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and betweenness, Katz centrality is one of the established centrality measures. In this article, we consider

the problem of computing rankings for Katz centrality. In particular, we propose upper and lower bounds

on the Katz score of a given node. Previous approaches relied on numerical approximation or heuristics to

compute Katz centrality rankings; however, we construct an algorithm that iteratively improves those upper

and lower bounds until a correct Katz ranking is obtained. We extend our algorithm to dynamic graphs while

maintaining its correctness guarantees. Experiments demonstrate that our static graph algorithm outperforms

both numerical approaches and heuristics with speedups between 1.5× and 3.5×, depending on the desired

quality guarantees. Our dynamic graph algorithm improves upon the static algorithm for update batches of

less than 10,000 edges. We provide efficient parallel CPU and GPU implementations of our algorithms that

enable near real-time Katz centrality computation for graphs with hundreds of millions of edges in fractions

of seconds.
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1 INTRODUCTION

Finding the most important nodes of a network is a major task in network analysis. To this end,
numerous centrality measures have been introduced in the literature. These centrality measures
usually compute a numerical score for each vertex of the graph. The resulting scores are then used
to obtain a ranking of the vertices. In many applications, domain scientists are interested in the
centrality ranking only (and not in the actual centrality scores) [20].

Examples of well-known measures are betweenness (which ranks nodes according to their par-
ticipation in the shortest paths of the network) and closeness (which indicates the average shortest-
path distance to other nodes). A major limitation of both measures is that they are based on the
assumption that information flows through the networks following shortest paths only. However,
this is often not the case in practice; think, for example, of traffic on street networks: it is easy to
imagine the reasons drivers might prefer to take slightly longer paths. Yet it is also quite unlikely
that much longer paths will be taken.

Katz centrality [11] accounts for this by summing all walks starting from a node, but weighting
them based on their length. More precisely, the weight of a walk of length i is α i , where α is some
attenuation factor smaller than 1. Thus, naming ωi (v ) the number of walks of length i starting
from node v , the Katz centrality of v is defined as

c(v ) :=

∞∑
i=1

ωi (v ) α i (1)

or equivalently: c = (
∑∞

i=1 A
i α i )�I , where A is the adjacency matrix of the graph and �I is the

vector consisting only of 1s. This can be restated as a Neumann series, resulting in the closed-

form expression c = αA(I − αA)−1�I , where I is the identity matrix. Thus, Katz centrality can be
computed exactly by solving the linear system

(I − αA) z = �I , (2)

followed by evaluating c = αA z. We call this approach the linear algebra formulation. In practice,
the solution to Equation (2) is numerically approximated using iterative solvers for linear systems.
Although these solvers yield solutions of good quality, they can take hundreds of iterations to
converge [19]. Thus, in terms of running time, those algorithms can be impractical for today’s
large networks, which often have millions of nodes and billions of edges.

Instead, the algorithm of Foster et al. [9] estimates Katz centrality iteratively by computing
partial sums of the series from Equation (1) until a stopping criterion is reached. Although very
efficient in practice, this method has no guarantee on the correctness of the ranking it finds, not
even for the top nodes. Thus, the approach is ineffective for applications where only a subset of the
most central nodes is needed or when accuracy is needed. As this is indeed the case in many appli-
cations, several top-k centrality algorithms have been proposed recently for closeness [4] and be-
tweenness [15]. Recently, a top-k algorithm for Katz centrality [19] was suggested. That algorithm
still relies on solving Equation (2); however, it reduces the numerical accuracy that is required to
obtain a top-k rating. Similarly, Zhan et al. [23] propose a heuristic method to exclude certain nodes
from top-k rankings but do not present algorithmic improvements on the actual Katz computation.
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Dynamic graphs. Furthermore, many of today’s real-world networks, such as social networks
and web graphs, are dynamic in nature and some of them evolve over time at a very quick pace.
For such networks, it is often impractical to recompute centrality measures from scratch after
each graph modification. Thus, several dynamic graph algorithms that efficiently update centrality
have been introduced for closeness [5] and betweenness [14]. Such algorithms usually work well
in practice, because they reduce the computation to the part of the graph that has actually been
affected. This offers potentially large speedups compared to recomputation. For Katz centrality,
dynamic algorithms have recently been proposed by Nathan and Bader [17, 18]. However, those
algorithms rely on heuristics and are unable to reproduce the exact Katz ranking after dynamic
updates.

Our contribution. We construct a vertex-centric algorithm that computes Katz centrality by it-
eratively improving upper and lower bounds on the centrality scores (see Section 3 for the con-
struction of this algorithm). Although the computed centrality scores are approximate, our algo-
rithm guarantees the correct ranking. We extend (in Section 4) this algorithm to dynamic graphs
while preserving the guarantees of the static algorithm. An extensive experimental evaluation (see
Section 5) shows that (i) our new algorithm outperforms Katz algorithms that rely on numerical
approximation with speedups between 1.5× and 3.5×, depending on the desired correctness guar-
antees; (ii) our algorithm has a speedup in the same order of magnitude over the widely used
heuristic of Foster et al. [9] while improving accuracy; (iii) our dynamic graph algorithm improves
upon static recomputation of Katz rankings for batch sizes of less than 10,000 edges; and (iv) effi-
cient parallel CPU and GPU implementations of our algorithm allow near real-time computation
of Katz centrality in fractions of seconds even for very large graphs. In particular, our GPU imple-
mentation achieves speedups of more than 10× compared to a 20-core CPU implementation.

