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Abstract. The suffix array is a fundamental data structure to support
string analysis efficiently. It took about 26 years for the sequential suffix
array construction algorithm to achieve O(n) time complexity and in-
place sorting. In this paper, we develop the D-Limited Parallel Induce
(DLPI ) algorithm, the first O(n

p
) time parallel suffix array construction

algorithm. The basic idea of DLPI includes two aspects: dividing the
O(n) size problem into p reduced sub-problems with size O(n

p
) so we

can handle them on p processors in parallel; developing an efficient par-
allel induce sorting method to achieve correct order for all the reduced
sub-problems. The complete algorithm description is given to show the
implementation method of the proposed idea. The time and space com-
plexity analysis and proof are also given to show the correctness and
efficiency of the proposed algorithm. The proposed DLPI algorithm can
handle large strings with scalable performance.

Keywords: Suffix Array · String Algorithm · Parallel Sorting · String
Analysis · Optimal Algorithm

1 Introduction

Suffix arrays were initially introduced by Manber and Myers [18] as a space effi-
cient alternative to suffix trees [21]. Suffix arrays can be widely used in string
processing, data compression, text indexing, information retrieval and compu-
tational biology. Since the volume of string data is increasing constantly, high
performance suffix array construction algorithms (SACAs) have been a challeng-
ing problem. Thirteen years after the suffix array was proposed, the first linear
time algorithm for suffix sorting over integer alphabets was achieved by three
research groups, Ko and Aluru [12] , Kärkkäinen and Sanders [9] and Kim et
al. [11] at almost the same time. They reduced the time complexity of suffix
array construction algorithms from original O(nlog(n)) to O(n). These sequen-
tial algorithms are optimal in terms of asymptotic time complexity. Furthermore,
many lightweight algorithms [1,8,19,20] with small working space were devel-
oped. Especially, Nong et al. [22] can achieve O(1) space complexity for constant
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alphabets and Li et al. [17] can achieve O(1) in-place sorting for read-only inte-
ger alphabets. This also took about thirteen years to reduce the working space
complexity from O(n) to O(1).

Many parallel SACAs have also been developed. For examples, Futamura et
al. [4] gave a very early effort to implement a parallel SACA based on the sequen-
tial prefix-doubling method. Shun’s problem-based benchmark suite (PBBS) [26]
leveraged the task-parallel Cilk Plus programming model in its parallel multicore
skew algorithm implementation. Osipov [23] and Deo and Keely [2] implemented
the parallel Difference Cover 3 [10] or skewed algorithm on GPU. Homann et al.
[6] introduced the mkESA tool on multithreaded CPUs that could parallelize the
sequential induce copy method. Lao et al. [14,15] implemented their parallel recur-
sive algorithm on multicore computers. All the parallel methods can significantly
improve the practical performance compared with the corresponding sequential
methods. Yet, none of them can handle very large string on many (p) processors in
O(np ) time. To achieve scalable performance, we need a parallel SACA with O(np )
time complexity. The major contributions of this paper are as follows.

– A high level parallel suffix sorting framework is proposed. This framework
aims to divide a large string’s suffix sorting problem (T (n, p)) into many even
size reduced sub-problems (T (np , 1)) and the large problem can be solved by
handling the many reduced sub-problems on p processors in parallel. In other
words, T (n, p) = T (np , 1).

– The first parallel suffix array construction algorithm DLPI with O(np ) time
is presented. DLPI is optimal in terms of asymptotic time complexity.

2 Problem Description

We first give some basic definitions and notations to present the problem clearly.

Definition 1. Suffix Array: Given a string S = S[0..n − 1] with n characters,
the string’s suffix array (SA) is an array of integers providing the indices of
suffixes of S in lexicographical order. This means that ∀i < j, we have suf(i′) <
suf(j′), where i′ = SA[i], j′ = SA[j] and suf(k) is the suffix S[k..n − 1].

