1 , Et2 , ..., EtL > . (1)

Each data element Eti is a catalog. EtL is the newly arriving
catalog. For any two Element Eti and Etj , if i < j, it means
that the element Eti was generated earlier than element Etj .

A major difference between a catalog stream from pre-
vious streams is that each element of a CS will include
a huge amount of targets instead of a single target. Com-
pared with other streams, this fact increases the big data
challenge of a catalog stream. Each element Eti can be
expressed as a tuple Eti =< TgSti , SInfoti >, where
TgSti ⊆ TgS = {Tgt1, T gt2, ..., T gtZ} is a subset of the
complete target set TgS that includes maximum Z targets
in the catalog stream CS and SInfoti is the common
information shared by all the targets in TgSti .

A catalog stream CS can be divided into many target
streams, corresponding to different targets. For the sake of
generality, ∀Tgtx ∈ TgS, it is often expressed as a vector
that includes many different features instead of one single
feature. So, the target stream TSx for the target Tgtx can be
expressed as follows. TSx = {FV t1,x, FV t2,x, ..., FV tL,x},
where FV ti,x is the feature vector for target Tgtx at time
ti. The number of targets collected in each catalog can be
dynamically changing, not a constant. The set of all target
streams in the same catalog stream CS can be expressed as
TSS = {TSCS

1 , TSCS
2 , ..., TSCS

Z }.
In one single catalog Eti , ∀Tgtx, T gty ∈ TgSti , their

corresponding feature vector FV ti,x, FV ti,y can often be
correlative with each other because some environment or
system factors exist at the same time. Noise in one catalog
can often affect many targets concurrently. We call such
noise as intra-catalog concurrent noise. Concurrent noises are
a major feature of a catalog stream, and they are unpre-
dictable and usually have very irregular patterns. Generally,
they do not follow a stationary distribution, so they cannot
be easily filtered out through the traditional noise filtering
methods.

A catalog stream may miss some data at different time
points or even different intervals. If Tgtx ∈ TgS but
Tgtx /∈ TgSti , it means that the data FV ti,x of target Tgtx
is missing at time ti. Specifically, when TgSti = ∅, the com-
plete catalog Eti is missing at ti. This is another difference
between a catalog stream and a standard time series. Since
a catalog stream sequence can be unequally spaced points
in time, many existing analysis methods cannot handle the
proposed catalog streams directly.
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2.2 Catalog Stream Matrix
Assume totally N different devices in a set D =
{D1, ..., DN} can be used to collect data from millions
or even billions of targets distributed in an area A =
{A1, ..., AM}, then a catalog stream matrix CSM =
[CSDn,Am

]N×M can be built. Any entry CSDn,Am
repre-

sents a catalog stream generated by the device Dn from area
Am. Although N catalog streams can be generated at any
specific time, the maximum number of total catalog streams
during a long period is N × M . Under practical scenarios,
many of the entries will be empty because one device often
focuses on one or a few areas instead of all the possible
areas.

At the same time, the set of catalogs generated from
different devices is called a heterologous catalog set. The
heterologous catalog set defines the total workload at a
given time. For any two catalogs in a heterologous catalog
set, the targets in their catalogs can be completely different.
However, if their catalogs are collected from the same area,
the targets in their catalogs may be the same or almost
the same; if their catalogs are collected from close areas,
the targets in their target sets may overlap. This situation
is called inter-catalog overlapping. Inter-catalog overlapping
may cause different anomalies detected from heterologous
catalogs to point to the same target.

2.3 Optimization Model
Given a catalog stream matrix CSM , let AS be the set of
detected anomalies. Then, our problem can be formulated
as the following optimization problem.

NumOfAnomalies = argmax
AS

|AS| (2)

subject to fpr(AS,CSM) < r (3)
latency(CSM) < l (4)

where r and l are the requirements for the false-positive rate
and the latency. fpr(AS,CSM) is the false-positive rate for
detecting AS from CSM and latency(CSM) is the longest
time used to process any catalog for a given CSM . So,
our optimization objective is to identify as many anomalies
as possible, but the following constraints must be met.
First, the false-positive rate should not be larger than the
given value r. The second is that the longest time used to
process a catalog should be no longer than the real-time
requirement l. Under practical scenarios, often very small
r and l are given, so these two constraints are the major
challenges we face when identifying interesting anomalies.
This paper proposes a novel anomaly detection algorithm
and a scalable and lightweight framework to handle the two
challenges.

3 PROPOSED APPROACH

In this section, we aim to give an overview of our method.
The basic idea of the proposed algorithm FIAD is proposed
first. Next, the concept of an attention window that aims
to provide appropriate data for our algorithm components
is presented. Then the real-time data processing framework
CSPF is described. Finally, a typical application on catalog
streams is given as the target of system development.

3.1 A Novel Catalog Stream Anomaly Detection Algo-
rithm

The goal of FIAD is to identify as many true events as
possible while suppressing as many false alarms as possible.
The novelty and the core idea of FIAD are that it successfully
integrates two complementary methods to achieve this goal.

The first complementary method integrates identifying
methods and filtering methods. The second complemen-
tary method integrates data-oriented general methods with
domain-oriented specific methods. Four different algorithm
components are developed to solve different sub-problems
based on the two kernel complementary ideas.

The four proposed algorithm components have been
carefully arranged to achieve the best results. Building high-
quality data is the first algorithm component and it takes
advantage of the intra-catalog correlative feature to remove
high noise data so the following components can work on
high-quality data to achieve a better effect. Data-oriented
anomaly detection is the second algorithm component and it
picks up the true event candidates based on the features
of given data. Missing data downside removal is the third
algorithm component and it uses the statistical character-
istics of streaming data to remove false positives caused
by missing data. Finally, domain-oriented anomaly detection is
the fourth algorithm component and it selects candidates
with high domain values as the final alarms based on the
domain-specific characteristics of the catalog streams. We
will describe the four algorithm components as follows.

Building high-quality data. The level of concurrent
noise that may cause outliers in the same catalog is uneven.
Irregular effects of noise area and level should be isolated
separately. Building high-quality data implements a stepwise
clustering method to solve the problem. We first cluster the
targets in a catalog into several large sets based on distance
(spatial clustering) because closer targets are likely to be af-
fected by the same noise. Then, we further cluster the targets
in a big set into smaller clusters based on their features
(feature clustering) because the noise will have a similar
effect on the targets with similar features. Finally, targets
in each small cluster share the same threshold to measure
their concurrent noises. Setting a suitable threshold value to
remove most of the high noise data is critical. Not all clusters
can share the same threshold value because the same noise
may have a very different effect on different clusters. We
treat threshold selection as a Peaks-Over-Threshold (POT)
problem [9], so the appropriate threshold can be learned
automatically without the need to make strong assumptions
about the data distribution. For our typical application, the
corresponding algorithm component is named as Concur-
rent Noise Filtering or Co-Filtering.

Data oriented anomaly detection. We develop an inte-
grated method based on machine learning to implement the
Data Oriented Anomaly Detection. A learner is used to train
a prediction model on historical data. The errors between
the observed and predicted values can be approximate as a
normal distribution, so we can develop a simple but very
efficient online method to detect anomalies in a normal
distribution. The learner does not make any assumptions
about the data distribution, so it is suitable for very differ-
ent target series in the catalog stream. Multiple integrated
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detectors are used for online detection. Different detectors
are sensitive to events at different stages, so Data-Oriented
Anomaly Detection can employ multiple detectors to achieve
good instantness and coverage. For our typical application,
this algorithm component is named as Deviation-based
Identifying or D-Identifying.

Missing data downside removal. This algorithm com-
ponent uses kurtosis to evaluate the impact of any data
missing. Suppose the data distribution in a window is
leptokurtic. In that case, the data missing in this window
will have a low possibility to cause an outlier or a false
alarm because most of the data are close to each other.
However, suppose the data distribution in a window is
platykurtic. In that case, the possibility of an outlier caused
by data missing will be very high because most of the data
are different, and missing data will significantly change the
trend of a data series. However, it is hard to decide on
the ambiguous interval between platykurtic and leptokurtic
distribution (mesokurtic distribution). We will further split
a long window into many short windows to evaluate their
local kurtosis to solve this problem. The proportion of local
kurtosis will decide the ambiguous interval’s final distri-
bution. Based on this idea, if the data series in a window
follows the platykurtic distribution and there is data missing
in the window, we will remove the alarm that appears very
close to some missing data interval in this window because
it can be caused by data missing with a high possibility. For
our typical application, this algorithm component is named
as Kurtosis-based Filtering or K-Filtering.