The variants of the algorithm that we describe in this article are able to handle general attenu-
ation factors α (i.e., values of α up to the largest valid value of 1

σmax
), whereas the variant that was

previously published in our conference paper [22] can only handle α < 1
degmax

. This is achieved

via a new spectral bound (in Section 3.2) on the Katz centrality score. Experiments (in Section 5.2)
confirm that our algorithm is also faster than numerical solvers when the spectral bound is used.

2 PRELIMINARIES

2.1 Notation

Graphs. In the following sections, we assume that G = (V ,E) is the input graph to our al-
gorithm. Unless stated otherwise, we assume that G is directed. For the purposes of Katz
centrality, undirected graphs can be modeled by replacing each undirected edge with two
directed edges in opposite directions. For a node x ∈ V , we denote the out-degree of x by
deg(x ). The maximum out-degree of any node in G is denoted by degmax.

Katz centrality. The Katz centrality of the nodes ofG is given by Equation (1). With ci (v ), we
denote the i-th partial sum of Equation (1). Katz centrality is not defined for arbitrary values
of α . In general, Equation (1) converges for α < 1

σmax
, where σmax is the largest singular value

of the adjacency matrix A (see the work of Katz [11]). Katz centrality can also be defined by
counting inbound walks in G [11, 20]. For this definition, ωi (x ) is replaced by the number
of walks of length i that end in x ∈ V . Indeed, for applications like web graphs, nodes that
are the target of many links intuitively should be considered more central than nodes that
only have many links themselves.1 However, as inbound Katz centrality coincides with the

1This is a central idea behind the PageRank [6] metric.
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outbound Katz centrality of the reverse graph, we will not specifically consider it in this
article.

Matrix norms. Let M be an R-valued n ×n matrix. Let | |M | |p denote the matrix norm induced

by the �p -norm on Rn : | |M | |p = sup { | |Mx | |p
| |x | |p : x ∈ Rn ,x � 0}. It holds that | |MM ′ | |p ≤

||M | |p | |M ′ | |p and hence | |M i | |p ≤ ||M | |ip for i ∈ N. For the adjacency matrix A, it is known
that | |A| |1 = degmax. Furthermore, | |A| |2 = σmax.

2.2 Related Work

Most algorithms that are able to compute Katz scores with approximation guarantees are based on
the linear algebra formulation and compute a numerical solution to Equation (2). Several approxi-
mation algorithms have been developed to decrease the practical running times of this formulation
(e.g., based on low-rank approximation [1]). Nathan et al. [19] prove a relationship between the
numerical approximation quality of Equation (2) and the resulting Katz ranking quality. Although
this allows computation of top-k rankings with reduced numerical approximation quality, no sig-
nificant speedups can be expected if full Katz rankings are desired.

Foster et al. [9] present a vertex-centric heuristic for Katz centrality: they propose to determine

Katz centrality by computing the recurrence ci+1 = αA ci + �I . The computation is iterated until
either a fixed point2 or a predefined number of iterations is reached. This algorithm performs well
in practice; however, due to the heuristic nature of the stopping condition, the algorithm does not
give any correctness guarantees.

Another work from Nathan and Bader [18] discusses an algorithm for a “personalized” variant
of Katz centrality. Our algorithm uses a similar iteration scheme but differs in multiple key proper-
ties of the algorithm: instead of considering personalized Katz centrality, our algorithm computes
the usual, “global” Katz centrality. Nathan and Bader give a global bound on the quality of their
solution; however, we are able to compute per-node bounds that can guarantee the correctness
of our ranking. Finally, Nathan and Bader’s dynamic update procedure is a heuristic algorithm
without correctness guarantee, although its ranking quality is good in practice. In contrast to that,
our dynamic algorithm reproduces exactly the results of the static algorithm.

Techniques introduced in the conference version of this article are used in the construction of
a greedy optimization algorithm for the GED-Walk group centrality measure [2]. GED-Walk is
related to Katz but differs in two key aspects: (i) it assigns a centrality score to sets of vertices and
not to individual vertices, and (ii) it counts walks that cross vertices and not walks that start (or
end) at certain vertices.

3 ITERATIVE IMPROVEMENT OF KATZ BOUNDS

The idea behind our algorithm is to compute upper and lower bounds on the centrality of each
node. Those bounds are iteratively improved. We stop the iteration once an application-specific
stopping criterion is reached. When that happens, we say that the algorithm converges.

Per-node upper and lower bounds allow us to rank nodes against each other: let �r (x ) andur (x )
denote lower and upper bounds, respectively, on the Katz score of node x after iteration r . An
explicit construction of those bounds will be given later in this section; for now, assume that such
bounds exist. Furthermore, letw andv be two nodes; without loss of generality, we assume thatw
and v are chosen such that �r (w ) ≥ �r (v ). If �r (w ) > ur (v ), then w appears in the Katz centrality
ranking beforev and we say thatw and v are separated by the bounds �r and ur . In this context, it
should be noted that per-node bounds do not allow us to prove that the Katz scores of two nodes

2Note that a true fixed point will not be reached using this method unless the graph is a DAG.
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are equal.3 However, as the algorithm still needs to be able to rank nodes x that share the same
�r (x ) and ur (x ) values, we need a more relaxed concept of separation. Therefore, we present the
following definition.

Definition 3.1. In the same setting as before, let ϵ > 0. We say that w and v are ϵ-separated, if
and only if

�r (w ) > ur (v ) − ϵ . (3)

Intuitively, the introduction of ϵ makes the ϵ-separation condition easier to fulfill than the sepa-
ration condition: indeed, separated pairs of nodes are also ϵ-separated for every ϵ > 0. In particular,
ϵ-separation allows us to construct Katz rankings even in the presence of nodes that have the same
Katz score: those nodes are never separated, but they will eventually be ϵ-separated for every ϵ > 0.

