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550 Massive Graph Analytics

Data from many real-world applications often can be abstracted as graphs. However, the increas-
ing graph size makes it impossible for existing popular exploratory data analysis tools to handle
large data sets in the memory of a common laptop/personal computer. Arkouda is a framework
under early development that brings together the productivity of Python at the user side with the
high-performance of Chapel at the server side. In this work, a succinct double-index data struc-
ture is designed to build a static graph and the sketch of a graph stream with much less memory
footprint. Two typical graph algorithms, Breadth-First Search (BFS) and triangle counting al-
gorithms, are developed to evaluate the efficiency of the proposed graph analytics workflow.
Experimental results show that our method can take advantage of distributed resources to handle
large graphs. This work provides the large and rapidly growing Python community a powerful
way to handle terabyte and beyond graph data using their laptops. All our methods and code
have been implemented in Arkouda and are available from GitHub (https://github.com/Bader-
Research/arkouda/tree/streaming).

21.1 INTRODUCTION
A graph is a well-defined mathematical model to formulate the relationship between different
objects and is widely used in numerous domains. The edge distributions of many large scale real
world problems tend to follow a power-law distribution [20, 1, 48]. More and more emerging ap-
plications, such as social networks, cybersecurity and bioinformatics, have data that often comes
in the form of real-time graph streams [36]. Over its lifetime, the sheer volume of a stream could
be petabytes or more like network traffic analysis in the IPv6 network which has 2128 nodes.
Dense graph data structures and algorithms will consume much more memory and cannot ana-
lyze very large sparse graphs efficiently. Therefore, these applications motivate the challenging
problem of designing succinct data structures and highly efficient parallel algorithms to handle
large graphs and even larger graph streams.

Exploratory data analysis (EDA) [9, 23, 27] is a critical method in data science. Instead of
checking results given a hypothesis with data, EDA primarily is for seeing what the data can
tell us beyond the formal modeling or hypotheses testing tasks in an interactive way. In this
way, EDA tries to maximize the value of data. Popular EDA methods and tools, which often
run on laptops or common personal computers, cannot hold terabyte or even larger graph data
sets, let alone produce highly efficient analysis results. Arkouda [26, 25, 39, 38, 46] is an EDA
framework under early development that brings together the productivity of Python with world-
class high-performance computing. If a graph algorithm can be integrated into Arkouda, it means
that data scientists can take advantage of both laptop computing and cloud/supercomputing to do
interactive data analysis at scale.

In this chapter, we provide the preliminary solution on integrating sparse graph analysis into
Arkouda. The major contributions are as follows:

1. An efficient and succinct Double-Index (DI) data structure, which can be used to build
both a static graph and a sketch of a graph stream, is developed in this paper. The DI
data structure can achieve O(1) time complexity in searching incident vertices of a
given edge or the adjacency list of a given vertex.

2. Based on the proposed DI data structure, two typical graph algorithms, Breadth-First
Search (BFS) algorithm and triangle counting algorithm, are developed based on the
high-level parallel language Chapel to evaluate the efficiency of the proposed graph and
graph stream analytics workflow and their practical end-to-end performance.

3. All the proposed methods have been integrated into an open-source framework Ark-
ouda. Experimental results show that the proposed DI data structure and algorithms can
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support Arkouda to handle different kinds of large graphs and graph streams. This work
can help the large and popular data analytics community that exists within Python to
conduct interactive graph analytics easily and efficiently on terabytes and beyond of
graph data.

21.2 ARKOUDA FRAMEWORK FOR DATA SCIENCE
As a high-level exploratory data analytics framework, Arkouda aims to support not only flexible
but also high-performance large-scale data analysis. Python [47] is an interpreted, high-level, and
general-purpose programming language. Python consistently ranks as one of the most popular
programming languages and has an ever-growing community. Python has become a very pow-
erful EDA tool. However, performance and very large-scale data processing are two bottlenecks
of Python. Chapel [15] is a high-level programming language designed for productive parallel
computing at scale. It has the same advantages such as being portable and open-source like in
Python. Furthermore, it has the scalable and fast features that Python lacks.

Arkouda integrates its front-end Python with its back-end Chapel with a middle, communica-
tive part ZeroMQ [24]. ZeroMQ is used for the data and instruction exchanges between Python
users and back-end services. In this way, Arkouda can provide flexible and high-performance
large-scale data analysis capability.

To break the data volume limit of Python, Arkouda provides a virtual data view for its Python
users. However, the real or raw data are stored in Chapel. Python users can use the metadata to
access the actual big data sets at the back-end. From the view of the Python programmers, all
data is directly available just like on their local laptop device. This is why Arkouda can break the
local memory capacity limit, while at the same time bringing traditional laptop users powerful
computing capabilities that could only be provided by supercomputers.

When users are exploring their data, if only the metadata section is needed, then the opera-
tions can be completed locally and quickly. These actions are carried out just like in previous
Python data-processing workflows. If the operations have to be executed on raw data, the Python
program will automatically generate an internal message and send the message to Arkouda’s
message processing pipeline for external and remote help. Arkouda’s message processing center
(ZeroMQ) is responsible for exchanging messages between its front-end and back-end. When the
Chapel back-end receives the operation command from the front-end, it will execute the analy-
sis tasks quickly on the powerful HPC resources and large memory to handle the corresponding
raw data and return the required information back to the front-end. Through this, Arkouda can
allow Python users to locally handle, on their personal devices, large-scale data sets residing on
powerful back-end servers without knowing all the detailed operations at the back-end.

21.3 SUCCINCT DOUBLE-INDEX DATA STRUCTURE
In this section, we introduce the details of our double-index data structure. There are three major
parts:(1) The detailed description of the edge and vertex arrays. (2) The time and space complex-
ity analysis based on the proposed data structure. (3) A comparison with the CSR data structure.

21.3.1 EDGE INDEX AND VERTEX INDEX

We propose a Double-Index (DI) data structure to support quick searching from a given edge
to its incident vertices or from a given vertex to its adjacency list. The two index arrays are
called the edge index array and vertex index array. Furthermore, our DI data structure requires a
significantly smaller memory footprint for sparse graphs.
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Figure 21.1 Double-Index data structure for graph analytics.

The edge index array consists of two arrays with the same shape. One is the source vertex
array and the other is the destination vertex array. If there are a total of M edges and N vertices,
we will use the integers from 0 to M− 1 to identify different edges and the integers from 0 to
N−1 to identify different vertices. For example, given edge e = ⟨i, j⟩, we will let SRC[e] = i and
DST [e] = j where SRC is the source vertex array and DST is the destination vertex array; e is
the edge ID number. Both SRC and DST have the same size M. When all edges are stored into
SRC and DST , we will sort them based on their combined vertex ID value (SRC[e],DST [e]) and
remap the edge ID from 0 to M−1. Based on the sorted edge index array, we can build the vertex
index array, which also consists of two of the same shape arrays. For example, in Figure 21.1,
we let edge e1000 have ID 1000. If e1000 = ⟨50,3⟩, e1001 = ⟨50,70⟩ and e1002 = ⟨50,110⟩ are
all the edges starting from vertex 50 (a directed graph), then we will let one vertex index array
ST R[50] = 1000 and another vertex index array NEI[50] = 3. This means that for given vertex ID
50, the edges starting with vertex 50 are stored in edge index array starting at position 1000 and
there are a total of three such edges. If there are no edges from vertex i, we will let ST R[i] =−1
and NEI[i] = 0. In this way, we can directly search the neighbors or adjacency list of any given
vertex. Our DI data structure can also support graph weights. If each vertex has a different weight,
we use an array V WEI to express the weight values. If each edge has a weight, we use an array
E WEI to store the different weights.

21.3.2 TIME AND SPACE COMPLEXITY ANALYSIS

For a given array A, we use A[i.. j] to express the elements in A from A[i] to A[ j]. A[i.. j] is also
called an array section of A. So, for a given vertex with index i, it will have NEI[i] neighbors
and their vertex IDs are from DST [ST R[i]] to DST [ST R[i]+NEI[i]− 1]. This can be expressed
as an array section DST [ST R[i]..ST R[i]+NEI[i]−1] (here we assume the out degree of i is not
0). For given vertex i, the adjacency list of vertex i can be easily expressed as ⟨i,x⟩ where x in
DST [ST R[i]..ST R[i]+NEI[i]− 1]. Based on the NEI and ST R vertex index arrays, we can find
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the neighbor vertices or the adjacency list in O(1) time complexity. For given edge e = ⟨i, j⟩, it
will be easy for us to find its incident vertices i in array SRC[e] and j in array DST [e] also in
O(1) time complexity.

Regarding the storage space, if the graph has M edges and N vertices, we will need 2M mem-
ory to store all the edges. Compared with the dense matrix data structure which needs N2 memory
to store all the edges, this is much smaller. To improve the adjacency list search performance, we
use 2N memory to store the NEI and ST R arrays.

Figure 21.1 shows M sorted edges represented by the SRC and DST arrays. Any one of the
N vertices nk can find its neighbors using NEI and ST R arrays with O(1) time complexity. For
example, given edge ⟨i, j⟩, if vertex j’s starting index in SRC is 1000, it has three adjacency
edges then such edges can be found starting from index position 1000 in array SRC and DST
using NEI and ST R arrays directly. This figure shows how the NEI and ST R arrays can help us
locate neighbors and adjacency lists quickly.

For an undirected graph, an edge ⟨i, j⟩ means that we can also arrive at i from j. We may use
the data structures SRC,DST,ST R,NEI to search the neighbors of j in SRC. However, this search
cannot be done in O(1) time complexity. To improve the search performance, we introduce
another four arrays called reversed arrays SRCr,DSTr,ST Rr,NEIr. For any edge ⟨i, j⟩, where its
i vertex is in SRC and j vertex in DST , we will have the corresponding reverse edge ⟨ j, i⟩ in
SRCr and DSTr, where SRCr has the exactly same elements as in DST and DSTr has the exactly
same elements as in SRC. SRCr and DSTr are also sorted and NEIr and ST Rr are the array of
the number of neighbors and the array of the starting neighbor index just like the directed graph.
So, for a given vertex i of an undirected graph, the neighbors of vertex i will include the elements
in DST [ST R[i]..ST R[i]+NEI[i]−1] and the elements in DSTr[ST Rr[i]..ST Rr[i]+NEIr[i]−1].
The adjacency list of the vertex i should be ⟨i,x⟩ where x in DST [ST R[i]..ST R[i] +NEI[i]−1] or
⟨i,x⟩ where x in DSTr[ST Rr[i]..ST Rr[i]+NEIr[i]−1].

Given a directed graph with M edges and N vertices, our data structure will need 2(M +N)
integer (64 bits) storage, or M+N

4 bytes. For an undirected graph, we will need twice the storage
of a directed graph. For weighted vertices and weighted edges, additional N, M integer storage
will be needed, respectively.