Definition 2. Read-only integer alphabets: The alphabets Σ is a set of charac-
ters (Σ ⊆ Z) that can be used to build a string. Given a string S = S[0..n − 1]
with n characters, ∀S[i], 0 ≤ i < n, we have S[i] ∈ Σ. At the same time, the
given string S cannot be changed during the procedure of building its suffix array.
Since different characters can be encoded as different integers, we assume ∀S[i],
we have S[i] ∈ {x|1 ≤ x ≤ |Σ|}.
In this paper, our problem is based on read-only integer alphabets instead of
constant alphabets, which have only constant characters, or integer alphabets,
whose input strings can be updated during the sorting procedure. The constant
or integer alphabets is a special case of our problem.

The proposed problem is as follows. Given a very large string S built from
a read-only integer alphabets Σ with length n and a parallel random access
machine (PRAM) with p processors, can we have a parallel algorithm to build
the suffix array of S in O(np ) time?
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3 Algorithm Design

Unlike the existing parallel SACAs, we do not try to explore the parallelism in
the framework of sequential SACAs. Instead, we first build a parallel framework
that aims to divide the whole problem into many reduced sub-problems; and
then develop a parallel induce method to solve all the reduced sub-problems.

Definition 3. Order of Suffix Sets: Given two non-empty suffix sets Set1 and
Set2 of a string S, if ∀x ∈ Set1,∀y ∈ Set2, their lexicographical order meets
x < y (or x > y), then we define Set1 < Set2 (or Set1 > Set2).

In this section, we propose an idea to sort the suffixes of a long string in two
steps. First, we construct many (p) suffix subsets to cover all the suffixes. The
suffix subsets are ordered, but suffixes in each suffix subset are not sorted. Then,
we sort each suffix subset in parallel into its own sub-suffix array and achieve the
complete suffix array by combining the different sub-suffix arrays corresponding
to different suffix subsets together.

Algorithm 1: DLPI Algorithm
1 Function DLPI(String, p)
2 Step (1) Build parallel reduced subproblems
3 1.1 Divide all suffixes of S into p suffix subsets

SubSet1, ..., SubSetp, ∀1 ≤ i ≤ p, |SubSeti| = O(n
p )

4 1.2 Call Parallel Suffix SubSets Sorting function SA = PSSS(SubSet1, ..., SubSetp)
5 1.3 Evenly select (p − 1) splitters from each processor pi’s returned suffix array SA[i]
6 1.4 Add the (p − 1) × p splitters into each subset to get SpSubSeti, 1 ≤ i ≤ p
7 1.5 Call Parallel Suffix SubSets Sorting function

SA = PSSS(SpSubSet1, ..., SpSubSetp)
8 1.6 According to the returned SA, divide all suffixes into p ordered subsets that meet

OSubSet1 < ... < OSubSetp
9 Step (2) Sort reduced subproblems in parallel

10 2.1 Call Parallel Suffix SubSets Sorting function SA = PSSS(OSubSet1, ..., OSubSetp)
11 2.2 return SA
12 end

3.1 Algorithm Framework

In Algorithm 1, we present the framework of our parallel suffix array construc-
tion algorithm D-Limited Parallel Induce (DLPI). This framework transforms a
large T (n, p) problem, where n represents the problem size and p represents the
number processors of the PRAM, into p parallel T (np , 1) problems, which means
that each single problem is of size O(np ) and can be handled in one processor.

In line 3 of Algorithm 1, for all the n suffixes of a given string S, we assign
them into p subsets evenly. The PSSS function will generate different sub-suffix
arrays corresponding to different subsets and we can select (p − 1) different
splitters [5] that divide each subset evenly (line 5). Then we augment each subset
by adding (p − 1) × (p − 1) splitters from the rest of the subsets and call PSSS
again on the augmented subsets. Afterwards, we utilize the ordered p × (p − 1)
splitters as guides to assign all the suffixes (in a round-robin order) into p ordered
subsets, OSubSet1, ..., OSubSetp (lines 6–8). Here, all suffixes are assigned into
p ordered subsets with the size of O(np ).
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The second step is straightforward, where we just call PSSS again to gen-
erate the order of suffixes in different subsets and then combine them together
to obtain the complete suffix array SA (lines 10–11).