To actually construct rankings, it is sufficient to notice that once all pairs of nodes are ϵ-
separated, sorting the nodes by their lower bounds �r yields a correct Katz ranking, except for
pairs of nodes with a difference in Katz score of less than ϵ . Thus, using this definition, we can
discuss possible stopping criteria for the algorithm:

Rankinд criterion: Stop once all nodes are ϵ-separated from each other. This guarantees that
the ranking is correct, except for nodes with scores that are very close to each other.

Top-k rankinд criterion: Stop once the top-k nodes are ϵ-separated from each other and from
all other nodes. For k = n, this criterion reduces to the ranking criterion.

Top-k set criterion: Stop once the top-k nodes are ϵ-separated from all other nodes. This yields
the set of top-k nodes without ranking the nodes within this set.

Score criterion: Stop once the difference between the upper and lower bound of each node
becomes less than ϵ . This guarantees that the Katz centrality of each node is correct up to
an additive constant of ϵ .

Pair criterion: Stop once two given nodes u and v are ϵ-separated.

3.1 Construction of Per-Node Bounds

For our algorithm to work, we need two additional properties from �r (v ) and ur (v ).

lim
r→∞
�r (v ) = lim

r→∞
ur (v ) = c(v ) for all v ∈ V (P1)

�r+1 (v ) ≥ �r (v ) and ur+1 (v ) ≤ ur (v ) for all r ∈ N (P2)

(P1) ensures that we can satisfy our stopping criteria in a finite number of steps: if �r andur con-
verge to the true values of c (v ), all vertices will be ϵ-separated after a finite number of iterations.
However, (P2) (i.e., the property that �r and ur are monotone in r ) guarantees that the algorithm
makes progress toward achieving ϵ-separation in each iteration. In particular, if (P2) holds, ver-
tices that are ϵ-separated in some iteration of the algorithm will also be ϵ-separated in all future
iterations (i.e., also after r is increased).

We now construct �r andur . First, we notice that a simple lower bound on the Katz centrality of
a node v can be obtained by truncating the series in Equation (1) after r iterations, hence �r (v ) :=∑r

i=1 ωi (v )α i is a lower bound on c(v ). For undirected graphs, this lower bound can be improved
to

∑r
i=1 ωi (v )α i +ωr (v )α r+1, as any walk of length r can be extended to a walk of length r +1 with

the same starting point by repeating its last edge with reversed direction.
To get an appropriate upper bound, we will prove a series of statements on

∑∞
i=r+1 ωi (v ).

3In theory, the linear algebra formulation is able to prove that the score of two nodes is indeed equal. However, in practice,

limited floating point precision limits the usefulness of this property.
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Lemma 3.1. Let C,γ > 0 be constants. If | |Ai | |1 ≤ Cγ i and α < 1/γ , then one obtains a bound of

∞∑
i=r+1

α iωi (x ) ≤ α r+1ωr (x )C
γ

1 − αγ

on the tail of Katz centrality.

Values of C and γ will later be chosen appropriately to obtain a tangible bound.

Proof. ωi (x ) can be restated as a �1-norm in Rn : ωi (x ) = | |Aiex | |1. Here, ex denotes the x-th
standard unit vector in Rn . Using the fact that the induced �1-norm is compatible with the �1-norm
on Rn , we can see that ωr+i (x ) = | |Ar+iex | |1 ≤ ||Ai | |1 | |Arex | |1 = | |Ai | |1 ωr (x ). Hence, it holds that

∞∑
i=r+1

α iωi (x ) ≤
∞∑

i=1

α r+i | |Ai | |1 ωr (x ) ≤ α rωr (x )C
∞∑

i=1

(αγ )i .

Note that the last term is a geometric series. As αγ < 1, this series converges to αγ/(1 − αγ );
inserting this expression yields the result of the lemma. �

The following lemma will help us prove that (P1) holds for bounds that are based on Lemma 3.1.

Lemma 3.2. The bound from Lemma 3.1 converges:

lim
r→∞

α r+1ωr (x )C
γ

1 − αγ = 0.

Proof. It is enough to show that limr→∞ α rωr (x ) = 0. We use a strategy similar to the proof
of Lemma 3.1. It holds that α rωr (x ) ≤ α r | |Arex | |1 ≤ α rCγ r | |ex | |1. The fact that αγ < 1 completes
the proof. �

3.2 Spectral Bound

We can now derive a bound on
∑∞

i=r+1 ωi (v ) for arbitrary α by finding appropriate values for C
and γ .

Corollary 3.3. For general α (i.e., α < 1/σmax), the tail of Katz centrality is bounded as follows:

∞∑
i=r+1

α iωi (x ) ≤ α r+1ωr (x )
√
n

σmax

1 − α σmax
.

Proof. Due to Lemma 3.1, it is enough to find an appropriate bound of | |Ai | |1. Indeed, using the
fact that | |M | |1 ≤

√
n | |M | |2 for arbitraryn×n matricesM (e.g., see the work of Feng and Tonge [8]),

we can see that

| |Ai | |1 ≤
√
n | |Ai | |2 ≤

√
n | |A| |i2 =

√
n σ i

max.