21.3.3 COMPARISON WITH CSR

The compressed sparse row (CSR) or compressed row storage (CRS) or Yale format has been
widely used to represent a sparse matrix with much smaller space. Our double-index data struc-
ture has some similarities with CSR. The value array of CSR is just like the edge weight array in
DI; the column array of CSR is the same as the DST array in DI; the row array of CSR is very
close to the ST R in DI. CSR is a vertex-oriented data structure, and it can support quick search
from any vertex to its adjacency list. DI has the same function like CSR.

The major difference between DI and CSR is that DI provides the explicit mapping between
an edge ID to its incident vertices, but CSR does not. This difference has two effects. (1) DI can
support another kind of quick search, from any edge ID to its incident vertices, however, CSR
cannot because CSR does not provide the source vertex of a given edge ID. (2) DI can support
edge oriented graph partition (see Subsection 21.5.1) based on the explicit edge index arrays to
achieve load balance, however, CSR cannot.

Another difference is that in DI we use an array NEI to explicitly represent the number of
neighbors of given vertex to remove the ambiguous meaning of the row index array in CSR.
NEI[v] can be replaced by ST R[v+1]−ST R[v] if we extend one element in ST R array and use
the meaning of the row index array in CSR. In our DI data structure, the meaning of ST R[v] is not
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ambiguous. It is the starting position of vertex v in the edge index array or ST R[v] =−1 if v has
no edge. However, in CSR, if v has no edges, the value of ST R[v] is not −1, and it is the starting
position of the next nonzero element after v or the total number of nonzero elements. So, for any
case, when we need to make sure ST R[v] is really the starting position of v, we must execute an
additional check because the value of ST R[v] itself cannot provide such information. When we
use the DI data structure to express a much smaller graph sketch, the number of the total vertices
N is much smaller than before. So, in DI, we use an additional N size array NEI (much smaller
than the original graph) to make the parallel operations on ST R have clear semantics and easy to
understand.

21.4 MULTILOCALE BREADTH-FIRST SEARCH AND TRIANGLE
COUNTING ALGORITHMS

In Chapel, the locale type refers to a unit of the machine resources on which your program is
running. Locales have the capability to store variables and to run Chapel tasks. In practice, for a
standard distributed memory architecture, a single multicore/SMP node is typically considered a
locale. Shared memory architectures are typically considered a single locale. Distributed memory
architectures are considered as multiple locales. Multilocale algorithms can take advantage of
both the distributed resources and parallel resources of single shared memory computing node.

21.4.1 PARALLEL BFS ALGORITHM

We select one typical graph algorithm, Breadth-First Search, to show how we can implement
exploratory large graph analytics in Arkouda. Two significant features of our parallel BFS al-
gorithm design are different from existing BFS algorithm design: (1) Our BFS algorithm can
exploit parallelism in graph search easily and efficiently based on the proposed DI graph data
structure. (2) We employ the high-level parallel language Chapel to develop the BFS algorithm
so we can significantly improve the productivity of parallel algorithm design.

For especially large graphs, they cannot be held in one shared memory computer; however, it
can be handled with distributed memory computers, such as computing clusters to execute the
BFS in parallel. We have developed two versions of our parallel BFS algorithm in Arkouda. The
first is the high-level multilocale version and the second is the corresponding low-level version.
We will give the details in the following subsections.

21.4.1.1 High-Level Multilocale BFS Algorithm
The standard level-by-level BFS algorithm works as follows. For each vertex at the current level
or frontier, we will search its unvisited next level vertices. When all the vertices at the current
level have been expanded, we will switch the next level vertices to the current level and repeat
the search until no vertices can be expanded in the current level.

The basic idea of our algorithm is that we take advantage of the multilocale feature of Chapel
to handle very large graphs in distributed memory. The distributed data are processed at their
locales or their local memory. Furthermore, each shared memory computing node can process its
owned data also in parallel. Our multilocale BFS algorithm can exploit the following features.
(1) The edges of the DI graph data have been distributed evenly onto the distributed memory
to balance the load. (2) Each distributed node only expands the vertices it owns in the current
frontier. This can be done in distributed memory in parallel.

Our method is described in Algorithm 1. Line 1 initializes the return array. Line 2 sets the
starting vertex’s search level as 0. Line 3 initializes the current search level as 0. Lines 4 and 5
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Algorithm 1: High-level Chapel-based parallel BFS for distributed memory supercom-
puters

Input: A graph G and the starting vertex root
Output: An array depth to show the different visiting level for each vertex

1 depth =−1 // initialize the visiting level of all the vertices
2 depth[root] = 0 // set starting vertex’s level is 0
3 cur level = 0 //set current level
4 SetCurF = new DistBag(int,Locales) // allocate a distributed bag to hold vertices in the

current frontier
5 SetNextF = new DistBag(int,Locales) // allocate another distributed bag to hold vertices

in the next frontier
6 SetCurF.add(root) //insert the starting vertex into the current vertices bag
7 while (!SetCurF.isEmpty()) do
8 coforall (loc in Locales ) do
9 // parallel search on each locale

10 forall (i in SetCurF ) do
11 if (i is on current locale) then
12 SetNeighbor = {k|k is the neighbor of i}
13 forall (j in SetNeighbor) do
14 if (depth[ j] ==−1) then
15 SetNextF.add( j)
16 depth[ j] = current level +1
17 end
18 end
19 end
20 end
21 end
22 SetCurF <=> SetNextF // exchange values
23 SetNextF.clear()
24 current level+= 1;
25 end
26 return depth

create two distributed bag classes to manage the current and next search frontiers. Line 6 adds
the starting search vertex into the current frontier. The parallel code is very simple and easy.
From line 7 to 25, we will continue the standard loop if the current search frontier is not empty.
From line 8 to 21, we use the coforall parallel construct to execute the search on each locale in
parallel. From line 10 to 20, we will execute a parallel search on each locale. On each locale,
we will check each vertex in the current frontier, but only the vertices on the current locale will
be expanded (line 11). In this way, we will expand the current frontier in parallel on all the
locales without any overlapping. In line 12, we will build the set of neighbors SetNeighbor of
the current vertex i. Since some neighbors have been visited before (line 14), we will only expand
the unvisited vertices and add them into the next frontier set SetNextF (line 15). At the same time,
we will assign the visiting level to the expanded vertices with current level +1 (line 16). After
all locales have expanded their vertices in the current frontier, we will exchange the value of the
current frontier and the next frontier (line 22), clean the vertices in the next frontier (line 23),
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and add the current level to next level (line 24). Then, the next loop will begin from the new
frontier. When all vertices have been visited, we will return the search array depth as the final
search result.

From this algorithm description, we can see it is very simple and natural to describe the level-
by-level parallel method to implement the BFS algorithm in Chapel. The DistBag data structure
can be used to hold the current and the next frontier set easily and efficiently. At the same time,
the coforall and forall parallel construct can express the parallel expansion in a very efficient
way. In line 8, multiple locales can execute the search in parallel. In line 10, different vertices
in the current frontier can be expanded in parallel. In line 13, different expanded vertices can be
added into the next frontier in parallel. We can exploit the parallelism in a hierarchical way to
improve the total performance.

In line 8, we use coforall instead of forall to implement distributed parallel computing on each
distributed memory computing node. In line 11, we just select the vertices owned by the current
locale. In this way, we can increase the access locality and avoid expanding the same edges on
multiple locales.

21.4.1.2 Low-level Multilocale BFS Algorithm

In the high-level BFS algorithm, we use two DistBag classes to hold the current frontier and
the next frontier. The communication between different locales is implicit. This can make our
parallel program become simple and easy. To evaluate the performance of such high-level data
structures in Chapel, we directly use arrays to hold the vertices in the current and next frontiers
and explicitly implement the corresponding communication between different locales. In this
way, we can check if the high-level data structure DistBag introduces significantly performance
overhead.

To optimize the performance, we use a distributed array curFAry to clearly distinguish the
frontier elements owned by different locales. We also use a distributed array recvAry to hold the
expanded vertices from different locales. In this way, we can exploit the locality and optimize
the communication during the graph search. The low-level algorithm is given in Algorithm 2.

From line 1 to 6, the low-level BFS algorithm is just like the high-level BFS algorithm except
that we replace SetCurF with curFAry and replace SetNextF with recvAry. The basic algorithm
structure is similar to the Algorithm 1. From line 8 to 32, we will finish one-level vertex expan-
sion. A set data structure SetNextFlocal is created to hold the expanded elements owned by the
current locale (line 9) and the elements can be added in parallel. If the expanded elements are not
owned by the current locale, we create another set data structure SetNextFRemote to hold such
elements (line 10). Instead of a parallel search on all the vertices in the current frontier, in the
low-level version, each locale will first get its owned vertices (line 11). Then, for each locale, it
uses the parallel construct co f orall to expand the next frontier in parallel (line 12). The differ-
ence with Algorithm 1 is that we put the expanded elements into different sets. If the elements
are local, we put them into the SetNextFLocal set in parallel (from line 16 to 18). If they are
not owned by the current locale, we will put them into SetNextFRemote (from line 19 to 21).
After the vertex expansion at each level, each locale will scatter the next frontier elements in the
SetNextFRemote to their owners (line 26 to 28). At the same time, elements in the next frontier
owned by the current locale SetNextFLocal will be merged into the distributed array curFAry
(line 29 to 31). All the above vertex operations can be done in parallel without data races. The
parallel construct co f orall has an implicit synchronization mechanism. So, after line 32, we can
make sure that all data communication has been completed, and we can safely use the data in
recvAry. From line 33 to 35, each locale will combine the next frontier elements generated by
the current locale and the other locales to form the current frontier.
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The low-level BFS algorithm can exploit locality, avoid idle parallel threads, and use an
aggregation method to optimize the communication performance. However, we have to take care
of the data distribution and data communication and this optimization cannot beat the high-level
data structure implementation for our Delaunay benchmark test (see Section 21.7.2.2). This com-
parison shows the advantage of Chapel’s high-level data structure for easy programming and high
performance.

21.4.2 PARALLEL TRIANGLE COUNTING ALGORITHM

For graph stream analysis, we can directly employ existing exact graph algorithms onto our
sketch because the sketch is also expressed as a graph. Here, we will use a typical graph analysis
algorithm, triangle counting, to show how we can develop optimized exact algorithms based on
our DI data structure.

To improve the performance of a distributed triangle counting algorithm, two important prob-
lems are maintaining load balancing and avoiding remote access or communication as much as
possible.

In this work, we will develop a multilocale exact triangle counting algorithm for distributed
memory clusters.

For power law graphs [48, 1, 20], a small number of vertices may have high degrees. So, if we
divide the data based on number of vertices, it is easy to cause an unbalanced load. Our method
divides the data based on the number of edges. At the same time, our DI data structure will keep
the edges connected with the same vertex together. So, the edge partition method will result in
good load balancing and data access locality.