Domain-oriented anomaly detection. The domain-
specific features can be used to identify anomalies efficiently.
For our typical application, the geometry of different targets’
feature curves in a short window where an anomaly occurs
can be crest or trough (we ignore the straight-line situation
because this situation means that no abnormalities will
occur). Anomalies with different geometric curves represent
different physical information. Therefore, this geometric
analysis result can help us select abnormal events with
different physical processes. So, we developed a Crest-
Trough-based Identifying (CT-Identifying) method based on
geometric analysis to achieve high-value anomaly selection.
This algorithm will first calculate the crest/trough feature of
a data series in a short window until the current time, then
select highly valued events based on some specific geometry
of the target’s feature curve. If CT-Identifying selects an
alarm, it will finally be marked as an anomaly.

3.2 Attention Window

To enable comprehensive data analysis and further improve
the effectiveness of our algorithm, we propose the concept
of an attention window that will provide appropriate data
for different algorithm components. We define an attention
window based on whether data missing is allowed in the
window and the amount of data.

First, based on if missing data will be allowed in a
window, a sliding window can be a missing data forbidden
window, which means that we must pad the positions of
missing data with placeholders in the window, or a missing
data tolerance window, which means that we can ignore
the missing data and do not need to pad placeholders at

the missing positions. A missing data forbidden window
has two states, the suspended state and the normal state. If
there is any placeholder in the window or the window is not
full, it will be in the suspended state. Otherwise, it will be
in a normal state. Identifying or filtering operations cannot
normally work on a missing data forbidden window when
it is suspended, but the window can be updated with the
latest data. A missing data tolerance window also has two
states: the initial and normal states. At the beginning stage,
a missing data tolerance window will be put in the initial
state when its buffer is not full. Otherwise, it will be in the
normal state when no vacant position is in its buffer. After
a missing data tolerance window accepts enough data and
passes its initial stage, it will never block any operations.

Second, a sliding window can be long or short based
on the length or amount of data in a window. The long
window may provide accurate statistical features (such as
mean, deviation, and kurtosis) of a lot of data and is often
tolerant of missing data. So we let a missing data tolerance
window be very long to alleviate the impact of data missing.
Oppositely, the short window provides the current local
information to make a real-time decision, and it often cannot
be tolerant of missing data. Therefore, we let a missing data
forbidden window be short, so we can skip the invalid
data to avoid wrong decisions and shorten the window’s
blocking operations.

In this work, we design three sliding windows with dif-
ferent properties. They are one long missing data tolerance
window, historical data window HWin = [tH , tL], and two
short missing data forbidden windows, anomaly decision
window AWin = [tA, tL] and noise decision window
NWin = [tN , tL], where tL is the latest or current time,
tH , tA, and tN are some previous time points and they meet
tH << tA < tN < tL under our configuration.

3.3 A Catalog Stream Processing Framework

The basic idea of the proposed framework (CSPF) is using
the static partitioning scheme to split a large-scale cata-
log stream into many sub-catalog streams and distribute
them onto different computing nodes to enable scalable
parallel processing within the real-time requirement. This
dispatching strategy can avoid unnecessary task migration
across nodes when catalog streams change dynamically. A
proposed pre-partitioning-based performance model will be
trained on many historical performance data to generate
such a partitioning scheme.

Because of the inter-catalog overlapping, CSPF also
needs to identify duplicate targets across catalog streams.
Interacting with different nodes to identify the duplicate
targets will introduce synchronization overhead. At the
same time, the node interaction topology cannot be pre-
defined since the overlapping pattern information is un-
known under practical scenarios. Considering that it is only
necessary to identify duplicate anomalies when querying,
we propose the Dup-order method that supports duplicate
identification without node interaction. When launching a
query, Dup-order can load duplicate targets into the same
group through a distributed position mapping mechanism
and keep them contiguous in order regardless of whether
the same node processes them. Users will quickly find
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Fig. 2: A schematic diagram of a CSM and the detected
transient events. The parallelograms of different colors in
the CSM represent different catalog streams from different
areas A1, A2, A3 and device D1, D2, D3. White dots are
normal sampling points. Red dots illustrate the detected
anomaly event, microlensing. Green triangles are duplicate
targets due to the overlapping between A2 and A3. Black
squares represent targets affected by concurrent noise, even
causing target missing.

duplicate targets based on this method. Our method can
maximize the parallel execution and complete the duplicate
identification by sorting within the group on the query side.

3.4 Transient Detection for Scientific Discovery
In this subsection, we describe one typical application
in time-domain astronomy. Real-time tracking of transient
events (abnormal univariate time sub-series) by continu-
ously monitoring a large number of space targets (i.e., stars)
can lead to important scientific discoveries, such as new
superflares and microlensing events [10].

To identify transients from a large number of targets, a
large field-of-view observation array that can produce data
with a very high cadence is necessary. For example, GWAC
[11] consists of 20 devices and collects 20 catalogs every 15
seconds, including up to millions of stars. Other telescopes
also employ the similar observation style, such as ASAS-SN
[12] and MASTER [13]. Along the time, catalogs will form
different catalog streams. It is a perfect example of Catalog
Stream Matrix (CSM). AS shown in Figure 2, this application
involves all the properties of catalog streams: concurrent
noise, data missing, and overlapping. The catalog structure
and specific challenges are as follows.

Catalog structure. Each catalog is a structured list,
including many feature vectors describing the tar-
get sampling information. The feature vector (7 fea-
tures) of given spatial target Tgtx is in the form of
FV t,x =< SInfot, RA,DEC,mag, ... >, where SInfot =
{Dn, Am, t} and t is the timestamp. Due to independent
data collection, Tgtx is not unique to duplicate targets.
Ascension RA and declination DEC are the global positions
of a target, but there will be slight errors in duplicate targets.
These factors often cause exact-matching-based methods for
duplicate identification to be inefficient. The mag is the
main feature in the feature vector, representing the physical
observation value used for transient event discovery. The
stars with different mag values have different sensitivity to
noise. For example, the anti-noise ability of bright stars is
greater than that of dark stars.

Irregular spatio-temporal patterns. Due to data collec-
tion from an open environment, the Spatio-temporal pat-
terns are usually irregular. For concurrent noise, on the one

hand, it is not trivial for us to correctly select the affected
targets because their spatial patterns are very irregular; on
the other hand, the irregular noise level is another challenge
to set an accurate filtering threshold. We cannot use simple
strategies to eliminate the irregular temporal pattern of
data missing to reduce the false-positive rate. For duplicate
targets caused by data overlapping, their irregular spatio-
temporal patterns make it impossible to identify duplicates
by simply setting a threshold based on the fixed distance for
all targets.

4 FILTERING-IDENTIFYING BASED ANOMALY DE-
TECTION

In this section, we give details of FIAD in combination with
the application in Section 3.4. Firstly, the filtering-identifying
framework is presented to support the complete anomaly
detection pipeline. Then, four major algorithm components
are described in detail.

4.1 Filtering-Identifying Framework

Figure 3 gives a view of the complete detection pipeline.
Filtering and identifying are performed alternately in the
pipeline. The advantage for FIAD is to relax the identifying
condition to achieve early and continuous detection and
tighten the filtering condition only to remove false alarms,
thereby gaining both goals by splitting the two contradic-
tory requirements into different algorithm components.

As shown in Figure 3, FIAD first receives TSS, and the
interpolator uses incalculable placeholders to replace the
missing data. If there are no placeholders in NWin i.e.,
normal state, Co-Filtering will check whether the latest data
TSx(tL) is valid. For invalid high noise data, Co-Filtering
replaces TSx(tL) in TSx with a placeholder (Step one and
Step two in Figure 4). For a suspended NWin, Co-Filtering
will continuously replace the latest data TSx(tL) in TSx

with a placeholder at the current timestamp until NWin is
full of valid data again. D-Identifying consists of many sub-
detectors with different lengths of AWin. The maximum
anomaly score will be as the final output. If some of these
AWins are suspended (there are placeholders in it), the
corresponding sub-detectors will recognize TSx(tL) as a
normal point and will not execute the anomaly identifying
operations. HWin ignores placeholders in a stream (Step
three in Figure 4) so the data-missing recognizer is designed
to check whether it is continuous. If it is not continuous,
K-Filtering will check the validity of an alarm.

Different variants of the target stream are needed at the
different phases of our filtering-identifying pipeline. So, we
set up separate window buffers to support the operations of
our pipeline at different stages instead of sharing the same
data of a target stream by sliding pointers.

4.2 Concurrent Noise Filtering

To accurately remove data with high concurrent noise, Co-
Filtering needs to evaluate the concurrent noise level and
set different noise thresholds for different targets because
neither a fixed absolute noise threshold nor a fixed relative
noise threshold can be employed on all targets.
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The data at t14 is noise. Co-Filtering ingests it in NWin
and writes back a placeholder into the target stream. Next,
this placeholder will also be ingested into AWin, making it
suspend identifying operations on it. HWin will ignore the
placeholder.