3.2 Parallel Induce Method

In Algorithm 2, we describe the essential function PSSS that can support paral-
lel induce on all reduced sub-problems. The basic idea of this function is that we
first construct p much smaller strings to express the different sub-problems. The
suffixes with different short prefixes can be sorted easily and the novel parallel
induce method is used to derive the order of suffixes with long and the same
prefixes.

Algorithm 2: Parallel Suffix SubSets Sorting Algorithm
1 Function PSSS(SubSet1, ..., SubSetp)
2 Step (1) Sort suffixes of each subsets and distinguish Fixed and Changeable suffixes
3 Build D-limited shrunk strings DS_S1, ..., DS_Sp according to different subsets
4 forall (i in 1..p) do
5 ESA[i][] = SeqOptSA(DS_Si)
6 Remove all indices ESA[i][j] that are not in Seti and get SA[i][] corresponding to

SubSeti
7 var mg=-1
8 for (j in 0..|SubSeti|-1) do
9 if (Suf(SA[i][j]) and its closest suffix in SA have the same D prefix) then

10 Flag[i][j]=Changeable
11 if (Suf(SA[i][j]) is the first Changeable suffix of a new group then
12 mg++
13 ChgGrp[i][mg].head=j;ChgGrp[i][mg].num=1
14 end
15 ChgGrp[i][mg].num++
16 end
17 else
18 Flag[i][j]=Fixed
19 end
20 end
21 end
22 Step (2) Induce the order of Changeable suffixes in each Changeable suffix group
23 2.1 Build aligned subsets AliSubSet1, ..., AliSubSetp for Changeable suffix groups
24 2.2 Generate the new suffix array AliSA of the suffixes just like the previous step (1)
25 2.3 Generate the distinguishable tail suffix array DTA for suffixes in the Changeable

suffix groups
26 2.4 Induce the correct order of all Changeable suffixes in SA based on DTA and AliSA
27 return SA
28 end

We introduce the first step of PSSS function at first.

Definition 4. D-limited substring and D-limited shrunk string: Given a con-
stant D, a string S with length n and one of its suffix subset SubSet, if two
suffixes suf(i) ∈ SubSet and suf(j) ∈ SubSet, where i < j and no other suffix
sits between i and j in SubSet(we will let j = n if no such suf(j) in SubSet),
then the D-limited substring of suf(i) is the substring S[i..j − 1] if j − i ≤ D or
S[i..i+D−1] if j − i > D. The D-limited shrunk string DS of S is the string by
concatenating all D-limited substrings from SubSet together according to their
original order in S.
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Definition 5. D-prefix substring: Given a constant D, a string S with length
n, and an index i, the D-prefix substring of suf(i) is the substring S[i..i+D−1]
if i < n − D or S[i..n] otherwise.

Building Reduced Strings. The first step of this function is building p much
smaller D-limited shrunk strings DS1, ...,DSp so each processor can handle one
smaller string in parallel (line 3). We use D-prefix substrings to replace the
original suffixes.

We will call the existing optimal sequential SACA SeqOptSA [17] to generate
the extended suffix array for the given shrunk string. Since we do not need to
compare the suffixes not included in the given subset, we remove the indices
of such suffixes in the extended suffix array and get the exact suffix array SA
(lines 5–6). We use a two-dimension array to express the partitioned data in
different processors. The cardinality of the first dimension stands for the number
of processors and that of the second dimension stands for the maximum number
of suffixes assigned to different processors.