However, if each locale just directly employs the existing edge iterator [2] on its edges, the
reverse edges of undirected graphs are often not in the same locale. This will cause new load bal-
ancing problem. So, we will first generate the vertices based on the edges distributed to different
locales. Then, each locale will employ the vertex iterator to calculate the number of triangles.
So, the combined edge-vertex iterator method is the major innovation for our triangle counting
method on distributed systems.

When we employ the high-level parallel language Chapel to design the parallel exact triangle
counting algorithm, there are two additional advantages. (1) Our DI data structure can work
together with the coforall or forall parallel construct of Chapel to exploit the parallelism. (2) We
can take advantage of the high-level module Set provided by Chapel to implement parallel set
operation easily and efficiently.

At a high level, our proposed algorithm takes advantage of the multilocale feature of Chapel to
handle very large graphs in distributed memory. The distributed data are processed at their locales
or their local memory. Furthermore, each shared memory compute node can also process their
own data in parallel. The following steps are needed to implement the multilocale exact triangle
counting algorithm. (1) The DI graph edge data should be distributed evenly onto the distributed
memory to balance the load. (2) Each distributed node only counts the triangle including the
vertices assigned to the current node. (3) All the triangles calculated by different nodes should
be summed together to get the exact number of triangles.

Our multilocale exact triangle counting algorithm is described in Algorithm 3. For a given
graph sketch partition Gsk = ⟨Esk,Vsk⟩, we will use an array subTriSum to keep each locale’s
result (line 2). Here in line 3, we use coforall instead of forall to allow each loc in Locales to
execute the following code in parallel so we can fully exploit the distributed computing resources.
The code between line 3 and line 17 will be executed in parallel on each locale. Each locale will
use a local variable triCount to store the number of triangles (line 5). Lines 6 and 7 are important
to implement load balancing. Assume edges from estart to eend are assigned to current locale,
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Algorithm 2: Low-level parallel BFS for distributed memory supercomputers
Input: A graph G and the starting vertex root
Output: An array depth to show the different visiting level for each vertex

1 depth =−1 // initialize the visiting level of all the vertices
2 depth[root] = 0 // set starting vertex’s level is 0
3 cur level = 0 //set current level
4 Create distributed array curFAry to hold current frontier of each locale
5 Create distributed array recvAry to receive expanded vertices from other locales
6 put root into curFAry
7 while (!curFAry.isEmpty()) do
8 coforall (loc in Locales ) do
9 create SetNextFLocal to hold expanded vertices owned by current locale

10 create SetNextFRemote to hold expanded vertices owned by other locales
11 myCurF ←current locale’s frontier in curFAry and then clear curFAry
12 coforall (i in myCurF ) do
13 SetNeighbor = {k|k is the neighbor of i}
14 forall (j in SetNeighbor) do
15 if (depth[ j] ==−1) then
16 if (j is local) then
17 SetNextFLocal.add( j)
18 end
19 else
20 SetNextFRemote.add( j)
21 end
22 depth[ j] = current level +1
23 end
24 end
25 end
26 if (!SetNextFRemote.isEmpty()) then
27 scatter elements in SetNextRemote to recvAry
28 end
29 if (!SetNextFLocal.isEmpty()) then
30 move elements in SetNextLocal to curFAry
31 end
32 end
33 coforall (loc in Locales ) do
34 curFAry← collect elements from recvAry
35 end
36 current level+= 1
37 end
38 return depth

we can get the corresponding vertex ID StartVer = SRC[estart ] and EndVer = SRC[eend ] as the
vertices interval the current locale will handle. Since different locales may have different edges
with the same starting vertex, the interval [StartVer..EndVer] of different locales may overlap.
At the same time, some starting vertex in SRCr index array may not appear in SRC, so we should
also make sure there is no “hole” in the complete interval [0..|Vsk|− 1]. In line 7, we will make
sure all the intervals will cover all the vertices without overlapping.
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Algorithm 3: Edge-Vertex Iterator triangle counting algorithm

1 TC(Gsk = ⟨Esk,Vsk⟩)
/* Gsk is the given graph sketch partition,Esk,Vsk are edge and

vertex sets. */

2 var subTriSum=0: [0..numLocales-1] int;//store each locale’s number of triangles
3 coforall (loc in Locales) do
4 if (current loc is my locale) then
5 var triCount=0:int;//initialize number of local triangles
6 Assign StartVer and EndVer based on edge index array
7 Adjust StartVer and EndVer to cover all vertices and avoid overlapping
8 forall (u in StartVer..EndVer with (+ reduce triCount)) do
9 uad j = {x|⟨u,x⟩ ∈ Esk ∧ (x > u)} //build the u adjacency vertex set in parallel

10 forall v ∈ uad j do
11 vad j = {x|⟨v,x⟩ ∈ Esk ∧ (x > v)} //build the v adjacency vertex set in

parallel
12 end
13 TriCount+= |uad j ∩ vad j|;
14 end
15 subTriSum[here.id] = triCount;
16 end
17 end
18 return sum(subTriSum)

Our method includes the following steps: (1) If the current locale’s StartVer is the same as
the previous locale’s EndVer, this means that one vertex’s edges have been partitioned into two
different locales. We will set StartVer = StartVer+1 to avoid two locales executing the counting
on the same vertex. (2) If current locale’s StartVer is different from the previous locale’s EndVer,
and the difference is larger than 1, this means that there is a “hole” between the last locale’s
vertices and the current locale’s vertices. So, we will let the current locale’s StartVer = the last
locale’s EndVer+1. (3) If the current locale is the last locale, we will let its EndVer = the last
vertex ID. If the current locale is the first locale, we will let StartVer = 0.

From line 8 to 14, we will count all the triangles starting from the vertices assigned to the
current locale in parallel. In line 9, we will generate all the adjacent vertices uad j of the current
vertex u and its vertex ID is larger than u. From line 10 to 12, for any vertex v ∈ uad j, we will
generate all the adjacent vertices vad j of current vertex v and its vertex ID is larger than v. So,
the number of vertices in uad j ∩vad j is the number of triangles having edge ⟨u,v⟩. Since we only
calculate the triangles whose vertices meet u < v < w, we will not count the duplicate triangles.
In this way, we can avoid the unnecessary calculation. In line 15, each locale will assign its total
number of triangles to the corresponding position of array subTrisum. At the end, in line 18,
when we sum all the number of triangles of different locales, we will get the total number of
triangles.

21.5 GRAPH ANALYTICS WORKFLOW

The major steps to execute graph analysis in Arkouda are as follows: (1) acquiring graph data
from a data generator or a graph file; (2) building the double index graph expression; and (3)
executing queries on memory graph to generate exact or approximate solutions.
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Figure 21.2 Edge based sparse graph partition.

The specific components in steps (2) and (3) are different for a static graph and a graph
stream. For a static graph, we will build the complete graph expression in memory in step (2)
and generate the exact query result on the graph in step (3). For a dynamic graph stream, we will
build the graph sketch of the graph stream in step (2) and generate the approximate query result
on the graph stream in step (3). In the following parts, we will introduce how we build a complete
graph expression in distributed memory, how we build a graph sketch based on a sliding window
stream, and how we develop regression models to generate approximate query solutions.

21.5.1 EDGE ORIENTED SPARSE GRAPH PARTITIONING AND BUILDING

For real-world power-law graphs, the edge and vertex distributions are highly skewed. Few ver-
tices will have very large degrees, but many vertices have very small degrees. If we partition the
graph evenly based on the vertices, it will be easy to cause a load balancing problem because the
processor which holds the vertices that have a large number of edges will often have very heavy
load. So, we equally divide the total number of edges into different computing nodes instead.

Figure 21.2 shows the basic idea of our sparse graph partition method. The edge arrays SRC
and DST will be distributed using BLOCK method onto different computing nodes to make sure
most of the nodes will have the same load. When we assign an edge’s vertex entry in index array
NEI and ST R to the same processors, this approach can increase the locality when we search
from edge to vertex or from vertex to edge. However, this requires us to distribute NEI and ST R
in an irregular way since the number of elements assigned to different processors may be very
different. In our current implementation, we just partition NEI and ST R arrays evenly as the edge
arrays.

21.5.2 SLIDING WINDOW STREAM BASED SKETCH BUILDING

Our stream model has the following features: (1) Only one pass is needed to build the graph
sketch. (2) A parameter, Shrinking Factor, is introduced to allow users to directly control the size
of a sketch. So, the users’ requirement can be used to build a sketch with much less space. (3) The
graph stream sketch is divided into three different partitions (we also refer to the three indepen-
dent small graphs as sub-sketches), and this method can help us avoid global heterogeneity and
skewness but take advantage of the local similarity. (4) Our sketch is expressed as a graph so the
exact graph analysis method on a complete graph can also be used on our different sub-sketches.
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Figure 21.3 Mapping a graph stream into a multi-partition sketch.

(5) A general multivariate linear regression model is used to generate the approximate solution
based on the results from different sub-sketches. The regression method can be employed to
support general graph analysis methods.

We first describe our method when the stream comes from a sliding window, which means
that only the last M edges falling into the given time window will be considered.

We define the shrinking factor SF (a positive integer) to constrain the space allocation of a
stream sketch. This means that the size of the edges and vertices of the graph sketch will be 1

SF
of the original graph. The existing research on sketch building [49] shows that multiple pairwise
independent hash function [17] methods can often generate better estimation results because
they can reduce the probability of hash collisions. In our solution, we sample on different parts
of the given sliding window instead of the complete stream and then map the sampled edges into
multiple (here, three) independent partitions to completely avoid collisions. We name the three
partitions as Head, Mid, and Tail partitions or sub-sketches, respectively. Each partition will be
assigned with 1

3SF space of the original graph.
Since we divide the sketch into three independent partitions, we selected a very simple hash

function. For a given sliding window, we let the total number of edges and vertices in this
window be M and N. Then, the size of each partition will have PartitionM = M

3SF edges and
PartitionN = N

3SF vertices. For any edge e = ⟨i, j⟩ from the original graph, we will map the
edge ID e to mod(e,PartitionM). At the same time, its two vertices i and j will be mapped to
mod(i,PartitionN) and mod( j,PartitionN). If e < M

3 , then we will map e = ⟨i, j⟩ to the Head
partition. If e≥ 2M

3 , we will map e = ⟨i, j⟩ to the Tail partition. Otherwise, we will map e = ⟨i, j⟩
to the mid partition.

Figure 21.3 is an example to show how we map totally 3,000,000 edges in a given sliding
window into a sketch with three partitions. The edges from 1,000,000 to 1,999,999 are mapped
to the head partition p0 that has 1000 edges. The edges from 2,000,000 to 2,999,999 are mapped
to the mid partition p1 and the edges from 3,000,000 to 3,999,999 are mapped to the tail partition
p2. Each partition is expressed as a graph.

After the three smaller partitions are built, we sort the edges and create the DI data structure
to store the partition graphs.