4.2.1 Concurrent Noise Evaluation
Given the noise decision window NWin, if there are no
placeholders in NWin, we let TS′

x be the corresponding
noise-free series of TSx, and the error ex(t) of each data in
the window can be defined as ex(t) = TS′

x(t) − TSx(t),
where t ∈ NWin. Furthermore, we use the root mean
square deviation (RMSD) of the error as the distortion of
the latest point TSx(tL). As a smoothing result, this value
can reveal the distortion tendency and reduce the effect of
random factors. The distortion dist(Tgtx, tL) is calculated
as follows.

dist(Tgtx, tL) =

√∑tL
t=tN

ex(t)
2

|NWin|
. (5)

We empirically select |NWin| = 64 in this application.
The rest problem is getting TS′

x. We can estimate it as
TS∗

x by Discrete Wavelet Transform (DWT) [14]. DWT is
usually used to decompose the discrete basic signal into
the high-frequency part and low-frequency part through
the appropriate wavelet function. The low-frequency part
is usually regarded as the noise-free part, and we also use
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Transient event
NWin

Over threshold

1
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2 3tN

Fig. 5: Example of concurrent noise filtering. The heavy color
means a brighter target or larger distortion. The concurrent
noise level of the third slot is over the threshold so we
remove all of the points in it.

the low-frequency part as TS∗
x, which will be employed to

estimate the distortion instead of TS′
x.

Concurrent noise level sharing. We note that the distor-
tion only represents the deviation between the real target
stream and the expected tendency. Both transient events
and noises may cause increasing distortions. So, we cannot
simply employ the distortion to remove concurrent noise.
The concurrent noise may affect multiple targets simulta-
neously, but it is almost impossible for multiple targets to
have transient events simultaneously. Therefore, we take ad-
vantage of this property to calculate the distortion statistics
of similar targets as the estimation of the concurrent noise
level. For a set of highly related targets S in a feature cluster,
we estimate their concurrent noise level at time TL using
Eq.(6). All targets in the feature cluster S will share the same
concurrent noise level.

CNL(S, tL) = quantile
Tgtx∈S

(dist(Tgtx, tL), λd), (6)

where λd ∈ [0, 1] is fractile. Especially, here we select λd =
0.5 meaning the median. The large λd will cause very large
distortion to be selected as the concurrent noise level value,
and vice versa. Further, we present a stepwise clustering
method (first space clustering and then feature clustering)
to decide feature clusters in Figure 5.
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Space clustering partitions a catalog area into several
subregions to isolate the impact of unknown noise area. We
can employ HEALPix [15] as a partition function. HEALPix
is a partition index algorithm of the hierarchical equal area
of a sphere. Given the celestial coordinate system and the
partition layer pl, HEALPix will return a unique partition
number pn = HEALPix(RA,DEC, pl) (i.e., subregion).

Feature clustering clusters the mags of one subregion
into several mag slots (i.e., feature cluster) according to
predefined mag value division scheme. In the same feature
cluster, the mags are similar to each other. If a catalog is
partitioned into four subregions and the mag value range is
divided into ten subranges, finally, get 40 feature clusters.

Discussion. If a transient event occurs in one target
alone (yellow point in Figure 5), its high distortion cannot
improve the noise level of its feature cluster, so it does not
trigger Co-Filtering to remove the data. However, if some
concurrent noise occurs, more targets in the same feature
cluster will be affected, and this will increase the concurrent
noise level and cause Co-Filtering to remove the high noise
data. A transient event with high concurrent noise is often
unacceptable because most related data are untrustworthy.
Overall, Co-Filtering does not cause trustworthy transient
events to be removed.

4.2.2 Concurrent Noise Filtering Threshold
Threshold selection includes method selection and training
data selection. The selected method should generate high-
quality thresholds suitable for different target streams when
using the training data set flooded with high-quality and
low-quality data because pure, high-quality data are hard to
provide under practical scenarios.

We treat the threshold selection as a Peaks-Over-
Threshold (POT) problem [9]. The advantage of POT
method is that it can generate highly optimized threshold
value from initial value without any strong assumption
on the distribution of a target stream. We adopt POT to
learn the threshold for each mag subrange because targets
in the same mag subrange have a similar antinoise level.
For a given mag subrange msb including m feature clus-
ters, if our training data have n different noise decision
windows NWin, then we can build the concurrent noise
level set CNLSmsb = {CNL(S1, t1), ..., CNL(S1, tm), ...,
CNL(Sm, t1), ..., CNL(Sm, tn)} (totally the CNLSmsb has
m × n different concurrent noise level values). The POT
approach tries to fit a generalized Pareto distribution (GPD)
with parameters to the portion upon the given initial thresh-
old th′

msb of CNLSmsb. The final threshold thmsb is then
computed by

thmsb ≃ th′
msb +

δ̂

ε̂

( q|CNLSmsb|
|CNLSmsb|th′

msb

)−ε̂

− 1

 , (7)

where q is the desired probability to observe z > th′
msb, z ∈

CNLSmsb, |CNLSmsb|th′
msb

is the number of z s.t., z >

th′
msb, and ε̂ and δ̂ are the estimation of shape and scale pa-

rameters of GPD through maximum likelihood estimation.
We empirically set high quantile th′

msb, such as 0.95 and
q = 10−4. For each point of target stream, if the measured
concurrent noise level is higher than thmsb, we will remove
it from TSx and set a placeholder at this timestamp.

Selecting suitable training data is very critical to achiev-
ing a reasonable threshold value. Here, the training data
could contain some noise, so the learned threshold value
will be poor if the noise level is very high. So, the domain
experts can view the historical data and select a time range
with little external noise to train the POT model and get
the corresponding parameters. For example, the training
data should be collected when no cloud, no external light,
and equipment is working well. This information can be
easily obtained by recording the weather and analyzing
equipment logs.

4.3 Deviation-based Identifying
D-Identifying includes two parts, offline training to generate
prediction models for different targets and online detection
to identify the anomalies.

4.3.1 Offline Training
The standard Temporal Convolutional Network architecture
(TCN) [16] is employed as the base algorithm because it is
easier to train and has less resource consumption than the
recurrent neural network, such as LSTM [17]. These features
are essential for large-scale catalog streams. TCN will model
each target stream and predicts the next point using an
unsupervised one-step-ahead style.

The TCN does not require a complete series but a batch
of continuous windows without missing data for training.
To enable sufficient data windows, we impute them by
Kalman filter [18], when the data is slightly missing. Kalman
filter can estimate the hidden variables of each point (includ-
ing missing data) of a univariate time series, with the mean
and variance by using the past and future information. It
can consider the pattern evolution of time series and normal
random changes. So, we input the training target streams to
the Kalman filter. If the gap of missing data is less than
ML points, we can sample n values for each missing data
and calculate the average as the missing value. If the gap of
missing data is greater than ML points, we do not impute
it because the imputation of long gaps easily introduces
incorrect data patterns. We empirically set ML = 30 and
n = 10. Finally, a target stream is split into many equal-
length windows using the HWin length and skip out of the
data missing due to the long gap to ensure the continuity
inside windows, and use them as training data units.

4.3.2 Online Detection
Inspired by the NFD algorithm [19], we leverage HWin
and AWin , |HWin| >> |AWin| to calculate the long time
statistical result and the current result. We first assume that
there are no placeholders in AWin. When the data in the
window [tA−1, tQ−1] are ready, the predicted data in HWin
will be returned. The normal change of target streams is
often regular and predictable so we use the prediction error
as the feature τ(t) to measure the abnormal degree of the
current data. Supposing the predicted value of TSx(t) is
TSp

x(t), D-Identifying sets τ(t) = |TSp
x(t) − TSx(t)|. Fur-

ther, D-Identifying uses the mean µHWin and the standard
deviation σHWin of τ(t) in HWin to capture the long time
feature of the current stream. Especially, it uses the mean
µAWin of τ(t) in AWin to stand for the state of the current
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point. The normalized variable NtL is defined in Eq.(8) to
represent the deviation of the current point from most of
the existing points.

NtL =
µAWin − µHWin

σHWin
. (8)

Anomaly score calculation. D-Identifying employs Q-
function1 as the discriminant function to measure the devi-
ation of the normalized variable. Q-function is the tail prob-
ability of the standard normal distribution. In other words,
Q-function measures the probability that the observed value
is larger than the mean. The smaller the Q-function is, the
more deviated NtL is from the mean. Finally, Q(NtL) will
be as anomaly score.

