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We study quantum interior point methods (QIPMs) for second-order cone programming (SOCP),
guided by the example use case of portfolio optimization (PO). We provide a complete quantum
circuit-level description of the algorithm from problem input to problem output, making several
improvements to the implementation of the QIPM. We report the number of logical qubits and the
quantity/depth of non-Clifford T -gates needed to run the algorithm, including constant factors. The
resource counts we find depend on instance-specific parameters, such as the condition number of
certain linear systems within the problem. To determine the size of these parameters, we perform
numerical simulations of small PO instances, which lead to concrete resource estimates for the PO use
case. Our numerical results do not probe large enough instance sizes to make conclusive statements
about the asymptotic scaling of the algorithm. However, already at small instance sizes, our analysis
suggests that, due primarily to large constant pre-factors, poorly conditioned linear systems, and a
fundamental reliance on costly quantum state tomography, fundamental improvements to the QIPM
are required for it to lead to practical quantum advantage.

I. OVERVIEW

A. Introduction

The practical utility of finding optimal solutions to
well-posed optimization problems has been known since
the days of antiquity, with Euclid considering the min-
imal distance between two points using a line. In the
modern era, optimization algorithms for business and fi-
nancial use cases continue to be ubiquitous. Partly as a
result of this utility, algorithmic techniques for optimiza-
tion problems have been well studied since even before
the invention of the computer, including a famous dis-
pute between Legendre and Gauss on who was respon-
sible for the invention of least squares fitting [1]. With
the advent of the quantum era, there has been great in-
terest in developing quantum algorithms that solve opti-
mization problems with provable speedups over classical
algorithms. Some of the earliest proposals rely on quan-
tum annealing [2] or more recent work in variational al-
gorithms [3, 4] to solve combinatorial optimization prob-
lems. Quantum algorithms have also been developed that
allow for more efficient convex optimization, including al-
gorithms for semidefinite, second-order cone, and linear
programs [5–14], as well as algorithms for solving systems
of linear equations [15–19], which can be used for quan-
tum data fitting [20]. Using these techniques, specific
financial use cases such as solving the portfolio optimiza-
tion problem have been studied [21–24].

Unfortunately, it can be difficult to evaluate whether
these quantum algorithms will be practically useful. In
some cases, the algorithms are heuristic, and their per-
formance can only be measured empirically once it is pos-
sible to run them on actual quantum hardware. In other
cases, the difficulty in evaluating practicality stems from
the inherent complexity of combining many distinct in-
gredients, each with their own caveats and bottlenecks.
To make an apples-to-apples comparison and quantify
advantages of a quantum algorithm, a truly end-to-end
resource analysis that accounts for all costs from problem
input to problem output must be performed.

In this work, we perform such an end-to-end analysis
for a quantum interior point method (QIPM) for solving
second-order cone programs (SOCPs), which was origi-
nally proposed in Ref. [13], based on earlier QIPMs for
semidefinite and linear programs [10]. In particular, we
focus on a concrete use case with very broad application,
but of primary interest in the financial services sector:
portfolio optimization (PO). In general, PO is the task
of determining the optimal resource allocation to a col-
lection of possible classes, so as to optimize a given ob-
jective. In finance, one seeks to determine the optimal
allocation of funds across a set of possible assets that
maximizes returns and minimizes risk, subject to con-
straints. Importantly, many variants of the PO problem
can be cast as a SOCP and subsequently solved with a
classical or quantum interior point method. However, the
QIPM is a complex algorithm that delicately combines
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B Results I OVERVIEW

some purely classical steps with multiple distinct quan-
tum subroutines. The runtime of the QIPM is stated
in terms of several parameters that can only be evalu-
ated once a particular use case has been specified; de-
pending on how these parameters scale, an asymptotic
speedup may or may not be achievable. Additionally,
any speedup is contingent on access to a large quantum
random access memory (QRAM), an ingredient that in
prior asymptotic-focused analyses has typically been as-
sumed to exist without much further justification or cost
analysis.

Our resource analysis is detailed and takes care to
study all aspects of the end-to-end pipeline, including
the QRAM component. We report our results in terms
of relevant problem parameters, and then we perform nu-
merical experiments to determine the size and scaling of
these parameters for actual randomly chosen instances
of the PO problem, based on historical stock data. This
approach allows us to estimate the exact resource cost of
the QIPM for an example PO problem, including a de-
tailed breakdown of costs by various subroutines. Con-
sequently, our analysis allows us to evaluate the prospect
that the algorithm could exhibit a practical quantum ad-
vantage, and it clearly reveals the computational bot-
tlenecks within the algorithm that are most in need of
improvement.

B. Results

Our resource analysis focuses on three central quanti-
ties that determine the overall cost of algorithms imple-
mented on fault-tolerant quantum computers: the num-
ber of logical qubits, the total number of T gates (“T -
count”), and the number of parallel layers of T gates (“T -
depth”) needed to construct quantum circuits for solving
the problem. The T -depth acts as a proxy for the overall
runtime of the algorithm, whereas the T -count and num-
ber of logical qubits are important for determining how
many physical qubits would be required for a full, fault-
tolerant implementation. We justify the focus on T gates
by pointing out that, in many prominent approaches
to fault-tolerant quantum computation (such as lattice
surgery [25–28]), quantum circuits are decomposed into
Clifford gates and T gates, and the cost of implement-
ing the circuit is dominated by the number and depth
of the T gates. The fault-tolerant Clifford gates can be
performed transversally or even in software, whereas the
T gates require the expensive process of magic state dis-
tillation [29, 30]. We stop short of a full analysis of the
algorithm at the physical level, as we believe the logical
analysis already suffices to evaluate the overall outlook
for the algorithm and identify its main bottlenecks.

At the core of any interior point method (IPM) is the
solving of a linear system of equations. The QIPM per-
forms this step using a quantum linear system solver
(QLSS) together with pure state quantum tomography.
The cost of QLSS depends on a parameter κF , the Frobe-

nius condition number ‖G‖F ‖G−1‖ of the matrix G that
must be inverted (where ‖·‖F denotes the Frobenius
norm, and ‖·‖ denotes the spectral norm), while the cost
of tomography depends on a parameter ξ, a precision pa-
rameter. We evaluate these parameters empirically by
simulating the QIPM on small instances of the PO prob-
lem.

In table I, we report a summary of our overall resource
calculation, in which we show the asymptotically leading
term (along with its constant prefactor) in terms of pa-
rameters κF and ξ, as well as n, the number of assets in
the PO instance, and ε, the desired precision to which
the portfolio should be optimized. We find (numerically)
that κF grows with n, and that ξ shrinks with n; we esti-
mate that, at n = 100 and ε = 10−7, our implementation
of the QIPM would require 8 × 106 qubits and 8 × 1029

total T gates spread out over 2×1024 layers. Needless to
say, these resource counts are decidedly out of reach both
in the near and far term for quantum hardware, even for
a problem of modest size by classical standards. Even
if quantum computers one day match the gigahertz-level
clock-speeds of modern classical computers, 1024 layers
of T gates would take millions of years to execute. By
contrast, the PO problem can be easily solved in a matter
of seconds on a laptop for n = 100 stocks.

We caution that the numbers we report should not be
interpreted as the final word on the cost of the QIPM
for PO. We are certain that further examination of the
algorithm could uncover many improvements and opti-
mizations that would reduce the costs compared to our
calculations. On the other hand, we note that our results
do already incorporate several innovations we made to re-
duce the resource cost, including a basic attempt at pre-
conditioning the linear system. Moreover, the pessimistic
outlook our results convey is robust in the sense that
the calculation would need to decrease by many orders
of magnitude for the algorithm to be practical, suggest-
ing that fundamental changes are necessary to multiple
aspects of the algorithm, rather than merely superficial
optimizations.

Besides the main resource calculation, we make several
additional contributions and observations:

1. We provide explicit quantum circuits for the impor-
tant subroutines of the QIPM, namely the state-of-
the-art QLSS based on the discrete adiabatic theo-
rem [18] and pure state tomography, which comple-
ment the explicit circuits for block-encoding (using
QRAM) that a subset of the authors already re-
ported separately in Ref. [31]. These circuits, and
their precise resource calculations, could be use-
ful elsewhere, as these subroutines are ubiquitous
in quantum algorithms. See section IV F and sec-
tion V for additional details.

2. We break down the resource calculation into its
constituents to illustrate which parts of the algo-
rithm are most costly. We find that many indepen-
dent factors create significant challenges toward re-
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TABLE I. Asymptotic, leading-order contributions to the total quantum resources for an end-to-end portfolio optimization
(including constant factors), in terms of the number of assets in the portfolio (n), the desired precision to which the portfolio
should be optimized (ε), the maximum Frobenius condition number of matrices encountered by the QIPM (κF ), and the
minimum tomographic precision necessary for the algorithm to succeed (ξ). The T -depth and T -count expressions represent
the cumulative cost of O(ξ−2n1.5 log(n) log(ε−1)) individual quantum circuits performed serially, a quantity that we estimate
evaluates to 6× 1012 circuits at n = 100; see table X for a detailed accounting. The right column uses a numerical simulation
of the quantum algorithm (see section VI) to compute the instance-specific parameters in the resource expression and estimate
the resource cost at n = 100 and ε = 10−7.

Resource QIPM complexity Estimated at n = 100

Number of logical qubits 800n2 8× 106

T -depth (2× 1010)κFn
1.5ξ−2 log2(n) log2(ε−1) log2(κFn

14/27ξ−1) 2× 1024

T -count (7× 1011)κFn
3.5ξ−2 log2(n) log2(ε−1) log2(κF ξ

−1) 8× 1029

alizing quantum advantage with QIPMs, and our
work underscores those aspects of the algorithm
that must be improved for it to be useful. We also
note that the conditions under which QIPMs would
be most successful (namely, when κF is small) also
allow for classical IPMs based on iterative classical
linear system solvers to be competitive. See sec-
tion VII for additional details.

3. We numerically simulate several versions of the full
QIPM solving the PO problem on portfolios as
large as n = 120 stocks, and we report the empirical
size and scaling of the relevant parameters κF and
ξ. There is considerable variability in the trends we
observe, depending on which version of the QIPM
is chosen, and when the QIPM is terminated, which
makes it difficult to draw robust conclusions. How-
ever, we find that both κF and ξ−1 appear to grow
with n. Note that previous numerical experiments
on a similar formulation of the PO problem [22]
suggested κF does not grow with problem size, but
those authors scaled the number of “time epochs”
while keeping n constant. Additionally, we observe
that the “infeasible” version of the QIPM originally
proposed by [13] empirically performs similarly to
more sophisticated “feasible” versions [14], despite
not enjoying the same theoretical guarantees of fast
convergence. Finally, contrary to theoretical expec-
tation, we observe that κF and ξ−1 do not diverge
as ε→ 0 in our examples. See section VI for addi-
tional details.

4. We make various technical improvements to the un-
derlying ingredients of QIPMs. A subset of authors
previously reported [31] a quadratic improvement
in the minimum depth required for the problem
of preparing an arbitrary L-dimensional quantum
state or block-encoding an arbitrary L×L matrix,
along with explicit quantum circuits and exact re-
source expressions. In this manuscript, we addi-
tionally contribute the following:

• Tomographic precision: Performing tomog-
raphy on the output of a QLSS necessarily

causes the classical estimate of the solution to
the linear system to be inexact. We illustrate
how the allowable amount of tomography pre-
cision can be determined adaptively rather
than relying on theoretical bounds. Nonethe-
less, we also improve the constant prefactor in
the tomographic bounds. The total number of
state preparation queries needed to learn an
unknown L-dimensional pure state to ξ error
using the tomography method of Ref. [10, 13]
is to leading order at most 115L ln(L)/ξ2.1

• Norm of the linear system: Since QLSSs out-
put a normalized quantum state, tomography
does not directly yield the norm of the solu-
tion to the linear system. The norm can be
learned through more complicated protocols,
but we observe that in the context of QIPMs, a
sufficient estimate for the norm can be learned
classically.

• Preconditioning: We propose a simple precon-
ditioning method that is compatible with the
QIPM, while reducing the parameter κF . Our
numerical simulations suggest the reduction is
more than an order of magnitude for the port-
folio optimization problem.

• Feasible QIPM: We implement a “feasible”
version of the QIPM proposed by [14], which
relies on finding a basis for the null space of
the SOCP matrix. We identified an explicit

1 In the late stages of this project, an alternative method for pure
state tomography was proposed in Ref. [32] with superior asymp-
totic query complexity, reducing O(L ln(L)/ξ2) to O(L ln(L)/ξ).
However, the protocol is more complicated than our approach,
and it requires additional gate overhead to implement. Further-
more, for the values of ξ and L we consider in table I, a conser-
vative estimate of the improvement from this method (ignoring
potentially large constants) only yields about 2 orders of magni-
tude improvement in our final estimates of T -depth and T -count
– not enough to change our results qualitatively. Thus, we do
not incorporate this method into our analysis, but we remark
that we do expect a marginal improvement in our final counts.
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basis for the PO problem, thereby avoiding
the need for a costly QR decomposition. How-
ever, we observe that finding the basis via QR
decomposition leads to more stable numerical
results.

The outline for the remainder of the paper is as fol-
lows. In section II we describe and define the portfo-
lio optimization problem in terms of Markowitz portfolio
theory. In section III we describe Second Order Cone
Programming (SOCP) problems, illustrate how portfolio
optimization can be represented as an instance of SOCP,
and discuss how IPMs can be used for solving SOCPs. In
section IV we review the quantum ingredients needed to
turn an IPM into a QIPM. In particular, we review quan-
tum linear system solvers, block-encoding for data load-
ing, and quantum state tomography for data read out.
We also present slightly better bounds on the required
tomography procedure than were previously known. In
section V we describe the full implementation of using
QIPM and quantum algorithms for SOCP for the port-
folio optimization problem, including a detailed resource
estimate for the end-to-end problem. In section VI we
show numerical results from simulations of the full prob-
lem, and in section VII we reflect on the calculation we
have performed, identifying the main bottlenecks and
drawing conclusions about the outlook for quantum ad-
vantage with QIPM.

The QIPM has many moving parts requiring several
mathematical symbols. While all symbols are defined as
they are introduced in the text, we also provide a full
list of symbols for the reader’s reference in appendix A.
Throughout the paper, we denote all vectors in bold low-
ercase letters to contrast with scalar quantities (unbolded
lowercase) and matrices (unbolded uppercase). The only
exception to this rule will be the symbols N , K, and
L, which are positive integers (despite being uppercase),
and denote the number of rows or columns in certain
matrices related to an SOCP instance.

II. PORTFOLIO OPTIMIZATION (PO)

Portfolio optimization is the process widely used by fi-
nancial analysts to assign allocations of capital across a
set of assets within a portfolio, given optimization criteria
such as maximizing the expected return and minimizing
the financial risk. With the publication of his 1952 pa-
per [33] and later book [34], American economist Harry
Markowitz is credited with the creation of the mathemat-
ical framework for modern portfolio theory (MPT), for
which he received the 1990 Alfred Nobel Memorial Prize
in Economic Sciences [35]. Markowitz describes the pro-
cess of selecting a portfolio in two stages, where the first
stage starts with “observation and experience” and ends
with “beliefs about the future performances of available
securities.” The second stage starts with “the relevant
beliefs about future performances” and ends with “the

choice of portfolio.” The theory is also known as mean-
variance analysis. For further history, Markowitz’s 1999
essay [36] gives the early history of portfolio theory: 1600-
1960.

Typically, portfolio optimization strategies include di-
versification, which is the practice of investing in a wide
array of asset types and classes as a risk mitigation strat-
egy. Some popular asset classes are stocks, bonds, real
estate, commodities, and cash. After building a portfo-
lio, we expect a return (or profit) after a specific period
of time. Risk is defined as the fluctuations of the asset
value. MPT describes how high variance assets can be
combined with other uncorrelated assets through diver-
sification to create portfolios with low variance on their
return.

Mean-variance analysis seeks to identify efficient port-
folios on the “efficient frontier” of the mean-variance
combinations that are presented to investors as the de-
sired risk-return investment strategy. For portfolios with
the same risk, those with higher rates of return are pre-
ferred by investors. For portfolios with the same return,
those with lower risk are preferred.

Within a portfolio, wi represents the amount of an
asset i we are holding over some period of time. Often,
this amount is given as the asset’s price in dollars at the
start of the period. When the price is positive (wi > 0),
we call this a long position; and when the price is negative
(wi < 0), we call this a short position with an obligation
to buy this asset at the end of the period. Typically
investment banks hold long positions, while hedge funds
build portfolios with short positions that have higher risk
due to the uncertainty of the price to buy the asset at
the end of the period. The optimization variable in our
portfolio optimization problem is the vector of n assets
w ∈ Rn in our portfolio.

The price of each asset i varies over time. We define
ui to be the relative change (positive or negative) during
the period of interest. Then, we define the return of
the portfolio for that period as r̄ = uᵀw dollars. The
relative changes u ∈ Rn follow a stochastic process, and
we can model this with a random vector with mean û
and covariance Σ. The return r̄ is then a random variable
with mean ûᵀw and covariance wᵀΣw.

To capture realistic problem formulations, we add one
or more mathematical constraints to the optimization
problem corresponding to the problem-specific considera-
tions. For example, two common constraints in portfolio
optimization problems are that we want no short posi-
tions (wi ≥ 0 for all i, denoted by w ≥ 0) and that
the total investment budget is limited (1ᵀw = 1, where
1 denotes the vector of ones). This forms the classical
portfolio optimization problem from Markowitz’s mean-
variance theory:

min
w

wᵀΣw

s.t. ûᵀw ≥ r̄min

1ᵀw = 1
w ≥ 0

(1)

4
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This formulation is a quadratic optimization (QO) prob-
lem where we minimize the risk, while achieving a target
return of at least r̄min with a fixed budget and no short
positions. In practice, the portfolio optimization problem
is often reformulated to maximize the expected portfolio
return with an upper-bound ς2 on the portfolio risk:

max
w

ûᵀw

s.t. wᵀΣw ≤ ς2

1ᵀw = 1
w ≥ 0

(2)

This Markowitz portfolio optimization problem form is
no longer a QO problem, but it can be reformulated as
a conic problem. A third form of portfolio optimization
maximizes the utility function of the investor (here stated
as minimizing its negation):

min
w
−ûᵀw + δ

2w
ᵀΣw

s.t. 1ᵀw = 1
w ≥ 0

(3)

This objective function captures the trade-off between
the portfolio’s return and its risk. The parameter δ is
called the risk-aversion coefficient ; δ does not have an
intuitive meaning for investors, so a variant problem is
constructed that uses the standard deviation instead of
the variance and a different risk-aversion parameter q:

min
w
−ûᵀw + q

√
wᵀΣw

s.t. 1ᵀw = 1
w ≥ 0

(4)

Depending on the problem, additional constraints can
be added. For instance, we can add constraints to allow
short positions, component-wise short sale limits, or a
total short sale limit. Another variant of this is a con-
straint for a collateralization requirement, which limits
the total of short positions to a fraction of the total long
positions. Often, buying or selling an asset results in
a transaction fee that is proportional to the amount of
asset that is bought or sold. Linear transaction costs
or maximum transaction amounts are often included as
constraints in portfolio optimization. Diversification con-
straints can limit portfolio risk by limiting the exposure
to individual positions and groups of assets within partic-
ular sectors. To illustrate the flexibility of this analysis,
we include a maximum transaction constraint and use
the following problem formulation in our analysis in the
rest of the paper:

min
w
−ûᵀw + q

√
wᵀΣw

s.t. 1ᵀw = 1
|w − w̄| ≤ ζ

w ≥ 0 ,

(5)

where w̄ denotes the current portfolio, so that |w− w̄| is
the vector of transaction quantities for each asset, which

are constrained to be smaller than maximum values con-
tained in the vector ζ. Note that Ref. [22] chose a for-
mulation more akin to eq. (1) for their numerical study
of the quantum interior point method for portfolio opti-
mization.