For the suffix whose order can be decided based on its D-prefix substring,
its rank in the suffix array is correct. If there are two or more suffixes whose
D-prefix substrings are exactly the same, their ranks in SA should be induced
based on their complete suffixes. We use a two-dimension array Flag to mark the
correct rank as Fixed and the rank to be induced as Changeable. At the same
time, we use a two-dimension array ChgGrp to manage the clustered Changeable
suffixes by their D-prefix substrings. ChgGrp[i][mg] keeps the current group of
Changeable suffixes on processor i. ChgGrp[i][mg].head is the rank of the first
suffix in the corresponding suffix array and ChgGrp[i][mg].num is the total
number of suffixes in the current group (lines from 7 to 20).

Based on the ChgGrp data structure, the induce sorting method works as
follows. When we know the smallest suffix within the group mg, we just need
to switch the rank of the smallest suffix with that of the head suffix, advance
ChgGrp[i][mg].head by one, and reduce ChgGrp[i][mg].num by 1. If a suf-
fix can split the suffixes into two ordered subsets, we will put the suffix at
the correct position in its SA and split its Changeable suffix group into two
smaller groups. This way, we can induce one suffix at its correct position. When
ChgGrp[i][mg].num is one, all suffixes in the Changeable group mg have been
correctly ranked. The suffixes in different groups can be induced in parallel.

The second step is to induce the correct ranks of Changeable suffixes (line
22). The basic idea is building induce chain for all the Changeable suffixes; then
identifying the tail suffix that can distinguish the Changeable suffix from other
suffixes; inducing the order for each Changeable suffix based on the tail suffixes.
It includes four substeps and we will present the detailed descriptions as follows.

Definition 6. Aligned suffix set: Given a Changeable suffix group CG and a
non negative integer k, the set {suf(x)|∀e ∈ CG, e = suf(y)∧x = y+D×k∧x <
n} is the k aligned suffix set of CG.
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Building Aligned Suffix Sets. In the first substep (line 23) we build p com-
pletely new suffix subsets AliSubSet1, ..., AliSubSetp that are used to induce
the correct order of all the Changeable suffixes. Suffixes in an aligned suffix set
will be assigned to the same processor so we can get their order based on each
processor’s suffix array.

For all the Changeable suffix groups, we can generate all of their k aligned
suffix set. We will merge some overlapping aligned suffix sets and assign these
sets into p processors and form p suffix subsets AliSubSet1, ..., AliSubSetp.

Generating SA for Aligned Suffix Sets. In the second substep, we may
employ the similar method as before (lines from 2 to 21) to generate the suffix
array of each aligned suffix subset. Here we use AliSA to express the new suffix
array corresponding to the aligned suffixes. AliF lag has the similar meaning as
before to mark the Fixed and Changeable suffixes.

Now we have obtained two sets of Fixed and Changeables, we will use the
later set of Fixed suffixes to induce the previous set of Changeable suffixes by
using a data structure called DTA (to be further defined next).

Building the Distinguishable Tail Suffix Array. In the third substep, we
will build an array DTA to store the suffixes that can be used to distinguish one
Changeable suffix from other suffixes in the same Changeable group.

Definition 7. Distinguishable Tail Suffix: For any Changeable suffix suf(x) in
a Changeable suffix group ChgGrp, its distinguishable tail suffix suf(DTA(x))
is the suffix that can distinguish the order of suf(x) from the other Changeable
suffixes according to suf(DTA(x))’s D-prefix substring.

We will transfer the index t of suffix suf(t) whose flag is Fixed to its left suffix
suf(t − D) and let DTA[t − D] = t if suf(t − D) exists and it is a changeable
suffix. This procedure will continue to the head of the string along the induce
chain of suf(t). The challenge here is that we should do it in parallel. The basic
idea is as follows.