Here, the last equality uses the fact that the induced 2-norm is equal to the largest singular value.
Note that according to Lemma 3.1, this bound is valid for all α < 1/σmax (i.e., for all α for which
the Katz centrality exists). �

Unfortunately, the bound from Corollary 3.3 is not necessarily monotone in r—that is, (P2) does
not necessarily hold. Since we want that property to hold for ur , we define

u
spec
r (x ) := max

i ∈{1, ...,r }

r∑
i=1

α rωr (x ) + α r+1ωr (x )
√
n

σmax

1 − α σmax

to realize ur in the general case (i.e., α < σmax).
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3.3 Combinatorial Bound

In special cases, we can improve upon u
spec
r : although Corollary 3.3 answers the question of a

suitable bound on the tail of Katz centrality in full generality (i.e., for all possible values of α ), it
requires a computation of σmax. This computation is comparable in complexity to computing the
Katz centrality itself; hence, it is desirable to find bounds that can be computed with less overhead.4

Corollary 3.4. For α < 1/ degmax, the tail of Katz centrality is bounded by

∞∑
i=r+1

α iωi (x ) ≤ α r+1ωr (x )
degmax

1 − α degmax

.

Proof. Again, it is possible to use Lemma 3.1 and the fact that | |A| |1 = degmax to show the
corollary. For a combinatorial proof of the corollary, it is enough to see thatωi+1 (x ) ≤ degmax ωi (x ).
This is true because any walk of length i that starts at x can be extended to at most degmax paths
of length i + 1 starting at x (by concatenating an edge to the end of the walk). The corollary now
follows by applying induction and reusing the strategy of the proof of Lemma 3.1. �

Based on Corollary 3.4, we define the following bound to realize ur :

ucomb
r (x ) :=

r∑
i=1

α rωr (x ) + α r+1ωr (x )
degmax

1 − α degmax

.

It is worth remarking that graphs exist for which the bound from Corollary 3.4 is tight.

Lemma 3.5. If G is a complete graph, ui (x ) = c(x ) for all x ∈ V and i ∈ N.

Proof. Consider the complete graph with n vertices. Then, ωi (x ) = (n − 1)i for all x ∈ V .

Let δ > 0 be a constant such that α = δ
degmax

= δ
n−1 . Equation (1) does not converge for δ ≥ 1.

However, for δ < 1, the Katz centrality is given by c(x ) = δ
1−δ

. A short calculation (i.e., rewriting
the partial sum of the geometric series in ui (x )) shows that Corollary 3.4 yields the upper bound
ucomb

i (x ) = c(x ) for all i ∈ N and x ∈ V . �

Bound ucomb is monotone—that is, it satisfies (P2).

Lemma 3.6. For each x ∈ V , ucomb
i (x ) is non-increasing in i .

Proof. We prove this lemma in slightly more general form. In particular, consider the case
where Lemma 3.1 holds for C = 1. In this case, we can derive a bound of the form ur (x ) =∑r

i=1 α
iωi (x ) + α r+1ωr (x )

γ

1−αγ
. It holds that

ui+1 − ui (x ) = α i+1ωi+1 (x ) + α i+2ωi+1 (x )
γ

1 − αγ − α
i+1ωi (x )

γ

1 − αγ

= α i+1

(
1 − αγ

γ
+ α

)
ωi+1 (x )

γ

1 − αγ − α
i+1ωi (x )

γ

1 − αγ

= α i+1

(
1

γ
ωi+1 (x ) − ωi (x )

)
γ

1 − αγ .

4In fact, the popular power iteration method to compute σmax for real, symmetric, positive-definite matrices has a com-

plexity of Ω(r |E |), where r denotes the number of iterations.
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ALGORITHM 1: Katz centrality bound computation for static graphs

Initialize c0 (x ) ← 0 ∀x ∈ V

Initialize r ← 0 and ω0 (x ) ← 1 ∀x ∈ V

Initialize set of active nodes: M ← V

while not converged() do

Set r ← r + 1 and ωr (x ) ← 0 ∀x ∈ V

for all v ∈ V do

for all v → u ∈ E do

ωr (v ) ← ωr (v ) + ωr−1 (u )

cr (v ) ← cr−1 (v ) + α r ωr (v )
Compute �r (v ) and ur (v )

function converged()

partialSort(M , k , �r , decreasing)

for all i ∈ {k + 1, . . . , |V | } do

if ur (M[i]) − ϵ < �r (M[k]) then

M ← M \ {v }
if |M | > k then

return false

for all i ∈ {2, . . . , min( |M |, k ) } do

if ur (M[i]) − ϵ ≥ �r (M[i − 1]) then

return false

return true

Thus, it is enough to show that 1
γ
ωi+1 (x ) − ωi (x ) ≤ 0. The latter inequality follows by rewriting

ωi (x ) as a 1-norm and using the properties of γ (i.e., Lemma 3.1):

1

γ
ωi+1 (x ) =

1

γ
| |Ai+1ex | |1 ≤

1

γ
| |A| |1 | |Aiex | |1 ≤ ||Aiex | | = ωi (x ).

Lemma 3.6 follows for γ = degmax. �

3.4 Efficient Rankings Using Per-Node Bounds

In the following, we state the description of our Katz algorithm for static graphs. As hinted earlier,
the algorithm estimates Katz centrality by computing ur (v ) and �r (v ). These upper and lower
bounds are iteratively improved by incrementing r until the algorithm converges.

To actually compute cr (v ), we use the well-known fact that the number of walks of length
i starting in node v is equal to the sum of the number of walks of length i − 1 starting in the
neighbors of v—in other words,

ωi (v ) =
∑

v→x ∈E

ωi−1 (x ). (4)

Thus, if we initialize ω1 (v ) to deg(v ) for all v ∈ V , we can then repeatedly loop over the edges of
G and compute tighter and tighter lower bounds.