Boyd and Vandenberghe’s convex optimization book
[37] provides detailed mathematical descriptions of the
theory and algorithms for convex optimization including
unconstrained minimization, equality constrained min-
imization, and interior-point methods. In their book,
Markowitz portfolio optimization is considered as a
quadratic optimization problem. Wright’s interior-point
methods book [38] provides an excellent reference to the
reader on algorithms for solving these optimization prob-
lems. Additional references in optimization methods in
finance include Ziemba and Vickson [39] and Cornuéjols,
Peña, and Tütüncü [40]. Finally, the MOSEK Port-
folio Optimization Cookbook [41] describes the trans-
formation of portfolio optimization problems into their
MOSEK solver.

III. SECOND ORDER CONE PROGRAMMING
(SOCP) AND INTERIOR POINT METHODS

(IPM)

A. Definitions

Second-order cone programming (SOCP) is a type of
convex optimization that allows for a richer set of con-
straints than linear programming (LP), without many of
the complications of semidefinite programming (SDP).
Indeed, SOCP is a subset of SDP, but SOCP admits in-
terior point methods (IPMs) that are essentially just as
efficient as IPMs for LP [42]. Many real-world problems
can be cast as SOCP, including the portfolio optimization
problem we are interested in.

For any k-dimensional vector v, we may write v =
(v0; ṽ), where v0 is the first entry of v, and ṽ contains
the remaining k − 1 entries.

Definition 1. A k-dimensional second-order cone
(for k ≥ 2) is the convex set

Qk =
{

(x0; x̃) ∈ Rk | x0 ≥ ‖x̃‖
}
, (6)

where ‖·‖ denotes the vector two-norm (standard Eu-
clidean norm). For k = 1, Q1 = {x0 ∈ R | x0 ≥ 0}.

Definition 2. In general, a second-order cone prob-
lem is formulated as

min
x

cᵀx

s.t. Ax = b

x ∈ Q,
(7)

where Q = QN1 × ... × QNr is a Cartesian product of
r second-order cones of combined dimension N = N1 +
. . .+Nr, and A is a full-rank K ×N matrix encoding K
linear equality constraints, with K ≤ N .

5
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Note that the special case of linear programming is
immediately recovered if Ni = 1 for all i. We say that a
point x is primal feasible whenever Ax = b and x ∈ Q.
It is strictly primal feasible if additionally it lies in the
interior of Q.

The dual to problem in eq. (7) is a maximization prob-
lem over a variable y ∈ RK , given as follows:

max
y

bᵀy

s.t. Aᵀy + s = c

s ∈ Q.

(8)

We say that a pair (s;y) is dual feasible whenever
Aᵀy + s = c and s ∈ Q. For any point (x;y; s) with
x, s ∈ Q, we define the duality gap as

µ(x, s) :=
1

r
xᵀs =

1

r
(cᵀx− bᵀy), (9)

where r is the number of cones, as in definition 2, and the
second equality holds under the additional assumption
that the point is primal and dual feasible. The fact that
x, s ∈ Q implies that µ(x, s) ≥ 0. Moreover, assuming
that both the primal and dual problems have a strictly
feasible point, the optimal primal solution x∗ and the
optimal dual solution (y∗; s∗) are guaranteed to exist and
satisfy cᵀx∗ = bᵀy∗, and hence µ = 1

rx
∗ᵀs∗ = x∗ᵀ(c −

Aᵀy∗) = cᵀx∗ − bᵀy∗ = 0 [42]. Thus, the primal-dual
condition of optimality can be expressed by the system

Ax = b

Aᵀy + s = c

xᵀs = 0

x ∈ Q, s ∈ Q.

(10)

B. Portfolio optimization as SOCP

The portfolio optimization problem can be solved by
reduction to SOCP [41], and this reduction is often made
in practice. Here we describe one way of translating the
portfolio optimization problem, as given in eq. (5) into a
second-order cone program.

The objective function in eq. (5) has a non-linear term

q
√
wᵀΣw, which we linearize by introducing a new scalar

variable t, and a new constraint t ≥
√
wᵀΣw. We obtain

the equivalent optimization problem

min
x=(w;t)

[−û; q]ᵀ(w; t)

s.t. 1ᵀw = 1

|wi − w̄i| ≤ ζi
wi ≥ 0

t2 ≥ wᵀΣw.

(11)

Our goal now is to write the constraints in eq. (11) as
second-order cone constraints. Given an m×n matrix M

for which Σ = MᵀM , the constraint on t can be expressed
by introducing an m-dimensional variable η subject to
the equality constraint η = Mw and the second-order
cone constraint (t;η) ∈ Qm+1.

The matrix M can be determined from Σ via a
Cholesky decomposition, although for large matrices Σ,
this computation may be costly. Alternatively, if Σ and
µ̂ are calculated from stock return vectors u(1), . . . ,u(m)

during m independent time epochs (e.g. returns for each
of m days or each of m months), then a valid matrix Mᵀ

is given by (u(1)−û, . . . ,u(m)−û), i.e. the columns of Mᵀ

are given by the deviation of the returns from the mean
in each epoch. This was the approach taken in Ref. [43],
and is also the approach we take in our numerical exper-
iments, presented later. The downside to this approach
is that the number of time epochs must grow with the
number of assets. We note that, in practice, computing
the matrix Σ can be a research topic unto itself, which is
beyond the scope of this paper [44].

The absolute value constraints are handled by in-
troducing a pair of n-dimensional variables φ and ρ,
subject to equality constraints φ = ζ − (w − w̄) and
ρ = ζ + (w − w̄). The absolute value constraints are
then imposed as positivity constraints φi ≥ 0, ρi ≥ 0,
which we include as second-order cone constraints of di-
mension 1.2

In summary, we may write the portfolio optimization
problem from eq. (5) as the following SOCP that mini-
mizes over the variable x = (w;φ;ρ; t;η) ∈ R3n+m+1:

min
x

[−û; 0; 0; q; 0]ᵀ(w;φ;ρ; t;η) =: cᵀx

s.t.

1ᵀ 0ᵀ 0ᵀ 0 0ᵀ

I I 0 0 0
I 0 −I 0 0
M 0 0 0 −I



w
φ
ρ
t
η

 =

 1
w̄ + ζ
w̄ − ζ

0


(w;φ;ρ; t;η) ∈ Q1 × ...×Q1︸ ︷︷ ︸

n positivity constraints

× Q1 × ...×Q1︸ ︷︷ ︸
2n budget constraints

×Qm+1︸ ︷︷ ︸
risk

,

(12)

where I denotes an identity block, 0 denotes a submatrix
of all 0s, 0 is a vector of all 0s, 1 is a vector of all 1s,
and the size of each block of A can be inferred from its
location in the matrix. Thus, the total number of cones is
r = 3n+1, and the combined dimension is N = 3n+m+
1.3 The SOCP constraint matrix A is a K ×N matrix,

2 Alternatively, the absolute value constraints could be straight-
forwardly encoded with n second-order cone constraints of di-
mension 2; these formulations are equivalent up to a simple co-
ordinate change, and we opt to use 1-dimensional cones for their
simplicity of presentation.

3 Note that we would have had r = 2n+ 1 cones if we had repre-
sented the absolute value constraints using dimension-2 cones.
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with K = 2n + m + 1. This SOCP is very similar to
that considered by Kerenidis, Prakash, and Szilágyi [22];
however, rather than optimize a weighted combination
of risk and return, they optimized risk subject to a fixed
value for return, and they did not include the budget
constraints.

Notice that many of the rows of the K × N matrix
A are sparse and contain only one or two nonzero en-
tries. However, the final m rows of the matrix A will
be dense and contain n + 1 nonzero entries due to the
appearance of the matrix M containing historical stock
data; in total a constant fraction of the matrix entries
will be nonzero, so sparse matrix techniques will provide
only limited benefit.

Finally, we can observe that the primal SOCP in
eq. (12) has an interior feasible point as long as ζ has
strictly positive entries. To see this, choose w to be any
strictly positive vector that satisfies |w− w̄| < ζ, and let
φ = ζ + (w̄ − w), ρ = ζ − (w̄ − w), η = Mw, and t
equal to any number strictly greater than ‖η‖. It can be
verified that the dual program likewise has a strictly fea-
sible point; this guarantees that the optimal primal-dual
pair for the SOCP exists and satisfies eq. (10).

C. Interior point methods for SOCP

1. Introduction

Interior point methods (IPMs) are a class of efficient
algorithms for solving convex optimization problems in-
cluding LPs, SOCPs, and SDPs, where (in contrast to the
simplex method) intermediate points generated by the
method lie in the interior of the convex set, and they are
guaranteed to approach the optimal point after a polyno-
mial number of iterations of the method. Each iteration
involves forming a linear system of equations that de-
pends on the current intermediate point. The solution to
this linear system determines the search direction, and
the next intermediate point is formed by taking a small
step in that direction. We will consider path-following
primal-dual IPMs, where, if the step size is sufficiently
small, the intermediate points are guaranteed to approx-
imately follow the central path, which ends at the optimal
point for the convex optimization problem.

2. Central path

To define the central path, we first establish some no-
tation related to the algebraic properties of the second-
order cone. Following formulations in prior literature
[13, 42], we let the product u ◦ v of two vectors u =
(u0; ũ), v = (v0; ṽ) ∈ Qk be defined as

u ◦ v = (uᵀv;u0ṽ + v0ũ) (13)

and we denote the identity element for this product by
the vector e = (1; 0) ∈ Qk. For the direct product Q =

QN1×. . .×QNr of multiple second-order cones, the vector
e is defined as the concatenation of the identity element
for each cone. Thus, eᵀe is equal to the number of cones
r.

Now, for the SOCP problem of eq. (7), the central
path (x(ν);y(ν); s(ν)) is the one-dimensional set of cen-
tral points, parameterized by ν ∈ [0,∞), which satisfies
the conditions

Ax(ν) = b

Aᵀy(ν) + s(ν) = c

x(ν) ◦ s(ν) = νe

x(ν) ∈ Q, s(ν) ∈ Q.

(14)

We can immediately see that the central path point
(x(ν);y(ν); s(ν)) has a duality gap that satisfies
µ(x(ν), s(ν)) = ν, and that when ν = 0, eq. (14) re-
covers eq. (10).

3. Finding an initial point on the central path via self-dual
embedding

Path-following primal-dual interior point methods find
the optimal point by beginning at a central point with
ν > 0 and following the central path to a very small value
of ν, which is taken to be a good approximation of the
optimal point. For a given SOCP, finding an initial point
on the central path is non-trivial and, in general, can be
just as hard as solving the SOCP itself. One solution
to this problem is the homogeneous self-dual embedding
[45, 46], where one forms a slightly larger self-dual SOCP
with the properties that (i) the optimal point for the
original SOCP can be determined from the optimal point
for the self-dual SOCP and (ii) the self-dual SOCP has
a trivial central point that can be used to initialize the
IPM.

To do this, we introduce new scalar variables τ , θ,
and κ, which are used to give more flexibility to the
constraints. Previously, we required Ax = b. In the
larger program, we relax this constraint to read Ax =
bτ − (b−Ae)θ, such that the original constraint is recov-
ered when τ = 1 and θ = 0, but x = e is a trivial solution
when τ = 1 and θ = 1. Similarly, we relax the constraint
Aᵀy+ s = c to read Aᵀy+ s = cτ − (c− e)θ, which has
the trivial solution y = 0, s = e when τ = θ = 1. We
complement these with two additional linear constraints
to form the program

min
(x;y;τ ;θ;s;κ)

(r + 1)θ
0 Aᵀ −c c̄
−A 0 b −b̄
cᵀ −bᵀ 0 −z̄
−c̄ᵀ b̄ᵀ z̄ 0


xyτ
θ

+

s0κ
0

 =

 0
0
0

r + 1


x, s ∈ Q; τ,κ ≥ 0; y, θ free,

(15)

where b̄ = b−Ae, c̄ = c−e, z̄ = cᵀe+ 1, and r = eᵀe is
the number of cones in the original SOCP. While eq. (15)
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is not exactly of the form given in eq. (7), we may still
think of it as a primal SOCP. Since the block matrix
in eq. (15) is skew-symmetric and the objective function
coefficients are equal to the right-hand-side of the equal-
ity constraints, when we compute the dual program to
eq. (8), we arrive at an equivalent program; we conclude
that eq. (15) is self-dual [45]. Thus, when applying path-
following primal-dual IPMs to eq. (15), we need only keep
track of the primal variables, that is, x,y, τ, θ, s,κ. Tak-
ing into account the addition of τ and κ, we re-define the
duality gap as

µ(x, τ, s,κ) :=
1

r + 1
(xᵀs+ κτ). (16)

Note that if the point (x;y; τ ; θ; s;κ) is feasible, i.e. if it
satisfies the four linear constraints in eq. (15), then we
have the identity

µ(x, τ, s,κ) =
−xᵀAᵀy + xᵀcτ − xᵀc̄θ + κτ

r + 1

=
−bᵀyτ + b̄ᵀyθ + xᵀcτ − xᵀc̄θ + κτ

r + 1

=
b̄ᵀyθ − xᵀc̄θ + z̄τθ

r + 1

= θ, (17)

where the first, second, third, and fourth rows of eq. (15)
are invoked above in lines one, two, three, and four, re-
spectively.

The central path for the augmented SOCP in eq. (15)
is defined by the feasibility conditions for the SOCP
combined with the relaxed complementarity conditions
x ◦ s = νe and κτ = ν. Thus, we see that the point
(x = e;y = 0; τ = 1; θ = 1; s = e;κ = 1) is not only a
feasible point for the SOCP in eq. (15), but also a central
point with ν = 1.

Finally, a crucial property [45] of the self-dual SOCP
in eq. (15) is that the optimal point for the origi-
nal SOCP in eq. (7) can be derived from the opti-
mal point for the SOCP in eq. (15). Specifically, let
(x∗sd;y

∗
sd; τ

∗; θ∗; s∗sd;κ∗) be the optimal point for eq. (15)
(it can be shown that θ∗ = 0). Then if τ∗ > 0,

(x∗;y∗; s∗) = (
x∗sd
τ∗ ;

y∗sd
τ∗ ;

s∗sd
τ∗ ) is an optimal primal-dual

point for eqs. (7) and (8). If τ∗ = 0, then at least one
of the original primal SOCP in eq. (7) and the original
dual SOCP in eq. (8) must be infeasible [45, 46]. As
previously demonstrated, the specific SOCP for portfolio
optimization in eq. (12) is primal and dual feasible, so
τ∗ 6= 0 for that example.

What if we only have a point that is approximately
optimal for the self-dual SOCP? We can still deduce an
approximately optimal point for the original SOCP. Sup-
pose we have a feasible point for which µ(x, τ, s,κ) = ε.
The point (x/τ ;y/τ ; s/τ) is O(ε) close to feasible for the
original SOCP in the sense that the equality constraints

are satisfied up to O(ε) error

‖Ax
τ
− b‖ =

ε

τ
‖b−Ae‖ (18)

‖Aᵀy

τ
+
s

τ
− c‖ =

ε

τ
‖c− e‖. (19)

Moreover, since κ > 0 and θ = ε, we can assert using
the third row of eq. (15) that the difference in objective
function achieved by the primal and dual solutions is also
O(ε), that is

cᵀ
x

τ
− bᵀy

τ
≤ |c

ᵀe+ 1|
τ

ε. (20)

In summary, by using the self-dual SOCP of eq. (15), we
obtain a trivial point from which to start the IPM, and
given an (approximately) optimal point we obtain either
an (approximately) optimal point to the original SOCP
or a certificate that the original SOCP was not feasible
to begin with.

4. Iterating the IPM

Each iteration of the IPM takes as input an interme-
diate point (x;y; τ ; θ; s;κ) that is feasible (or in some
formulations, nearly feasible), has duality gap 1

r+1 (xᵀs+

κτ) equal to µ, and is close to the central path with pa-
rameter ν = µ. The output of the iteration is a new
intermediate point (x+ ∆x;y+ ∆y; τ + ∆τ ; θ+ ∆θ; s+
∆s,κ + ∆κ) that is also feasible and close to the cen-
tral path, with a reduced value of the duality gap. Thus,
many iterations leads to a solution with duality gap ar-
bitrarily close to zero.

One additional input is the step size, governed by a
parameter σ < 1. The IPM iteration aims to bring
the next intermediate point onto the central path with
parameter ν = σµ. This is accomplished by tak-
ing one step using Newton’s method, where the vec-
tor (∆x; ∆y; ∆τ ; ∆θ; ∆s; ∆κ) is uniquely determined by
solving a linear system of equations called the Newton
system. The first part of the Newton system is the con-
ditions that must be met for the new point to be feasible,
given in the following system of N + K + 2 linear equa-
tions:

0 Aᵀ −c c̄
−A 0 b −b̄
cᵀ −bᵀ 0 −z̄
−c̄ᵀ b̄ᵀ z̄ 0


∆x

∆y
∆τ
∆θ

+

∆s
0

∆κ
0



=


−Aᵀy + cτ − c̄θ − s

Ax− bτ + b̄θ
−cᵀx+ bᵀy + z̄θ
c̄ᵀx− b̄ᵀy − z̄τ


(21)

Note that if the point is already feasible, the right-hand-
side is equal to zero.

The second part of the Newton system is the linearized
conditions for arriving at the point on the central path
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with duality gap σµ. That is, we aim for (x+∆x)◦ (s+
∆s) = σµe and (κ + ∆κ)(τ + ∆τ) = σµ. By ignoring
second order terms (i.e. the O(∆x ◦∆s) and O(∆κ∆τ)
terms), these become

x ◦∆s+ s ◦∆x = σµe− x ◦ s
κ∆τ + τ∆κ = σµ− κτ.

(22)

The expression above can be rewritten as a matrix
equation by first defining the arrowhead matrix U for
a vector u = (u0; ũ) ∈ Qk as

U =

(
u0 ũᵀ

ũ u0I

)
= ueᵀ + euᵀ + u0I − 2u0ee

ᵀ. (23)

When u ∈ Q lies in the direct product of multiple second-
order cones, the arrowhead matrix is formed by placing
the appropriate matrices of the above form on the block
diagonal. The arrowhead matrix has the property that
for any vector v, Uv = u ◦ v.

Using this notation, the Newton equations in eq. (22)
can be written as

(
S 0 0 0 X 0
0 0 κ 0 0 τ

)


∆x
∆y
∆τ
∆θ
∆s
∆κ

 =

(
σµe−Xs
σµ− κτ

)
, (24)

where X and S are the arrowhead matrices for vectors x
and s.