We first assign all suffixes to different processors based on the indices of
different suffixes evenly and each processor only checks about n

p suffixes. For
suffixes assigned to the current processor i, we will cluster them into D classes
based on their indices’ modulo D values. Each processor will scan every class
from its end suffix to its start suffix, in parallel. The index of the Fixed suffix
suf(f) will be passed to its left suffix suf(f − D) one by one until the new
Fixed suffix is met. Then the index of the new Fixed suffix will replace the old
one and be passed to the left suffix. In order to pass the distinguishable indices
across processors, we use a 2-D temporary array tmp[D][p] consisting of (D × p)
elements. If an ending suffix suf(e) (there are D of them) is changeable, we let
tmp[e%D][i] = −1 and DTA[e] = −(i), where i refers to the id of the processor
(ranged from 0 to (p − 1)) that means that suf(e)’s DTA value DTA(e) is
unknown and it will get its value from tmp[e%D][i]. Each Changable suf(j) on
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the processor i that cannot get its distinguishable tail suffix from upto its last
D-prefix suffix on the same processor will point to the same element tmp[j%D][i].

After this, we will scan the temporary array from end to start for different
modulo values. For current temporary element tmp[d][i] that corresponds to the
(i) processor and dth class, if suf(r) is the first suffix of its right processor,
r%D = d, and DTA[r] > 0, we will let tmp[d][i] = DTA[r]. If not, we will let
tmp[d][i] = tmp[d][i+1]. This means that the temporary array update will start
from tmp[d][p − 2] and end with tmp[d][0] (for all d in [0..D − 1]), sequentially.
Finally, each processor will check its suffixes whose DTA values are still negative
and update them with their respective corresponding temporary values. This
way, we can propagate the distinguishable tail suffixes from end to start in
parallel.

Inducing the Order of Changeable Suffixes. In the fourth substep, we
know the distinguishable tail suffix of each Changeable suffix. We can use such
information to induce the order of suffixes in each Changeable suffix group.
For each Changeable suffix group, first we will use its closest distinguishable
tail suffixes to distinguish the corresponding Changeable suffixes from others.
Then, we will induce the correct order of all Changeable suffixes based on their
distinguishable tail suffixes’ indices from small to large. The order of different
Changeable suffix groups can be induced in parallel.

4 Complexity Analysis

In this section, we adopt the widely used Parallel Random Access Machine
(PRAM) model [7] to analyze our parallel algorithm. The time complexity of
the proposed algorithm is O(np ) and the space complexity is O(n). We will prove
that every step of our algorithm can be done in O(np ) time and at most O(n)
working space (the space except the input string S and the returned suffix array)
is needed to generate the complete suffix array.

The DLPI function gives the framework of our algorithm. For substep 1.1
of step 1, we can assign the suffixes of the given string S with length n into p
parts and each has O(np ) elements in O(np ) time. The p D-limited shrunk strings
will need O(p × D × n

p ) = O(D × n) = O(n) space. For substep 1.2, we will
give the time and space complexity of the parallel induce function PSSS later.
Selecting (p − 1) splitters for each processor based on its returned suffix array
and adding them into different subsets are straightforward and can also be done
in O(np ) time. Here we assume p3 < n, when we add (p − 1)2 new elements to
each subset, each subset will have O(np ) + O((p − 1)2) ≤ O(np ) + O(np ) = O(np )
elements. So, the total working space will also be O(p × n

p ) = O(n).
For substep 1.5, just like before, we will discuss the time complexity of PSSS

later. From substeps 1.3 to 1.6, we know that the total number of elements
between two closest splitters cannot be larger than O( n

p2 ). So, when we combine
p parts of elements divided by the same splitters together into one subset, its
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size cannot be larger than O(np ). At the same time, the elements of each subset
will be no larger than O(np ). Based on this conclusion, it is feasible for us to
build p ordered subsets according to the p × (p − 1) splitters.

Hence, we can claim that DLPI function can generate the complete suffix
array of a given string S with length n in O(np ) time on p processors using O(n)
space if the parallel induce function PSSS can return the suffix array for each
suffix subset in O(np ) time on p processors using O(n) working space.

Theorem 1. For a string S with length n, if its suffixes are assigned to p given
subsets with size O(np ), then the corresponding D-prefix substrings of each subset
can be sorted in O(np ) time on p processors with O(n) space.