We map different parts of a stream into corresponding sub-sketches and this is very different
from existing sketch building methods where they map the same stream into different sketches
with independent pairwise hash functions so each sketch is an independent summarization of
the stream. However, in our method, one sub-sketch can only stand for a part of the stream
and we use different sub-sketches to capture the different local features in a stream. Our re-
gression model (see Subsection 21.5.3) will be responsible for generating the final approximate
solution.
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More partitions will help to capture more local features of a stream. However, we aim for a re-
gression model that is as simple as possible. Too many partitions will make our regression model
have more variables and become complicated. We select three as the default number of partitions
because this can achieve sufficient accuracy based on our experimental results. Of course, for
some special case, we may choose more partitions but use the same proposed framework.

21.5.3 REAL-WORLD GRAPH DISTRIBUTIONS BASED REGRESSION MODEL

Instead of developing different specific methods for different graph analysis problems, we pro-
pose a general regression method to generate the approximate solution based on the results of
different sub-sketches.

One essential objective of a stream model is generating an accurate estimation based on the
query results from its sketch. The basic idea of our method is exploiting the real-world graph
distribution information to build an accurate regression model. Then we can use the regression
model to generate approximate solutions for different queries.

Specifically, for the triangle counting problem, when we know the exact number of triangles
in each sub-sketch (see Table 21.6), the key problem is how we can estimate the total number of
triangles.

To achieve user-required accuracy for different real-world applications, our method exploits
the features of real-world graph distributions. Many sparse networks, social networks in partic-
ular, have an important property - their degree distributions follow the power law distribution.
Normal distributions are often used in the natural and social sciences to represent real-valued
random variables whose distributions are not known. So, we develop two regression models for
the two different graph degree distributions.

We let EH ,EM,ET be the exact number of triangles in the Head, Mid and Tail sub-sketches.
The exact triangle counting algorithm is given in Subsection 21.4.2.

For normal degree distribution graphs, we assume the total number of triangles has a lin-
ear relationship with the number of triangles in each sub-sketches. We take EH ,EM,ET as three
randomly sampling results of the original stream graph to build our multivariate linear regres-
sion model. TCNormal is the estimated number of triangles and the regression model is given in
Eq. 21.1.

TCNormal = a×EH +b×EM + c×ET (21.1)

For power law graphs, the sampling results of EH ,EM,ET can be significantly different because
of the skewness in degree distribution. A power law distribution has the property that its log-log
plot is a straight line. So, we assume the logarithmic value of the total number of triangles in a
stream graph should have a linear relationship with the logarithmic values of the exact number of
triangles in different degree sub-sketches. Then, we have two ways to build the regression model.
One is unordered and another is ordered. The unordered model can be expressed as in Eq. 21.2.
In this model, the relative order information of sampling results cannot be captured.

TCpowerlaw,log = a×EH,log +b×EM,log + c×ET,log (21.2)

where TCpowerlaw,log = log(TCpowerlaw) is the logarithmic value of the estimated value
TCpowerlaw; EH,log = log(EH), EM,log = log(EM), and ET,log = log(ET ); log(EH), log(EM), and
log(ET ) are the logarithmic values of EH ,EM, and ET respectively.

Then, we refine the regression model for power law distribution as follows. We get
Emin,Emedian and Emax by sorting EH ,EM, and ET . They mean the minimum, median, and max-
imum sampling values of the number of triangles in different sub-sketches. They will be used
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to stand for the sampling results on a power law distribution at the right (low possibility), mid-
dle (a little bit high possibility) and left part (very high possibility). We let Emin,log = log(Emin),
Emedian,log = log(Emedian), and Emax,log = log(Emax). Our ordered multivariate linear regression
model for power law graphs is given in Eq. 21.3.

TCpowerlaw,log = a×Emin,log +b×Emedian,log + c×Emax,log (21.3)

The accuracy of our multivariate linear regression model is given in Subsection 21.7.4.1 and we
can see that the ordered regression model is better than the unordered regression model. Both of
our normal and ordered power law regression models achieve very high accuracy.

21.6 INTEGRATION WITH ARKOUDA

Based on the current Arkouda framework, the communication mechanism can be directly reused
between Python and Chapel. To support large graph analysis in Arkouda, the major work is
implementing the graph data structure and corresponding analysis functions in both Python and
Chapel package. In this section, we will introduce how we define the graph classes to implement
our DI data structure and develop a corresponding Python benchmark to drive the BFS and
triangle counting methods.

21.6.1 GRAPH CLASSES DEFINITION IN PYTHON AND CHAPEL

Our DI data structure can also support graph weight. If each vertex has a different weight, we
use an array V WEI to express the weight values. If each edge has a weight, we use an array
E WEI to stand for different weights. Based on our DI data structure, four classes: directed graph
(GraphD), directed and weighted graph (GraphDW), undirected graph (GraphUD), undirected
and weighted graph (GraphUDW) are defined in Python. Four corresponding classes SegGraphD,
SegGrapDW, SegGraphUD, SegGraphUDW are also defined in Chapel to present different kind
of graphs. In our class definition, a directed graph is the base class. Then, undirected graph and
directed and weighted graph are the two child classes. Finally, undirected and weighted graph
will inherit from undirected graph.

All the graph classes including their major attributes are given in Table 21.1. The left columns
are the Python classes and their descriptions. The right columns are the corresponding Chapel
classes and their descriptions. Based on the graph class definition, we can develop different graph
algorithms.

21.6.2 BFS AND TRIANGLE COUNTING BENCHMARK

For BFS graph analysis, we develop two Python functions to get the graph data. The first is
“rmat gen” function that can use the R-MAT method [14] to generate graph based on different
parameters. The second is “graph file read” function that can directly read a graph from a file.
When the graph is built in memory, we will call the “graph bfs” function (it will call the BFS
algorithm Algorithm 1) to execute BFS analysis.

For triangle counting analysis, to compare the performance of exact method and our approxi-
mate method, we implement two triangle counting-related functions. For exact method, we reuse
the “graph file read” Python function and develop the “graph triangle” Python function to read
a complete graph file and call our triangle counting kernel algorithm (Algorithm 3) to calculate
the number of triangles.
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For our approximate method, we implement the “stream file read” function to simulate the
sliding window stream by reading a graph file’s edges one by one. The graph sketch introduced
in Section 21.5.2 will be built automatically when we read the edges.

After the sketch of a sliding window stream is built in the memory, we will call the
“stream tri cnt” function to first calculate the exact number of triangles in each sub-sketch (it
will also call our kernel triangle counting Algorithm 3) and then use the regression model to
estimate the total number of triangles in the given stream.

For the power law distribution regression model, in the benchmark, we also implement sin-
gle variable regression models using the maximum, minimum, and median result of the three
sub-sketches respectively. Our testing results show that the proposed regression method in Sub-
section 21.5.3 can achieve better accuracy.

21.7 EXPERIMENTS
Testing of the methods was conducted in an environment composed of a 32 node cluster with a
FDR Infiniband between the nodes in the cluster. Each node has two 10-core Intel Xeon E5-2650
v3 @ 2.30GHz and 512GB DDR4 memory. Infiniband connections between nodes is commonly
found in high-performing computers. Due to Arkodua being designed primarily for data analysis
in a HPC setting, an architecture setup that aptly fits an HPC scenario was chosen for testing.

21.7.1 EXPERIMENTAL SETUP FOR BFS ANALYSIS

To evaluate the results of the proposed integrated solution, we used two kinds of graphs. The
first is the R-MAT method [14] to generate the testing graphs. The other kind of graphs are
from standard benchmarks. We develop a simple bsf.py Python testing program to drive the
experiments.

For the R-MAT graphs, we set the vertices count of four different graphs as the following
values: 32768, 65536,131072, and 262144. The possibility of the dense edges area is set as 0.75.
All other three parts’ possibility share the remainder 0.25 equally. Each vertex has 2 edges so we
will generate 65536, 131072, 262144, and 524288 edges for different R-MAT graphs. We will
generate both directed and undirected R-MAT graphs.

The graph benchmarks utilized for testing include the Delaunay, Kronecker (notation as
KRON in the following part), and Random Geometric graphs (notation as RGG in the following
part) from the tenth DIMACS implementation challenge [4]. The number of edges and vertices
will be approximately doubled to reach the next graph in the same benchmark series. All data for
these graphs can be found online. For the intents and purposes of this paper, Table 21.2 summa-
rizes some important information on the graphs selected and utilized for testing. All benchmark
graphs utilized were undirected, and some were weighted. The number of connected components
are listed as well under the CCs column. For those files where the number of connected com-
ponents exceeded 1, 99%+ of the number of vertices found in the graph, were also found in the
largest component. The diameter pictured is a rough estimate taken by iterating over the first 100
all-pairs shortest paths created by the NetworkX python graph tool. The actual diameter of these
graphs may be bigger that what is shown.

For R-MAT, Delaunay, KRON, and RGG graphs, we will first build the graphs into distributed
memory based on our partition method and then execute the parallel BFS algorithm with different
number locales to check their performance (we will cancel some tests if the execution time is too
long to keep the experiments in reasonable time arrangement). For R-MAT graphs, we implement
the R-MAT algorithm to generate the R-MAT graph in parallel each time. For the benchmark
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Table 21.2
Important Parameters for Each Graph Benchmark File Utilized

Name Vertices Edges Weighted CCs Biggest CC Size Diameter(≥)

delaunay n17 131072 393176 0 1 131072 163
delaunay n18 262144 786396 0 1 262144 226
delaunay n19 524288 1572823 0 1 524288 309
delaunay n20 1048576 3145686 0 1 1048576 442
delaunay n21 2097152 6291408 0 1 2097152 618
delaunay n22 4194304 12582869 0 1 4194304 861
delaunay n23 8388608 25165784 0 1 8388608 1206
delaunay n24 16777216 50331601 0 1 16777216 1668
rgg n 2 21 s0 2097148 14487995 0 4 2097142 1151
rgg n 2 22 s0 4194301 30359198 0 2 4194299 1578
rgg n 2 23 s0 8388607 63501393 0 4 8388601 2129
rgg n 2 24 s0 16777215 132557200 0 1 16777215 3009
kron g500-logn18 210155 10583222 1 8 210141 4
kron g500-logn19 409175 21781478 1 27 409123 4
kron g500-logn20 795241 44620272 1 45 795153 4
kron g500-logn21 1544087 91042010 1 94 1543901 4

graphs, each locale will read the graph file in parallel using Chapel file IO and just select the
data that should be stored at its locale. After the graph data are ready in memory, we will sort
the edges and organize the graph based on our DI data structure. Furthermore, for the high-level
multilocale algorithm, we will show how a simple replacement in the data structure and parallel
construct can affect the performance significantly.