Equations (21) and (24) together form the Newton
system. We can see that there are 2N + K + 3 con-
straints to match the 2N +K + 3 variables in the vector
(∆x; ∆y; ∆τ ; ∆θ; ∆s; ∆κ). In Ref. [47], it is shown that,
as long as the duality gap is positive and (x;y; τ ; θ; s;κ)
is not too far from the central path (which will be the
case as long as σ is chosen sufficiently close to 1 in every
iteration), the Newton system has a single unique solu-
tion. Note that one can choose different search directions
than the one that arises from solving the Newton sys-
tem presented here; this consists of first applying a scal-
ing transformation to the product of second-order cones,
then forming and solving the Newton system that results,
and finally applying the inverse scaling transformation.
Alternate search directions are explained in appendix D,
but in the main text we stick to the basic search direc-
tion illustrated above, since in our numerical simulations
the simple search direction gave equal or better results
than more complex alternatives, and it enjoys the same
theoretical guarantee of convergence [47].

5. Solving the Newton system

The Newton system formed by combining eqs. (21)
and (24) is an L× L linear system of the form Gu = h,
where L = 2N + K + 3. Classically this can be solved

exactly a number of ways, the most straightforward be-
ing Gaussian elimination, which scales as O(L3). Using
Strassen-like tricks [48], this can be asymptotically ac-
celerated to O(Lω) where ω < 2.38 [49], although prac-
tically the runtime is closer to O(L3). Meanwhile, the
linear system can be approximately solved using a variety
of iterative solvers, such as conjugate gradient descent or
the randomized Kaczmarz method [50]. The complexity
of these approaches depends on the condition number of
the Newton matrix. Section IV discusses quantum ap-
proaches to solving the Newton system.

It is important to distinguish methods that exactly
solve the Newton system, and methods that solve it inex-
actly, because inexact solutions typically lead to infeasi-
ble intermediate points. As presented above, the Newton
system in eqs. (21) and (24) can tolerate infeasible inter-
mediate points; the main consequence is that the right-
hand-side of eq. (21) becomes non-zero. This inexact
formulation was the one pursued by Kerenidis, Prakash,
and Szilágyi [13], who first examined QIPMs for SOCP
(although they did not implement the self-dual embed-
ding as we have done). However, it was pointed out in
Refs. [11, 14] that the theoretical convergence analysis
that Ref. [13] relies upon requires intermediate points to
be exactly feasible (i.e. the right-hand-side of eq. (21) is
always zero), and that analyses allowing for infeasibility
generally have poorer guaranteed convergence time (al-
though in practice they can be just as fast [38]). As dis-
cussed in section IV, exact feasibility is difficult to main-
tain in quantum IPMs, since the Newton system cannot
be solved exactly.

Ref. [14] proposed a workaround by which exact feasi-
bility can be maintained despite an inexact linear system
solver, which they call an inexact-feasible IPM (IF-IPM).
For the IF-IPM, we assume we have access to a basis
for the null space of the feasibility constraint equations,
that is, a linearly independent set of solutions to eq. (21)
when the right-hand-side is zero. We arrange these ba-
sis vectors as the columns of a matrix B; since there are
N +K + 2 linear feasibility constraints and 2N +K + 3
variables, the matrix B should have N + 1 columns. In
the case of portfolio optimization, a matrix B satisfying
this criteria can be deduced by inspection, as discussed in
appendix C; however, this choice does not yield a B with
orthogonal columns. Generating a B with orthonormal
columns can be done by performing a QR decomposition
of the matrix in eq. (21), which would incur a large one-
time classical cost of O((N +K)3) operations4. In either
case, since B is a basis for the null space of the constraint
equations, there is a one-to-one correspondence between
vectors ∆z ∈ RN+1, and vectors that satisfy eq. (21) via
the relation (∆x; ∆y; ∆τ ; ∆θ; ∆s; ∆κ) = B∆z. Thus,

4 Better asymptotic scaling for QR decomposition can be accom-
plished using fast matrix multiplication [51].
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our Newton system can be reduced to[(
S 0 0 0 X 0
0 0 κ 0 0 τ

)
B

]
∆z =

(
σµe−Xs
σµ− κτ

)
(25)

(∆x; ∆y; ∆τ ; ∆θ; ∆s; ∆κ) = B∆z. (26)

The Newton system above can be solved by first com-
puting ∆z by inverting the quantity in brackets in the
first line and applying it to the right-hand-side, and
then computing (∆x; ∆y; ∆τ ; ∆θ; ∆s; ∆κ) by perform-
ing the multiplication B∆z. This matrix-vector prod-
uct can be accomplished classically in O(N2) operations.
Note that matrix-matrix products where one of the ma-
trices is an arrowhead matrix (S or X) can also be car-
ried out in O(N2) classical time, as the form of arrow-
head matrices given in eq. (23) implies that the prod-
uct can be computed by summing several matrix-vector
products. Finally, note that since the second and fourth
block columns of the first matrix in eq. (24) are zero, the
second and fourth block rows of B (e.g. in eq. (C1)) can
be completely omitted from the calculation.

Thus, we see three main choices for how to run the
IPM when the solution to linear systems is inexact: first,
by solving eqs. (21) and (24) directly and allowing inter-
mediate solutions to be infeasible; second, by finding a
matrix B by inspection as described in appendix C and
then solving eqs. (25) and (26); third, by finding a ma-
trix B via QR decomposition and then solving eqs. (25)
and (26). When the linear system is solved using a quan-
tum algorithm, as discussed in section IV, we refer to the
algorithm that results from each of these three options
by II-QIPM, IF-QIPM, and IF-QIPM-QR, respectively.
The pros and cons of each method are summarized in
table II.

6. Neighborhood of the central path and polynomial
convergence

Prior literature establishes that if sufficiently small
steps are taken (i.e., if σ is sufficiently close to 1), then
each intermediate point stays within a small neighbor-
hood of the central path. We now review these conclu-
sions. Following Ref. [47], for a vector u = (u0; ũ) ∈ Qk,
we define the matrix

Tu =

(
u0 ũᵀ

ũ
√
u2

0 − ‖ũ‖2I + ũũᵀ

u0+
√
u2
0−‖ũ‖2

)
, (27)

which, as for the arrowhead matrix, generalizes to the
product of multiple cones by forming a block diagonal of
matrices of the above form. We use the distance metric
defined in Ref. [47]

dF (x, τ, s,κ) =
√

2
√
‖Txs− µ(x, τ, s,κ)e‖2 + (τκ − µ(x, τ, s,κ))2.

(28)

The distance metric induces a neighborhood N , which
includes both feasible and infeasible points, as well as the
neighborhood NF , which includes only feasible points

N (γ) = {(x;y; τ ; θ; s;κ) : (29)

dF (x, τ, s,κ) ≤ γµ(x, τ, s,κ)}
NF (γ) = N (γ) ∩ PF , (30)

where PF denotes the set of feasible points for the self-
dual SOCP. Note that the vector Txs can be computed
classically in O(N) time given access to the entries of x
and s. Thus, whether or not a point lies in N (γ) can be
determined in O(N) time.

Corollary 1 of Ref. [47] then implies that, so long as
0 ≤ γ ≤ 1/3 and (x;y; τ ; θ; s;κ) ∈ NF (γ), then we have

(x+∆x;y+∆y; τ+∆τ ; θ+∆θ; s+∆s;κ+∆κ) ∈ NF (Γ),
(31)

where

Γ =
4(γ2 + 2(r + 1)(1− σ)2)

(1− 3γ)2σ
. (32)

Thus, if Γ ≤ γ, and assuming the Newton system is
solved exactly, every intermediate point will lie in NF (γ).
This condition is met, for example, if γ = 1/10 and

σ = 1− (20
√

2
√

(r + 1))−1. Since each iteration reduces
the duality gap by a factor σ, the duality gap can be
reduced to ε after roughly only 20

√
2(r + 1) ln(1/ε) it-

erations. If the Newton system is solved inexactly, but
such that feasibility is preserved (e.g., by solving inex-
actly for ∆z and then multiplying by B, as described
above), then an error δ on the vector (x; τ ; s;κ) can be
tolerated, and the resulting vector can still be within the
neighborhood at each iteration.

On the other hand, if the Newton system is not solved
exactly, then the resulting vector may not be feasible.
Since NF (γ) is defined as a subset of the feasible space,
the analysis of Ref. [47] breaks down (as pointed out in
Refs. [11, 14]). Thus, the II-QIPM version of the QIPM
does not enjoy the theoretical guarantee of convergence
in O(

√
r) iterations that the IF-QIPM and IF-QIPM-

QR versions do (see table II). The best guarantees for
the II-QIPM would imply convergence only after O(r2)
iterations [11, 14]. Nevertheless, it is unclear if a small
amount of infeasibility makes a substantial difference in
practice: we simulated multiple version of the QIPM and
observed similar overall performance when intermediate
solutions were allowed to be infeasible, despite an infe-
rior theoretical guarantee of success. Thus, in sections V
and VI, where we present the full QIPM implementation,
resource count, and numerical analysis, we focus on the
II-QIPM. We present some of the results of our numerical
simulations of the IF-QIPM and IF-QIPM-QR results in
the appendix.
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TABLE II. Choices on which version of the Newton system to solve lead to different versions of the QIPM, even with the same
underlying quantum subroutines.

II-QIPM IF-QIPM IF-QIPM-QR

Newton system Equations (21) and (24) Equations (25) and (26) Equations (25) and (26)

Size of Newton System (L) 2N +K + 3 N + 1 N + 1

Feasible intermediate points No Yes Yes

Caveats
No theoretical guarantee
of convergence in O(

√
r)

iterations

Ill-conditioned null-space
basis leads to large
condition number of

Newton system

Requires classical QR
decomposition, which
could dominate overall

runtime

IV. QUANTUM INTERIOR POINT METHODS
(QIPM)

A. Basic idea of QIPM

As discussed in section III, each iteration of an IPM
SOCP solver involves forming and solving a linear system
of equations that depends on the intermediate point at
the current iteration. For classical IPM implementations
for SOCP, the linear systems of equations are typically
solved exactly; for example the numerical SOCP solving
package ECOS solves linear systems with a sparse LDL
(Cholesky) factorization [52]. For arbitrary dense sys-
tems, the runtime of solving an L×L system this way is
O(L3) [53], but by exploiting sparsity the actual runtime
in practice could be much faster, by an amount that is
hard to assess. Alternatively, it would, in principle, be
possible to employ classical iterative approximate linear
system solvers such as conjugate gradient descent or the
randomized Kaczmarz method. The choice of the linear
system solver thereby determines the overall complexity
of the IPM SOCP solver. The idea of QIPM, as pio-
neered in Refs. [10, 11], is to use a quantum subroutine
to solve the linear system of equations [15]. Notably, all
other steps of IPMs stay classical and remain the same
as described in section III. As a quantum linear system
solver (QLSS) does not solve the exact same mathemati-
cal problem as classical linear system solvers and, more-
over, a QLSS needs coherent (quantum) access to the
classical data as given by the entries of the relevant ma-
trices, there are various additional tools we will discuss
that allow us to embed QLSS subroutines as a step of
IPM SOCP solvers.

First, we discuss in section IV B the input and output
model of QLSSs and present the complexity of state-of-
the-art QLSSs. Then, in section IV C, we give construc-
tions based on quantum random access memory (QRAM)
to load classical data as input into a QLSS and discuss
the complexity overhead arising from that step. Subse-
quently, in section IV D, we present so-called pure state
quantum tomography that allows to convert the output
of the QLSS into an estimate of the classical solution
vector of the linear system of equations. Finally, in sec-
tion IV E, we put all the steps together and state the over-

all classical and quantum complexities of using QLSSs as
a subroutine in IPM SOCP solvers. As described in pre-
vious work [22], the ultimate idea is to compare these
costs to the complexities of classical IPM SOCP solvers
and point out regimes where quantum methods can po-
tentially scale better that any purely classical methods
(e.g., in terms of the SOCP size N , the matrix condition
number κ, etc.)

We note that the content of this section largely corre-
sponds to collecting various state-of-the-art results from
prior literature. These ingredients are used together with
the conceptual framework of [10, 11, 14, 22] to lift the
QIPMs presented there to superior efficiency. In sec-
tion V, we present a few novel enhancements to the
implementation of the QIPM and fully explicit, end-to-
end quantum circuits with corresponding novel finite size
complexities.

B. Quantum linear system solvers

For our purposes, a linear system of equations is given
by a real invertible L× L matrix G together with a real
vector h = (h1, . . . , hL), and one is looking to give an
estimate of the unknown solution vector u = (u1, . . . , uL)
defined by Gu = h. We define the (Frobenius) condition
number

κF (G) := ‖G‖F
∥∥G−1

∥∥ , (33)

where ‖ · ‖F denotes the Frobenius norm and ‖ · ‖ for a
matrix argument denotes the spectral norm.

For this setting, the input to a QLSS is then comprised
of: (i) a preparation unitary Uh that creates the ` :=
dlogLe qubit quantum state

|h〉 := ‖h‖−1 ·
L∑
i=1

hi |i〉 via |h〉 = Uh |0〉⊗`, (34)

where ‖ · ‖ for a vector argument denotes the vector two-
norm (standard Euclidean norm), (ii) a block encoding
unitary UG in the form

UG :=

(
G
‖G‖F ·
· ·

)
(35)

11



B Quantum linear system solvers IV QUANTUM INTERIOR POINT METHODS (QIPM)

on ` + `G qubits for some `G ∈ N, and (iii) an approx-
imation parameter εQLSP ∈ (0, 1]. The quantum linear
system problem (QLSP) is stated as follows: For a triple
(G,h, εQLSP) as above, the goal is to create an `-qubit
quantum state |ṽ〉 such that5

∥∥∥ |ṽ〉 − |v〉∥∥∥ ≤ εQLSP for |v〉 :=

∑L
i=1 ui |i〉∥∥∥∑L
i=1 ui |i〉

∥∥∥ , (36)

defined by Gu = h with u = (u1, . . . , uL), by employing
as few times as possible the unitary operators UG, Uh,

their inverses U†G, U
†
h, controlled versions of UG, Uh, and

additional quantum gates on potentially additional an-
cilla qubits. The QLSP together with the first QLSS
was introduced in [15] and then gradually improved in
[16, 17, 19, 54, 55]. The state-of-the-art QLSS [18] using
the fewest calls to UG, Uh and their variants, is based
on ideas from discrete adiabatic evolution [56]. We note
the following explicit complexities from [18, Theorem 17],
adapted to our setting.

Proposition 1. The QLSP for (G,h, ε1) can be solved
with a quantum algorithm on dlog2(L)e+ 4 qubits for

ε1 ≤ C ·
κF (G)

Q
+O

(√
κF (G)

Q

)
(37)

for some constant C ≤ 15307 using Q ≥ κF (G) con-

trolled queries to each of UG and U†G, and 2Q queries to

each of Uh and U†h, and constant quantum gate overhead.
If G is positive semi-definite, then C ≤ 5632 instead.

We note that a stronger version of above proposi-
tion works with the (regular) condition number κ(G) :=
‖G‖‖G−1‖, but it requires a block-encoding of the form
eq. (35) in which the normalization factor is ‖G‖ rather
than ‖G‖F . For general matrices of classical data, we do
not know of a method to produce such a block-encoding.
In our case, we work with the Frobenius version κF (G),
since we do have a straightforward method to perform
UG with normalization factor ‖G‖F , described in sec-
tion IV C. It is then sufficient to give upper bounds for
the remaining κF (G) to run the algorithm from propo-
sition 1. In practice, we will give such upper bounds by
using appropriate heuristics (cf. section V on implemen-
tations).

Note that proposition 1 implies a solution to the
QLSP in eq. (36) with an asymptotic query complex-
ity of O(κF /εQLSP) to UG, Uh and their variants and
under standard complexity-theoretic assumptions this is

5 In this formulation, the quantum state |v〉 corresponds to the
normalized solution vector of the normalized linear system Gu =
h. Thus, the state |v〉 does not carry information on the norm of
the solution ‖u‖. This norm is related to v by the relationship
‖u‖ = ‖h‖/‖Gv‖.

optimal in terms of the scaling O(κ) [15], but not in
terms of the scaling O(εQLSP). To get to an improved
O(log(1/εQLSP)) scaling, the authors of [18] further rely
on the eigenstate filtering method of [55, Sec. 3] that
additionally invokes a quantum singular value transform
based on a minimax polynomial. We note the following
overall complexities from [18, Theorem 19], adapted to
our setting.

Proposition 2. The QLSP problem for (G,h, ε2) can be
solved with a quantum algorithm on dlog2(L)e+ 5 qubits
that produces a quantum state

√
p |05〉 |ṽ〉+

√
1− p |⊥〉 |fail〉 (38)

with 〈05|⊥〉 = 0 and success probability p ≥ 1/2. With
that, the sought-after ε2-approximate solution quantum
state |ṽ〉 can be prepared using Q + d controlled queries

to each of UG and U†G, and 2Q + 2d queries to each of

Uh and U†h, where

Q = 2CκF (G) +O
(√

κF (G)
)

(39)

d = 2κF (G) ln(2/ε2) . (40)

Here, C ≤ 15307 is the same constant as in proposition 1.

This version of the algorithm essentially uses proposi-
tion 1 with constant choice of ε1 ≤ 1/4, and then uses
eigenstate filtering to measure whether the final state is
the correct solution state. On average we need to repeat
the algorithm no more than twice to produce the desired
state |ṽ〉. The resulting scaling that proposition 2 implies
for the QLSP problem in eq. (36) is O(κ log(1/εQLSP)) ,
which under standard complexity-theoretic assumptions
is optimal in both κ and εQLSP [57]. Following the
findings from [18, Sec. V], we note that in practice the
Q = 2CκF (G) dominates over d and all other terms can
be safely neglected for typical settings — even for finite
scale analyses. Moreover, the constant C is typically an
order of magnitude smaller than the estimates given [18,
Sec. IV.E]; for positive semi-definite G the constant is
estimated as 638. No direct estimates for general ma-
trices G are available from [18], but we will henceforth
assume C = 2000 for our numerical estimates. Addition-
ally, note that for the eigenstate filtering step via QSVT,
the minimax polynomial from [55, Sec. 3] and its cor-
responding quantum signal processing angles have to be
computed. This is done as part of classical pre-processing
[58, Sec. III].6

6 Whereas the methods from [58, Sec. III] do not have a quan-
tified worst case convergence guarantee, they work very well in
practice by typically running in time polylog(dδ−1) for precision
δ ∈ (0, 1] and d = O(κF (G) log(1/εQLSP)) the degree of the un-
derlying polynomial. Alternatively, one might resort to the prov-
able methods from [59] that are known to run with complexity
O(d3polylog(dδ−1)), also see [60] for a discussion.
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Note that the implementation of the QLSS in each of
proposition 1 and proposition 2 assume perfect imple-
mentation of the underlying circuits, without additional
gate synthesis errors. In practice, however, these circuits
will not be implemented perfectly, and hence we will later
include additional sources of error (e.g., block-encoding
error, imperfect rotation gates, etc.) that also contribute
to εQLSP. We include these additional contributions in
section IV D, for example.