Proof. We can build D-limited shrunk strings based on given p suffix subsets of
the string S in parallel. The shrunk stings can be done by directly concatenating
all the D-limited substrings corresponding to the suffixes in each subset directly.
This work will take O(np ) time with O(n) space. Then, we may employ the
existing in-place sequential linear suffix array algorithm SeqOptSA to directly
return their corresponding extended suffix arrays in O(np ) time. The extended
suffix arrays will contain more indices than each subset’s elements. So, we need
to remove the additional indices. This can also be done in at most O(np ) time.
Totally, O(np ) time and O(n) space will be needed to sort the D-prefix substrings
of suffixes in all the given subsets.

Lemma 1. All suffixes can be marked as Fixed or Changeable suffixes and clus-
tered into groups in O(np ) time and O(n) space.

Proof. To mark all suffixes as Fixed or Changeable, a Flag[1..p][] array with
O(n) space will be needed. To store the Changeable group information, at most
O(n2 ) space for a Changeable suffix array ChgGrp[1..p][] will be needed because
the suffixes can be divided into at most (n2 ) groups. Based on the returned
suffix array, each processor can compare any suffix’s D-prefix substring with its
neighbor to check if they are the same. The different D-prefix substrings mean
that the corresponding suffixes can be marked as Fixed; otherwise, they will
be marked as Changeable. The entire character comparison operations for any
processor should be O(D× n

p ) = O(np ). Clustering the Changeable suffixes based
on their D-prefix substrings and storing the group information into ChgGrp are
similar. So, the marking and clustering operations can be done in O(np ) time
and O(n) space.

Lemma 2. The aligned subsets AliSubSet1, ..., AliSubSetp that each is no more
than O(np ) elements can be built in O(np ) time and O(n) space.

Proof. The total number of aligned suffixes cannot be larger than O(n). Since
we combine some overlapping aligned suffix sets and assign them to different
processors evenly, the total number of suffixes assigned to one processor cannot
be larger than O(np ). The total number of suffixes in the Changeable suffix groups
cannot be larger than O(n), and the total number of suffixes in all aligned suffix
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sets cannot be larger than O(n) either. So, for the first substep, totally at most
O(n) space will be needed to store all the suffixes. Generating at most O(np )
suffixes AliSubSet1, ..., AliSubSetp for each processor from the Changeable suffix
groups is straightforward and can be done at most in O(np ) time.

Corollary 1. The D-prefix substrings of subsets AliSubSet1, ..., AliSubSetp
can be sorted in O(np ) time on p processors with O(n) space.

Proof. AliSubSet1, ..., AliSubSetp are p suffix subsets and each of them have at
most O(np ) suffixes. Based on theorem 1, we can get the corollary and the third
substep can be done in O(np ) time and O(n) space.

Subsequently, again all suffixes of AliSubSets can be marked as Fixed or
Changeable suffixes and clustered into groups in O(np ) time and O(n) space, a
direct application of Lemma 1 on the new subsets i.e. AliSubsets.

Lemma 3. The distinguishable tail suffix array DTA can be generated in O(np )
time and O(n) space.

Proof. We can allocate the DTA array with size n to cover all suffixes. So,
O(n) space is sufficient. The basic idea of distinguishable tail suffix generation is
passing the closest Fixed suffix to the current Changeable suffix and storing the
Fixed suffix’s index in DTA. The short passing path will be easy to implement. In
order to reduce the passing time for a very long passing path, our implementation
method divides the long passing path into multiple parallel subpaths. The suffix
passing can be done on different subpaths in parallel. We allocate at most p
temporary memory space to transfer the index across different processors. Since
all the suffixes assigned to one processor cannot be larger than O(np ), the first
scan procedure can be done in O(np ) time for all the processors. Then we let one
processor pass the value in the temporary memory one by one from end to start.
So, at most O(p) time is needed. Finally, during the last scan, every processor
will assign the suffixes with the value of the temporary memory space if they
point to this memory space. The third substep will need at most O(np ) time. So,
totally, O(np ) time and O(n) space are needed to generate DTA.