21.7.2 EXPERIMENTAL RESULTS OF BFS ALGORITHM

For large-scale graph analytics, there are two major steps. The first is building the graph into
memory at the Arkouda back-end. The second step is conducting different analysis methods on
the graph in memory to gain insight from the given graph. Here we use a parallel BFS algorithm
to demonstrate how we can conduct analysis on large graphs. In this section, we will provide the
experimental results of our graph building and graph analyzing methods.

21.7.2.1 Graph Building

The experimental results from Figures 21.4–21.11 show the graph building time and the building
efficiency of different graphs in Arkouda. We can see that for Figures 21.8 and 21.10, the build-
ing time will increase linearly with the number of edges, no matter how many locales we use.
However, it will take more time when handling the same amount of edges with more locales. The
reason lies in the data movement overhead among locales. More locales mean that more data
movement between distributed memory will be needed. The building efficiency Figures 21.9 and
21.11 also have perfect flat lines. The flat line means that each core will have the same effi-
ciency no matter how many edges or how many cores are used. Our experiments show that the
best construction efficiency of the RGG graph is 1736 edges/second/core. The lowest building
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efficiency is 255 edges/second/core for the largest R-MAT graph because the R-MAT graph will
need additional time to generate the graph.

We model the graph building time with the following multivariate nonlinear equation. Let E
be the number of edges in the graph and L be the number of locales that will be used to build the
graph. The building time will be

T (E,L) = a×E/L+b×E×L+ c

This model means that we assume that the computing time will increase linearly with E/L and
the communication time will increase linearly with the product E × L. For all the results, the
RMSE (Root Mean Square Error) is less than 390 and the R-squared value is larger than 0.79
which means more than 79% of the observed variation can be explained by the model’s inputs.
We can use the models to do some prediction. For examples, for the com-friendster.ungraph.txt1

which has 1,806,067,135 edges, the predicted building time on 2 locales will be 8.31 hours if
we use the RGG data. It really takes 8.5 hours to build the graph in memory and the predicted
value is very close to the practical value. However, if we use the data of Delaunay and KRON
that have less edges, the predicted building time will be much longer.The experimental results
in Figures 21.4 and 21.6 can help us see what happened for different graphs. We can see in
Figure 21.4, locales with 8 and 16 have a good linear growth trend. However, the curve with
locale 4 will increase very fast when the number of edges is becoming larger although the total
number of edges is less than the number in KRON and RGG benchmark. The major reason is that
compared with the benchmark method, R-MAT graph building method will have additional graph
generation time. When a graph touches the limit of its computing resources or the heavy workload
watermark, it cannot maintain a linear trend. A heavy load will reduce the core’s performance and
efficiency. For Figure 21.6, the Delaunay graph’s building time with 2 locales will also increase
fast when the number of edges is larger than 25,165,784. The reason is that Delaunay graphs
have much more vertices than the other benchmarks. Therefore, for the same number of edges,
the Delaunay benchmark will need more computation and memory. When the graph touches the
suitable resource limit, the lack of hardware resource will also cause loss in performance and
efficiency. Beyond the resource bound is the major reason why the graph building efficiency will
decrease in Figures 21.5 and 21.7. From all the graphs, we can conclude that the graph building
efficiency curve will first increase, then stay almost the same and finally reduce when the graph
workload touches the computing or memory limit of the given platform.

21.7.2.2 BFS Performance

In this part we will focus on the performance comparison of different BFS implementations. So,
we will use deterministic graph benchmarks instead of R-MAT graphs that can lead to different
performance with the same method because of the randomness in the graphs.

To evaluate the performance of the proposed high-level multilocale BFS algorithm and the
low-level algorithm, we implement the algorithm with different data structures and parallel con-
structs provided in Chapel to show the performance difference.

We use four different Delaunay benchmark graphs to show the performance of our BFS
algorithms. Figure 21.12 will be used as an example to explain the meaning of different algo-
rithm implementations. On the x axis, M means the result of our manually optimized low level
Algorithm 2. BagL is the result of high level multilocale Algorithm 1. BagG means that we will

1https://snap.stanford.edu/data/com-Friendster.html.
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Figure 21.4 Graph building time (R-MAT).

Figure 21.5 Graph building efficiency (R-MAT).

Figure 21.6 Graph building time (Delaunay).
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Figure 21.7 Graph building efficiency (Delaunay).

Figure 21.8 Graph building time (KRON).

Figure 21.9 Graph building efficiency(KRON).
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Figure 21.10 Graph building time (RGG).

Figure 21.11 Graph building efficiency (RGG).

remove line 11 of Algorithm 1 and all locales will search on the whole frontier instead of the ver-
tices owned by itself. SetL is the case that we just replace the high-level data structure DistBag
with Set in Algorithm 1. Except, using the set data structure, SetG is similar to BagG. DomL and
DomG are just like SetL and SetG except we will replace DistBag with Domain. In our high-level
multilocale BFS algorithm framework, DistBag, Set and Domain can provide the same function
to hold the current frontier and the next frontier elements. At the same time, they also have the
same or similar method to use the data structure. For example, they all have the add function to
add element into DistBag, Set or Domain.

For all the high-level multilocale BFS methods in Figures 21.12–21.15, the legend ForAll
means we will use f orall parallel construct to expand the vertex at line 10 in Algorithm 1. The
legend CoForAll means that we will use the co f orall parallel construct to expand the vertices.
However, for the manually optimized low-level method, the legend CoForall means that we will
use the co f orall parallel construct to expand the owned vertices by each locale at line 12 in
Algorithm 2. The legend ForAll means that we will use the f orall parallel construct to expand
the owned vertices by each locale.

From the experimental results in Figures 21.12–21.15, we have the following observations:
(1) For all the data structures DistBag, Set and Domain, the performance of distributed parallel
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Figure 21.12 BFS time (delaunay n17).

Figure 21.13 BFS time (delaunay n18).

Figure 21.14 BFS time (delaunay n19).
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Figure 21.15 BFS time (delaunay n20).

computing version (BagL, SetL and DomL) will be better than the shared computing version
(BagG, SetG and DomG). It is easy to understand that the shared computing will have a lot of
duplicated computations and the distributed resources cannot be used efficiently. (2) For most
of the distributed parallel computing versions, the performance of the f orall parallel construct
is better than the co f orall parallel construct. The reason is that the size of our frontier (from
hundreds to thousands and beyond) is relatively larger than the parallel units (20 in our system).
The co f orall construct will generate many parallel threads but they cannot be run immediately.
So the f orall parallel construct that only generates the same number of threads as the maxi-
mum cores will be more efficient. However, for our manually optimized low-level version, the
co f orall parallel construct implementation has better performance when the graph size if small.
The performance of f orall will catch up when the graph size become larger (see Figure 21.15).
The reason is that our low-level implementation can avoid idle threads and the number of parallel
threads created by co f orall is less than the high-level implementation (about 1

numLocales of the
size of current frontier). (3) For different high-level data structures (DistBag, Set, and Domain),
their optimized f orall parallel performance is very close to each other. The major operation in
our algorithm is adding an element into a set in parallel. Surprisingly, DistBag has not shown
obvious advantage in our preliminary tests. (4) Our manually optimized low-level algorithm can-
not have better performance than the high level-algorithms. This means that Chapel’s high level
data structures (DistBag, Set and Domain) can implement the data insertion into a set and the
communication among different locales with high performance.

The major advantage of our manually optimized low-level implementation is that we can ex-
tend the vertices owned by different locales independently to get next frontier without generating
any idle threads. However, for the high-level method, we have to create the same number of
threads on each locale to check if the element is owned by the local locale. If a vertex is not
owned by the current locale, this thread will become idle. The disadvantage of our low-level
method is that we have to create two additional sets to keep the local elements and remotes.
We need to send the remote elements to their owners. We will incur additional cost for such
operations.

The reverse Cuthill–McKee algorithm (RCM) [18] can reduce the bandwidth of a sparse
matrix and improve the data access locality. So, we employ the RCM method as the pre-
processing step to relabel the vertices, in this way we can improve the BFS performance. In
Table 21.3 we give the experimental results without and with RCM pre-processing results. In
the column of “RCM”, “N” means without RCM pre-processing and “Y” means with RCM
pre-processing.
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Table 21.3
Execution Time of Different BFS Implementations.

Graph
Parallel

Construct RCM M BagL BagG SetL SetG DomL DomG

delaunay n17
CoForall N 22.20 16.87 32.28 18.84 33.05 17.18 32.06

Y 14.90 14.77 26.68 16.94 29.11 14.42 26.65

Forall N 63.42 14.28 44.14 13.97 26.99 14.20 27.02
Y 24.28 10.85 33.75 12.02 21.85 12.16 21.85

delaunay n18
CoForAll N 48.57 33.76 64.58 43.08 70.55 34.25 63.84

Y 31.08 30.91 55.62 47.10 70.52 32.51 55.58

ForAll N 155.39 28.37 87.79 27.59 53.58 28.26 54.07
Y 37.56 23.37 73.45 25.28 43.52 25.58 44.05

delaunay n19
CoForAll N 110.93 68.72 131.04 102.32 156.55 69.08 128.39

Y 63.77 63.83 114.82 114.05 159.83 62.55 109.56

ForAll N 453.23 56.54 175.88 55.62 107.17 56.49 107.56
Y 69.90 46.23 141.92 49.65 86.68 50.27 86.50

delaunay n20
CoForAll N 259.44 139.16 265.08 255.28 361.99 138.98 258.44

Y 126.62 127.22 231.47 286.72 386.11 133.12 229.45

ForAll N 305.01 125.89 387.61 120.19 236.20 123.91 236.66
Y 172.16 92.87 293.59 99.46 176.49 101.05 176.03

We can see that the RCM method can substantially improve the performance in almost all
cases. The best performance can be improved about 1.24 fold for the four different benchmarks.
We can also see that the best performance is also different. For the performance without RCM
pre-processing, the Set data structure together with the f orall parallel construct can achieve the
best performance among all the cases. After RCM pre-processing, the DistBag data structure to-
gether with the f orall parallel construct can achieve the best performance. It seems that DistBag
data structure is more sensitive to the data locality.

Our experimental results also show that for very large graphs, the co f orall parallel construct
can cause runtime errors because of limited resources. To avoid this problem, we can set a thresh-
old value to switch between co f orall and f orall based on the total number of threads and the
available resources. The performance results show that for the same algorithm framework, we
can select suitable data structures and parallel constructs to achieve much better performance in
Chapel programming. So we can quickly optimize the performance, and this is the basic reason
why we can develop parallel graph algorithms in Chapel in a productive and efficient way.

21.7.3 EXPERIMENTAL SETUP FOR TRIANGLE COUNTING

We will use graph files and read the edges line by line to simulate the sliding window of a graph
stream. Selected graphs for testing were chosen from various publicly-available data sets for the
benchmarking of graph methods. These include data sets from the 10th DIMACS Implementa-
tion Challenge [6], as well as some real-life graph data sets from Stanford Network Analysis
Project (SNAP).2 Pertinent information about these data sets for the triangle counting method,
are displayed in Table 21.4.