In the following, we continue by laying out the addi-
tional classical and quantum resources needed to employ
QLSS for estimating in an end-to-end fashion the classical
solution vector v = (v1, . . . , vL) instead of the quantum
state |v〉.

C. Block-encoding via quantum random access
memory (QRAM)

In many quantum algorithms (and in particular for our
use case), one needs coherent access to classical data for
use in the algorithm. Block-encodings of matrices provide
a commonly used access model for the classical data by
encoding matrices into unitary operators, thereby provid-
ing oracular access to the data. As mentioned above, for
a matrix G ∈ RL×L, a unitary matrix UG block-encodes
G when the top-left block of UG is proportional to G, i.e.

UG =

(
G/α ·
· ·

)
, (41)

where α ≥ ‖G‖ is a normalization constant, chosen as
α = ‖G‖F for our use case. The other blocks in UG are
irrelevant, but they must be encoded such that UG is
unitary. For our purposes, we focus on real matrices G,
but the extension to complex matrices is straightforward.
A block-encoding makes use of unitaries that implement
(controlled) state preparation, as well as quantum ran-
dom access memory (QRAM) data structures for loading
the classical data. Specifically, we refer to QRAM as the
quantum circuit that allows query access to classical data
in superposition∑

j

ψj |j〉 |0〉
QRAM−→

∑
j

ψj |j〉 |aj〉 , (42)

where j is the address in superposition with amplitude
ψj and |aj〉 is the classical data loaded into a quantum
state. There are several models of QRAM one can use
that differ in the way in which the data is loaded. The
two most notable QRAM models are the select-swap (SS)
model, which is particularly efficient in terms of T -gate
utilization [61], and the bucket-brigade (BB) model [62],
which has reduced susceptibility to errors when operated
on potentially faulty hardware [63].

The block-encoding unitary UG acts on `+ `G qubits,
where ` = dlog2(L)e and, in our construction, `G = ` . To
build it, we follow the prescription of [43, 60, 64], in which

one forms UG as the product of a pair of controlled-state
preparation unitaries UL and UR. Specifically,

UG = U†RUL, (43)

where, controlled on the first `-qubit register in the state
|j〉, UR prepares the `-qubit state |ψj〉 into the other `-
qubit register, while UL prepares the state |φj〉, where
|ψj〉 and |φj〉 are arbitrary states determined by the clas-
sical data. Both UL and UR utilize an additional `′

QRAM ancilla qubits that begin and end in the state
|0〉. These controlled-state preparation unitaries UR and
UL are implemented by combining a QRAM-like data-
loading step with a protocol for state preparation of `-
qubit states. There are several combinations of state
preparation procedure and QRAM model one can choose
with varying benefits and resource requirements. In [31],
a subset of the authors of the present work studied the
resources required to implement these block-encodings
and provided explicit circuits for their implementation.
For our immediate purposes, we will simply import the
relevant resource estimates from that work in table III,
and we refer the interested reader to [31] for further de-
tails.7 For our purposes, we will work with the minimum
depth circuits that achieve a T -gate depth of O(logL),
at the price of using a total number of O(L2) many
qubits for the data structure implementing the block en-
coding unitary UG. Finally, the `-qubit unitary Uh de-

fined by |h〉 = Uh |0〉⊗` corresponds to the special case
of quantum state preparation and is directly treated by
the methods outlined in [31, Sec. III.C]. The resources re-
quired to synthesize Uh up to error εh are also reported
in table III.

The minimum-depth block encodings of [31] also in-
cur some classical costs. Specifically, the quoted depth
values are only achievable assuming a number of angles
have been classically pre-computed and for each angle a
gate sequence of single-qubit Clifford and T gates that
synthesizes a single-qubit rotation by that angle up to
small error. Calculating one of the angles can be done
by summing a subset of the entries of G and computing
an arcsin. Meanwhile, circuit synthesis requires apply-
ing a version of the Solovay-Kitaev algorithm [66, 67].
For the block-encoding procedure, L(L − 1) angles and
their corresponding gate sequences must be computed,
which requires a total runtime of L2polylog(1/εG) [67],
although this computation is amenable to parallelization.
For the state preparation procedure, L − 1 angles and
their sequences are needed.

7 In our setting, the matrices to block encode are typically dense,
which is why the general constructions from [31] are sufficient.
However, in case the relevant data has some structure, e.g., if it
is sparse, more adapted strategies such as [65] can be preferable.
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TABLE III. Logical quantum resources required to block-encode (left column) and control-block-encode (right column) an L×L
matrix G to precision εG ∈ [0, 1], where we assume that L = 2`. Here we have suppressed terms doubly and triply logarithmic
in L and 1/εG (see [31]).

Resource Block Encoding Controlled Block Encoding

# of qubits NQbe := 4L2 − 3L+ 2`− 1 NQcbe := NQbe + L

T -depth TDbe := 10`+ 24 log2(1/εG) + 44 TDcbe := TDbe + 4

T -count TCbe := (12 log2(1/εG) + 56)L2 − 24L− 12 log2(1/εG)− 32`− 32 TCcbe := TCbe + 16(L− 1)

TABLE IV. Logical quantum resources required to prepare an arbitrary `-qubit quantum state |h〉 from classical data (left
column) and a single-qubit controlled version (right column) to precision εh ∈ (0, 1]. Here we have suppressed terms doubly
and triply logarithmic in L and 1/εh (see [31]). For a single-qubit control, there are no additional Clifford gates required,
which can be observed by examining the state-preparation procedure in [31, Sec. IIID] and noting that we can prepare the

state |0〉 |0〉⊗` + |1〉 |ψ〉 with minor modifications to the procedure that prepares |ψ〉. First, we use the “flag” qubits to control
both the angle loading and unloading steps (rather than just the unloading steps), and second, we control every flip of the flag
qubits in that procedure with the first single-qubit control, thus turning NOT gates into CNOT gates, which are also Clifford.
When the control is ON, the procedure works as before, and when the control is OFF, none of the qubits leave the |0〉 state.

Resource State Preparation Controlled State Preparation

# of qubits NQsp := 4L+ `− 6 NQcsp := NQsp + 1

T -depth TDsp := 3`+ 12 log2(1/εh) + 24 TDcsp := TDsp

T -count TCsp := (12 log2(1/εh) + 40)L− 12 log2(1/εh)− 16`− 40 TCcsp := TCsp

D. Quantum state tomography

We have described how we can produce a quantum
state |ṽ〉 approximating the (real-valued) solution |v〉 of
a linear system up to precision εQLSP. As mentioned
in section IV B, in the actual circuit implementation, the
approximation error εQLSP accounts for both the inherent
error from eigenstate filtering captured in proposition 2
as well as additional gate synthesis error arising from im-
perfect implementation of block-encoding unitaries and
single-qubit rotations. The next step is to approximately
read out the amplitudes of |ṽ〉 into classical form. To
start out, we will prove the following proposition, which
tells us how many copies of a quantum state are needed
to provide a good enough classical description of it, up
to a phase on each amplitude. This proposition and its
proof are adapted from [32, Proposition 13], with some-
what sharpened constant factors.

Proposition 3. Let 0 < ε, δ < 1 and |ψ〉 =
∑
j∈[L] αj |j〉

be a quantum state. Then,
5+
√

21
3ε2 ln(2L/δ) < 3.1942ε−2 ln(2L/δ) measurements of
|ψ〉 in the computational basis suffice to learn an ε-`∞-
norm estimate |α̃| of |α|, with success probability at least
1− δ.

We give the proof in appendix B 1. Recall that propo-
sition 2 gives a unitary U such that

U |05〉 |0`〉 =
√
p |05〉 |ṽ〉+

√
1− p |⊥〉 |fail〉 (44)

with |ṽ〉 =
∑N
i=1 ṽi |i〉, 〈05 |⊥〉 = 0, and p ≥ 1/2. The

vector ṽ may have complex coefficients, but it approxi-

mates a real vector v up to some error εQLSP in `2 norm.
Our goal is to obtain an estimate ṽ′ = (v′1, . . . , v

′
N ) such

that

‖v − ṽ′‖ ≤ ξ for an error parameter ξ ∈ [0, 1]. (45)

where ξ captures all sources of error. Proposition 3 is not
quite sufficient because it only gives us an estimate of the
absolute value of ṽ. However, the following procedure,
adapted from [10, Sec. 4], will be sufficient:

1. Create k = 57.5L ln(6L/δ)/(ε2(1 − ε2/4))
many copies of the quantum state U |05+`〉 =√
p |05〉 |ṽ〉+

√
1− p |⊥〉 |fail〉, and measure them all

in the computational basis to give empirical esti-
mates {pi}Li=1 of the probabilities p|ṽi|2.

2. Using controlled applications of U , create k =
57.5L ln(6L/δ)/(ε2(1− ε2/4)) copies of

2−1/2 |05〉 |0〉√p |ṽ〉 (46)

+ 2−1/2 |05〉 |1〉
L∑
i=1

√
p′i |i〉

+ |⊥′〉 |fail′〉 ,

which by applying a Hadamard can be mapped to

|05〉 |0〉
√
p |ṽ〉+

∑L
i=1

√
p′i |i〉

2
(47)

+ |05〉 |1〉
√
p |ṽ〉 −

∑L
i=1

√
p′i |i〉

2
+ |⊥′〉 |fail′′〉 .
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Here |⊥′〉 is an arbitrary state orthogonal to |05〉
and |fail′〉 and |fail′′〉 are arbitrary unnormalized

states. The quantities
√
p′i are (possibly complex)

amplitudes that satisfy |
√
p′i−
√
pi| ≤ εtsp for all i;

they arise because the state
∑L
i=1

√
p′i |i〉 can only

be prepared up to some error. Next, measure this
state in the computational basis, denoting the mea-
surement count of the result 06i as k+

i and the re-
sult 051i as k−i .

3. Define

a+
i = min

(
√
pi,

k+
i − k

−
i√

pi

)
(48)

a−i = max

(
−√pi,

k+
i − k

−
i√

pi

)
(49)

and let

ãi =


0 if

√
pi ≤ 2

3
√

2L
ε
√

1− ε2

4 + εtsp

a+
i if ãi 6= 0 and k+

i ≥ k
−
i

a−i if ãi 6= 0 and k+
i < k−i

. (50)

Output the estimate |ṽ′〉 =
∑L
i=1 ãi |i〉 /

√∑L
i=1 ã

2
i .

Proposition 4. Suppose that ‖ṽ− v‖ ≤ εQLSP and that
v is a real-valued vector. Let ε and εtsp be constants that

satisfy ε+
√

2Lεtsp+
√

2εQLSP ≤ 1/2. Then the algorithm
above outputs an estimate ṽ′ such that ‖ṽ′ − v‖ < ε +

1.58
√
Lεtsp + 1.58εQLSP with probability 1− δ.

We give the proof in appendix B 1. The statement is
used to bound the total error parameter ξ by the quan-
tity ε+ 1.58

√
Lεtsp + 1.58εQLSP. We note that a similar

procedure in [10, Sec. 4] has already been proven to work,
with somewhat worse success probability guarantees and
worse constants. Ref. [32, Proposition 16] shows a simi-
lar result for complex-valued states, but we use a sharper
proof for input states close to real-valued. proposition 4,
together with proposition 2, produces with high probabil-
ity an O(ε) good estimate ṽ′ of v by using O(L ln(L)/ε2)
many samples.8 There are other methods in the litera-
ture that allow to perform pure state quantum tomogra-
phy with comparable query complexities (e.g. [68]), but

8 If our goal is to resolve the initial linear system Gu = h, then
the vector ṽ′ produced as in Section IV D as an estimate for the
normalized vector v = u/‖u‖, gives an estimate for u via

ũ := ṽ′ ·
‖h‖
‖Gṽ′‖

,

for which we find

‖u− ũ‖ ≤ ‖v − ṽ′‖ ·
(
1 + κ(G)

)
·
‖h‖
‖Gṽ′‖

.

Notice that as a worst case guarantee, this picks up an additional
factor κ(G) in error scaling. However, for our purposes it will be
sufficient to directly work with the normalized estimate ṽ′ for v,
the reason being that only the direction of the solution vector is
important to us and not its exact normalization.

we favor the above method because of its computational
simplicity, and the fact that it does not require us to solve
any potentially costly additional optimization problems.
Very recently, the sample complexity has been improved
to O(L ln(L)/ε), which comes at the cost of more com-
plicated quantum circuits and higher constant overheads
[32, Theorem 23]. It would be interesting to work out
the more involved finite complexity of this result, and
we further comment on the potential impact of this in
section VII.

E. Asymptotic quantum complexity

Putting everything together, the steps of our QLSS for
given real L×L matrix G and real vector h of size L are:

1. Construct the circuits that implement the block-
encoding unitaries UG and Uh up to error εG and εh
via quantum state preparation and QRAM, which
involves a classical pre-processing cost scaling as
L2polylog(1/εG,h). The quantum resources re-
quired are described in table III. The T -gate depth
(what we call time complexity) is O(logL) and the
total T -gate count is O(L2).

2. Employ the QLSS unitary from proposition 2 to ap-
proximately solve the corresponding QLSP, leading
to the quantum state |ṽ〉. The query complexity
to UG, Uh, their controlled versions, and their in-
verses, is O(κF (G) log(1/ε)). The number of qubits
needed is dlogLe+ 5.

3. Repeat the previous step O(L ln(L/δ)ε−2) many
times to implement the pure state quantum to-
mography scheme from section IV D, which also
requires the use of an O(L) qubit QRAM struc-
ture, and one ancilla qubit. Tomography leads to
the sought-after classical vector estimate ṽ′ with
‖ṽ′ − v‖ ≤ ε.

The QLSS can then be used for each iteration of an
IPM SOCP solver, which involves forming and solving a
linear system of equations, resulting in the QIPM SOCP
solver. We provide the quantum circuits needed to imple-
ment the solver in the section IV D. However, we empha-
size that we have not yet considered the various practical
aspects and difficulties of setting up an end-to-end QIPM
SOCP solver, which is discussed further in section V.

F. Quantum circuits

The following are the quantum circuits needed for the
QLSS of proposition 1. The QLSS requires applying a
unitary U [s] for many different values of s, where U [s] is a
block-encoding of a certain Hamiltonian related to G and
h, as specified below. The unitary acts on 4+`+`G total
qubits, where the final `G qubits are ancillas associated
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a3 H UQh UQh H

a4 •
CR0(s) CR1(s)

X

a2

VG
a1

UQh UQh

L

`G

FIG. 1. Main component of the quantum circuit for proposition 1, described in [18, appendix E], enacting the unitary U [s]
on registers a3a4a2a1L`G of the scaled Hamiltonian c(s) · H[s], where H[s] = (1− f(s))H0 + f(s)H1, on registers a4a1L. The
necessary quantum gates and functions are defined in eqs. (51) to (57) except for sub-circuit UQh , which is depicted in fig. 4.
The unitary U [s] is then used in eq. (59) to define the overall quantum circuit U for proposition 1.

H e−iφ1σz e−iφ2σz · · · e−iφdσz H

a3

U [1] U†[1]

· · ·
a4 · · ·
a2 · · ·
a1 · · ·
L · · ·
`G · · ·

FIG. 2. Quantum singular value transform (QSVT) circuit, described in Ref. [60], acting on the block-encoding U [1] of
H(1) = H1/

√
2, as defined in eq. (52). The circuit features one additional ancilla qubit and depends on the classically pre-

computed rotation angles {φ1, · · · , φd}.

c • • • •
a3 H UQh UQh H

a4 •
CR0(s) CR1(s)

a2

VG
a1

UQh UQh

L

`G

FIG. 3. Controlled version of the quantum circuit in fig. 1, controlled on qubit c. Note that not all gates need to be controlled
on c, as their inverses follows in the circuit.

with UG. The four single-qubit registers are referred to
with labels a1, a2, a3, a4, the `-qubit register with label
L, and the `G-qubit register with label `G. These labels
are used as subscripts on bras, kets, and operators to
clarify the register to which they apply. The circuit for
U [s] is depicted in fig. 1, and is described in [18, appendix
E]. Specifically, the unitary U [s] is a block-encoding of
the (2+`)-qubit Hamiltonian c(s)·H[s] := (1−f(s))H0+
f(s)H1 on registers a4a1L, where c(s) is a normalization

factor (defined later in eq. (58)),

H0 :=

 0 0 IL − |h〉 〈h|L 0
0 0 0 −IL

IL − |h〉 〈h|L 0 0 0
0 −IL 0 0

 (51)
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and

H1 :=


0 0 0 G
0 0 G†(IL − |h〉 〈h|L) 0
0 (IL − |h〉 〈h|L)G 0 0
G† 0 0 0

 ,

(52)

and where IL denotes the identity operation on subsys-
tem L, and the four rows and columns correspond to the
sectors with qubits a4, a1 set to (0, 0), (0, 1), (1, 0), (1, 1).
Figure 1 features the expressions

CR0(s) := |0〉 〈0|a4 ⊗R(s)a2 + |1〉 〈1|a4 ⊗Ha2 (53)

CR1(s) := |1〉 〈1|a4 ⊗R(s)a2 + |0〉 〈0|a4 ⊗Ha2 (54)

VG := |0〉 〈0|a2 ⊗ Za1 ⊗ IL`G

+ |1〉 〈1|a2 ⊗
(

0 UG
U†G 0

)
a1L`G

, (55)

where H denotes the single-qubit Hadamard gate, and
R(s) is given by

R(s) :=
1√

(1− f(s))2 + f(s)2

(
1− f(s) f(s)
f(s) −(1− f(s))

)
(56)

f(s) :=
κF (G)

κF (G)− 1
·
(

1−
(

1 + s
(√

κF (G)− 1
))−2

)
.

(57)

The normalization factor of R(s) above combines with a

factor of 1/
√

2 introduced by the Hadamard gate to give
an overall normalization factor for H(s) of

c(s) =
(
2((1− f(s))2 + f(s)2)

)−1/2 ∈ [2−1/2, 1] (58)

and scheduling function f(s) with f(0) = 0 and f(1) =
1. Note that we have the self-inverse property U [s]2 =
1 ∀s ∈ [0, 1], as demonstrated in [18, Appendix E]. The
overall quantum circuit U for the quantum algorithm of
proposition 1 is then given as (cf. [69])

U :=

Q∏
j=1

P [1− j/Q] (59)

with the walk operator

P [s] := WU [s],

where W is the operator that acts as identity on registers
a4a1L (which host the Hamiltonian H[s]) while perform-
ing the reflection (2 |0〉 〈0|a2a3`G−Ia2a3`G) on the remain-
ing qubits. The unitary U makes Q controlled queries to

each of UG and U†G, and 2Q queries to each of Uh and

U†h, and it has constant quantum gate overhead.
Next, we give the remaining QSVT eigenstate filter-

ing quantum circuit for the refined quantum linear sys-
tem solver of proposition 2. We are interested in the

null space of c(1) · H[1], which has ground-state energy
equal to zero and spectral gap at least c(1)κ−1

F (G) =

(
√

2κF )−1. As such, we employ the Chebyshev minimax
polynomial

Rl(x, κ
−1
F (G)) :=

Tl

(
−1 + 2

x2−κ−2
F (G)/2

1−κ−2
F (G)/2

)
Tl

(
−1 + 2

−κ−2
F (G)/2

1−κ−2
F (G)/2

) , (60)

where Tl(·) is l-th Chebyshev polynomial of the first
kind, as part of the corresponding QSVT quantum cir-
cuit. From [55, Lemma 2], Rl has even degree d equal
to

d := 2l = 2 dκF (G) ln(2/εqsp)e for some εqsp ∈ (0, 1]
(61)

where εqsp is the precision to which Rl approximates the
optimal filter operator. The QSP subscript stands for
“quantum signal processing.”