Detection integration. The length of AWin has a high
impact on the coverage and instantness. Generally speaking,
the shorter AWin is sensitive to the early stage of the
transient event, and the longer AWin is sensitive to the
last stage. To balance coverage and instantness, we integrate
three sub-detectors with different AWin lengths (e.g., 5
points, 15 points, and 45 points) to calculate anomaly scores
together, denoting them as Sub-detector5, Sub-detector15,
Sub-detector45, and they share the same HWin (empirically
set |HWin| = 500). Further, we could set an appropriate
threshold εQ to issue alarms. If min(Q(NtL)) < εQ, D-
Identifying will issue TSx(tL) as an alarm signal. We prefer
to set a large εQ (e.g., 0.375 in our paper). The larger εQ
means the more relaxed alarm condition, leading to the early
alarm but low precision, especially when there is missing
data. K-Filtering will handle this problem.

4.4 Kurtosis-based Filtering
If there is data missing in HWin, the false alarms will
be easily generated by D-Identifying, but they have a high
relationship with kurtosis, one important statistical feature
of HWin. So, we develop the K-Filtering algorithm to take
advantage of kurtosis to remove such false alarms.

Kurtosis measures whether the data are platykurtic or
leptokurtic relative to a normal distribution. The formula
for kurtosis is as follows.

KW =

∑l+|W |−1
i=l (TSx(ti)− µW )

4
/|W |

σ4
W

− 3, (9)

where W is a window on HWin, the starting time point is tl
and the length is |W |. The σW is the standard deviation and
the µW is the mean. KW ∈ [−2, |W |] and this definition
implies that the standard normal distribution has a kur-
tosis of zero. The negative kurtosis indicates a platykurtic
distribution. Otherwise, the positive kurtosis indicates a
leptokurtic distribution.

In a platykurtic distribution, most of the data is prone to
be uniform, and the standard deviation is relatively large.
So, data missing may cause a rather significant deviation
based on Eq. (8), and it will cause false alarms with high
possibility. However, in a leptokurtic distribution, most of
the data are very close to the mean value, and data missing
may cause a relatively small deviation. So, we may remove
an alarm in a significant platykurtic distribution window

1. https://en.wikipedia.org/wiki/Q-function

with data missing. We use global kurtosis and local kurtosis
to evaluate whether the data have a significantly platykurtic
distribution.

Global kurtosis. If W = HWin, KHWin ≤ −0.6 empir-
ically means that the global platykurtic feature is significant.
K-Filtering removes the current alarm.

Local kurtosis. If −0.6 < KHWin < 0, the global
platykurtic feature is not very significant, then we take
advantage of the local kurtosis to measure the significance
of its platykurtic feature further. So, we partition HWin
into many small windows to evaluate their local kurtosis
using Eq. (9). We slide the window W on HWin, where
|W | = αW |HWin| and the step is SW . We empirically set
αW = 0.2 and SW = 10. If lots of local kurtosis is less than
the given threshold ϵW = −0.1, we mark its platykurtic
feature as significant. We assume that the number of local
kurtosis being less than ϵW is NϵW . The number of local
kurtosis is NW= |HWin|−|W |

SW
. When PW =

NϵW

NW
≥ 0.5, K-

Filtering removes the current alarm.

4.5 Crest-Trough-based Identifying
After K-Filtering, we will further check each candidate
anomaly. If we take the prediction value TSp

x(t) as the
baseline, the observation value TSx(t) will be fluctuating
around the baseline. According to domain knowledge, the
crest-trough feature is evaluated under the inverted Y-axis
because the low mag usually means the bright targets. If
the observation values happen above the baseline, we name
the observation values having a crest shape. Otherwise, we
call them having a trough shape. Under practical scenarios,
users only prefer to crest transient events that mean abnor-
mal energy fluctuations of stars. So, we developed the CT-
Identifying algorithm component to select the anomalies that
happened with some specific geometric shapes.

Let f(t) = TSp
x(t) − TSx(t). We use the exponential

average to estimate an anomaly’s crest or trough shape to
smooth the results.

CT = sgn

(∑|AWinbest|−1

i=0
(1− α)

i
f(tL−i)

)
, (10)

where AWinbest is the anomaly decision window which can
maximize Q(NtL); the decay factor 0 < α ≤ 1 is set as 0.7
which will let the current value have larger effect. sgn is a
sign function. Thus, if CT = 1, the alarm signal is crest; if
CT = −1, the alarm signal is trough.

4.6 Discussion
In essence, both Co-Filtering and D-Identifying are anomaly
detection procedures on feature series. The difference is that
the detection feature for Co-Filtering is noise level, but it is
a prediction error for D-Identifying. However, the detection
feature generation technique is not interchangeable. The
TCN cannot replace the DWT to produce the detection fea-
ture series of Co-Filtering. The TCN as a learning algorithm
will learn concurrent noises in prediction values, which is
not conducive to noise filtering. Similarly, the prediction
error produced by the DWT will contain too much noise
information.

The threshold setting methods are not interchangeable
either. The threshold for Co-Filtering is global and static,
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Fig. 6: Catalog stream processing framework CSPF. S* is the
slave node. The data example comes from Figure 2. CSD3,A3

is partitioned into two parts running on different slaves for
meeting the real-time requirement.

learned from historical data by the POT. For D-Identifying,
it is a dynamic threshold with the sliding of the online
windows. We can easily find the hybrid data with low
and high noise from historical data for noise filtering. This
scenario satisfies the hypothesis of POT. However, transient
events are infrequent, so it is difficult to set the anomaly
threshold by POT. Further, D-Identifying dynamically eval-
uates the feature difference between Q-function’s long and
short windows. It does not depend on historical transient
events, and it is also easy to set up due to the clear sta-
tistical meaning. However, this dynamic setting method is
unsuitable for noise filtering because it only considers the
local information within a window, possibly causing it not
to work normally when the window only contains the high-
noise data.

We are noting that FIAD does not attempt to impute
missing data using some calculable values in online detection.
The imputation for univariate time series usually exploits
additional information, such as seasonality, trend, or future
data, to get a good result [20]. However, our scenario only
gives a history window, not involving this information,
because it is hard to determine them for many targets with
many missing data. Adding a poor imputation component
may introduce more false alarms.

5 CATALOG STREAM PROCESSING FRAMEWORK

This section includes the framework design, the pre-
partitioning-based performance model to meet the real-time
requirement, and the duplicate target identification method.

5.1 Framework Design

The CSPF follows master/slave mode, as shown in Figure
6. An agent-based scheduling model is designed, includ-
ing master, supervisor, and slave. The master is unique to
managing the cluster and dispatch catalogs. Each slave as a
micro-service, e.g., using Docker [21], monopolizes a CPU
logical core. It allows that different slaves can reside in the
same physical machine simultaneously. The supervisor is a
daemon process (including a queue to cache catalogs) on
each physical machine to manage both the local computing
resource and slaves. Such a two-level framework can imple-
ment the shared-nothing distributed processing and reduce
the management overhead of the master.

In the framework backend, the shared metadata pool
stores required data of all slaves, such as model parameters
for transient event detection. Since targets in a feature clus-
ter must be calculated together, the feature cluster will be
the minimum dispatching unit. The metadata of all targets
in a feature cluster will be packaged together to store. The
shared metadata pool is implemented as a distributed in-
memory file system (e.g., NFS+RamDisk [22]).

The CS recognizer receives the heterologous catalog set
to identify which catalog stream the catalog belongs to. The
partitioner uses the pre-defined partition scheme to divide
the catalog into sub-catalogs. If a catalog belongs to a new
catalog stream, the task launcher will select a machine based
on the number of running tasks and inform its supervisor
to launch a new slave. Finally, the data dispatcher sends
these sub-catalogs to the corresponding supervisor queue.
Task tracker is used to collecting the performance data,
including the latency of each feature cluster. These data
will be fitted into our performance model to decide the
pre-partition scheme for each catalog stream. The catalog
as the observation data usually has the clear target amount
range, so CSPF can fix each slave on a specified machine and
not dynamically change the partition scheme and divide the
task across the cluster. The advantage is to avoid pipeline
interruption and metadata migration.

5.2 Pre-partitioning-based Performance Model

We design an initial phase for CSPF to train our performance
model to decide the pre-partitioning scheme for each histor-
ical catalog stream. CSPF uses the same pre-defined scheme
to partition all catalogs in a catalog stream when processing
real-time catalogs.