We focus here on the top-k convergence criterion. It is not hard to see how our techniques can
be adopted to the other stopping criteria mentioned at the start of the previous section. To be
able to efficiently detect convergence, the algorithm maintains a set of active nodes. These are the
nodes for which the lower and upper bounds have not yet converged. Initially, all nodes are active.
Each node is deactivated once it is ϵ-separated from the k nodes with highest lower bounds �r . It
should be noted that, because of Lemma 3.6, deactivated nodes will stay deactivated in all future
iterations. Thus, for the top-k criterion, it is sufficient to check whether (i) only k nodes remain
active and (ii) the remaining active nodes are ϵ-separated from each other. This means that each
iteration will require less work than its previous iteration.

Algorithm 1 depicts the pseudocode of the algorithm. Computation of ωr (v ) is done by evalu-
ating the recurrence from Equation (4). After the algorithm terminates, the ϵ-separation property
guarantees that the k nodes with highest �r (v ) form a top-k Katz centrality ranking (although
�r (v ) does not necessarily equal the true Katz score).

The converged procedure in Algorithm 1 checks whether the top-k convergence criterion is
satisfied. In this procedure, M denotes the set of active nodes. The procedure first partially sorts
the elements of M by decreasing lower bound �r . After that is done, the first k elements of M cor-
respond to the top-k elements in the current ranking (which might not be correct yet). Note that it
is not necessary to construct the entire ranking here; sorting just the top-k nodes is sufficient. The
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procedure tries to deactivate nodes that cannot be in the top-k and afterward checks if the remain-
ing top-k nodes are correctly ordered. These checks are performed by testing if the ϵ-separation
condition from Equation (3) is true.

Complexity analysis. The sequential worst-case time complexity of Algorithm 1 is O (r |E |+r P ),
where r is the number of iterations and P is the complexity of the convergence checking pro-
cedure. It is easy to see that the loop over V can be parallelized, yielding a complexity of

O (r |V |
p

degmax +r P ) on a parallel machine with p processors. The complexity of converged,

the top-k ranking convergence criterion, is dominated by the O ( |V | + k logk ) complexity of par-
tial sorting. Both the score and the pair criteria can be implemented in O (1). Thus, to determine
the overall complexity, it remains necessary to compute the value of r in the worst case.

Lemma 3.7. Using the bound of Lemma 3.1, the running time complexity of the algorithm is in

O (
log(Cγ /ϵ )

log(1/(αγ )) ( |V | + |E |)).

Proof. The algorithm terminates when all pairs of vertices (x ,x ′) ∈ V × V are ϵ-separated.
Without loss of generality, let �r (x ) ≤ �r (x ′). Then, x and x ′ are ϵ-separated onceur (x )−�r (x ′) < ϵ
and it is sufficient to determine r such that ur (x ) − �r (x ′) ≤ ur (x ) − �r (x ) < ϵ . By plugging in
Lemma 3.1, this can be rewritten to α r+1ωr (x )C

γ

1−αγ
< ϵ . By the definition ofC and γ , it holds that

ωr (x ) ≤ Cγ r and the left-hand side of this inequality is smaller than or equal to C2 (αγ )r+1

1−αγ
. Using

the fact that αγ < 1, a straightforward calculation now shows that for all r >
log(αC2γ /(ϵ (1−αγ )))

log(1/(αγ )) , it

holds that α r+1ωr (x )C
γ

1−αγ
≤ C2 (αγ )r+1

1−αγ
< ϵ . �

It should be noted that—for the same solution quality—our algorithm converges at least as fast
as the heuristic of Foster et al. that computes a Katz ranking without correctness guarantee. Indeed,
the values of cr yield exactly the values that are computed by the heuristic. However, the heuristic
of Foster et al. is unable to accurately assess the quality of its current solution and might thus
perform too many or too few iterations.

4 UPDATING KATZ CENTRALITY IN DYNAMIC GRAPHS

In this section, we discuss how our Katz centrality algorithm can be extended to compute Katz
centrality rankings for dynamically changing graphs. We model those graphs as an initial graph
that is modified by a sequence of edge insertions and edge deletions. We do not explicitly handle
node insertions and deletions. Adding new (i.e., isolated) nodes to the graph does not affect Katz
centrality; these new nodes receive a centrality score of zero. Likewise, removing isolated nodes
from the graph does not affect the score of any remaining node. Adding (or removing) non-isolated
nodes is handled by adding (or removing) isolated nodes followed by edge insertions (or preceded
by edge deletions).

Before processing any edge updates, we assume that our algorithm from Section 3 was first
executed on the initial graph to initialize the values ωi (x ) for all x ∈ V . The dynamic graph
algorithm needs to recomputeωi (x ) for i ∈ {1, . . . , r }, where r is the number of iterations that was
reached by the static Katz algorithm on the initial graph. The main observation here is that if an
edge u → v is inserted into (or deleted from) the initial graph, ωi (x ) only changes for nodes x in
the vicinity of u. More precisely, ωi (x ) can only change if u is reachable from x in at most i − 1
steps.

Algorithm 2 depicts the pseudocode of our dynamic Katz algorithm. I denotes the set of edges
to be inserted, whereas D denotes the set of edges to be deleted. We assume that I ∩ E = ∅ and
D ⊆ E before the algorithm. Effectively, the algorithm performs a breadth-first search (BFS)
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ALGORITHM 2: Dynamic Katz update procedure

E ← E \ D
S ← ∅, T ← ∅
for all w → v ∈ I ∪ D do

S ← S ∪ {w }
T ← T ∪ {v }

for all i ∈ {1, . . . , r } do

updateLevel(i)

for all w ∈ S do

Recompute �r (w ) and ur (w ) from cr (w )

for all w ∈ V do

if ur (w ) ≥ minx∈M �r (x ) − ϵ then

M ← M ∪ {w } � Reactivation

E ← E ∪ I
while not converged() do

Run more iterations of static algorithm

procedure updateLevel(i)

for all v ∈ S ∪T do

ω′i (v ) ← ωi (v )

for all v ∈ S do

for all w → v ∈ E do

S ← S ∪ {w }
ω′i (w ) ← ω′i (w ) − ωi−1 (v ) + ω′i−1 (v )

for all w → v ∈ I do

ω′i (w ) ← ω′i (w ) + ω′i−1 (v )

for all w → v ∈ D do

ω′i (w ) ← ω′i (w ) − ωi−1 (v )

for all w ∈ S do

ci (w ) ← ci (w ) − α i ωi (w ) + α i ω′i (w )

through the reverse graph of G and updates ωi for all nodes nodes that were reached in steps 1
through i .