The circuit for the eigenstate filtering step is depicted
in fig. 2. To implement it, one has to classically pre-
compute the corresponding QSP angles {φ1, · · · , φd},
which is best done by the methods of [58] (see also [60]
and [59]). The query complexity to the block encoding
U [1] is given by d, the additional gate overhead is as
in fig. 2, and the total number of qubits is 1 + 4 + `.
Finally, using the overall quantum circuit U from propo-
sition 1 with constant approximation parameter ε1 = 1/4
therein (to produce an input state to the quantum circuit
of fig. 2), gives the overall quantum circuit of the QLSS
from proposition 2, which then solves the QLSP to error
ε2 = εqsp.

The tomography routine also requires the ability to
perform controlled versions of the above circuits as de-
scribed in eq. (47), and illustrated in fig. 3 (which replaces
fig. 1). The controlled circuits can be accomplished by
rather simple modifications to the circuits in figs. 1 and 2
as follows.

Any QSVT circuit can be made controlled by simply
controlling the application of the z rotation gates, since
the rest of the circuit contains only symmetric applica-
tions of unitary gates and their inverses. Thus, we can
create a controlled version of fig. 2 by simply performing
controlled-σz rotations, which requires two CNOT gates
and an extra single qubit σz rotation gate.

Controlling the linear system portion is not enough to
implement eq. (47). One must also follow this with a con-
trolled state-preparation routine, controlled on the value
of the qubit c being in the |1〉 state. The full resource
analysis for controlled state-preparation was reported in
Ref. [31], and we refer the reader there for further details.
We report the resource counts here in table IV.

V. IPM IMPLEMENTATION AND RESOURCE
ESTIMATES FOR PO

The previous section reviewed the ingredients needed
to implement the QIPM, namely, QLSS, block-encoding,
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and tomography. Here, we combine those ingredients to
describe how the QIPM is actually implemented, making
several observations that go beyond prior literature. We
also perform a full resource analysis of the entire protocol
and report resources needed to run the algorithm.

A. Main IPM loop and full pseudo-code

A QIPM is formed from an IPM by performing the step
of solving a linear system with a quantum algorithm; the
rest of the steps are classical. In Algorithm 1, we present
pseudocode for the interior point method where the sin-
gle quantum subroutine—approximately solving a linear
system—appears in blue text. The input to Algorithm 1
is an SOCP instance with N variables, K linear con-
straints, and r second-order cone constraints, along with
a tolerance parameter ε. Here we note that K = O(N) in
the case of the formulation of the PO problem we simu-
late in section VI. The output of the QIPM is a vector x
that is O(ε) close to feasible, and O(ε) close to optimal.

The structure of the QIPM is in essence the same as
that proposed by Ref. [13], but we give a more complete
specification of the algorithm and make several new ob-
servations:

• Classical costs: The IPM requires O(
√
r log(1/ε))

iterations. In the classical case, when solving the
PO problem via SOCP with an IPM, the cost
of an iteration is dominated by the time needed
to solve a linear system of size L × L, which
is O(N3) if done via Gaussian elimination, since
L ∼ O(N) in the PO problem. In the quantum
case, this step is performed quantumly; however,
constructing the linear system still requires clas-
sical matrix-vector multiplication to compute the
residuals on the right-hand-side of the Newton sys-
tem in eq. (21). If the SOCP constraint matrix
A is O(N) × N , then this classical matrix-vector
multiplication takes O(N2) time. Thus, the QIPM
requires at least O(N2.5) classical time. Addition-
ally, in our resource counts we use the minimal
depth block-encoding circuits from Ref. [31], which
require N2polylog(1/ε) classical time per iteration
(although this can be parallelized) to compute an-
gles and corresponding gate sequences. These clas-
sical costs limit the maximum possible speedup
of the QIPM over the classical IPM, but if the
quantum subroutine is sufficiently fast that clas-
sical matrix-vector multiplication and angle com-
putation is the bottleneck step, then this is a good
signal for the utility of the QIPM.

• Preconditioning: Since the runtime of the QLSS
depends on the condition number of the matrix G
that appears in the linear system Gu = h, it is
worth examining pre-conditioning techniques [70]
for reducing the condition number. In the imple-
mentation we propose, we perform a very simple

form of preconditioning. Let D be a diagonal ma-
trix where entry Dii is equal to the norm of row
i of the matrix G. Instead of solving the linear
system Gu = h, we solve the equivalent system
(D−1G)u = D−1h. Note that D−1G and D−1h
can each be classically computed in O(N2) time,
roughly equal to the time required to compute h in
the first place (see previous bullet), so this step is
unlikely to be a bottleneck in the algorithm. In
our numerical experiments, we observe that the
condition number of D−1G is typically more than
an order of magnitude smaller than G, and some-
times several orders of magnitude (see fig. 9 in sec-
tion VI).

• Norm of linear system and step length: As
discussed in section IV B, QLSSs produce a normal-
ized state |u〉, where u is the solution to Gu = h,
and quantum state tomography on |u〉 can only
reveal the direction of the solution u and not its
norm. The norm can be estimated separately with
a comparable amount of resources, but we observe
that in the context of QIPMs, it is not necessary
to learn the norm of the solution. If the direc-
tion of the solution is known, the amount by which
to update the vector in that direction can be de-
termined classically in O(N) time as follows. If
(∆x; ∆y; ∆τ ; ∆θ; ∆s; ∆κ) is the normalized so-
lution to the Newton linear system in eqs. (21)
and (24), then the amount to step in that direc-
tion is equal to

µ(x, τ, s,κ)(1− σ)(r + 1)

−(∆x)ᵀs− (∆s)ᵀx− (∆κ)τ − (∆τ)κ
. (62)

This expression is chosen such that the duality gap
of the new point is exactly a factor of σ smaller
than the old point, up to deviations that are second
order in the step length. Note that if the old point
is feasible and the solution to the linear system is
exact, the second and higher order contributions
vanish anyway.

• Adaptive tomographic precision and neigh-
borhood detection: In Ref. [13], the choice of to-
mography precision parameter ξ was determined by
a formula that aimed to guarantee staying within
the neighborhood of the central path under a worst-
case outcome. We observe that, since determining
whether a point is within the neighborhood of the
central path can be done in classical O(N) time
(see section III C 6), the precision parameter can
instead be determined adaptively for optimal re-
sults: start with ξ = 1/2, solve the linear system
to precision ξ and check if the resulting point is
within the neighborhood of the central path. If
yes, continue to the next iteration; if no, repeat the
tomography with ξ ← ξ/2. Since the complexity
of tomography is O(1/ξ2), the cost of this adap-
tive scheme is proportional to a geometric series
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4 + 16 + 64 + . . .+O(1/ξ2) of which the final term
will make up most of the cost (accordingly, for sim-
plicity, in our resource calculation we only account
for the final term). This cost could be much lower
than the theoretical value if the typical errors are
not as adverse for the IPM as a worst-case error of
the same size.

The pseudocode in Algorithm 1 illustrates the infeasi-
ble version of the algorithm (II-QIPM from table II). To
implement the feasible versions (IF-QIPM and IF-QIPM-
QR), minor modifications are made to reflect the process
described in section III.

B. End-to-end quantum resource estimates

The QIPM described in the pseudocode takes
20
√

2
√
r ln(ε−1) iterations to reduce the duality gap to ε,

where r is the number of second-order cone constraints.
In the case of the portfolio optimization problem we
study, r = 3n + 1, where n is the number of stocks in
the portfolio. Choosing the constant pre-factor to be
20
√

2 allows us to utilize theoretical guarantees of conver-
gence (modulo the issue of infeasibility discussed in sec-
tion III C 5); however, it would not be surprising if addi-
tional optimization of the parameters or heuristic changes
to the implementation of the algorithm (e.g. adaptive
step size during each iteration) would lead to constant-
factor speedups in the number of iterations. Since the
number of iterations would be the same for both the
quantum and classical IPM, these sorts of improvements
would not impact the performance of the QIPM relative
to its classical counterpart.

1. Quantum circuit compilation and resource estimate for
quantum circuits appearing within QIPM

The QIPM consists of repeatedly performing a quan-
tum circuit associated with the QLSS and measuring in
the computational basis. Here we account for all the
costs of each of these individual quantum circuits. There
are two kinds of circuits that are needed: first, the circuit
that creates the output of the QLSS subroutine, given by
the state in eq. (38), and second, the circuit that creates
the state needed to determine the signs of the ampli-
tudes during the tomography subroutine corresponding
to a controlled-QLSS subroutine, given in eq. (47).

To simplify the analysis, we first compile the circuits
from the previous section into a primitive gateset that
consists of Toffoli gates (and multi-controlled versions of
them), rotation gates, block-encoding unitaries, state-
preparation and controlled state-preparation unitaries.
This compilation allows us to combine our previous in-
depth resource analysis for these primitive routines [31]
with the additional circuits shown here.

From left to right in the U [s] circuit shown in fig. 1,
we show the circuits for UQh

, CR0(s) (and equivalently

CR1(s)), and VG in figs. 4 to 6, respectively. In addition
to these circuits, we must also perform controlled versions
of them within the tomography routine to estimate the
sign of the amplitudes. The controlled-U [s] gate is given
in fig. 3. The implementation of the controlled versions
of CR0(s) (and equivalently CR1(s)), and VG are also
depicted in figs. 5 and 6, respectively.

With these decompositions in place, we now report in
table V the resources required to perform each of the two
kinds of quantum circuits involved in the QIPM (which
are each performed many times over the course of the
whole algorithm). The resource quantities are reported
in terms of the number of calls Q to the block-encoding
(which scales linearly with the condition number), as well
as the controlled-block-encoding and state-preparation
resources given previously in tables III and IV. The ex-
pressions also depend on various error parameters which
must be specified to obtain a concrete numerical value.
In section VI, after observing empirical scaling of certain
algorithmic parameters, we make choices for all error pa-
rameters and arrive at a concrete number for a specific
problem size.

2. Resource estimate for producing classical approximation
to linear system solution

The resource estimates described above capture the
quantum resources required for a single coherent quan-
tum circuit that appears during the algorithm. The out-
put of this quantum circuit is a quantum state, but the
QIPM requires a classical estimate of the amplitudes of
this quantum state. This classical estimate is produced
through tomography, as described in section IV D, by
performing k = 57.5L ln(6L/δ)/(ε2(1−ε2/4)) repetitions
each of the QLSS and controlled-QLSS circuits, where ε
is the desired tomography precision and δ is the proba-
bility that the tomography succeeds. In the implemen-
tation given in Algorithm 1, we fix δ = 0.1. Thus, to
estimate the quantum resources of a single iteration of
the QIPM, the previous resource estimates reported in
table V should each be multiplied by k. We note with
P processors large enough to prepare the output of the
QLSS, these k copies could be prepared in k/P parallel
steps, saving a factor of P in the runtime at the expense
of a factor of P additional space. Our resources and scal-
ing estimates do not account for any parallelization, and
we assume completely serial execution and runtime.

After multiplication by k, these expressions give the
quantum resources required to perform the single quan-
tum line of the QIPM, ApprSolve. This subroutine has
both classical input and output and can thus be com-
pared to classical approaches for approximately solving
linear systems.
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Algorithm 1: Quantum Interior Point Method

Input: SOCP instance (A, b, c), list of cone sizes (N1, . . . , Nr) and tolerance ε
Output: Vector x that optimizes objective function (eq. (7)) to precision ε
/* For portfolio optimization, A, b, c are given in eq. (12). First n entries of x give optimal

stock weights. */

1 (x;y; τ ; θ; s;κ)← (e; 0; 1; 1; e; 1) /* initialize on central path */

2 µ← 1, σ ← 1− 1

20
√

2

1√
r
, γ ← 1/10 /* set parameters */

3 while µ ≥ ε: /* Follow central path until duality gap less than ε */

4 G←


0 Aᵀ −c c̄ I 0
−A 0 b −b̄ 0 0
cᵀ −bᵀ 0 −z̄ 0 1
−c̄ᵀ b̄ᵀ z̄ 0 0 0
S 0 0 0 X 0
0 0 κ 0 0 τ

 /* from eqs. (21) and (24) */

5 h←


−Aᵀy + cτ − c̄θ − s

Ax− bτ + b̄θ
−cᵀx + bᵀy + z̄θ
c̄ᵀx− b̄ᵀy − z̄τ
σµe− X̃S̃e
σµ− κτ

 /* mat.-vec. mult. performed classically */

6 for j = 1, . . . , L: /* preconditioning via row normalization */

7 g ←
√∑

k |Gjk|2 /* norm of jth row of G */

8 hj ← hj/g
9 for k = 1, . . . , L:

10 Gjk ← Gjk/g

11 Classically compute L2 angles and gate decompositions necessary to perform block-encoding of G and
state-preparation of |h〉 (see Ref. [31])

12 ξ ← 1
13 repeat /* try smaller and smaller ξ until central path is found */

14 ξ ← ξ/2
15 (∆x; ∆y; ∆τ ; ∆θ; ∆s; ∆κ)← ApprSolve(G,h, ξ)

16 (step length)← µ(σ−1)(r+1)
(∆x)ᵀs+(∆s)ᵀx+(∆κ)τ+(∆τ)κ

17 (x′;y′; τ ′; θ′; s′;κ′)← (x;y; τ ; θ; s;κ) + (step length) · (∆x; ∆y; ∆τ ; ∆θ; ∆s; ∆κ)

18 until (x′;y′; τ ′; θ′; s′;κ′) ∈ N (γ)
19 (x;y; τ ; θ; s;κ)← (x′;y′; τ ′; θ′; s′;κ′)
20 µ← σµ

21 return x/τ

22 def ApprSolve(G,h, ξ):
23 L← 2N +K + 3
24 δ ← 0.1
25 ε← 0.9ξ

26 k ← 57.5L ln(6L/δ)/(ε2(1− ε2/4))
27 Run tomography as described in section IV D using k applications and k controlled-applications of the QLSS

algorithm on the system (G,h)

28 return Vector ṽ′ for which ‖ṽ′‖ = 1 and ‖ṽ′ − v‖ ≤ ξ with probability at least 1− δ, where v ∝ G−1h

3. Estimate for end-to-end portfolio optimization problem

Recall that the full QIPM algorithm is an iterative
algorithm, where each iteration involves approximately
solving a linear system by preparing many copies of the
same quantum states. The duality gap µ, which mea-
sures the proximity of the current interior point to the
optimal point, begins at 1 and decreases by a constant
factor σ with each iteration. Thus, the required number

of iterations to reach a final duality gap ε is given by

Nit = dln(ε)/ ln(σ)e =

⌈
ln(ε)

ln(1− 1
20
√

2r
)

⌉
≈
⌈
20
√

2 ln(ε−1)
√
r
⌉
.

(63)

Recall from the discussion in section III C 3 that the out-
put of the QIPM will achieve an O(ε) approximation to
the optimal value of the objective function.

Pulling this all together, we now estimate the resources
to perform the full QIPM algorithm, including the multi-
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a4 • • •

a3

UQh

• •

a1 =

W ′
= •

L U†h Uh U†h X • X Uh

FIG. 4. Decomposition of the UQh gate (shown, e.g., in fig. 1) into a state-preparation unitary Uh and multi-controlled-Toffoli
gates. The reflection operator W is given by W ′ := Ia1L − 2 |1〉 〈1|a1 ⊗ |0〉 〈0|L. Not pictured are additional ancillas that begin

and end in |0〉 and are utilized to implement the unitary Uh in shallower depth.

a4

CR0(s) =

•

a2 Ry(−θ/2) Ry(θ/2) Ry(−π/4) Ry(π/4)

c • • •
a4

CR0(s)
=

•

a2 Ry(−θ/2) Ry(θ/2) Ry(−π/4) Ry(π/4)

FIG. 5. Decomposition of the CR0(s) gate (top) and controlled-CR0(s) gate (bottom), as defined in eq. (53), into single qubit
rotation gates and CNOTs (top) or Toffolis (bottom). The gate Ry(φ) is defined to map |0〉 7→ cos(φ/2) |0〉+ sin(φ/2) |1〉 and

|1〉 7→ − sin(φ/2) |0〉+ cos(φ/2) |1〉. The rotation angle θ = 2 arctan( 1−f(s)
f(s)

), where f(s) given in eq. (57). The CR1(s) gate is

identical but with the control bit sign flipped. Note that the Ry(±π/4) gates are Clifford conjugate to a single T or T † gate.

a2

VG

• • • •

a1 Z X

= |0〉 • •

L
U†G UG

`G

c • • •
a2

VG

• • • •

a1 Z

= |0〉 • •

L
U†G UG

`G

FIG. 6. Decomposition of the VG unitary (top) and controlled-VG unitary (bottom), as defined in eq. (55), into calls to a
standard block-encoding unitary UG [31] and other elementary gates, using a single ancilla qubit initialized to the |0〉 state.
Not pictured are additional ancillas that begin and end in |0〉 and are utilized to implement the unitary UG in shallower depth.

plicative factors needed to perform tomography as well as
the number of iterations to converge to the optimal solu-
tion. Note that the relevant condition number κF (G)
and required linear-system precision ξ will vary from
iteration-to-iteration as the Newton matrix G changes.
The overall runtime can be upper bounded using the

maximum observed value of κF (G), which we denote by
κF , and minimum observed value of ξ across all itera-
tions. At each iteration, to achieve overall precision ξ,
the tomography precision ε is chosen to be just smaller
than ξ (we choose ε = 0.9ξ), while all other error param-
eters (εar, εtsp, εz, etc.) are chosen to be small fractions
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TABLE V. Quantum resources required to create the state output by the quantum linear system solver, given in eq. (38) (QLSS,
left) or the state needed to compute the signs during the tomography subroutine, given in eq. (47) (Controlled QLSS, right)
for a square linear system of size L = 2`. Note that these resource quantities do not yet account for the k classical repetitions
needed in order to perform tomography on the output state. The parameters Q and d each scale linearly with the condition
number of the linear system, as defined in proposition 2. The symbols NQcbe, TDcbe, and TCcbe denote the number of logical
qubits, the T -depth, and the T -count, respectively, for performing a controlled-block-encoding, as reported in table III. The
symbols TDsp and TCsp are analogous quantities for state-preparation, as reported in table IV. The parameters εar, εtsp and
εz ∈ (0, 1] are error parameters corresponding to the gate synthesis precision required for the CR0(s) and CR1(s) rotations,
controlled state-preparation step required by tomography, and the QSVT phases, respectively.