The key idea of giving a pre-partitioning scheme is to
make the most time-consuming catalog to meet the real-
time requirement. Assuming the computing cluster is het-
erogeneous to have K different performance CPUs denoted
as C = {C1, C2, ..., CK}. Given a catalog stream following
Eq. (1), we process it on different CPUs of the cluster and
get a performance matrix Perf = [RTEti ,Ck

]L×K where
RTEti ,Ck

= (RT ti
S1,Ck

, RT ti
S2,Ck

, ...) is a vector recording
the latency of all feature clusters. We assume that any
RT ti

Sl,Ck
can be finished within the real-time requirement

l. Otherwise, the subregion number in Co-Filtering needs to
be increased. Further,

∑
RTEti ,Ck

is the latency of Catalog
Eti on Ck. We further define the worst acceptable latency as
follows.

RTworst = quantile
ti∈[t1,tL],k∈[1,K]

(
∑

RTEti ,Ck
, β) (11)

where β ∈ [0, 1] is the fractile as timeout tolerance factor,
we set it as 0.9. If RTworst < l, our performance model
does not partition this catalog stream. Otherwise, too many
catalogs will time out. For any

∑
RTEti ,Ck

> RTworst,
a partition scheme requires to be assigned to CS. This
partition scheme should use the least partition number to
make all the timeout catalogs meet the real-time require-
ment. Considering all latencies of a feature cluster Sl in∑

RTEti ,Ck
> RTworst consist of a multidimensional vec-

tor TimeoutSl
= (RT

ti′
Sl,Ck′ , RT

ti′′
Sl,Ck′′ , ...), our optimisation
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goal is to use the smallest partition number to arrange fea-
ture clusters into sub-catalogs and make the latency of these
sub-catalogs be less than l. It is actually a multidimensional
bin packing problem (MBPP) [23], which is a well-studied
NP-hard problem only having the approximate solution.
The boxes defined in MBPP could be a series of TimeoutSl

,
the bin capacity per dimension is l, and MBPP will search
the smallest number of bins and the corresponding ar-
ranging scheme. We employ a linear programming solver
to give an approximate solution as the pre-partitioning
scheme and assign it to partition the corresponding catalog
stream during the online pipeline. As long as the training
data is sufficient, most of the catalogs will meet the real-
time requirement. Noting that the initialization phase is
not necessary for the cluster launching only based on user
preferences.

5.3 Duplicate Target Identification
We decouple the analysis task and duplicate identification
to make them asynchronous to avoid unnecessary task syn-
chronization. The idea of Dup-order is to calculate position
features in a distributed manner for each target and sort
targets through their position features in a group to make
duplicate targets close when launching the real-time query.
A global hash function HEALPix [15] and a space-filling
curve function Z-order [24] packaged into each slave are
used to calculate the position feature. HEALPix maps neigh-
boring targets into the same slot, and Z-order transforms
their 2D positions into a 1D number. HEALPix supports
spatial queries, such as the disc search and polygon search,
to help users quickly get the corresponding partitions. Z-
order can maintain these reduced 1D features to be still
spatially ordered.

The global view includes a key-value cloud store, such
as Redis cluster [25] used to store the position features as a
key-list structure. The key consists of the partition number
returned by HEALPix. The partition number is used to make
all transient events in the same partition physically cluster,
even though different slaves process them. In addition, the
list includes the Z-order numbers of different targets. When
launching a real-time query, HEALPix returns a series of
partition numbers. Further, the global view can search its
key-value cloud store and get the corresponding data. In
each partition, Dup-order leverage the Z-order number of
each target to sort them. Since duplicate targets are close
to each other, they should be adjacent in order. Users can
easily distinguish duplicate targets inside a group when the
global view returns the results using the grouping style (i.e.,
partitions).

6 EXPERIMENTS

This section will introduce the data sets used in the experi-
ments and the corresponding setup, the effect of both FIAD
and CSPF, and the scientific candidate events discovered by
our methods.

6.1 Datasets and Experimental Setup
6.1.1 Datasets
We conduct performance experiments on 3-day 10-device
GWAC real data (called GWACD3), which consists of 71

catalog streams. We must balance the rationality of experi-
mental results with the labor of data labeling. So, four types
of data sets are produced.

GWACD3 dataset. GWACD3 will be used in part of the
experiments for distributed processing evaluation.

CS* datasets. We select three catalog streams from
GWACD3, which involve most transient events (six events).
There are different numbers of targets involved to cover
different performance profiles. We denote three data sets as
CS793, CS1369 and CS1655 (collectively referred to as CS*),
because they contain 793 catalogs (19, 431±1, 537 targets per
catalog, two event), 1,369 catalogs (53, 215± 11, 271 targets
per catalog, three events) and 1,655 catalogs (19, 348±5, 254
targets per catalog, one event). CS* will be used for anomaly
detection and distribution processing evaluation in the ex-
periments.

CSL* datasets. We use HEALPix to partition CS* at
pl = 9, select the subregion where the transient event is
located, and 5% random subregions that make up the data
sets CSL793, CSL1369, and CSL1655 (collectively referred
to as CSL*). We manually label the concurrent noise and
transient events for each target. CSL* will be used in some
experiments for anomaly detection and evaluation.

2Cam dataset and 3Cam dataset. We choose catalogs
that overlap completely to test duplicate recognition be-
cause they contain the most duplicate targets. In GWACD3,
we can find 2-catalog overlapping and 3-catalog overlap-
ping, denoting them as 2Cam and 3Cam, respectively. We
use a cross-matching algorithm [26] to label duplicate tar-
gets and manually check the labeling results. They are used
for distribution processing evaluation.

6.1.2 Experimental Setup
According to the description in Section 5, we customize
CSPF to provide more flexibility and support some domain
computing operations. The CSPF is implemented in C++.
The FIAD is implemented in Golang. They are deployed
on a cluster system with 18 computing nodes (24 1.6GHz
logical CPUs, 96GB RAM, and 20TB SATA disk per node).

We use F1-Score (denoted as F1) and FPR (False-Positive
Rate) to evaluate the performance of FIAD. F1 is defined as
F1 = 2×Precision×Recall

Precision+Recall , where Precision = TP
TP+FP and

Recall = TP
TP+FN . FPR is defined as FPR = FP

FP+TN . FP
means false position; TP means true position; FN means
false negative; TN means true negative.

6.2 Effect of Anomaly Detection
This subsection includes a comparison of transient event de-
tection, comparison of concurrent noise filtering, component
effectiveness evaluation, and parameter impact evaluation.

6.2.1 Transient Event Detection Evaluation
Here, we provide the comparison results of the anomaly de-
tection performance of FIAD and other methods, including
F1, alarm coverage rate, and alarm instantness rate.

Method comparison. As shown in Figure 7, we use F1
to evaluate the performance of finding the right transient
events, not all abnormal points of events. We set CT = 1 to
keep the crest event. For the fairness of the experiment, we
also introduced domain knowledge similar to CT-Identifying
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Fig. 7: Comparison of anomaly detec-
tion methods.
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Fig. 8: Alarm coverage rate.
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Fig. 9: Alarm instantness rate.

to eliminate the trough events of the comparison methods.
What’s more, these comparison methods are either classic
domain algorithms or outstanding anomaly detection al-
gorithms in recent years. They cover a variety of anomaly
detection methodologies. The NFD [19] is the domain algo-
rithm specifically used to detect transient events. Different
from our sub-detectors, it uses the observation values as the
feature. We add CT-Identifying in NFD to identify its crest
events. LSTM-NDT is another typical algorithm that uses
prediction errors to detect anomalies, using a nonparametric
dynamic thresholding [27]. We use the sign of its prediction
error to identify crest events. Wavelet uses the discrete
wavelet decomposition to detect the anomaly [28]. Residual
symbols are used to identify crest events. The DSPOT [9]
employs the extreme value theory to detect the anomaly
with the dynamic threshold. We disable its upper threshold
to make trough transient events pass the detection. We
use zero to impute missing data for the above methods.
These comparison methods use grid search to select the
best parameters. Noting that the parameter setup of NFD
(εQ = 0.15) is more strict than FIAD (εQ = 0.375), due to
the lack of false alarm filtering.

The recall rate of all methods is 1, which means they
can find all transient events. However, the precision of these
comparison methods is poor (0.3 on average), resulting in
their F1 average being 21%∼41% lower than FIAD (0.77).
Such a low precision is due to rare transient events (only
0.14% in CSL*), data missing, and concurrent noise making
it more difficult to detect anomalies in catalog streams, lead-
ing to false positives provided by other methods. Noting
that when we try to tighten detection conditions of NFD,
the performance has not improved significantly. The reason
is that NFD cannot eliminate the false alarms caused by the
change of normal temporal patterns. FIAD does not trigger
such false alarms when using the prediction error as the
feature. However, FIAD relies on an attention window based
filtering-identifying framework to ingest the high-quality
data and reject possible false alarms to improve precision.