After the update procedure terminates, the new upper and lower bounds can be computed from
cr as in the static algorithm. We note that ω ′i (x ) matches exactly the value of ωi (x ) that the static
Katz algorithm would compute for the modified graph. Hence, the dynamic algorithm reproduces
the correct values of cr (x ) and also of �r (x ) andur (x ) for all x ∈ V . In case of the top-k convergence
criterion, some nodes might need to be reactivated afterward: remember that the top-k criterion
maintains a set M of active nodes. After edge updates are processed, it can happen that there are
nodes x that are not ϵ-separated from all nodes in M anymore. Such nodes x need to be added to
M to obtain a correct ranking. The ranking itself can then be updated by sorting M according to
decreasing �r .

It should be noted that there is another related corner case: depending on the convergence crite-
rion, it can happen that the algorithm is not converged anymore even after nodes have been reac-
tivated. For example, for the top-k criterion, this is the case if the nodes in M are not ϵ-separated
from each other anymore. Thus, after the dynamic update, we have to perform a convergence
check and potentially run additional iterations of the static algorithm until it converges again.

Assuming that no further iterations of the static algorithms are necessary, the complexity of
the update procedure is O (r |E | + C), where C is the complexity of convergence checking (see
Section 3). In reality, however, the procedure can be expected to perform much better: especially
for the first few iterations, we expect the set S of vertices visited by the BFS to be much smaller
than |V |. However, this implies that effective parallelization of the dynamic graph algorithm is
more challenging than the static counterpart. We mitigate this problem by aborting the BFS if |S |
becomes large and just update the ωi scores unconditionally for all nodes.

Finally, it is easy to see that the algorithm can be modified to update ω in-place instead of
constructing a new ω ′ matrix. For this optimization, the algorithm needs to save the value of ωi

for all nodes of S before overwriting the entries of this vector, as this value is required for iteration
i + 1. For readability, we omit this modification in the pseudocode.

5 EXPERIMENTS

Implementation details. The new algorithm in this article is hardware independent, and as such
we can implement it on different types of hardware with the right type of software support. Specif-
ically, our dynamic Katz centrality requires a dynamic graph data structure. On the CPU, we use
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Table 1. Details of Instances Used in the Experimental Section

Name Origin |V | |E | diam

roadNet-PA Road 1,088,092 1,541,898 794
roadNet-CA Road 1,965,206 2,766,607 865
cit-Patents Citation 3,774,768 16,518,948 26
soc-pokec-relationships Social 1,632,803 30,622,564 14
com-lj Social 3,997,962 34,681,189 21
dimacs10-uk-2002 Link 23,947,347 57,708,624 45
sx-stackoverflow Q&A 2,601,977 63,497,050 11
soc-LiveJournal1 Social 4,847,571 68,993,773 20
com-orkut Social 3,072,441 117,185,083 10
com-friendster Social 65,608,366 437,217,424 37
twitter Social 41,652,230 1,468,365,182 23
wikipedia_link_en Link 13,593,032 1,806,067,135 12

NetworKit [21]; on the GPU, we use Hornet.5 The Hornet data structure is architecture indepen-
dent, although at time of writing only a GPU implementation exists.

NetworKit consists of an optimized C++ network analysis library and bindings to access this
library from Python. The library contains parallel shared-memory implementations of many pop-
ular graph algorithms and can handle networks with billions of edges.

The Hornet [7], an efficient extension to the cuSTINGER [10] data structure, is a dynamic graph
and matrix data structure designed for large-scale networks and to support graphs with trillions of
vertices. In contrast to cuSTINGER, Hornet better utilizes memory, supports memory reclamation,
and can be updated almost 10 times faster.

In our experiments, we compare our new algorithm to the heuristic of Foster et al. and a con-

jugate gradient (CG) algorithm (without preconditioning) that solves Equation (2). The perfor-
mance of CG could be possibly improved by employing a suitable preconditioner; however, we do
not expect this to change our results qualitatively. Both of these algorithms were implemented in
NetworKit and share the graph data structure with our new Katz implementation. We remark that
for the static case, both CG and our Katz algorithm could be implemented on top of a CSR matrix
data structure to improve the data locality and speed up the implementation.

Experimental setup. We evaluate our algorithms on a set of complex networks. These experi-
ments use the Simexpal [3] toolkit to ensure reproducibility of the results. The networks originate
from diverse real-world applications and were taken from SNAP [16] and KONECT [13]. Details
about the exact instances that we used can be found in Table 1. To be able to compare our algorithm
to the CG algorithm, we turn the directed graphs in this test set into undirected graphs by ignor-
ing edge directions. This ensures that the adjacency matrix is symmetric and CG is applicable. Our
new algorithm itself would be able to handle directed graphs just fine. In Table 1, |V | and |E | refer
to the number of vertices and edges in the original data (before the transformation to undirected
graphs).