Resource QLSS Controlled QLSS

# Qubits NQcbe + 5 NQcbe + 6

T -depth
12Q log2(1/εar) + 2(Q+ d)TDcbe + 4(Q+ d)TDsp

+Q(24`+ 31) + 3d log2(1/εz) + d(32`− 2)

12Q log2(1/εar) + 2(Q+ d)TDcbe + 4(Q+ d)TDsp

+Q(24`+ 36) + 6d log2(1/εz) + d(32`− 2)

+12 log2(1/εtsp) + 3(`− 1)

T -count
12Q log2(1/εar) + 2(Q+ d)TCcbe + 4(Q+ d)TCsp

+Q(24`+ 31) + 3d log2(1/εz) + d(32`− 2)

12Q log2(1/εar) + 2(Q+ d)TCcbe + 4(Q+ d)TCsp

+Q(24`+ 51) + 6d log2(1/εz) + d(32`− 2)

+12(L− 1) log2(1/εtsp) + 16(L− `− 1)

of ξ. As the non-tomographic error parameters all ap-
pear underneath logarithms, for a leading order analysis
it suffices to replace them all with ξ.

We may then express the overall runtime in terms of
κF , ξ, L (the size of the Newton system), and r (the
number of second-order cone constraints) up to leading
order and including all constant factors, which we re-
port in table VI. Recall that for the infeasible version of
the QIPM acting on the self-dual embedding, we have
L = 2N +K + 3, where N is the number of SOCP vari-
ables and K is the number of linear constraints. Note
that in our leading order expression, we have assumed
that the contributions proportional to Q = O(κF ) dom-
inate over terms proportional to d = O(κF log(1/ξ)) at
practical choices of ξ due to the large constant prefactor
in the definition of Q (see proposition 2 and surrounding
discussion). The left column of table I from the intro-
duction is formed using the expressions in table VI, and
substituting the corresponding relations between L and
n, where n is the number of stocks in the portfolio opti-
mization problem given in eq. (12). That is, we substitute
r = 3n+ 1 and L = 2N +K+ 3 = 8n+ 3m+ 6 = 14n+ 6
when we take m = 2n, where N is the number of SOCP
variables, K is the number of SOCP constraints, n is the
number of stocks, and m is the number of time epochs
used to create the matrix M as described in section II.

VI. NUMERICAL EXPERIMENTS WITH
HISTORICAL STOCK DATA

The resource expressions in table VI include constant
factors but leave parameters κF and ξ unspecified. These
parameters depend on the specific SOCP being solved.
As a final step, we use numerical simulations of small

TABLE VI. Leading order contribution to the logical qubit
count, T -depth, and T -count for the entire QIPM, including
constant factors. The parameter L denotes the size of the
Newton linear system and r denotes the number of second-
order cone constraints, while ε denotes the final duality gap
that determines when the algorithm is terminated. For the
infeasible QIPM running on an n-asset instance of portfolio
optimization, as given in eq. (12), we have L = 14n + 6 and
r = 3n + 1; these substitutions yield the results in table I.
The parameter κF denotes the maximum observed Frobenius
condition number and ξ denotes the minimum observed to-
mographic precision parameter across all iterations.

Resource QIPM complexity

# Qubits 4L2

T -depth (7×108)κFL
√
rξ−2 log2(ε−1) log2(L) log2(κFL

14/27ξ−1)

T -count (2× 108)κFL
3√rξ−2 log2(ε−1) log2(L) log2(κF ξ

−1)

PO problems to study the size of these parameters for
different PO problem sizes. This information enables us
to give concrete estimates for the resources needed to
solve realistic PO problems with our implementation of
the QIPM and sheds light on whether there could be an
asymptotic quantum advantage.

Our numerical experiments simulate the entirety of Al-
gorithm 1. The only quantum part of the algorithm is to
carry out the subroutine ApprSolve (G,h, ξ). We simu-
late the quantum algorithm for this subroutine by solving
the linear system exactly using a classical solver and then
adding noise to the resulting estimated values to simu-
late the output of tomography. Since the tomography
scheme illustrated in section IV D repeatedly prepares
the same state and draws k samples from measurements
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in the computational basis, the result is a sample from the
multinomial distribution. In our numerical simulation,
we draw samples from this same multinomial distribu-
tion, thus capturing tomographic noise in a more precise
way than by simply adding uniform Gaussian noise, as
was done in Ref. [22]. For simplicity, we assume that the
part of the tomography protocol that calculates the signs
of each amplitude correctly computes each sign. To nu-
merically estimate resource counts, we must understand
ultimately what level of precision ξ is required to stay
close enough to the central path throughout the algo-
rithm, as well as how large the Frobenius condition num-
ber κF of the Newton system is. Importantly, we would
like to know how these quantities scale with system size
and duality gap µ, which decreases by a constant factor
with each iteration of the QIPM.

In section III C 5, we discussed three formulations of
the QIPM (see table II). The first (II-QIPM) is closely
related to the original formulation from Ref. [13], which
does not guarantee that the intermediate points gener-
ated by the IPM are feasible. The other two are instan-
tiations of the inexact-feasible formulation proposed in
Ref. [14], which requires pre-computing a basis for the
null-space of the SOCP constraint matrix. The first of
these computes a valid basis by hand (IF-QIPM), while
the second uses a QR decomposition to find the basis (IF-
QIPM-QR). We simulated all three versions and found
that the II-QIPM was always able to stay close to the
central path, despite the lack of a theoretical guarantee
that this would be the case. Here we present the re-
sults of the II-QIPM. For comparison, in appendix E, we
present some numerical results for the feasible QIPMs,
which do benefit from a theoretical convergence guaran-
tee, but have other drawbacks.

As discussed in section V A, we also implemented a
very simple preconditioner that we find reduces the con-
dition number by about at least an order of magnitude
with negligible additional classical cost. In all cases,
we report resources estimates assuming a preconditioned
matrix.

A. Example instance

In fig. 7, we present as an example the results of one
of our simulations. We construct a portfolio optimiza-
tion instance of eq. (5) by randomly choosing n = 30
stocks from the Dow Jones U.S. Total Stock Market In-
dex (DWCF). We (arbitrarily) set parameters q = 1,
ζ = 0.05 · 1, and we assume our previous portfolio w̄
allocates weight to each stock in proportion to its mar-
ket capitalization. The returns of the 30 stocks on the
first m = 2n = 60 days in our dataset were used to con-
struct an average return vector û and an m × n matrix
M for which MᵀM = Σ, the covariance matrix for the
stock returns, as described in section III B.

We simulate the infeasible QIPM acting on the corre-
sponding SOCP in eq. (12). The figure illustrates how the
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FIG. 7. Simulation of the QIPM on an SOCP instance
corresponding to portfolio optimization on n = 30 randomly
chosen stocks using m = 60 time epochs. The duality gap µ
(defined in eq. (16)), the distance to the central path dF (de-
fined in eq. (28)), and the infeasibility (defined as the norm of
the residual on the right-hand-side in eq. (21)) each decrease
exponentially with the number of iterations. The tomogra-
phy precision ξ required to stay near the central path (defined
adaptively as outlined in Algorithm 1) initially decreases and
then plateaus at about 10−2.

simulation successfully follows the central path to the op-
timal solution after many iterations. The duality gap de-
creases with each step, and, crucially, the infeasibility and
distance to the central path also decrease (exponentially)
with iteration. Also plotted is the tomography precision
ξ that was required to ensure that each iteration stayed
sufficiently close to the central path (determined adap-
tively as described in the pseudocode in Algorithm 1).
The plot exemplifies how, despite the lack of theoretical
convergence guarantees, our simulations suggest that in
practice the II-QIPM acting on the PO SOCP will yield
valid solutions.

Remarkably, for this instance, we also observe that
both the Frobenius condition number κF and the in-
verse tomography precision ξ−1 initially increase but ul-
timately plateau with the iteration number, even as the
duality gap gets arbitrarily small (see fig. 9 for data on
κF ). This contrasts with the worst-case expectation that
the condition number can increase as κF = O(1/µ) or
κF = O(1/µ2) (depending on the formulation of the
Newton system) [13, 14]. This scaling behavior was a
generic feature of our simulations across all the instances
we simulated.

B. Scaling of condition number

To understand the problem scaling with portfolio size,
we generate example problem instances by randomly
sampling n stocks from the DWCF, using returns over
m = 2n time epochs (days) to construct our SOCP as in
eq. (12). Parameters q, ζ, w̄, û and M are all chosen in
the same way as described above. We plot the Frobenius
condition number of the Newton matrix as well as the
preconditioned Newton matrix as a function of the dual-
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FIG. 8. Median Frobenius condition κF number for 128 ran-
domly sampled stock portfolios from the DWCF index as a
function of the duality gap for portfolios of size 60, 80, 100,
and 120 stocks. The shaded regions indicate the 16th to 84th
percentile. We observe that the condition number appears to
plateau at small values of the duality gap.
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FIG. 9. Median Frobenius condition number κF for 128 ran-
domly sampled stock portfolios from the DWCF index as a
function of portfolio size for duality gaps of 10−1, 10−3, 10−5,
and 10−7. The shaded regions correspond to the 16th to 84th
percentile. The dashed line is a power-law fit of the form anb,
where the values for b are reported in table VII. In all four
cases, the exponent is less than 1 and in the latter three cases
it is greater than 0.9 suggesting a nearly linear-in-n trend.

ity gap in fig. 8 for portfolios of size n ∈ {60, 80, 100, 120}.
Here we confirm our previous remark that the condition
number appears to plateau at a certain value of the du-
ality gap, especially for the preconditioned matrix.

Key to understanding the asymptotic scaling of the
quantum algorithm is to determine how the condition
number scales as a function of the number of assets, as
the runtime of the QLSS algorithm grows linearly with
the condition number. In fig. 9, we plot the Frobenius
condition number κF as a function of n, the number of
stocks, observed at duality gaps µ ∈ {10−1, 10−3, 10−5,
10−7}. At duality gaps of 10−5 and 10−7, the condi-
tion number κF has plateaued as observed in fig. 8. We
perform a non-linear fit to the data using a power law
κF = anb model, where a and b are fit parameters, and
we report the exponents b in table VII. All exponents
appear to be near or less than unity.

C. Scaling of tomography precision

While the depth of the individual quantum circuits
that compose the QIPM scales only with the Frobenius
condition number, the QIPM also requires a number of
repetitions of this circuit for tomography that scales as
1/ξ2, the inverse of the tomography precision squared.
To see how this scales with problem size, we perform
a similar analysis for ξ−2 that we previously performed
for κF . These results are presented in fig. 10 for the
same four duality gaps of {10−1, 10−3, 10−5, 10−7}. To
reduce the iteration-to-iteration variation in the tomogra-
phy precision (which results from our adaptive approach
to tomography in Algorithm 1), in calculating ξ−2 at du-
ality gap µ, we take the average over the value of ξ−2 at
the five iterations with duality gap nearest to µ. We fit
the median of ξ−2 at each value of n to a linear model on
a log-log plot, corresponding to a relationship ξ−2 = anb,
and we report the implied exponent b in table VIII. In
this case, it is hard to draw robust conclusions from the
fits. The fit suggests that the median of ξ−2 is increas-
ing with n on the interval n ∈ [10, 120]. However, the
most striking feature of the data is that the instance-to-
instance variation of ξ−2 is significantly larger than that
of κF . In fact, at µ = 10−7, the 84th percentile of in-
stances at n = 10, the smallest size we simulated, had a
larger value of ξ−2 than the 50th percentile of instances
at n = 120, the largest size we simulated.

D. Asymptotic scaling of overall runtime

Above we provided power-law fits for κF and ξ−2 as a
function of n on the range n ∈ [10, 120]. Here we study
the quantity n1.5κF /ξ

2, which determines the asymp-
totic scaling of the runtime of the QIPM. In fig. 11, we
plot this quantity at the same four duality gap values
µ ∈ {10−1, 10−3, 10−5, 10−7}. The implied exponents
arising from linear fits on a log-log axis are reported in
table IX. They are generally consistent with summing
the exponents from the previously reported fits. The
data inherit from ξ−2 the feature that the instance-to-
instance variation is orders of magnitude larger than the
median. Taken at face value, the fits suggest that the
scaling of the median algorithmic runtime on the inter-

TABLE VII. Estimated exponent parameters for the Frobe-
nius condition number κF obtained from the fits that are plot-
ted in fig. 9.

Duality Gap Condition Number Scaling

10−1 O(n0.60±0.02)

10−3 O(n0.94±0.04)

10−5 O(n0.92±0.04)

10−7 O(n0.91±0.05)
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FIG. 10. Median value of the square of the required inverse
tomography precision ξ−2 required to remain in the neigh-
borhood of the central path for 128 randomly sampled stock
portfolios from the DWCF index as a function of portfolio
size for duality gaps of 10−1, 10−3, 10−5, and 10−7. To reduce
iteration-to-iteration variation, an artifact of the adaptive ap-
proach to tomography, we average over the observed value of
ξ−2 at the five iterations for which the duality gap is nearest
the indicated value. The shaded regions correspond to the
16th to 84th percentile. Here logarithmic axes are used since
(unlike for κF ) instance-to-instance variation covers multiple
orders of magnitude even for a fixed value of n. The dashed
lines correspond to a linear fit to the log-log data, where the
slope is reported in table VIII.

TABLE VIII. Estimated exponent parameters for 1/ξ2 ob-
tained from the fits that are plotted in fig. 10.

Duality Gap Tomography Scaling

10−1 O(n0.0±0.1)

10−3 O(n1.3±0.3)

10−5 O(n0.9±0.2)

10−7 O(n1.3±0.2)

val n ∈ [10, 120] is similar to the n3.5 scaling of classical
IPMs using Gaussian elimination, and worse than the
asymptotic n2.87 arising from classical IPMs using fast
matrix-multiplication techniques to solve linear systems
[48, 49] (note that this scaling does not apply until n
becomes very large, so it is not a good practical com-
parator). However, the large variance and imperfect fits
do not give us confidence that these trends can be reliably
extrapolated to larger n. Accordingly, when we compute
actual resource counts in the next subsection, we stick
to n = 100 and do not speculate on precise estimates
for larger (more industrially relevant) n. Our numeri-
cal experiments fail to provide significant evidence for an
asymptotic polynomial quantum speedup, but neither do
they definitively rule it out. Toward that end, note that
if the version of tomography we have studied were to be
replaced with the more advanced recently proposed to-
mography scheme of Ref. [32], the runtime of the QIPM
would instead grow as n1.5κF /ξ, while introducing some
additional gate overhead. Our fits from table VIII sug-
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FIG. 11. Median value of the estimated algorithm scaling
factor computed as the median of n1.5κF /ξ

2 for 128 randomly
sampled stock portfolios from the DWCF index as a function
of portfolio size for duality gaps of 10−1, 10−3, 10−5, and
10−7. The shaded regions correspond to the 16th to 84th
percentiles. The dashed lines correspond to a linear fit to the
log-log data, where the slope is reported in table IX.

gest this could reduce the asymptotic exponent, but by
no more than about O(n0.6) or so.

Ultimately, we do not believe it is essential to pin down
the asymptotic scaling of the algorithm, because the main
finding of our work is that, even if a slight asymptotic
polynomial speedup exists, the size of the constant pref-
actors involved in the algorithm preclude an actual prac-
tical speedup, barring significant improvements to multi-
ple aspects of the algorithm. In the next subsection, we
elaborate on this point in a more quantitative fashion.

TABLE IX. Exponent parameter estimates from the fits to
the line generated by plotting n1.5κF /ξ

2 in fig. 11, which de-
termines the overall scaling of the runtime of the QIPM. For
comparison, CIPMs using Gaussian elimination have runtime
O(n3.5) and CIPMs using faster methods for solving linear
systems have runtime O(n2.87).

Duality Gap Algorithm Scaling

10−1 O(n2.0±0.1)

10−3 O(n3.6±0.1)

10−5 O(n3.4±0.1)

10−7 O(n3.7±0.4)

E. Numerical resource estimates

Rather than examine algorithmic scaling, we now com-
pute actual resource counts for the QIPM applied to PO.
Ultimately, it is these resource counts that matter most
from a practical perspective. We estimate the total cir-
cuit size in terms of the number of qubits, T -depth, and
T -count for a portfolio of 100 assets. We chose this size
because it is small enough that we can simulate the en-
tire quantum algorithm classically. However, at this size,
solving the PO problem is not classically hard; generally
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speaking, the PO problem becomes challenging to solve
with classical methods only once n is on the order of 103

to 104. A similar concrete calculation could be performed
at larger n by extrapolating trends observed in our nu-
merical simulations, but we are not confident that the fits
on n ∈ [10, 120] reported above are reliable predictors for
larger n.

Recall that the only step in the QIPM performed by
a quantum computer is the task of producing a classical
estimate to the solution of a linear system to error ξ.
The complexity of this task as it is performed within the
QIPM depends on ξ as well as the Frobenius condition
number κF . The first step of our calculation is to fix
values for ξ and κF at n = 100. We choose them by
taking the median over the 128 samples in our numerical
simulation at duality gap µ = 10−7.

Once κF and ξ are fixed, we must now determine con-
crete values for the various other error parameters that
appear in the algorithm such that overall error ξ can
be achieved. Tomography dominates the complexity and
overall error, but there are a number of other factors that
contribute to the error in the final solution. We enumer-
ate and label the sources of error here, for completeness:

• εG: Error in block-encoding the matrix G

• εh: Error in the unitary that prepares the state |h〉

• εar: Gate synthesis error for single-qubit rotations
needed by CR0(s) and CR1(s) (see fig. 5)

• ε: Tomography error

• εz: Gate synthesis error for each single-qubit ro-
tation needed for QSVT eigenstate filtering (see
fig. 2)

• εqsp: Error due to polynomial approximation in
eigenstate filtering

• εtsp: Error in preparing the state
∑L
i=1

√
pi|i〉

needed for computing the signs in the tomography
routine

In section IV, we described a quantum circuit that pre-
pares a state |ṽ〉 (after postselection) for which ‖|ṽ〉 −
|v〉‖ ≤ εQLSP. If the block-encoding unitaries, state-
preparation unitaries, and single-qubit rotations were
perfect, then the only contribution to εQLSP would be
from eigenstate filtering and we would have εQLSP ≤ εqsp.
Note the relationship d = 2κF ln(2/εqsp) from proposi-
tion 2. Since the block-encoding unitary UG, the state-
preparation unitary Uh, and the single-qubit rotations
are implemented imperfectly, there is additional error.
In preparing the state, the unitary UG is called 2Q+ 2d
times and the unitary Uh is called 4Q+ 4d times, where
Q is given in proposition 2. Additionally, there are
2Q combined appearances of CR0(s) and CR1(s) gates,
where each appearance requires two single-qubit rota-
tions. Note that the appearances of CR0(s) and CR1(s)
within the eigenstate filtering portion of the circuit do

not contribute to the error because at s = 1 these gates
can be implemented exactly. Finally, there are another
d single-qubit rotations required to implement the eigen-
state filtering step. Since operator norm errors add sub-
linearly, we can thus say that

εQLSP ≤ εqsp +(2Q+2d)εG+(4Q+4d)εh+4Qεar +2dεz .
(64)

Now, the result of proposition 4 implies that, in order
to assert that the classical estimate ṽ′ output by tomog-
raphy satisfies ‖ṽ′ − v‖ ≤ ξ, it suffices to have

ξ ≥ ε+ 1.58
√
Lεtsp + 1.58

[
εqsp + (2Q+ 2d)

εG + (4Q+ 4d)εh + 4Qεar + dεz

]
,

(65)

where for convenience we recall the definitions (ignoring
the O(

√
κF ) term) of Q and d as

Q = 2CκF (66)

d = 2κF ln(2/εqsp) (67)

Recalling that the dominant term in the complexity of
the algorithm scales as ε−2 but logarithmically in the
other error parameters, to minimize the complexity we
assign the majority of the error budget to ε: we let ε =
0.9ξ, and we split the remaining 0.1ξ across the remaining
six terms of eq. (65). There is room for optimizing this
error budget allocation, but the savings would be at most
a small constant factor in the overall complexity.