2 http://snap.stanford.edu/data/index.html.
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Table 21.4
Graph benchmarks utilized for the triangle counting algorithm.

Degree
Distribution Graph Name Edges Vertices Mean

Standard
Deviation

Normal

delaunay n10 3056 1024 5.96875 3.10021
delaunay n11 6127 2048 5.98340 3.76799
delaunay n12 12264 4096 5.98828 3.49865
delaunay n13 24547 8192 5.99292 3.25055
delaunay n14 49122 16384 5.99634 3.30372
delaunay n15 98274 32768 5.99817 3.37514
delaunay n16 196575 65536 5.99899 3.35309
delaunay n17 393176 131072 5.99938 3.26819
delaunay n18 786396 262144 5.99972 3.2349

Degree
Distribution Graph Name Edges Vertices a k

power law

amazon 925872 334863 1920877 2.81
dblp 1049866 317080 3299616.65 2.71
youtube 2987624 1134890 701179.83 1.58
lj 34681189 3997962 50942065.49 2.40
orkut 117185083 3072441 40351890.91 2.12
ca-HepTh 51971 9877 23538.9 2.29
ca-CondMat 186936 23133 68923.6 2.23
ca-AstroPh 396160 18772 46698.3 1.84
email-Enron 367662 36692 10150.2 1.54
ca-GrQc 28980 5242 6610.35 2.04
ca-HepPh 237010 12008 4601.72 1.44
loc-brightkite edges 214078 58228 44973.1 1.88

Based on the graphs’ degree distribution, we divide them into two classes, normal distribu-
tion and power law distribution. Prior research has shown that some real-world graphs follow
power law distributions. Normal distributions are also found ubiquitously in the natural and so-
cial sciences to represent real-valued random variables whose distributions are not known. For
normal distributions, their typical parameters, the mean and standard deviation fitted from the
given graphs, are listed in Table 21.4 too. Figure 21.16 shows the comparison between the fitting
results and the original graph data. We can see that the fitting results can match with the original
data very well. In other words, the Delaunay graphs follow the normal distribution.

For graphs that follow the power law distribution y(x) = a× x−k, we also give their fitting
parameter a and k in Table 21.4. Figure 21.17 gives some examples to show such graphs. We can
see that in general, their signatures are close to power laws. However, we can also see that some
data does not fit a power law distribution very well.

21.7.4 EXPERIMENTAL RESULTS OF TRIANGLE COUNTING

In this section, we will evaluate the proposed triangle counting algorithm from two aspects: (1)
The accuracy of the proposed approximate solution. (2) The memory and execution time savings
based on the proposed graph sketch.
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Figure 21.16 Normal distribution graphs. (a) Delaunay n10. (b) Delaunay n12. (c) Delaunay n14.
(d) Delaunay n18.

21.7.4.1 Accuracy
In order to evaluate the accuracy of our method, we conducted experiments on 9 normal dis-
tribution and 12 power law distribution benchmark graphs with shrink factors 4, 8, 16, 32, and
64. So in total we have 105 test cases. For each test, we will have three triangle numbers for
the Head, Mid and Tail sketch partitions. We will use the exact number of triangles in the three
sub-sketches to give the approximate number of triangles in the given graph stream. The testing
results are given in Table 21.6.

For the normal distribution, based on our regression model expressed as Eq. 21.1, we can get
the parameters and express the multivariate linear regression equation as

TCNormal = 0.7264×EH +1.4157×EM +1.7529×ET

When we compute the absolute value of all the percent error, the mean error is 4%, the max error
is 25%, R-squared value is 1 and this means that the sketch results are absolutely related with the
final number of triangles.

We also evaluate our regression model to see how the accuracy changes with the shrinking
factor. For normal distribution, we built five regression models by selecting the shrinking factor
as 4, 8, 16, 32, and 64, respectively. The result is shown in Figure 21.18. We can see that both the
mean and max error will increase when we doubly increase the value of shrinking factor step by
step. However, the mean is increasing very slow. The mean error changes from 1% to 5.97%. The
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Figure 21.17 Power law distribution graphs. (a) Amazon. (b) dblp. (c) ca-AstroPh. (d) email-Enron.

Figure 21.18 How accuracy changes with shrinking factor for normal distribution graphs.
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Table 21.5
Comparison between Ordered and Unordered Regression Models for Power Law
Distribution.

Metrics AbsMaxError AbsMeanError R-squared

Regression Methods Ordered Unordered Ordered Unordered Ordered Unordered

Shrink Factor

4 6.76% 8.26% 2.84% 3.75% 91.42% 85.10 %
8 6.08% 8.89% 3.05% 4.13% 91.59% 82.90%

16 4.16% 8.66% 1.97% 3.64% 96.47% 87.85%
32 6.67% 10.80% 3.02% 4.02% 90.85% 82.73%
64 4.66% 6.68% 2.86% 3.02% 94.12% 92.04%

max error will increase from 3.36% to 26.87%. This result shows that our regression model for
normal distribution graphs is stable and very accurate. When the graph size shrinks into the half
of the previous size, there is a very small effect on the accuracy when the number of triangles are
not less than some threshold value. This is important because we can use much smaller sketches
to achieve very accurate results.

For the power law distribution, based on our ordered regression model Eq. (21.3) that is refined
from the unordered regression model, the log value multivariate linear regression equation can
be expressed as

TCpowerlaw,log =−0.4464×Emin,log +0.1181×Emedian,log +1.4236×Emax,log

The mean error is 3.2%. The max value is 7.2%. The R-squared value is 0.91. This means that the
model can describe the data very well. If we use the unordered regression model Eq. (21.2), the
mean error is 4.5%. The max value is 12.5%. R-squared is 0.81. All the results are worse than
the results of the ordered regression model Eq. (21.3).

We also performed experiments to show the accuracy of ordered and unordered regression
models when we build five different regression models using different shrinking factors 4, 8, 16,
32, and 64. The experimental results are given in Table 21.5 and we can have two conclusions
from the results. (1) All the results of our ordered regression model are better than the results
of the unordered regression model. This means that when we exploit more degree distribution
information and integrate it into our model, we can achieve better accuracy. (2) When we double
the value of the shrinking factor, the change in accuracy is much smaller than the change in
normal regression model. It also means that in the power law model, the accuracy is much less
sensitive to the shrinking factor because the power law graph is highly skewed. This conclusion
also means that we can use a relatively smaller shrinking factor to achieve almost the same
accuracy.

The accuracy evaluation results show that the proposed regression model for normal distri-
bution graphs and power law distribution graphs can achieve very accurate results. Both mean
relative error is less than 4%. However, if we employ the normal regression model Eq. (21.1) on
power-law distribution data, the mean relative error can be as high as 26%, the max relative error
is 188%. This means that employing different regression models for different degree distribution
graphs may significantly improve the accuracy.
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Table 21.6
Exact Number of Triangles in Different Sub-Sketches.

Graph Name Shrinking Factor Head Mid Tail Exact

delaunay n10 4 98 138 150 2047
delaunay n10 8 63 72 80 2046
delaunay n10 16 35 41 41 2044
delaunay n10 32 20 12 16 2043
delaunay n10 64 3 3 10 2042
delaunay n11 4 195 302 294 4104
delaunay n11 8 95 151 144 4103
delaunay n11 16 62 71 63 4101
delaunay n11 32 26 32 29 4100
delaunay n11 64 12 24 14 4009
delaunay n12 4 258 607 575 8215
delaunay n12 8 163 306 293 8214
delaunay n12 16 90 139 147 8212
delaunay n12 32 52 78 76 8211
delaunay n12 64 51 42 32 8210
delaunay n13 4 646 1160 1197 16442
delaunay n13 8 335 598 588 16441
delaunay n13 16 187 297 304 16439
delaunay n13 32 108 144 153 16438
delaunay n13 64 68 62 81 16437
delaunay n14 4 1099 2356 2299 32921
delaunay n14 8 507 1205 1184 32920
delaunay n14 16 269 568 579 32918
delaunay n14 32 135 294 303 32917
delaunay n14 64 93 144 137 32916
delaunay n15 4 2085 4571 4585 65872
delaunay n15 8 943 2335 2320 65871
delaunay n15 16 486 1140 1159 65869
delaunay n15 32 265 568 580 65868
delaunay n15 64 137 282 299 65867
delaunay n16 4 4168 9648 9510 131842
delaunay n16 8 2170 4666 4601 131841
delaunay n16 16 1063 2387 2348 131839
delaunay n16 32 569 1174 1169 131838
delaunay n16 64 326 576 580 131837
delaunay n17 4 8154 18873 18938 263620
delaunay n17 8 4012 9543 9501 263619
delaunay n17 16 2132 4595 4773 263617
delaunay n17 32 1042 2288 2347 263616
delaunay n17 64 534 1156 1180 263615
delaunay n18 4 16904 37774 38061 527234

(Continued)
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Table 21.6 (Continued)
Exact Number of Triangles in Different Sub-Sketches.

Graph Name Shrinking Factor Head Mid Tail Exact

delaunay n18 8 8155 19005 19107 527233
delaunay n18 16 4176 9454 9562 527231
delaunay n18 32 2097 4674 4686 527230
delaunay n18 64 1004 2369 2348 527229
amazon 4 4944 6383 18381 667259
amazon 8 1427 1752 7351 667258
amazon 16 621 617 3614 667256
amazon 32 331 290 2250 667255
amazon 64 177 153 1546 667254
dblp 4 20269 41390 168996 2225882
dblp 8 6876 17043 67782 2225881
dblp 16 2684 4846 20310 2225879
dblp 32 1097 2726 11456 2225878
dblp 64 545 2325 2678 2225877
ca-HepTh.txt 4 1267 1072 3853 28677
ca-HepTh.txt 8 642 591 1741 28676
ca-HepTh.txt 16 456 390 480 28674
ca-HepTh.txt 32 391 267 219 28673
ca-HepTh.txt 64 260 217 157 28672
ca-CondMat.txt 4 7960 10280 12051 174578
ca-CondMat.txt 8 4264 4970 5543 174577
ca-CondMat.txt 16 2862 2847 2655 174575
ca-CondMat.txt 32 1888 1693 1403 174574
ca-CondMat.txt 64 1179 1292 845 174573
ca-AstroPh.txt 4 75594 78234 78855 1374119
ca-AstroPh.txt 8 41331 47387 40395 1374118
ca-AstroPh.txt 16 24828 28244 20468 1374116
ca-AstroPh.txt 32 14984 16692 11128 1374115
ca-AstroPh.txt 64 6450 6507 6322 1374114
email-Enron.txt 4 70077 28783 25933 727044
email-Enron.txt 8 22331 13593 15197 727043
email-Enron.txt 16 11640 8381 5002 727041
email-Enron.txt 32 6681 5212 2392 727040
email-Enron.txt 64 3561 2912 1056 727039
ca-GrQc.txt 4 1193 3374 5300 48265
ca-GrQc.txt 8 671 2131 1096 48264
ca-GrQc.txt 16 346 880 733 48262
ca-GrQc.txt 32 276 694 385 48261
ca-GrQc.txt 64 64 221 150 48260
ca-HepPh.txt 4 118540 74598 187003 3345241

(Continued)
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Table 21.6 (Continued)
Exact Number of Triangles in Different Sub-Sketches.