Most CPU experiments ran on a machine with dual-socket Intel Xeon E5-2690 v2 CPUs with
10 cores per socket6 and 128 GiB RAM; the experiments on the spectral bound (Section 5.2) ran
sequentially on a Intel Xeon Gold 6154 CPU. Our GPU experiments are conducted on an NVIDIA

5Hornet can be found at https://github.com/hornet-gt, whereas NetworKit is available from https://github.com/networkit/

networkit. Both projects are open source, including the implementations of our new algorithm.
6Hyperthreading was disabled for the experiments.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 1.7. Publication date: July 2022.

https://github.com/hornet-gt
https://github.com/networkit/networkit


1.7:12 A. van der Grinten et al.

Table 2. Performance of the Katz Algorithm, Ranking Criterion

ϵ r a Runtimea Separationb ϵ r a Runtimea Separationb

10−1 2.3 33.51 s 96.189974 % 10−7 7.2 78.74 s 99.994959 %
10−2 3.0 42.81 s 98.478250 % 10−8 7.9 83.28 s 99.998866 %
10−3 3.8 51.59 s 99.264726 % 10−9 8.6 85.10 s 99.998886 %
10−4 4.8 65.99 s 99.391884 % 10−10 9.2 89.03 s 99.998889 %
10−5 5.7 71.53 s 99.992908 % 10−11 9.8 99.43 s 99.998934 %
10−6 6.5 70.59 s 99.994861 % 10−12 10.4 96.86 s 99.998934 %

Foster 11.2 105.03 s - CG 12.0 117.24 s -
a Average over all instances. r is the number of iterations.
b Fraction of node pairs that are separated (and not only ϵ -separated). Lower bound on the correctly

ranked pairs. This is the geometric mean over all graphs.

P100 GPU that has 56 streaming multiprocessors and 64 streaming processors (SPs) per stream-
ing multiprocessor (for a total of 3,584 SPs) and has 16 GB of HBM2 memory. To effectively use the
GPU, the number of active threads need to be roughly eight times larger than the number of SPs.
The Hornet framework has an API that enables such parallelization (with load balancing) such
that the user only needs to write a few lines of code.

Unless stated otherwise, we use the combinatorial bound and α = 1
degmax +1 in our experiments.

5.1 Evaluation of the Static Katz Algorithm

In a first experiment, we evaluate the running time of our static Katz algorithm. In particular, we
compare it to the running time of the linear algebra formulation (i.e., the CG algorithm) and the
heuristic of Foster et al. We run CG until the 2-norm of the residual is less than 10−15 to obtain
a nearly exact Katz ranking (i.e., up to machine precision; later in this section, we compare to
CG runs with larger error tolerances). For the heuristic of Foster et al., we use an error tolerance
of 10−9, which also yields an almost exact ranking. For our own algorithm, we use the ranking
convergence criterion (see Section 3) and report running times and the quality of our correctness
guarantees for different values of ϵ . All algorithms in this experiment ran in single-threaded mode.

Table 2 summarizes the results of the evaluation. The fourth column of Table 2 states the fraction
of separated pairs of nodes. This value represents a lower bound on the correctness of ranking.
Note that pairs of nodes that have the same Katz score will never be separated. Indeed, this seems
to be the case for about 0.001% of all pairs of nodes (as they are never separated, not even if ϵ is
very low). Taking this into account, we can see that our algorithm already computes the correct
ranking for 99% of all pairs of nodes at ϵ = 10−3. At this ϵ , our algorithm outperforms the other
Katz algorithms considerably.

Furthermore, Table 2 shows that the average running time of our algorithm is smaller than the
running time of the Foster et al. and CG algorithms. However, the graphs in our instance set vastly
differ in size and originate from different applications; thus, the average running time alone does
not give good indication for performance on individual graphs. In Figure 1, we report running
times of our algorithm for the 10 largest individual instances. ϵ = 10−1 is taken as baseline and the
running times of all other algorithms are reported relative to this baseline. In the ϵ ≤ 10−3 setups,
our Katz algorithm outperforms the CG and Foster et al. algorithms on all instances. The algorithm
of Foster et al. is faster than our algorithm for ϵ = 10−5 on 3 out of 10 instances. On the depicted
instances, CG is never faster than our algorithm, although it can outperform our algorithm on
some small instances and for very low ϵ .

In Figure 2, we present results of our Katz algorithm while using the top-k convergence criterion.
We report (geometric) mean speedups relative to the full ranking criterion. To demonstrate that our
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Fig. 1. Katz performance on individual instances.

Fig. 2. Top-k speedup over full ranking. Fig. 3. Performance of the spectral bound.

algorithm performs well over a large range ofk , we pickk between 1 and 1,000, increasing in factors
of 10. The figure also includes the approach of Nathan et al. [19], who conducted experiments
on real-world graphs and concluded that solving Equation (2) with an error tolerance of 10−4 in
practice almost always results in the correct top-100 ranking. Thus, we run CG with that error
tolerance. However, it turns out that this approach is barely faster than our full ranking algorithm.
In contrast to that, our top-k algorithm yields decent speedups for k ≤ 1,000. We note that the
running times can still be improved considerably if the top-k set criterion is used instead of the
top-k ranking criterion. For example, for k = 100, the running time improves by a factor of 1.4×
in the geometric mean, whereas for k = 1,000, it improves by 1.3×.