Note that elsewhere in the draft, we have referred to
ξ as “tomography precision” since ε will dominate the
contribution to ξ. Here, the resource calculation requires
we differentiate ε from ξ, but when speaking conceptually
about the algorithm, we focus on ξ as it is the more
fundamental parameter: it represents the precision at
which the classical-input-classical-output linear system
problem is solved, allowing apples-to-apples comparisons
between classical and quantum approaches.

With values for κF , εG, εh, εqsp, εz, and εtsp now
fixed, we can proceed to complete the resource count us-
ing the expressions in table V. Note that for gate syn-
thesis error, we use the formula Ry = 3 log2(1/εr), where
Ry is the number of T gates needed to achieve an εr-
precise Clifford+T gate decomposition of the rotation
gate [67]. Putting this all together yields the resource
estimates for a single run of the (uncontrolled) quantum
linear system solver in table X at n = 100. We report
these estimates both in terms of primitive block-encoding
and state-preparation resources, as well as the raw nu-
merical estimates. For the total runtime, we must also
estimate the resources required for the controlled state-
preparation routine. We have estimated these quantities,
but to the precision of the estimates we report, the num-
bers are the same as the controlled version, so we exclude
them for brevity.

To estimate total runtime, our estimates must be mul-
tiplied by the tomography factor k (for controlled and
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for uncontrolled) as well as the number of iterations
Nit = dln(ε)/ ln(σ)e, where ε is the target duality gap

(which we take to be ε = 10−7), and σ = 1.0−1/(20
√

2r).
While k will vary from iteration to iteration, in our cal-
culation we assume the total number of repetitions is
given by the simple product (2k)Nit, which, noting that
the value of ξ plateaus after a certain number of itera-
tions, will give a roughly accurate estimate. Note that
these 2kNit repetitions need not be done coherently, in
the sense that the entire system is measured and repre-
pared in between each repetition. One can bound the
tomography factor k to be k ≤ 57.5L ln(L)/ξ2, where ξ
is determined empirically. However, our numerical sim-
ulations of the algorithm yield an associated value of k
needed to generate the estimate to precision ξ, so we can
use this numerically determined value directly. We find
that the observed median value of k = 3.3×108 from sim-
ulation is multiple orders of magnitude smaller than the
theoretical bound. Using this substitution for k and Nit,
we find the results shown in the right column of table I
in the introduction.

To aid in understanding which portions of the algo-
rithm dominate the complexity, we show a breakdown
of the resources in fig. 12. The width of the boxes is
representative of the T -depth, while the height of the
boxes represents the T -count. The number of classical
repetitions, composed of tomography samples as well as
IPM iterations needed to reach a target duality gap, con-
tributes the largest factor to the algorithmic runtime. Of
these two, quantum state tomography contributes more
than the iterations needed to reach the target duality
gap. Our exact calculation confirms that for the individ-
ual quantum circuits involved in the QLSS, the discrete
adiabatic portion of the algorithm dominates over the
eigenstate filtering step in its contribution to the overall
quantum circuit T -depth. Within the adiabatic subrou-
tine the primary driver of the T -depth and T -count is
the need to apply the block-encoding operator Q times
(see e.g. eq. (59)), where Q is proportional to the Frobe-
nius condition number. An additional source of a large
T -count arises from the need to block-encode the linear
system, which causes the T -count to scale as O(L2).

VII. CONCLUSIONS

A. Bottlenecks

The resource quantities we report are prohibitively
large, even for the classically easy problem size of n = 100
assets in the portfolio optimization instance. Our de-
tailed analysis allows us to see exactly how this large
number arises, which is essential for understanding how
best to improve it. We outline the several independent
factors leading to the large resource estimates.

• The block-encoding of the classical data is called
many times by the QLSS. This data is arranged in

TABLE X. Estimated number of logical qubits NQ, T -depth
TD, and T -count TC required to perform the quantum linear
system solver (QLSS) subroutine within the QIPM running on
a PO instance with n = 100 stocks. This calculation uses the
empirically observed median value for the condition number
at duality gap µ = 10−7, which was κF = 1.6 × 104. The
full QIPM repeats this circuit k = O(n ln(n)ξ−2) times in
each iteration to generate a classical estimate of the output
of the QLSS, and also performs Nit = O(n0.5) iterations,
where the linear system being solved changes from iteration
to iteration. In the left column, we write the resources as
numerical prefactors times the resources required to perform
the controlled-block-encoding of the matrix G (denoted by
a subscript cbe), and the state-preparation of the vector |h〉
(denoted by a subscript sp), defined in tables III and IV.
Written this way, one can see the large prefactors occurring
from the linear system solver portion of the algorithm. In the
right column we compute the exact resources, including those
coming from the block-encoding. The notation AeB is short
for A× 10B .

QLSS Prefactors Total

NQ = NQcbe + 5 NQ = 8e6

TD = (1e8)TDcbe + (3e8)TDsp + (5e10) TD = 4e11

TC = (1e8)TCcbe + (3e8)TCsp + (5e10) TC = 2e17

an L × L matrix (note that for a PO instance of
size n with m = 2n, the Newton linear system has
size roughly L ≈ 14n). These block-encodings can
be implemented up to error εG in O(log(L/εG))
T -depth using circuits for quantum random access
memory (QRAM) as a subroutine [31]. While the
asymptotic scaling is favorable, after close exam-
ination of the circuits for block-encoding, we find
that in practice the T -depth can be quite large: at
n = 100 and εG = 10−10 (it is necessary to take
εG very small since the condition number of G is
quite large), block-encoding to precision εG has a
T -depth of nearly 1000. Importantly, this T -depth
arises even after implementing several new ideas to
minimize the circuit depth, presented by a subset
of the authors separately in Ref. [31].

• The condition number κF determines how many
calls to the block-encoding must be made, and we
observe that κF is quite large for the application
of portfolio optimization. Even after an attempt
at preconditioning, κF is on the order of 104 al-
ready for small SOCP instances corresponding to
n = 100 stocks, and empirical trends suggest it
grows nearly linearly with n. However, we believe
that additional preconditioning could significantly
reduce the effective value of κF in this algorithm.

• The constant factor in front of the O(κF ) in state-
of-the-art QLSSs is also quite large: the theoretical
analysis proves an upper bound on the prefactor
of 3 × 104. Numerical simulations performed in
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Adiabatic evolution: TD ≈ 4× 1011; TC ≈ 2× 1017

U [0]

W

U [1/Q]
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W
· · ·

Q ≈ 6× 107

U [1− 1/Q]

W

Adiabatic Block-Encode

TD ≈ 6× 103

TC ≈ 2× 109

VG
TD ≈ 3× 103

TC ≈ 2× 109

CR(s)
TD ≈ 5× 102

TC ≈ 5× 102

UQh

TD ≈ 3× 103

TC ≈ 3× 106

Reflection
TD ≈ 9× 101

TC ≈ 9× 101

· · ·

Eigenstate Filtering
TD ≈ 2 × 109

TC ≈ 8 × 1014

k ×Nit ≈ (3× 108)× (8× 103) ≈ 3× 1012 classical repetitions

+ same number of repetitions for controlled version

FIG. 12. Breakdown of the quantum resources required for a single coherent run of the uncontrolled version of the quantum
algorithm needed to produce the state eq. (38). As we did in table X, here we take the final duality gap to be µ = 10−7 and
the number of assets to be n = 100. Choices for the Frobenius condition number κF = 1.6 × 104 and number of tomographic
repetitions k = 3.3 × 108 are informed by our numerical experiments, as discussed in section VI. A similar breakdown for
the controlled version needed to produce the state eq. (47) would be essentially the same. The eigenstate filtering sub-circuit
follows a very similar alternating structure to the adiabatic evolution, with the U [j] block-encodings replaced with either U [1]
or U [1]†, the reflection operator W replaced with phase rotations, and only d� Q total number of iterations (refer to fig. 2 for
details.)

[18] suggested that, in practice, it can be one or-
der of magnitude smaller than the theoretical value.
Thus, we take the constant prefactor to be 2000 in
our numerical estimates, which still contributes sig-
nificantly to the estimate. Future work should aim
to reduce this constant or, alternatively, investi-
gate whether other approaches, such as those based
on variable-time amplitude amplification (VTAA)
[54, 71], could achieve better performance despite
being asympototically suboptimal.

• Pure state tomography requires preparing many
copies of the output |v〉 of the QLSS. We improved
the constant prefactors in the theoretical analysis
beyond what was known, but even with this im-
provement, the number of queries needed to pro-
duce an estimate v′ of the amplitudes of |v〉 up
to error ε in `2 norm is 115L ln(L)/ε2, which for
n = 100 and ε = 10−3 is on the order of 1011 (al-
though our simulations suggest 2k = 7×108 suffice
in practice). We note that this is another avenue

for substantial improvement. For instance, the re-
sults of [32] could be used (see footnote 1 for more
details).

• QIPMs, like CIPMs, are iterative algorithms; the
number of iterations in our implementation is
roughly 20

√
2r ln(ε−1), a number chosen to utilize

theoretical guarantees of convergence (note that
r ≈ 3n). Taking n = 100 and ε = 10−7, our im-
plementation would require 8× 103 iterations. We
suspect that the number of iterations could be sig-
nificantly decreased if more aggressive choices were
made for the step size. For example, similar to our
adaptive approach to tomographic precision, one
could try longer step sizes first, and shorten the
step size when the iteration does not succeed. This
sort of optimization would apply equally to CIPMs
and QIPMs.

Remarkably, the five factors described above all con-
tribute roughly equally to the overall T -depth calcula-
tion; the exception being the number of copies needed to
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do tomography, which is a much larger number than the
others. Tomography would be the obvious place to begin
to try to reduce the resource depth, perhaps by imple-
menting the scheme recently proposed in Ref. [32], and by
making modifications to the QIPM that might allow the
parameter ξ to be larger in practice, or by using an iter-
ative refinement method [14]. Another comment regard-
ing tomography is that, in principle, the k tomographic
samples can be taken in parallel rather than in series.
Running in parallel leads to a huge overhead in memory:
one can reduce the tomographic depth by a multiplicative
factor P at the cost of a multiplicative factor P additional
qubits. Note that even preparing a single copy requires
a daunting number of nearly ten million logical qubits at
n = 100. Moreover, it is unlikely that improvements to
tomography alone could make the algorithm practical, as
the other four factors still contribute roughly 1016 to the
T -depth.

Besides the rather large constant factors pointed out
above for tomography and especially for the QLSS, we
also note that the multiplicative “log factors” that are
typically hidden underneath Õ notation in asymptotic
analyses contribute meaningfully here. For instance, the
entire block-encoding depth is O(log(n/εG)), which, in
practice, is as large as 1000. Moreover, there is an addi-
tional ln(ε−1) ≈ 16 coming from the iteration count, and
a ln(L) ≈ 7 from tomography.

B. Resource estimate given dedicated QRAM
hardware

The bottlenecks above focused mainly on the T -depth
and did not take into account the total T -count or the
number of logical qubits, which are also large. Indeed,
our estimate of 8 million logical qubits, as reported in ta-
ble I, is drastically larger than estimates for other quan-
tum algorithms, such as Shor’s algorithm [72] and algo-
rithms for quantum chemistry (e.g. [73]), both of which
can be on the order of 103 logical qubits. By contrast,
the current generation of quantum processors have tens
to hundreds of physical qubits, and no logical qubits; a
long way from the resources required for this QIPM.

However, it is important to note that the vast majority
of the gates and qubits in the QIPM arise in the block-
encoding circuits, which are themselves dominated by
QRAM-like data-loading subcircuits [31]. These QRAM-
like sub-circuits have several special features. Firstly,
they are largely composed of controlled-swap gates, each
of which can be decomposed into four T gates that can
even be performed in a single layer, given one additional
ancilla and classical feed-forward capability [74]. Fur-
thermore, in some cases, the ancilla qubits can be “dirty”
[61, 63], i.e. initialized to any quantum state, and, if de-
signed correctly, the QRAM circuits can possess a natu-
ral noise resilience that may reduce the resources required
for error correction [63]. Implementing these circuits with
full-blown universal and fault-tolerant hardware could be

unnecessary given their special structure. Just as classi-
cal computers have dedicated hardware for RAM, quan-
tum computers may have dedicated hardware optimized
for performing the QRAM operation. Preliminary work
on hardware-based QRAM data structures (as opposed
to QRAM implemented via quantum circuits acting on
logical qubits) shows promise in this direction [75, 76].

Our estimates suggest that the size of the QRAM
needed to solve an n = 100 instance of PO is one
megabyte, and the QRAM size for n = 104 (i.e., suf-
ficiently large to potentially be challenging by classical
standards) is roughly 10 gigabytes, which is comparable
to the size of classical RAM one might find on a modern
laptop. These numbers could perhaps be reduced by ex-
ploiting the structure of the Newton matrix, as certain
blocks are repeated multiple times in the matrix, and
many of the entries are zero9 (see eqs. (12) and (21)).

With this in mind, we can ask the following hypotheti-
cal question: suppose that we had access to a sufficiently
large dedicated QRAM element in our quantum com-
puter, and furthermore that the QRAM ran at a 4GHz
clock speed (which is comparable to modern classical
RAM); would the algorithm become more practical in
this case? Under the crude, conservative simplifying as-
sumption that each block-encoding and state-preparation
unitary requires just a single call to QRAM and the rest
of the gates are free, we can give a rough answer by refer-
ring to the depth expression in table X. Even if the rest of
our estimates stay the same, the number of QRAM calls
involved in just a single QLSS circuit for n = 100 would
be 4 × 108. Accounting for the fact that the QIPM in-
volves an estimated 6×1012 repetitions of similarly sized
circuits, the overall number of QRAM calls needed to
solve the PO problem would be larger than 1021, and the
total evaluation time would be on the order of ten thou-
sand years. Thus, even at 4GHz speed for the QRAM,
the problem remains decidedly intractable. Nonetheless,
we believe that if the QIPM were to be made practical,
it would need to involve specialized QRAM hardware in
combination with fundamental improvements to the al-
gorithm itself.

C. Comparison between QIPMs and CIPMs and
comments on asymptotic speedup

The discussion above suggests that the current outlook
for practicality with a QIPM is pessimistic, but simulta-
neously highlights several avenues by which to improve
the results. Even with such improvements, if QIPMs

9 We expect that exploiting the sparsity of the matrix would lead
to reduced logical qubit count and T -count, but not reduced T -
depth. In fact, it could lead to non-negligible increases in the
T -depth, since the shallowest block-encoding constructions from
Ref. [31] are hyper-optimized for low-depth, and are explicitly
not compatible with exploiting sparsity.
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TABLE XI. Comparison of time complexities of different approaches for exactly or approximately solving an L×L linear system
with Frobenius condition number κF to precision ξ. The comparison highlights how a quantum advantage only persists when
κF is neither too large nor too small. The constant pre-factor roughly captures the T -depth that we found for the quantum
case (the same pre-factor from Tab. VI after discounting the 20

√
2 IPM iteration factor) and the number of multiplications in

the classical case.

Solver Type Complexity Pre-factor estimate

QLSS + Tomography Quantum, Approximate LκF ξ
−2 ln(L) ln(κF ξ

−1L14/27) 5× 107

Gaussian Elimination Classical, Exact L3 1/3

Randomized Kaczmarz [50] Classical, Approximate Lκ2
F ln(ξ−1) 8

are to one day be practical, they need to at least have
an asymptotic speedup over CIPMs. Here we comment
on this possibility. The core step of both QIPMs and
CIPMs is the problem of computing a classical estimate
of the solution to a linear system. Thus, we need only
compare different approaches to this subroutine. Accord-
ingly, in table XI we give the asymptotic runtime of sev-
eral approaches to solving an L×L linear system to pre-
cision ξ, including the (QLSS + tomography) approach
utilized by QIPMs, as well as two classical approaches.
Whereas prior literature (e.g. [13]) primarily compared
against Gaussian elimination (which scales as O(L3)),
we also note a comparison against the randomized Kacz-
marz method [50], which scales as O(Lκ2

F ln(ξ−1)). This
scaling comes from the fact that 2κ2

F ln(ξ−1) iterations
are needed, and each iteration involves computing sev-
eral inner products at cost O(L). We observe that the
worst-case cost of an iteration is 4L floating point mul-
tiplications, meaning all the constant prefactors involved
are more-or-less mild. Thus, the asymptotic quantum
advantage of the QIPM is limited to an amount equal
to O(min(ξ2κF , ξ

2L2/κF )), which is at most O(L) when
κF ∝ L and ξ = O(1). Encouragingly, our numerical
results are consistent with κF ∝ L. However, our results
are not consistent with ξ = O(1), suggesting instead that
ξ is decreasing with L.

If κF ∝ L and ξ = O(1), we would find a total QIPM
runtime of O(n2.5), improving over classical O(n3.5) for
a portfolio with n stocks. This speedup would be a mate-
rial asymptotic improvement over the classical complex-
ity, but leveraging this speedup for a practical advan-
tage might still be difficult. Firstly, the difference in
the constant prefactor between the quantum and clas-
sical algorithms would likely negate the speedup unless
n is taken to be very large. Secondly, the speedup would
necessarily be sub-quadratic. In the context of combi-
natorial optimization, where quadratic speedups can be
obtained easily via Grover’s algorithm, even a quadratic
speedup is unlikely to exhibit actual quantum advantage
after factoring in slower quantum clock speeds and error-
correction overheads [77].

Our results suggest that finding a practical quantum
advantage for portfolio optimization might require struc-

tural improvements to the QIPM itself. In particular,
it may be necessary to explore whether additional com-
ponents of the IPM can be quantized, and whether the
costly contribution of quantum state tomography could
be completely circumvented. Naively, circumventing to-
mography entirely is challenging, as it is vitally impor-
tant to retrieve a classical estimate of the solution to
the linear system at each iteration in order to update
the interior point and construct the linear system at the
next iteration. Nevertheless, tomography represents a
formidable bottleneck that must be addressed.

While our results are pessimistic on the question of
whether quantum interior point methods will deliver
quantum advantage for portfolio optimization (and other
applications), it is our hope that by highlighting the pre-
cise issues leading to daunting resource counts, our work
can inspire innovations that render quantum algorithms
for optimization more practical. Finally, we conclude by
noting that detailed, end-to-end resource estimations of
the kind we performed here are vitally important for com-
mercial viability of quantum algorithms and quantum
applications. While it is essential to discover and prove
asymptotic speedups of quantum algorithms over classi-
cal, an asymptotic speedup alone does not imply practi-
cality. For this, a detailed, end-to-end resource estimate
is required, as the quantum algorithm may nevertheless
be far from practical to implement. As we have seen, the
devil is in the details, and there are many details behind
which the devil can hide.
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Appendix A: Notation

Here we list the important symbols that appear in our
paper for reference.