Lemma 4. Inducing the order of all Changeable suffixes based on DTA and
AliSA can be done in O(np ) time and O(n) space.

Proof. Generating the relative order of suffixes in each Changeable group based
on its DTA can be done in O(np ) time on each processor because the length of
each suffix to be sorted will be no more than D (D or <D at the end of the
string), and we have at most O(np ) such suffixes for each processor. It will need
to scan all the corresponding distinguishable tail suffixes to induce the order of
Changeable suffixes. The total number of distinguishable tail suffixes is the same
as the total number of Changeable suffixes that is no more than O(np ) on each
processor. So, the induce procedure also can be done in O(np ) time. The total
space to keep the AliSA and the temporary string is no more than O(n). So the
fourth substep can also be done in O(np ) time and O(n) space.
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Theorem 2. For a string S with length n, its suffix array can be generated in
O(np ) time on p processors with O(n) space in parallel.

Proof. Based on the above theorem and the lemmas, every algorithm step can
be done in O(np ) time and O(n) space. So, after adding them together, we will
get the conclusion.

5 Related Work

There have been many works on the suffix array construction algorithm since
suffix array was invented in 1990 by Manber and Myers [18]. “Induce” is an
essential technique in suffix sorting. Although prefix-doubling [24] adopts the
induce technique, it cannot reduce the problem size step by step. This is why it
cannot achieve O(n) time complexity. The following works [9,11,12] recursively
solve the problem by constructing a reduced problem and employing the induce
technique to sort the suffixes.

All existing parallel suffix array construction algorithms were trying to par-
allelize one or combined sequential algorithms. Futamura et al. [4] gave the
early effort to parallel the prefix-doubling method. Larsson et al. [16] imple-
mented optimized methods based on the previous prefix-doubling technology
and improved its performance in parallel. Osipov et al. [23] implemented prefix-
doubling algorithm on GPUs. Flick and Aluru [3]’s parallel MPI-based imple-
mentation of the prefix-doubling method can achieve very high practical perfor-
mance on human genome datasets. Kulla et al. [13] parallelized the sequential
DC3 method, which regularly samples the string to build a smaller 2

3n problem.
Deo et al. [2] further implement the DC3 method on GPUs. Shun [25]’s parallel
skew (DC3) algorithm could achieve good performance on shared-memory multi-
core computers. Wang et al. [27] implemented a hybrid prefix-doubling and DC3
method on GPUs to improve the existing GPU methods significantly. Lao et
al. [14,15] employed pipeline technology to parallelize their previous sequential
linear algorithms on multicore computers.

The existing sequential algorithm framework is the barrier to the existing par-
allel methods of achieving scalable performance. We develop a parallel framework
and propose a parallel induce method to achieve O(np ) time complexity.

6 Conclusion

The novel idea provided in this paper is the concept of D-limited shrunk sub-
strings that divides the complete problem with size n into p reduced sub-
problems with size O(np ). An optimal parallel suffix array construction algorithm
to handle the problem in O(np ) time complexity (p is the number of parallel pro-
cessors and we assume p3 < n) is critical for us to handle large strings (built on
an integer alphabet) with scalable performance. The critical technology is paral-
lel induce. The suffixes with long repeat prefixes can induce their order based on
their distinguishable tail suffixes in parallel. We take advantage of the existing
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optimal sequential suffix array construction algorithm as an independent execu-
tion unit to generate the order of all D-prefix substrings that can be used to
separate suffixes with long repeat prefixes from those with short unique prefixes.

The simplicity and the O(np ) time complexity make the proposed D-Limited
Parallel Induce (DLPI) algorithm very promising to handle huge strings with
scalable performance. DLPI is the first parallel suffix array construction algo-
rithm with O(np ) time complexity. We will focus on further reducing the total
working space O(n) in the future work.
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