Alarm coverage and instantness evaluation. As shown
in Figure 8 and Figure 9, we have evaluated the alarm cov-
erage rate and alarm latency rate. For a transient event TE,
the alarm signal set on it is Sa = {s1, s2, ..., st}, s.t., si =
0|1. si = 1 means the ith point is an anomaly. We define the
alarm coverage rate as |Sa(s|s=1)|

|TE| , where | ∗ | is the length.
The larger the coverage rate is, the better the method can
cover most anomaly events. We further define the alarm in-
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Fig. 11: Comparison of
noise threshold selecting.

stantness as FIRST (Sa)
|TE| , where FIRST (∗) returns the index

of the first 1. The smaller the instantness value is, the earlier
the anomaly is detected. We list the results of six transient
events. The average alarm coverage rate of FIAD is 0.79,
showing that our method can cover almost all of the range of
transient events. However, the comparison algorithms have
different instantness for different stages of transient events,
resulting in poor alarm coverage. In addition, the average
alarm instantness rate of FIAD is 0.08, which is equal to
Sub-detector5 (the most sensitive detector for early phase
detection). This is reasonable because FIAD relies on Sub-
detector5 to achieve good instantness. These results show
that our detection integration strategy effectively achieves
good alarm coverage and alarm instantness.

In short, the F1 of FIAD is 0.77 (21%∼41% higher than
comparison methods), the alarm coverage rate is 0.79, and
the alarm instantness rate is 0.08. Attention windows and an
filtering-identifying framework can work together to reduce
false alarms significantly.

6.2.2 Concurrent Noise Filtering Evaluation
This subsection compares the concurrent noise filtering
performance with other filtering methods and threshold
selection methods. Finally, give an example to show the
filtering effect.

Filtering method comparison. As shown in Figure 10,
we compare our method with five typical filtering methods.
The value range of mag in GWACD3 is [0,17]. Combin-
ing with the necessary domain knowledge, we divide it
into 7 mag subranges: [0,6], (6,7],(7,8],...,(10,11], and (11,17].
WaveFiltering only uses the high-frequency part of the dis-
crete wavelet transform as the noise for each target stream.
SGFiltering and HanningFiltering leverage the smoothing
function to remove noise data. SGFiltering is to output the

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on March 26,2022 at 11:06:58 UTC from IEEE Xplore.  Restrictions apply. 



2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3161925, IEEE
Transactions on Big Data

12

TABLE 1: Comparison of transient event misfiltering

Methods CSL793 CSL1369 CSL1655
WaveFiltering 1 3 1

SGFiltering 1 4 1
HanningFiltering 1 4 1

Co-SGFiltering 0 0 0
Co-HanningFiltering 0 0 1

Co-Filtering 0 0 0
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(a) Turning off Co-Filtering (b)  Turning on Co-Filtering

Fig. 12: Example of alarm signals issued by FIAD when
turning off/on Co-Filtering.

residual of Savitzky-Golay filter [29] as the noise. Hanning-
Filtering is the residual of 1D time convolve with Hanning
window2 as the noise. The three above methods do not con-
sider concurrent noise. Co-SGFiltering replaces the discrete
wavelet transform in Co-Filtering with the reconstruction
result of SGFiltering. Co-HanningFiltering replaces the dis-
crete wavelet transform in Co-Filtering with the reconstruc-
tion result of HanningFiltering. Both Co-SGFiltering and
HanningFiltering consider concurrent noise. Their sliding
window length is set to 64. The λd is set to 0.5. The F1
of Co-Filtering is an average of 0.855 for the three data
sets (6%∼44% higher than comparison methods), which is
the best result. These methods that do not leverage noise
concurrency have poor precision, leading to the removal of
some normal points and transient events. These methods of
considering noise concurrency are better. It also shows that
our method is effective. As shown in Table 1, we illustrate
the number of transient events that are incorrectly removed
by different methods. Co-Filtering and Co-SGFiltering are
the best. It shows that leveraging noise concurrency does
not lead to the mis-filtering, and improves the filtering
performance.

Threshold selection method comparison. In Figure. 11,
we compare our unsupervised threshold selection method
POT with two unsupervised threshold selection methods
3Sigma and Boxplot. We do not compare the dynamic
threshold selection method, because we only need a static
threshold to remove low-quality points. 3Sigma sets the
threshold as µ + 3σ and Boxplot sets the threshold as
Q3+1.5IQR. µ and σ are the mean and standard deviation
of the training data, respectively. Q3 is the third quarter, and
IQR is the interquartile range. Overall, our method is better
than the comparison methods. The F1 of POT is 6%∼11%
higher than both 3Sigma and Boxplot. 3Sigma and Boxplot
assume that the data follow a normal distribution, but due
to complex noise, CNLSmsb does not meet this assumption,

2. https://scipy-cookbook.readthedocs.io/items/SignalSmooth.
html?highlight=smooth

TABLE 2: Component effectiveness

Datasets Eval
Components

D Co K CT All

CS*
Events 3707+6 2571+6 257+6 707+6 52+6
FPR% 3.19 2.21 0.22 0.61 0.04

CSL*
Events 149+6 85+6 20+6 22+6 3+6
FPR% 2.64 1.56 0.44 0.49 0.15
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Fig. 13: Impact of different parameters.

resulting in poor results.
Example. We show an example of removing concur-

rent noise through Co-Filtering. As shown in Figure 12,
some noise causes the distortion of the target stream in
CSL793. Especially, this noise is similar to transient events
(Figure 3c). When Co-Filtering (Figure 12a) is turned off,
some noise points are identified as the transient event of
Sub-detector5, leading to false alarms. After turning on Co-
Filtering, the noise points are removed so we can avoid false
alarms (Figure 12b).

In short, the F1 of Co-Filtering is 0.855 (6%∼44% higher
than comparison methods). The F1 of our threshold selec-
tion method is 6%∼11% higher than comparison methods.
Co-Filtering can use the concurrency of the noise in catalog
streams to distinguish transient events and noise, and the
threshold selection is efficient.

6.2.3 Component Effectiveness Evaluation
To evaluate the component effectiveness of our method,
we first enable D-Identifying to detect the total number of
transient events on CS* and CSL* as the baseline. We apply
our proposed optimization methods one by one to see the re-
duction of false alarms to illustrate the effectiveness of these
components. As shown in Table 2, we evaluated 5 cases.
The “Events” value is “FP+TP”. The “D” column means
that we only enable D-Identifying, i.e., the baseline. The “Co”
column means to enable Co-Filtering and D-Identifying. The
“K” column means to enable Co-Filtering, D-Identifying and
K-Filtering. The “CT” column means to enable Co-Filtering,
D-Identifying, and CT-Identifying. The “All” column means to
enable all modules of FIAD. The interpolator and the data-
missing recognizer are always active.

The results show that Co-Filtering led to a 30.6%∼42.2%
reduction of false alarms. On the basis of Co-Filtering, K-
Filtering and CT-Identifying lead to an 86.5%∼93% reduction
of false alarms, and an 81%∼84.5% reduction of false alarms,
respectively, compared with the “D” case. When opening all
of these, we finally achieved a reduction of 98%∼98.6% and
found six transient events, and the FPR on the real catalog
streams was 0.04%.

In short, each of our optimization components is effi-
cacious in discovering transient events. The FPR reduction
of 98%∼98.6% is achieved, and the FPR on the real catalog
streams was 0.04%.
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TABLE 3: Results for CSPF dispatching performance

Device
numbers

Catalog
stream

numbers

Catalog
numbers

Total
dispatch
latency

(seconds)

Dispatch
through-

put
(cata-

logs/second)
1 11 5,637 301 18.73
2 22 10,729 292 36.74
4 29 13,305 390 34.12
6 48 22,042 626 35.21
8 58 27,504 691 39.8
10 71 34,215 901 37.97

6.2.4 Parameter Impact
We evaluate the impact of 3 parameters including λd and pl
of Co-Filtering, and HWin of D-Identifying. When evaluating
λd and pl, we only enable Co-Filtering and observe the per-
formance of noise filtering. What’s more, we only evaluate
the online filtering phase. In the threshold setting phase, we
fix λd = 0.5 and pl = 6. Figure 13 shows the average F1
on CSL* to evaluate the impact of λd and pl. Figure 13a
shows the impact of HEALPix’s partition level pl when
fixing λd = 0.5. A small pl will cause each feature cluster
to contain too many targets, resulting in increased error fil-
tering. For example, in CSL1655, when pl = 3, each feature
cluster includes an average of 857 targets. If the CNL for
this feature cluster exceeds the threshold, 857 targets will
be removed. Correspondingly, when the partition level is
large, too many subregions will lead to weak statistical
characteristics in each feature cluster so Co-Filtering will
degenerate into WaveFiltering, causing a drop in filtering
performance. In Figure 13b, we fix pl = 6 and evaluate
the impact of different fractiles λd. The result shows that
the median has a good effect. The small fractile causes the
noise to be unremovable, and the large fractile causes too
many normal points to be removed. For other scenarios,
users need to tune the two parameters. In addition, we
evaluate the impact of the length of HWin because it can
affect D-Identifying and K-Filtering. As shown in Figure 13c,
we repeatedly run FIAD on CSL* with different lengths
of HWin and use the average F1 as a result on the three
data sets. It shows that HWin has a significant impact on
the performance of FIAD. When HWin is short, the Q-
function cannot identify the tail of the distribution well,
resulting in poor performance. When HWin is lengthened,
too old missing data will also activate K-Filtering causing it
to possibly remove some right alarms. We found that 300-
500 may be a good HWin length in our data sets.