Finally, we investigate how the performance of our algorithm is affected by the characteristics
of the input graph. We compare the performance of our top-k algorithm for k = 100 on road and
non-road networks. We pick ϵ = 10−15. For roadNet-CA and roadNet-PA, we get speedups of 1.94×
and 1.78× over CG, respectively. On other networks, we get a geometric mean speedup of 1.51×.
Overall, our algorithm performs well on both high-diameter and low-diameter networks. How-
ever, both algorithms require more iterations on high-diameter networks than on low-diameter
networks: CG requires 3.5× more iterations on the two road networks, whereas our algorithm
requires only 2.2× more iterations.

5.2 Performance of Spectral Bound

Next, we analyze the performance of our algorithm when α approaches the largest valid value of
1

σmax
. More precisely, we run our top-100 algorithm and the CG algorithm with α = δ

σmax
, for values

of δ between 0.5 and 0.99. The results are depicted in Figure 3. Our algorithm is faster than CG for
δ < 0.99. CG scales better as δ approaches 1; this is expected since CG picks the direction in which
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Fig. 4. Dynamic update performance.

the solution is improved in a more sophisticated way (however, in contrast to our algorithm, it does
not make direct guarantees about the correctness of the ranking). We remark that both algorithms
run into numerical stability issues if δ increases beyond the range from Figure 3 (i.e., for δ ≥ 0.999).
This is not surprising as Katz centrality diverges for δ → 1.

5.3 Evaluation of the Dynamic Katz Algorithm

In our next experiment, we evaluate the performance of our dynamic Katz algorithm to compute
top-1,000 rankings using ϵ = 10−4. The experiment is performed on the graphs of Table 1. We
select b random edges from the graph, delete them in a single batch, and run our dynamic update
algorithm on the resulting graph. We vary the batch size b from 100 to 105 and report the running
times of the dynamic graph algorithm relative to recomputation. Similar to the previous experi-
ment, we run the algorithms in single-threaded mode. Note that although we only show results
for edge deletion, edge insertion is completely symmetric in Algorithm 2.

Figure 4 summarizes the results of the experiment. We present the geometric mean speedup
over all instances. For batch sizes b ≤ 1,000, our dynamic algorithm offers a considerable speedup
over recomputation of Katz centralities. As many of the graphs in our set of instances have a
small diameter, for larger batch sizes (b > 10,000), almost all of the vertices of the graph need to
be visited during the dynamic update procedure. Hence, the dynamic update algorithm is slower
than recomputation in these cases.

5.4 Real-Time Katz Computation Using Parallel CPU and GPU Implementations

Our last experiment concerns the practical running time and scalability of efficient parallel CPU
and GPU implementations of our algorithm. For this, we compare the running times of our shared-
memory CPU implementation with different numbers of cores. Furthermore, we report results of
our GPU implementation. Because of GPU memory constraints, we could not process all of the
graphs on the GPU. Hence, we provide the results of this experiment only for a subset of graphs
that do fit into the memory of our GPU. The graphs in this subset have between 1.5 million and
120 million edges. We use the top-10, 000 convergence criterion with ϵ = 10−6.

Figure 5 depicts the results of the evaluation. In this figure, we consider the sequential CPU
implementation as a baseline. We report the relative running times of the 2-, 4-, 8-, and 16-core CPU
configurations, as well as the GPU configuration, to this baseline. The parallel CPU configurations
yield moderate speedups over the sequential implementation; however, the GPU gives a significant
speedup over the 16-core CPU configuration.7 Even compared to a 20-core CPU configuration (not
depicted in the plots; Table 3), the GPU achieves a (geometric) mean speedup of 10×.

7Our CPU implementation uses a sequential algorithm for partial sorting while the GPU sorts in parallel.
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Fig. 5. Scalability of parallel CPU and GPU implementations.

Table 3. Absolute Running Times and Parallel Speedups (Versus Sequential CPU Baseline)

of CPU- and GPU-Based Codes for GPU Instances

Number of Cores
Name Sequential 2 4 8 16 20 GPU

roadNet-PA 670 ms 1.39× 1.85× 2.16× 2.55× 2.18× 33.50×
roadNet-CA 1018 ms 1.50× 2.09× 2.51× 2.93× 2.69× 40.72×
cit-Patents 4751 ms 1.55× 2.52× 4.23× 6.19× 6.41× 41.68×
com-lj 3916 ms 1.48× 1.60× 2.61× 3.51× 4.07× 56.75×
soc-LiveJournal1 3710 ms 1.24× 1.55× 2.39× 3.14× 4.40× 42.64×
com-orkut 8205 ms 1.65× 2.26× 3.64× 6.69× 6.94× 38.52×

Note: Data is presented for all instances of our GPU experiments. We report data on a single run of

each algorithm (preliminary experiments demonstrated that the deviations among different runs are

generally below 10% of the mean).

The CPU implementation achieves running times in the range of seconds; however, our GPU
implementation reduces this running time to a fraction of a second. In particular, the GPU running
time varies between 20 ms (for roadNet-PA) and 213 ms (for com-orkut), enabling near real-time
computation of Katz centrality even for graphs with hundreds of millions of edges.

6 CONCLUSION

In this article, we presented an algorithm for Katz centrality that computes upper and lower bounds
on the Katz score of individual nodes. Experiments demonstrated that our algorithm is able to com-
pute highly accurate Katz centrality rankings quickly. It outperforms both linear algebra formula-
tions and heuristics, with speedups between 150% and 350% depending on the desired correctness
guarantees.

Future work could try to apply the ϵ-separation framework to other ranking problems. It would
also be interesting to either prove that there are graphs where the spectral bound is tight (indicating
that our current algorithm cannot be further improved), or to derive stricter per-node bounds
for Katz centrality. On the implementation side, our new algorithm could be formulated in the
language of GraphBLAS [12] to enable it to run on a variety of upcoming software and hardware
architectures.
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