Graph Name Shrinking Factor Head Mid Tail Exact

ca-HepPh.txt 8 44937 33404 64281 3345240
ca-HepPh.txt 16 16775 16426 35817 3345238
ca-HepPh.txt 32 3708 6643 8724 3345237
ca-HepPh.txt 64 705 3707 2899 3345236
loc-brightKite edges.txt 4 12232 4435 2489 301812
loc-brightKite edges.txt 8 5266 3217 1652 301811
loc-brightKite edges.txt 16 2579 1673 927 301809
loc-brightKite edges.txt 32 1061 1335 380 301808
loc-brightKite edges.txt 64 552 856 280 301807

21.7.4.2 Performance
Existing exact triangle counting algorithms show that for very large graphs, the communication
between different compute nodes will consume the major part of the time. So, how to reduce the
total communication or how to improve data access locality during triangle counting is the key
factor to improve the final performance.

Since our triangle counting method can maintain load balancing and locality, it can achieve
high performance for large graph streams. Our experiment results show that our streaming trian-
gle algorithm displays high locality. These results are given in Table 21.7. We calculate all the
local data access times and all the remote data access times during the triangle counting proce-
dure. We define the locality access ratio LAR = NL

NL+NR where NL is the total number of local
accesses and NR is the total number of remote accesses. For the three sub-sketches, Head, Mid
and Tail, we calculate their LAR values, respectively. From the table we can see for all cases, the
LAR value is larger than 50% and the average LAR value is 74%. This means that during our
triangle counting procedure, most of the data comes from local memory. This is the major reason
our method can achieve high performance.

To show the speedup of the streaming process, we compare the execution time of the original
complete graph triangle counting and the execution time of our sketch method. The experimental
results are given in Table 21.8. From the table we can see that our streaming method uses much
less space and runs much faster to estimate the number of triangles in large graph stream with
only one pass. Since the experimental time is very long for large graphs, here we just give three
different shrinking factors to show the trend. We can see that for very large graphs, we can use a
very large shrinking factor to significantly reduce the processing space and the absolute speedup
is also very high. However, the relative speedup compared with the shrinking factor is a little bit
lower. For relatively small graphs, our shrinking factor is also relatively small, so the absolute
speedup is also small but the relative speedup is high. Our experimental results show that the
speedup will increase almost linearly with the shrinking factor.

We also use an even larger graph benchmark com-Friendster that has 1,806,067,135 edges
and 65,608,366 vertices3 and run it with 2 locales. When the shrinking factor is 32,768, it will
take 44,719.4 seconds to build the sketch with a maximum of 235,332KB memory footprint.

3 https://snap.stanford.edu/data/.
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Table 21.7
Local Access Ratio of different stream graphs.

Filename
Head Local
Access Ratio

Mid Local
Access Ratio

Tail Local
Access Ratio

delaunay n10 0.736364 0.75 0.642045
delaunay n11 0.578635 0.789894 0.707775
delaunay n12 0.737226 0.906832 0.878136
delaunay n13 0.710651 0.902913 0.91839
delaunay n14 0.661084 0.914058 0.941802
delaunay n15 0.699193 0.963969 0.947161
delaunay n16 0.685931 0.968672 0.953034
delaunay n17 0.692844 0.972879 0.963517
delaunay n18 0.693935 0.983028 0.975103
ca-HepTh.txt 0.687343 0.645873 0.650115
ca-CondMat.txt 0.630154 0.663701 0.6764
ca-AstroPh.txt 0.61735 0.615687 0.615749
email-Enron.txt 0.376773 0.632443 0.785357
ca-GrQc.txt 0.721421 0.671429 0.687907
ca-HepPh.txt 0.643376 0.648718 0.593803
loc-brightkite edges.txt 0.71338 0.603389 0.721972
amazon 0.731695 0.723097 0.738042
dblp 0.605114 0.711748 0.830386
youtube 0.669736 0.671671 0.9342
lj 0.570621 0.728383 0.993926
orkut 0.556868 0.569822 0.861902

Table 21.8
Speedup of Stream graph processing.

Graph Name Factor Stream Time (s) Exact Time (s) Speedup

delaunay n12 4 2.04689 2.72048 1.33
delaunay n12 8 1.8969 2.72048 1.43
delaunay n12 16 1.77604 2.72048 1.53
delaunay n13 4 2.67814 4.70596 1.76
delaunay n13 8 2.27257 4.70596 2.07
delaunay n13 16 2.0258 4.70596 2.32
delaunay n14 4 3.94324 8.91793 2.26
delaunay n14 8 3.04275 8.91793 2.93
delaunay n14 16 2.60059 8.91793 3.43
delaunay n15 4 6.34795 17.4302 2.75
delaunay n15 8 4.44783 17.4302 3.92

(Continued)



582 Massive Graph Analytics

Table 21.8 (Continued)
Speedup of Stream graph processing.

Graph Name Factor Stream Time (s) Exact Time (s) Speedup

delaunay n15 16 3.6619 17.4302 4.76
delaunay n16 4 11.2135 34.2433 3.05
delaunay n16 8 7.29339 34.2433 4.70
delaunay n16 16 5.65829 34.2433 6.05
delaunay n17 4 21.0084 68.4882 3.26
delaunay n17 8 13.0833 68.4882 5.23
delaunay n17 16 9.71683 68.4882 7.05
delaunay n18 4 40.4338 135.191 3.34
delaunay n18 8 24.8456 135.191 5.44
delaunay n18 16 17.8642 135.191 7.57
delaunay n18 32 14.1647 135.191 9.54
delaunay n18 64 12.0415 135.191 11.23
delaunay n19 32 26.6216 270.491 10.16
delaunay n19 64 22.5967 270.491 11.97
delaunay n19 128 20.9203 270.491 12.93
delaunay n20 32 51.7499 536.331 10.36
delaunay n20 64 44.3933 536.331 12.08
delaunay n20 128 40.2489 536.331 13.33
delaunay n21 32 104.236 1076.77 10.33
delaunay n21 64 87.0196 1076.77 12.37
delaunay n21 128 80.7149 1076.77 13.34
delaunay n22 32 208.478 2155.85 10.34
delaunay n22 64 177.637 2155.85 12.14
delaunay n22 128 158.13 2155.85 13.63
delaunay n23 64 352.531 4356.982 12.36
delaunay n23 128 317.053 4356.982 13.74
delaunay n23 256 301.295 4356.982 14.46
delaunay n24 128 645.002 8708.3756 13.50
delaunay n24 256 604.981 8708.3756 14.39
delaunay n24 512 598.49 8708.3756 14.55
amazon 16 20.4202 147.926 7.24
amazon 32 16.2884 147.926 9.08
amazon 64 14.0285 147.926 10.54
ca-AstroPh 4 16.1657 33.1578 2.05
ca-AstroPh 8 11.0193 33.1578 3.01
ca-AstroPh 16 8.38061 33.1578 3.96
ca-CondMat 4 8.70114 16.5758 1.91
ca-CondMat 8 6.20076 16.5758 2.67
ca-CondMat 16 4.86599 16.5758 3.41
ca-GrQc 4 2.65749 3.23613 1.22
ca-GrQc 8 2.20744 3.23613 1.47

(Continued)
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Table 21.8 (Continued)
Speedup of Stream graph processing.

Graph Name Factor Stream Time (s) Exact Time (s) Speedup

ca-GrQc 16 2.02119 3.23613 1.60
ca-HepPh 4 10.263 21.3077 2.08
ca-HepPh 8 6.98969 21.3077 3.05
ca-HepPh 16 5.45666 21.3077 3.90
ca-HepPh 32 4.83524 21.3077 4.41
ca-HepPh 64 4.3246 21.3077 4.93
ca-HepTh 4 3.78554 5.37471 1.42
ca-HepTh 8 2.92663 5.37471 1.84
ca-HepTh 16 2.46299 5.37471 2.18
dblp 16 22.0434 163.092 7.40
dblp 32 17.8394 163.092 9.14
dblp 64 15.4684 163.092 10.54
email-Enron 4 16.133 63.1888 3.92
email-Enron 8 10.859 63.1888 5.82
email-Enron 16 8.04875 63.1888 7.85
lj 512 409.672 6937.4 16.93
lj 1024 393.518 6937.4 17.63
lj 2048 397.583 6937.4 17.45
loc-brightkite edges 4 14.1111 30.1892 2.14
loc-brightkite edges 8 10.1597 30.1892 2.97
loc-brightkite edges 16 8.09854 30.1892 3.73
youtube 512 36.2397 951.094 26.24
youtube 1024 34.9246 951.094 27.23
youtube 2048 34.6978 951.094 27.41

The triangle counting time is 22,368.2 seconds. When the shrinking factor is 65,536, it will take
44,593.0 seconds to build the sketch with a maximum of 235,288KB memory footprint. The tri-
angle counting time is 22,296.0 seconds. If we use the exact method also with 2 locales, the
program will fail because it runs out of memory. This example really shows that our method can
handle very large graphs in limited memory footprint.

21.8 RELATED WORK
In this section, we introduce existing BFS and triangle counting algorithms. We also introduce
the exact method and approximate method to handle graph streams.

21.8.1 BFS ALGORITHM

Since BFS is a very basic graph algorithm, it has been investigated from different aspects. For
shared-memory BFS algorithms, Leiserson et al. [31] proposed a data structure “bag” to replace
shared queue to improve the parallelism in expanding the next frontier of vertices. Of course, their
“bag” is different from the “distbag” in Chapel. However, we share the same idea of employing
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efficient data structures to support parallel algorithm design. They optimized the implementation
of the reducer and all their methods have been integrated into their Cilk++ compiler.

There are many approaches that can exploit specific hardware architecture. For example,
Bader et al. [5] employed the fine-grained, low-overhead synchronization Cray MTA-2 com-
puter to develop a load-balanced BFS algorithm using thousands of hardware threads. Mizell
et al. [40] implemented the BFS algorithm on the 128-processor Cray XMT system.

There are also many BFS algorithms on GPU. For examples, Luo et al. [32] used a hierar-
chical data structure at grid, block and warp levels to store and access the frontier vertices, and
demonstrate that their algorithm is up to 10 times faster than the Harish-Narayanan algorithm
on NVIDIA GPUs and low-diameter sparse graphs. Merrill et al. [37] used efficient prefix sum
computations to deliver excellent performance on diverse graphs.