6.3 Distribution Processing Evaluation
This subsection evaluates the real-time processing latency
and the duplicate identification method.

6.3.1 Effect of Real-Time Performance
CSPF’s performance. To evaluate the CSPF’s distributed
processing performance, we gradually increase the amount
of data produced from one device to ten devices, as shown
in Table 3. We simulate sending these catalog streams in
chronological order without delay. Noting that the total
dispatch latency is only the scheduling time and does not
include the catalog analysis delay (i.e., FIAD). In detail,
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mance comparison.

the container launching latency is 8 seconds, which is an
acceptable time. What’s more, when CSPF processes the
data only generated by one device, it will degrade into the
single-node mode, causing a reduced throughput. As the
data increases, the throughput of CSPF is also increased. It
is maintained at an average of 36.77 catalogs per second,
i.e., 30 milliseconds per catalog on this cluster environment.
It shows good scalability. GWAC currently consists of 20
devices and collects data within 15 seconds. This result
means that CSPF can dispatch the data produced by 551
devices per 15 seconds. It is 27.5× faster than the required
processing performance. GWAC’s data collection latency (15
seconds) has represented a high time resolution compared
with other sky survey projects in time-domain astronomy
[11], [30] so we think this implementation of CSPF should be
able to meet the real-time requirement of most sky survey
projects. FIAD’s performance. We only evaluate the real-
time detection latency, and it can also show the effect of the
performance model. It does not include the offline training
latency because it will not become a performance bottleneck.
For many transient discovery scenarios, the observation
does not always work. For example, time-domain astron-
omy cannot collect data in the daytime. Thus, lots of time
can be used for offline training. Figure 14 shows the latency
of FIAD when processing the CS* datasets. Since the most
time-consuming modules of FIAD are Co-Filtering and D-
Identifying, we divide the total latency into two parts: Co-
Filtering and other. Both K-Filtering and CT-Identifying are
very fast, so we no longer show their latencies separately.
The latency of Co-Filtering is about 0.4 seconds per catalog
(0.012 milliseconds per target). Except for Co-Filtering, the
latency of the rest of FIAD is about 1.6 seconds per cata-
log (0.045 milliseconds per target). The total latency is an
average of 2.1 seconds, and the maximum is 11.1 seconds.
This shows that our performance model can enable FIAD to
meet the real-time requirements of real scenarios. We also
find that the number of targets significantly impacts the
performance, but they show a more or less linear correlation,
revealing that FIAD is robust.

In short, the average dispatch latency is 30 milliseconds
per catalog (27.5× faster than the required processing per-
formance), and the average detection latency is 2.1 seconds
(maximum 11.1 seconds). CSPF has good scalability and can
meet the real-time requirement of practical scenarios.

6.3.2 Effect of Duplicate Identification
In this subsection, we calculate the probability of retrieving
duplicate targets within N steps in the group to evaluate
the effect of Dup-order. It reveals how close the duplicate
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Fig. 16: Duplicate neighborhood rate for query.

targets are in the group. In addition, we further compare
the query performance with a matching-based method.

We set pl = 9 for Dup-order to process 2Cam and
3Cam, respectively. We first evaluate the duplicate neigh-
borhood rate GDN for each group containing duplicate
targets. For Group g, we assume that its duplicate tar-
get set is Targ , where ∀Tgtx ∈ Targ has duplicate tar-

gets. We further define GDNg =
∑

Tgtx∈Targ
NRns(Tgtx)

|Targ|

where NRns(Tgtx) =
nearns(Tgtx)
dup(Tgtx)

is the number of targets
that duplicate with Tgtx within neighboring ns steps and
dup(Tgtx) is the total number of targets that duplicate with
Tgtx in the data set. For example, ns = 1 means to search
the duplicate targets forward 1 step and backward 1 step
in the group. The GDNg ∈ [0, 1] reveals the aggregation
of duplicate targets in a group. Further, we can define the
duplicate neighborhood rate QDN for a query. If the result
of Query q has groups containing duplicate targets, we
assign them to the duplicate group set Groq . We define

QDNq =
∑

g∈Groq
GDNg

|Groq| ∈ [0, 1]. This definition indicates
that if the query results have duplicate targets, we will
use ns steps to find the duplicates in the group with the
probability of QDNq .

We launch ten spatial queries to search data from a
global view and set ns from 1 to 4. They can cover 0.4%-
94% groups. As shown in Figure 16, we illustrate the effect
of Dup-order with a histogram. The X-axis is QDI , and the
Y-axis is the number of queries. The average QDI is 0.98
for 2Cam and 0.93 for 3Cam, showing that our method is
effective. For 2Cam, we can find duplicate targets with high
probability within 1 step. However, for 3Cam, due to more
duplicate targets, QDI is lower when ns = 1. When ns = 2,
we get a good result again (QDI = 0.97). That shows that
duplicate targets are next to each other. This feature can
help users quickly eliminate the duplicate effect and find
the right transient events.

To further illustrate the advantages of Dup-order, we
give a comparison method Dup-match. The difference be-
tween Dup-match and Dup-order is that Dup-match re-
moves Z-order at the front-end of CSPF and uses distance-
based matching within each group to identify duplicates
when initiating a query. The distance employs the great-
circle distance on a sphere3. The disadvantage of Dup-
match is (1) the distance threshold is difficult to determine,
and (2) the query performance is poor. Our results show
that the best distance threshold is 17 and 25 for 2Cam

3. https://en.wikipedia.org/wiki/Great-circle distance
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Fig. 17: Three cases of transient event candidates. The color
points are alarms issued by FIAD.

and 3Cam, respectively. They can ensure that Dup-match
finds 97% and 96% of duplicate targets from 2Cam and
3Cam, respectively. If the threshold of 3Cam is set to 17,
Dup-match will only find 91% duplicate targets. So, the
distance threshold is different when the observation envi-
ronment changes. In addition, Figure 15 shows the query
speedup of Dup-order relative to Dup-match on the 2Cam
and 3Cam datasets. The X-axis represents the ten spatial
queries mentioned in the previous paragraph, and the Y-
axis is the speedup. The results show that Dup-order is 6∼
14× faster than Dup-match. As the data size increases, this
performance advantage becomes more apparent. Distance-
based matching is a time-consuming operation, and it is
hard to be sped up through the computing cluster, causing
poor performance. So, Dup-order is more appropriate for
real-time query scenarios.

In short, our method can retrieve all duplicate targets
with a probability of 0.93∼0.97, and the performance is
6 ∼ 14× faster than the comparison method. Dup-order
supports real-time spatial query, and the query results can
make the duplicate targets in a close order within the group.

6.4 Case Study-Achievement in Scientific Event Dis-
covery
We employ our methods to find 27 superflare candidates,
two dual-superflare candidates, and seven microlensing
candidates from 21.67 million stars, involving 1.09 million
catalogs, through real-time analysis of half-year GWAC real
data from December 12, 2018, to May 19, 2019. Figure 17
shows 3 cases of valuable transient event candidates.

Superflare. A superflare is a powerful explosion ob-
served on stars. This superflare candidate in Figure 17 (Left)
is found at 12:20:22 UT, January 14, 2019. The duration is
28 minutes. Its celestial coordinate system is (RA=63.4557,
DEC=9.21318). Our method sends out the first alarm signal
in the first 2 minutes. What’s more, our alarm signal is
also early enough, and these alarm signals can cover the
important part of this superflare.

