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Abstract—There are a wide number of graph centrality met-
rics. Further, the performance of each can vary widely depending
on the type of implementation. In this work we present our
implementation of triangle centrality in Arkouda with several
different triangle counting methods. Triangle Centrality is a
robust metric that captures the centrality of a vertex through
both a vertex’s own connectedness and that of its neighbors.
Arkouda is an open-source framework for data science at the
scale of terabytes and beyond. These methods are compared
against each other and another shared memory implementation.

Index Terms—triangle counting, graph theory, large scale
graphs

I. INTRODUCTION

Ideally, a centrality metric will have several characteristics.
The first is accuracy; the algorithm should return vertices
that are central in the graph. The method should be quick;
processing large graphs is time consuming and even optimized
algorithms are still bound by Amdahl’s law. Finally, methods
should be robust; considering both highly connected vertices
and vertices that are connected to highly connected vertices.
There are many other metrics that are commonly used and have
been extensively studied including PageRank [1], closeness
centrality [2], betweenness centrality [3], harmonic centrality
[4] and many others. For reference, the algorithmic complexity
of closeness centrality and harmonic centrality is O(mn). The
first parallel implementation of betweenness centrality was
done by Bader and Madduri [5].

The main computations in triangle centrality [6] are done
in triangle counting. Using an adjacency matrix as a represen-
tation for a graph in main memory, this can be completed in
O(m

√
m) time complexity. However, for real-world graphs,

the practical performance can be very different even if they
have the same number of edges because such graphs are often
very sparse with very different topologies. Arkouda works
with a double index data structure [7] but this demonstrates an
ideal bound for performance comparison. Triangle centrality
considers three properties for a vertex; the open set (including
the respective vertex) of triangle counts for the neighbors of
which a vertex is a part of, the triangle counts of its adjacency
set that do not include that vertex in its set and the total count
of triangles in a graph. The first captures the connectedness
of a vertex, the second captures the connectedness of its
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neighbors, and the third bounds this into an interpretable range
of [0, 1].

There has been significant research in triangle counting.
Depending on the storage of the graph whether that be an
adjacency matrix, adjacency lists or some other format, there
are many variations. In distributed systems there has been
research into using GPUs [8] [9] [10] to optimize triangle
counting through bitmaps or optimizing graph partitioning
methods. In a MapReduce implementation, Burkhardt achieves
an optimal time complexity for triangle counting at O(m

√
m)

[11]–[13] for adjacency matrices [12].

II. ALGORITHMS

We implement several Arkouda methods to compare against.
All of these methods utilize the double index data structure
[14]. This data structure maintains a neighbor vector for which
the indices are vertices in the graph. The elements in the vector
are indices in the edge vectors which hold each respective
vertex’s edges, the source and the destination. For each vertex,
the number of edges and its start in the edge vector are held
in a separate vector. Because of this, a vertex’s edges can be
accessed in O(1) time.

Many Real world graphs have a skewed degree distribution
meaning that a small number of vertices have a very high
degree and many vertices have a low degree. Our first triangle
counting method takes advantage of this distribution by only
searching vertices with the smallest degree. The degree of each
vertex can be accessed in O(1) making this efficient.

Algorithm 1 Minimum Search Triangle Counting Method
Require: Graph G

for edges < u, v >∈ G do
let sv be the vertex with the smaller adjacency list
let lv be the vertex with the larger adjacency list
for vertices w in N(sv) do

if N(w) > N(lv) then
edgesearch(lv)

else
edgesearch(w)

end if
end for

end for

Our other method avoids the multiple for loops necessary
in most edge intersection methods and takes advantage of the



TABLE I
RUN TIMES FOR EACH METHOD (SEC)

Graph GraphBLAS Minimum Search Path Merge
as-caida20071105 0.00013 0.111 0.085
ca-AstroPh 0.396 0.176 0.249
ca-CondMat 0.108 0.088 0.047
ca-GrQc 0.017 0.014 0.0079
email-enron 0.00012 0.171 0.409
loc-brightkite 0.0057 0.204 0.27

sorting in the preprocessing in Arkouda. The adjacency lists
of two vertices are compared.

Algorithm 2 Path Merge Triangle Counting Method
Require: Graph G

for edges < u, v >∈ G do
LNI and RNI point to the indices in the edge list of
the left and right vertex
while LNI ∈ N(u) and RNI ∈ N(v) do

if vertex at RNI == vertex at LNI then
Increment Count
Increment RNI , LNI

else
if dst[RNI] < dst[LNI] then

Increment RNI
else

Increment LNI
end if

end if
end while

end for

Comparisons are done such that no searches are required
and the extraneous for loops are not required. All three afore-
mentioned components of triangle centrality can be evaluated
during the triangle counting step; the vertices and total number
of triangles in the graph are immediately updated and the
existence of a triangle is updated for each neighbor edge.
Then, adjacent vertices without this moniker can be added
to the respective closed set of triangles.

III. RESULTS

The experiments for both the GraphBLAS SuiteSparse
library [15] version 5.1.5 and the Arkouda implementations
were run on a single locale on an Ubuntu 20.04 operating
system with an Intel i7-10700K CPU.

It is expected that the GraphBLAS outperforms Arkouda
because it is a shared memory implementation and lacks
the overhead in Arkouda but in certain graphs the Arkouda
methods perform better. This could be because the data struc-
tures in Arkouda handle certain graph topologies better than
GraphBLAS which was written entirely with linear algebra
methods. Within the Arkouda methods there is not a clear
fastest algorithm; sometimes the path merge method is twice
as fast as the minimum search method but on other graphs the
opposite is true.

IV. CONCLUSION

We integrate several triangle counting methods and compare
each to a shared memory implementation in GraphBLAS. De-
spite being designed for a distributed memory implementation,
the Arkouda methods run comparably or better than the Graph-
BLAS implementations. Due to the different performances of
the path merge and the minimum search method, it may be
fruitful to determine which method may be faster at run time
because this can be twice as fast. Ensembling these methods
could yield an efficient method that generalizes to many dif-
ferent graph types. Our research is open-source and available
on GitHub at https://github.com/Bears-R-Us/arkouda-njit. We
would like to acknowledge both the Arkouda and Chapel
community.
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