For very large graphs, distributed-memory BFS algorithms are necessary. Beamer et al. [8]
proposed a hybrid strategy to combine the “top-down” and “bottom-up” expansions together. The
basic idea is employing “top-down” expansion when the frontier has a small number of vertices.
Otherwise the “bottom-up” expansion method will be used to avoid searching too many edges.
Azad et al. [3] employed a variant of the standard breadth-first search algorithm, reverse Cuthill-
McKee algorithm, to improve the performance. The Cuthill–McKee algorithm will relabel the
vertices of the graph to reduce the bandwidth of the adjacency matrix. Jiang et al. [29] used
both Reverse Cuthill-Mckee algorithm and SIMD executions to improve their BFS algorithm’s
performance. Fan et al. [21] employed several technologies, such as asynchronous virtual ring
method, thread caching scheme and vertex ID reordering to improve the BFS performance.

The major difference between our idea and the existing BFS algorithms is high algorithm
design productivity and quick optimization. The basic idea of our graph algorithms design in
Chapel is taking advantage of the high level data structure provided by Chapel to simplify the
algorithm design and employing the parallel constructs provided by Chapel to exploit the par-
allelism. Our experimental results show that with the same algorithm framework, small change
in data structure or parallel construct can cause very significant performance differences. The
purpose of Chapel based graph algorithm design in Arkouda is the productive algorithm design
and quick performance optimization to support exploratory data analysis at scale.

21.8.2 TRIANGLE COUNTING ALGORITHM

Triangle counting is a key building block for important graph algorithms such as transitivity and
K-truss. There are two kinds of triangle counting algorithms, exact triangle counting for static
graphs and approximate triangle counting for graphs built from dynamic streams [36]. Since the
proposed DI sketch is a graphical model, all the static triangle counting algorithms can also be
used on the small DI sketch.

Graph Challenge4 is an important competition on large graph algorithms (including triangle
counting). Starting from 2017, many excellent static triangle counting algorithms have been de-
veloped. They target three hardware platforms, shared memory, distributed memory, and GPU.

The shared memory methods take advantage of some fast parallel packages, such as Kokkos
Kernels [51] or Cilk [52], to improve their performance. However, the GPU methods [10, 42, 11]
use massively parallel fine-grain hardware threads of a GPU to improve the performance.
Distributed-memory triangle counting focuses on very large graphs that cannot fit in a single
node’s memory. Some heuristics [44], optimized communication library [45], and graph struc-
tures [22] are used to improve the performance. We leverage the ideas in such methods to develop
our Chapel-based multilocale triangle counting algorithm.

4https://graphchallenge.mit.edu/challenges.
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The basic idea of graph stream analysis is estimating the exact query result of a graph stream
based on the sampling results. Colorful triangle counting [41] is an example. However, it needs
to know the number of triangles and the maximum number of triangles of an edge to set the
possibility value. This is not feasible in practical applications. Reduction-based [7] triangle
counting is a typical method which can design a theoretical algorithm based on user-specified
values (ε,δ ). Such a method often cannot directly be used satisfactorily in practical applications
because hidden constant values often impact the performance. Neighborhood sampling [43] is
another method for triangle counting with significant space and time complexity improvements.
Specifically, Braverman et al. [12] discuss the difficulty of the triangle counting algorithm in a
streaming model. Other sampling methods, such as [13], have space usage that depends on the
ratio of the number of triangles and the number of triples or the algorithm will require the edge
stream to meet a specific order. Jha et al. [28] apply the birthday paradox theory on sampling
data to estimate the number of triangles in a graph stream.

21.8.3 GRAPH STREAM SKETCH

A much smaller sketch allows for many queries over the large graph stream to get approximate
results efficiently. Therefore, how to build a graph stream’s sketch is of fundamental importance
for graph stream analytics. There are several methods that build the sketch by treating each stream
element independently without keeping the relationships among those elements. For example,
CountMin [17] allows fundamental queries in data stream summarization such as point, range,
and inner product queries. It can also be used to find quantiles and frequent items in data stream.
Bottom K sketch [16] places both priority sampling and weighted sampling without replacement
within a unified framework. It can generate tighter bounds when the total weight is available.
gSketch [53] introduces the sketch partitioning technique to estimate and optimize the responses
to basic queries on graph streams. By exploiting both data and query workload samples, gSketch
can achieve better query estimation accuracy than that achieved with only the data sample. We
borrow the sketch partitioning idea in our implementation of Double-Index (DI) sketch. However,
these existing sketches focus on ad-hoc problems (they can only solve the proposed specific
problems instead of general problems), so they cannot support general data analytics over graph
streams.

TCM sketch [49] uses a graphical model to build the sketch of a graph stream. This means
that TCM is a general sketch to allow complicated queries. However, TCM’s focus is setting up
a general sketch theoretically instead of optimizing the practical performance for real-world data
sets. Our Double-Index (DI) sketch is specially designed for real-world sparse graph streams and
it can achieve high practical performance.

21.8.4 COMPLETE GRAPH STREAM PROCESSING METHOD

Several dynamic graph management and analytics solutions are as follows. Aspen [19] takes
advantage of purely-functional trees data structure, C-trees, to implement quick graph updates
and queries. LLAMA’s streaming graph data structure [33] is motivated by the CSR format.
However, like Aspen, LLAMA is designed for batch-processing in the single-writer multi-reader
setting and does not provide graph mutation support. GraphOne [30] can run queries on the most
recent version of the graph while processing updates concurrently by using a combination of an
adjacency list and an edge list.

Systems like LLAMA, Aspen and GraphOne focus on designing efficient dynamic graph
data structures, and their processing units do not support incremental computation. KickStarter
[50] maintains the dependency information in the form of dependency trees, and performs an
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incremental trimming process that adjusts the values based on monotonic relationships. Graph-
Bolt [35] incrementally processes streaming graphs and minimizes redundant computations upon
graph mutation while still guaranteeing synchronous processing semantics. DZiG [34] is a high-
performance streaming graph processing system that retains efficiency in the presence of sparse
computations while still guaranteeing BSP semantics. However, all such methods have the chal-
lenging requirement that the memory must be large enough to hold all the streams. For very large
streams, this is often feasible.

21.9 CONCLUSION

Interactive graph analysis is a challenging problem. In this chapter, we present our solutions
to solve the problem in an open source framework Arkouda. The advantage of Arkouda lies
in two aspects: high productivity and high performance. High productivity means that the
end users can use a popular data science language such as Python to explore different graph
streams. High performance means that the end users can break the limit of their laptop and
personal computer’s capabilities in memory and calculation to handle very large graphs in an
interactive way.

We design a double index data structure to support quick search from a given vertex to edges
or from given edge to vertices. This greatly reduces the total memory footprint for large sparse
graphs or graph streams. Based on the proposed double index data structure, we can build
the graph or graph stream in memory using very limited space. Our graph sketch can support
general stream query problems because our sketch uses a small graph to summarize a large
graph. We define a shrinking factor to let users control the size of final sketch accurately. We
exploit the ubiquitous normal and power law degree distributions of given graph streams to
propose two regression models to estimate the results of the graph streams from their sketch
partitions.

Based on the double index data structure, we develop a multilocale BFS algorithm and a
triangle counting algorithm that can maintain load balancing and high local data access ratio
to improve the graph processing performance. All our methods have been integrated into the
Arkouda framework and users can use a Jupyter Notebook to drive the interactive graph analytics
pipeline easily.

Experimental results on the proposed BFS algorithms show that we can develop parallel al-
gorithms and optimize their performance based on the same algorithm framework in Chapel
efficiently. Selecting suitable data structures and parallel constructs can significantly improve the
algorithm performance in Chapel.

Experimental results on two kinds of large sparse graph streams, normal distribution and
power law distribution, show that the proposed method can achieve very high approximate results
with the mean error no larger than 4%. The average local access ratio is 74% and the graph
stream processing speedup increases almost linearly with the shrinking factor. This work shows
that Arkouda is a promising framework to support large-scale interactive graph analytics.
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ex ese er susto dunt lum volore dipismo dionse consequis endre magnism olorem
dolenit, qui tem iurem veliquam irilla facillan velenim quat. Adion ut accum dolese
vulpute conullam, volore faci te commy nim iure tinim am dolore magnibh euip elit
irit, sendrem dolor sumsandion ullam at luptate ming enis do conulpu tatet, verit atue
tat. Ut alisl do odolumsan henit la amcon vendit duis nim venim vel exercilisit lore
do commod min esequis cidunt alit utate do odolore volore min heniatie dionsequi et
ing ero consed tem velisim iureril ea cor suscidu [1] isismol ortionsed magnibh eui
tatie dolore tat ipsuscilit, susto od eu faci ea feuis num nonsequat iureet, quam dolor
sed eros nullupt atueros adigniam, consequamet, consendio odipit in ullaortin henit
praesed et dipit, veliscilit in ute tat incipissi.

1.1 SECTION HEAD 1 (H1)

[] Em voloreet volorting esto dolobore ero euipsum zzril eu faccummy nibh et num-
sand igniatuer sustis nullaor perat. Ut dunt adipit elese essed tem aute er si eros alis
at, si bla augait augiat, si tations equate facing et, quiscin ullan hendip esed exeros
dunt eu faci bla corem eugait, sumsan ut lam nim amet, verit ea faciduis nibh es-
trud modiati ssequipit voloreetuero odolorem vulla feuis nullumsan hent alit illam,
vent luptat auguercipit niamet wis accummolor susto odoloreet volorem dolortisim
do odolorem ex erilis aut vulla faccum dolore ex er incidunt ute dolore faccum acil-
lan ullute molore dolor adigna autpat laor in ulla feugait, verit praesenisi [4]. Ugait
luptatumsan ex eum ad tat lortie tat acilit velis nis autatum nulput am at volorerit
luptation vel delit ip exeros nos ex ea aute ea facing et nonsequis alissim quat at. Ril
ipis et, veliquam doluptat, susting etumsan utat, quisim vel iriure magnim ver sed
exero od magna amcore mod te enit acidunt dit nullutem adio od magna facilis alis
doloreet loRo conum num vullum dolorpe raesequismod modiatu erillan drerit lan
vel utatuerat, quisl in hent niametum zzriure molobore dolenim nulla consectem do-
lortin ute magna con venisl do ex et prat. Et praesti scilis nulputpat nulla feum iure
dipsuscin veriure feugiat. Ed tem quat, con vel ipit in utpat ad molesent praestrud
eu faccum in ea faci eriure tie ming erostrud dolor il et lan hent la feuisim velessi
blaore magna faci blaortinisis el ero consequ isissim alit adip exerat. Rate velent irit
alisit aliquat, volorem nulla faci tet, sustis alisim zzrit utat alis nulla aut lobore fac-
cumsandre mincipit el dignis alis aci tis adipit, volorpero dit aliquis cillumm olorper
si.

3

ar, Sivasankaran Rajamanickam, Michael Wolf, Jonathan Berry, and Ümit V
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