Dual-superflare. A dual-superflare is that two consecu-
tive superflares happen on stars. This dual-superflare can-
didate in Figure 17 (Middle) was discovered at 14:44:31
UT, on December 23, 2018. The duration is 62 minutes. Its
celestial coordinate system is (RA=49.4564, DEC=1.10126).
Our method can send out the first alarm signal in the
first 5.75 minutes. This phenomenon has a high scientific
value. Generally speaking, a star has exploded most of its
unconventional energy through a superflare. So, a possible
research problem is where the explosion energy is from for
the second superflare and its physical mechanism.
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Microlensing. Microlensing is an astronomical phe-
nomenon due to the gravitational lens effect. It can be used
to detect targets that range from the mass of a planet to
the mass of a star, regardless of the light they emit. This
microlensing candidate in Figure 17 (Right) is found at
16:31:26 UT, January 7, 2019. The duration is 73 minutes. Its
celestial coordinate system is (RA=106.353, DEC=30.9166).
Out method issues the first alarm signal at the beginning
of 1.75 minutes. Generally speaking, a short microlensing
event often means an important scientific discovery.

According to the scientific criterion, it is worth noting
that these transient event candidates might not be actual
scientific events. More additional scientific analysis, evalu-
ation, and confirmation are needed. However, these cases
show that our methodology can find potential transient
events in real time.

7 RELATED WORK

The existing researches have extensively studied the anal-
ysis of streaming data in various flavors, including (1)
unsupervised anomaly detection, (2) anomaly detection in
time-domain astronomy, and (3) distributed stream process-
ing. However, they do not provide the real-time analysis
methodology to meet the challenges of catalog streams.

Unsupervised anomaly detection. The unsupervised
anomaly detection methods for univariate time series have
been extensively studied. Recently, many flavors have been
developed for this task, such as neural network fitting [27],
[31], extreme value recognition [9], [32], time series decom-
position [28], [33] and partition-based methods [34], etc.
They assume that the anomaly points are being generated
by a process that is different from the process that generates
the nominal points and tries to identify outliers as the
anomalies [4]. However, the definition of an anomaly in
catalog streams is highly dependent on the domain. The
outliers may be caused by concurrent noise, data miss-
ing, and trivial transient events. These factors will lead
to a high false-positive rate for these existing methods. In
actual scenarios, not all outliers are valuable anomalies.
FIAD can use the characteristics of the catalog stream to
control false positives. In fact, some methods to mitigate
false positives have been proposed, such as noise filtering
[35], [36], online imputation [31], [37] and lag correction
[27]. The popular methods of noise filtering on time-series
are wavelet transform [35] and smoothing methods [36].
However, they only work well on the single time series
and do not consider intra-catalog concurrent noise. Online
imputation interpolates the estimation of missing data to
improve performance. However, they are either too expen-
sive or require extra information to support many missing
data. Otherwise, more false alarms will be introduced due
to the wrong imputation. Our attention windows and K-
Filtering are both lightweight and do not require additional
information. They do not generate additional false alarms
and are more suitable for large-scale data missing in the
catalog stream. Lag correction can prune the prior false
alarms by using the future anomaly trend. This method may
cause a false transient event to trigger the expensive follow-
up action or miss the best time for the follow-up action.

Anomaly detection in time-domain astronomy.
Anomaly events are valuable scientific phenomena included
in the catalog stream in time-domain astronomy. They can
be identified as transient events [19] and temporary events
[38]. A temporary event refers to the sudden visibility of tar-
gets that cannot be normally observed below the resolution.
Further, transient events are the anomalies of visible targets.
These methods for detecting temporary events perform a
typical “subtraction” operation to find extra targets as the
temporary event through comparing the sampled catalogs
with the baseline template [39], [40], [41], [42]. A real-time
alarm system [38] is developed to find the temporary event
signal to be rapidly cross-correlated with the huge historical
catalogs through the rational data organization. However,
they cannot search transient events due to the lack of time-
dependent patterns of catalog streams. For the detection of
transient events, some detection methods [43] and detection
framework [19] are proposed for the recognition of abnor-
mal patterns. Still, they ignore the high-level structure of
the catalog stream and only treat the directory stream as
many target streams. For the detection of transient events,
some detection methods [43] and detection frameworks
[19] are proposed for the recognition of abnormal patterns.
Still, they ignore catalog streams’ high-level structure, only
treating them as many target streams. Thus, these methods
cannot work well under practical scenarios. In addition,
some works focused on the real-time challenge of catalog
data management [11], [44], [45], [46], and did not analyze
it. Our methods support anomaly detection in the catalog
stream.

Distributed stream processing. Nowadays, the indus-
try has proposed many distributed data stream processing
engines. They can be divided into mini-batch processing
mode, e.g., Spark streaming [47] and non-blocking tuple
processing mode, e.g., Storm [48], Flink [49] and Samza
[50]. For mini-batch processing mode, it improves the sys-
tem throughput by the data delay processing, but it also
increases the processing latency of each data tuple. This
processing delay will make it impossible to detect transient
events in time. The CSPF does not lead to such an issue.
The non-blocking tuple processing mode can process the
data in the stream without delay. However, these proposed
engines are general frameworks and do not include specific
optimizations. On the one hand, they cannot adapt to the
dynamic changes of catalog streams and meet the real-time
constraint; on the other hand, the backend of CSPF, i.e.,
Dup-order, can support the lazy duplicate identification.
However, these engines do not involve a built-in operator to
process the inter-catalog overlapping problem. In addition,
some distributed messaging systems, such as Kafka [51], can
cache streaming data, usually being the data middleware.
However, our CSPF is a catalog stream processing frame-
work, being as the data consumer.

8 ADAPTATION TO DIFFERENT DOMAINS

Although we give the implementation details of FIAD and
CSPF to support the application of transient event discovery,
it does not mean that all algorithm components are only
applicable to the proposed typical application. Our methods
address anomaly detection of catalog streams in different
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domains. The whole method framework is still applicable
for other application domains, but some algorithm com-
ponents need to be adapted in combination with different
and specific domain knowledge. The basic idea of building
high-quality data is the same. However, specific clustering
methods should be chosen for other applications. First,
the position partition method HEALPix in both Co-Filtering
is suitable for astronomical applications, and other parti-
tion methods should be chosen for other fields. The same
should apply in Dup-order of CSPF. We suggest that the
simple grid partition method is suitable for 2D plane space.
Next, magnitude-related feature clustering should also be
replaced by other kinds of feature values. Obviously, in the
domain-oriented anomaly detection component, the proposed
geometry features are also for the astronomical applications,
so this component should be updated for other domains.
The data-oriented anomaly detection and the missing data down-
side removal components are general algorithm components,
and they can be used in different domains. Of course, the
values of some specific algorithm parameters should be
reset based on different application data.

9 CONCLUSION

Monitoring of massive targets is constantly generating
large-scale data in the form of streams. This paper focuses
on a special kind of stream, catalog streams, which organize
many targets into a high-level data structure catalog. One
catalog will be the basic unit of the generated data. Detecting
anomalies in catalog streams requires high accuracy and
real-time latency to solve two challenging problems.

We propose a novel algorithm FIAD that can integrate
two complementary methods to detect the anomalies in
catalog streams accurately. We propose the concept of an
attention window that aims to collect appropriate data
for different algorithm components to further optimize the
performance of our algorithm. In addition, FIAD organizes
the decision procedure into four different steps. The first
step will filter out high level concurrent noise that may
trigger false alerts (building high-quality data); based on
the noise free data, we will dynamically identify the data
that are far away from their prediction value as the true
candidates (data-oriented detection method); the third step
will further filter out the false alerts caused by data miss-
ing in the second step (data missing downside removal
method); finally, we only select the events meeting the
domain requirements as the output anomalies (domain-
oriented detection method). We develop different atten-
tion windows based on different algorithm components to
provide the corresponding algorithm component suitable
data. So, different algorithm components can achieve bet-
ter performance on appropriate attention windows. The
four filtering-identifying procedures can help each other to
include as many anomalies as possible with a very low
false-positive rate. The presented algorithm is efficient in
improving the true positive rate and reducing the false
positive rate simultaneously without sacrificing another.
Our method finally achieves a false-positive rate as low as
0.04%.

The proposed processing framework CSPF uses the pre-
partitioning based performance model to partition catalog

streams and distribute them onto different computing re-
sources and process the data in parallel to improve the per-
formance and meet the real-time requirement. To avoid the
synchronization operation problem between different nodes
to check duplicated targets caused by data overlapping, we
develop a mapping method that can transform the 2D posi-
tions of different targets into a 1D position feature. Sorting
the 1D position features can make the duplicated targets
close to each other during the online query. In this way, we
can remove the expensive synchronization operations. The
experimental results show that the average dispatch latency
is 30 milliseconds per catalog and the average detection
latency is 2.1 seconds, meeting the 15 seconds real-time
performance requirement. In addition, CSPF can retrieve all
duplicate targets with a probability of 0.93∼0.97, and the
performance is 6 ∼ 14× faster than the comparison method.

Furthermore, the proposed methods have been em-
ployed on the half-year data generated by a telescope
GWAC4 and 36 scientific event candidates have been dis-
covered.
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