• Symbols related to portfolio optimization

– n: number of stocks in the portfolio

– w: length-n vector indicating fraction of por-
folio allocated to each stock (the object to be
optimized)

– w̄: length-n vector indicating current portfo-
lio allocation

– ζ: length-n vector indicating maximum allow-
able change to portfolio

– û: length-n vector of average returns

– Σ: n × n covariance matrix capturing devia-
tions from average returns

– q: parameter in objective function that de-
termines relative weight of risk vs. return
(eq. (5))

– M : m×n matrix corresponding to the square-
root of Σ, i.e. Σ = MᵀM

– m: number of rows in M , often equal to the
number of time epochs (section III B)

• Symbols related to second-order cone programs

– Qk: second-order cone of dimension k (eq. (6))

– Q: product set of several second-order cones

– e: identity element for Q or Qk (depending
on context)

– N : total number of variables in the SOCP

– K: total number of linear constraints in the
SOCP

– r: number of second-order cone constraints in
the program

– x: length-N vector; primal variable to be op-
timized, constrained to Q

– y: length-K vector; dual variable to be opti-
mized

– s: length-N vector, appears in dual program,
constrained to Q

– A: K ×N matrix encoding linear constraints
(eq. (7))
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A NOTATION

– b: length-K vector encoding right-hand side
of linear constraints (eq. (7))

– c: length-N vector encoding objective func-
tion (eq. (7))

– µ(x, s): duality gap of the primal-dual point
(x, s) (eq. (9))

– τ , κ, θ: additional scalar variables intro-
duced to implement self-dual embedding (sec-
tion III C 3)

– µ(x, τ, s,κ): duality gap of the point
(x, τ, s,κ) of the self-dual SOCP (eq. (16))

– X, S: arrowhead matrices for vectors x and s
(eq. (23))

– B: basis for null space of self-dual constraint
matrix

• Symbols related to second-order cone programs for
portfolio optimization

– φ: length-n variable introduced during reduc-
tion from PO to SOCP; part of x (eq. (12))

– ρ: length-n variable introduced during reduc-
tion from PO to SOCP; part of x (eq. (12))

– t: scalar variable introduced during reduction
from PO to SOCP; part of x (eq. (12))

– η: length-m variable introduced during reduc-
tion from PO to SOCP; part of x (eq. (12))

• Symbols related to interior point methods (IPMs)

– ν: parameterizes central path (eq. (14))

– dF (x, τ, s,κ): distance of the point (x, τ, s,κ)
to the central path of the self-dual SOCP
(eq. (15))

– N , NF : neighborhoods of the “central path”
(eqs. (29) and (30))

– γ: radius of neighborhood of central path

– σ: step length parameter

– L: size of (square) Newton matrix

– ε: input to IPM specifying error tolerance, al-
gorithm terminates once duality gap falls be-
neath ε

• Important relations between parameters

– Self-dual embedding has 2N +K + 3 parame-
ters and N +K + 2 linear constraints

– Newton matrix has size L = 2N + K + 3 for
infeasible approach and L = N +1 for feasible
approach

– For PO formulation in eq. (12), N = 3n+m+
1, r = 3n+ 1, K = 2n+m+ 1

– In our numerical experiments, we choose m =
2n

• Symbols related to quantum linear system solvers

– G: L× L matrix encoding linear constraints

– h: length-L vector encoding right-hand-side
of linear constraints

– u: solution to linear system Gu = h

– v: normalized solution to linear system u/‖u‖
– εQLSP: error in solution to linear system

– ṽ: normalized output of the QLSS, which
should satisfy ‖v − ṽ‖ ≤ εQLSP

– `: dlog2 Le
– UG: block-encoding unitary for G

– `G: number of ancilla qubits used by UG
– Uh: state-preparation unitary for |h〉
– κF (G): Frobenius condition number
‖G‖F ‖G−1‖ of G

– Q: number of queries to UG and Uh (proposi-
tion 1)

– C: constant prefactor of κF (proposition 1)

– d: the degree of the polynomial used in eigen-
state filtering (proposition 2)

• Symbols related to block encoding and state prepa-
ration

– εG: block-encoding error for matrix G

– εh: state-preparation error for vector h

– εar: Gate synthesis error for rotations needed
by CR0(s) and CR1(s)

– εz: Gate synthesis error for rotations needed
by the QSP phases

– εqsp: Error due to polynomial approximation
in eigenstate filtering

– εtsp: Error in preparing the state
∑L
i=1

√
pi|i〉

needed for the tomography routine

– NQbe, TDbe, and TCbe: number of logical
qubits, T -depth, and T -count required for
block-encoding.

– NQcbe, TDcbe, and TCcbe: number of logi-
cal qubits, T -depth, and T -count required for
controlled -block-encoding.

– NQsp, TDsp, and TCsp: number of logical
qubits, T -depth, and T -count required for
state preparation.

– NQcsp, TDcsp, and TCcsp: number of logi-
cal qubits, T -depth, and T -count required for
controlled -state preparation.

• Symbols related to tomography

– k: number of measurements on independent
copies of the state

– δ: probability of failure

– ε: guaranteed error of tomographic estimate

– ξ: overall precision of solution to linear sys-
tem, dominated by tomographic error
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Appendix B: Deferred proofs

1. Quantum state tomography

Proof of proposition 3. Consider a single coordinate αj
with associated probability pj = |αj |2, and suppose we
take k samples to find an estimate p̃j of pj . By Bern-
stein’s inequality,

Pr[|p̃j − pj | > εj ] ≤ 2 exp

(
− ε2

2(pj + ε/3)
k

)
(B1)

and so for a given component-wise target deviation in the
probability εj , choosing

k ≥ 2(pj + ε/3)

ε2
ln(2/δ′) =

2(|αj |2 + ε/3)

ε2
ln(2/δ′)

(B2)

guarantees that Pr[|p̃j − pj | > εj ] ≤ δ′.
We now pick εj =

√
3γ|αj |ε + γε2 for some yet unde-

termined γ > 0. With this choice

2(|αj |2 + ε
3 )

ε2
ln(2/δ′)

=
2(|αj |2 +

√
γ
3 ε+ γ

3 ε
2)

(
√

3γ|αj |ε+ γε2)2
ln(2/δ′)

≤
2(|αj |2 + 2

√
γ
3 ε+ γ

3 ε
2)

3γε2(|αj |+
√

γ
3 ε)

2
ln(2/δ′)

=
2

3γε2
ln(2/δ′), (B3)

and hence it suffices to choose k = 2
3γε2 ln(2/δ′). Let-

ting δ′ = δ/L, the union bound implies that for k =
2

3γε2 ln(2L/δ), all estimates p̃j satisfy |p̃j − pj | ≤ εj . We

now bound the distance between |α̃j | and |αj |. First,

|α̃j | − |αj | ≤
√
pj + ε− |αj |

=

√
|αj |2 +

√
3γ|αj |ε+ γε2 − |αj |

≤ (|αj |+
√
γε)− |αj |

=
√
γε. (B4)

Next, we bound |αj | − |α̃j |. If pj ≤ εj then

|αj |2 ≤
√

3γ|αj |ε+ γε2 ⇔ |αj | ≤
(
√

3 +
√

7)
√
γ

2
ε,

(B5)

while if pj > εj ,

|αj | − |α̃j | ≤ |αj | −
√
pj − εj

= |αj | −
√
|αj |2 −

√
3γ|αj |ε− γε2

<
(
√

3 +
√

7)
√
γ

2
ε, (B6)

which follows because the function f(x) = x −√
x2 −

√
3x− 1 has its maximum at f(

√
3+
√

7
2 ) =

√
3+
√

7
2 . Therefore with the choice γ =

(√
3+
√

7
2

)−2

, we

can guarantee that ||α̃j | − |αj || ≤ ε, which corresponds
to

k =
2

3γε2
ln(2L/δ) =

5 +
√

21

3ε2
ln(2L/δ) (B7)

measurements.

Proof of proposition 4. Define ε′ = 1√
2L
ε
√

1− ε2/4.

Then k = 28.75ε′−2 ln(6L/δ). Consider the following
three assertions:

1. The estimates pi satisfy |√pi − |ṽi|
√
p| ≤ ε′/3 for

all i.

2. The estimates p+
i = k+

i /k satisfy∣∣∣∣∣
√
p+
i −

|√pṽi +
√
p′i|

2

∣∣∣∣∣ ≤ ε′/3,
and the estimates p−i = k−i /k satisfy∣∣∣∣∣

√
p−i −

|√pṽi −
√
p′i|

2

∣∣∣∣∣ ≤ ε′/3,
for all i.

3. The actual amplitudes
√
p′i of the state created in

the second step satisfy |
√
p′i −

√
pi| ≤ εtsp.

From proposition 3, we know that Assertion 1 holds with
probability at least 1 − δ/3, and Assertion 2 holds with
probability at least 1 − 2δ/3. Therefore both assertions
hold with probability at least 1− δ. Moreover, Assertion
3 holds by assumption. From here on we will assume that
all three assertions hold.

Let ai be the real part and bi be the imaginary part
of the quantity

√
pṽi. Let r+

i = |√pṽi +
√
pi|, and r−i =

|√pṽi −
√
pi|. One can show that

ai =
r+2
i − r

−2
i

4
√
pi

. (B8)

Define fi(x, y) = (x2 − y2)/
√
pi; then ai =

fi(r
+
i /2, r

−
i /2). We first note we can get good approxi-

mations of r+
i /2 and r−i /2:∣∣∣∣√p±i − r±

2

∣∣∣∣ ≤ 1

3
ε′ +

εtsp

2
, (B9)

which follows from Assertions 2 and 3. We will now make
the approximation that

ãi =


0,

√
pi ≤ 2

3ε
′ + εtsp; else

min(
√
pi, fi(

√
p+
i ,
√
p−i )), fi(

√
p+
i ,
√
p−i ) ≥ 0

max(−√pi, fi(
√
p+
i ,
√
p−i )), fi(

√
p+
i ,
√
p−i ) < 0

(B10)
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and prove that

|ãi − ai| ≤ ε′ + εtsp + |bi|. (B11)

We will prove the claim above using a case-by-case anal-
ysis. Assume that ai ≥ 0; the case ai < 0 will proceed
similarly.

First, consider the case
√
pi ≤ 2

3ε
′ + εtsp. In this case

ãi = 0 and ai ≤
√
p|ṽi| ≤

√
pi + ε′

3 ≤ ε′ + εtsp, so
|ãi − ai| ≤ ε+ εtsp.

Secondly, consider the case fi(
√
p+
i ,
√
p−i ) ≥ ai. In

this case ãi ≤
√
pi ≤

√
p|ṽi|, and therefore

|ãi − ai| ≤
√
p|ṽi| − ai =

√
a2
i + b2i − ai ≤ |bi|. (B12)

Finally, consider the case fi(
√
p+
i ,
√
p−i ) < ai. Defin-

ing ε̃ = 2
3ε
′ + εtsp, we can lower bound fi(

√
p+
i ,
√
p−i ):

fi(
√
p+
i ,
√
p−i ) =

(2
√
p+
i )2 − (2

√
p+
i )2

4
√
pi

≥ (r+
i − ε̃)2 − (r−i + ε̃)2

4
√
pi

=
(r+
i )2 − (r−i )2

4
√
pi

− ε̃ r
+
i + r−i
2
√
pi

= ai − ε̃
r+
i + r−i
2
√
pi

. (B13)

Here in the second line we used r+
i ≥

√
pi ≥ 2

3ε
′ + εtsp.

We now upper bound r+
i + r−i :

r+ + r− =
√

(ai +
√
pi)2 + b2i +

√
(ai −

√
pi)2 + b2i

≤ |ai +
√
pi|+ |ai −

√
pi|+ 2|bi|

= 2 max(ai,
√
pi) + 2|bi|

≤ 2(
√
pi + ε′/3 + |bi|), (B14)

where in the third line we used ai ≤
√
a2
i + b2i =

√
p|ṽi| ≤√

pi + ε′/3 (Assertion 1). Therefore

fi(
√
p+
i ,
√
p−i ) = ai − ε̃

r+
i + r−i
2
√
pi

≥ ai − (ε′ + εtsp + |bi|), (B15)

which implies

|ãi − ai| = ai − ãi

≤ ai −min(fi(
√
p+
i ,
√
p−i ),

√
pi)

≤ ε′ + εtsp + |bi|. (B16)

Here, we used ai −
√
pi ≤

√
p|ṽi| −

√
pi ≤ ε′/3.

We’ve shown that |ãi−ai| ≤ ε′+εtsp + |bi| for all cases.
Therefore,

‖ã− a‖22 ≤
∑
i

[
(ε′ + εtsp)2 + 2|bi|(ε′ + εtsp) + b2i

]
≤ L(ε′ + εtsp)2 + 2(ε′ + εtsp)

√
L
∑
i

b2i +
∑
i

b2i

=

√L(ε′ + εtsp) +

√∑
i

b2i

2

, (B17)

and hence

‖ã−√pv‖2 ≤ ‖ã− a‖2 + ‖a−√pv‖2

≤
√
L(ε′ + εtsp) +

√∑
i

b2i +

√∑
i

(
√
pvi − ai)2

≤
√
L(ε′ + εtsp) +

√
2pεQLSP, (B18)

where we used
∑
i((vi − ai/

√
p)2 + b2i /p) ≤ ε2

QLSP. Since

ṽ′ ∝ ã, for some proportionality factor λ we have ‖λṽ′−
v‖ ≤

√
2L(ε′ + εtsp) +

√
2εQLSP, where we used p ≤ 1/2.

A bit of geometry will show that if ‖c−d‖2 ≤ γ < 1 and
‖d‖2 = 1, then ‖ c

‖c‖2 − d‖2 ≤ g(γ) ≡ 2 sin( 1
2 sin−1 γ) =

√
1 + γ−

√
1− γ. Applying this with c = λṽ′ and d = v

we obtain

‖ṽ′ − v‖2
≤ g(
√

2L(ε′ + εtsp) +
√

2εQLSP)

< g(
√

2Lε′)

+ (
√

2Lεtsp +
√

2εQLSP)
dg

dx

∣∣∣∣
x=
√

2L(ε′+εtsp)+
√

2εQLSP

< ε+ 1.58
√
Lεtsp + 1.58εQLSP (B19)

as claimed. In the second inequality we used the con-
vexity of g; in the third inequality we used the fact that
g(
√

2Lε′) = ε,
√

2L(ε′+εtsp)+
√

2εQLSP < ε+
√

2Lεtsp +√
2εQLSP ≤ 1/2, and

√
2g′(1/2) < 1.58.

Appendix C: Null space matrix for portfolio
optimization

In section III C, an inexact-feasible interior point
method was described that requires as input a matrix
B with columns that form a basis for the null space of
the feasibility equations for the self-dual SOCP that ap-
pear in eq. (21). A straightforward way to find such a
B in general would be to perform a QR decomposition
of the constraint matrix, costing classical O(N3) runtime
(or, using techniques for fast matrix multiplication, be-
tween O(N2) and O(N3) time [51, 78]). The upshot is
that B need only be computed once and does not change
with each iteration of the algorithm, but depending on
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other parameters of the problem, this classical runtime
could dominate the overall complexity. Alternatively, in
many specific cases including ours, a valid matrix B can
be determined by inspection. For example, suppose that
we have a (N−K)×N matrix QA with full column rank

for which AQA = 0, a K × (K − 1) matrix P with full
column rank for which b̄ᵀP = 0, and a point x0 for which
Ax0 = b. Then, letting γ = bᵀb̄/||b̄||2, a valid choice for
B is

B =

x
y
τ
θ
s
κ



0 QA e x0

P b̄ c̄ᵀQA

||b̄||2 − (r+1)

||b̄||2 b̄
c̄ᵀx0−z̄
||b̄||2 b̄

0 0 1 1
0 0 1 0

−AᵀP −Aᵀb̄ c̄ᵀQA

||b̄||2
r+1
||b̄||2A

ᵀb̄+ e −c̄ᵀx0+z̄
||b̄||2 Aᵀb̄+ c

bᵀP (γ − 1)cᵀQA − γeᵀQA 1− γ(r + 1) −γz̄ + (γ − 1)cᵀx0 − γeᵀx0


(C1)

The leftmost column in the above block matrix corre-
sponds to K − 1 basis vectors formed by choosing y to
be a vector perpendicular to b̄ and x = 0, τ = θ = 0.
The second column corresponds to N−K vectors formed
by choosing x to be in the null space of A, and let-
ting τ = θ = 0, with y = c̄ᵀx

||b̄||2 b̄. The third column

corresponds to the vector formed by choosing x = e,

τ = θ = 1, and then y = −(r+1)

||b̄||2 b̄. The final column

corresponds to choosing x = x0, τ = 1, θ = 0, and
y = c̄ᵀx0−z̄

||b̄||2 b̄. In each case, the choices of x, y, τ , and

θ uniquely determine the values of s and κ. Note that
in practice the second and fourth block rows of B can be
ignored because in eq. (24) they are left-multiplied by a
matrix whose second and fourth block columns are zero.

What remains is to specify P , QA, and x0 for the
case of portfolio optimization, given in eq. (12). Find-
ing a valid matrix P is straightforward. Note that
from eq. (12), we have b = (1; w̄ + ζ; w̄ − ζ; 0). For
j = 1, . . . , 2n, we let pj have a 1 in its first entry, and
a −1/bj+1 in its (j + 1)th entry, with zeros elsewhere.
For j = 2n + 1, . . . , 2n + m, we let pj have a single 1
in its (j + 1)th entry, and zeros elsewhere. Thus, the pj
are independent and bᵀpj = 0 for all j. We then de-
fine the matrix P by P = (p1, . . . ,p2n+m). Similarly, we
can generate the columns of a valid matrix QA as fol-
lows: given a choice of w such that 1ᵀw = 0, we choose
φ = −w, ρ = w, t = 0, and η = Mw. As there are
n− 1 linearly independent choices of w (e.g. the vectors
(1;−1; 0; 0; . . . ; 0), (0; 1;−1; 0; . . . ; 0), (0; 0; 1;−1; . . . ; 0),
etc.), this leads to n− 1 linearly independent columns of
QA. A final nth column can be formed by choosing t = 1
and w = φ = ρ = 0 and η = 0. Finally, the point x0

can be chosen by letting w = w̄, φ = ρ = ζ, t = 0, and
η = Mw̄.

Appendix D: Alternative search directions

The solution (∆x; ∆y; ∆τ ; ∆θ; ∆s; ∆κ) to the Newton
systems in eqs. (21) and (24) is one possible search di-

rection for the interior point method. Alternative search
directions can be found by applying a scale transforma-
tion to the convex set. We follow Ref. [47] and, for the
k-dimensional second-order cone Qk, we define the set

Gk =

{
λT : λ > 0, T ᵀ

(
1 0
0 −I

)
T =

(
1 0
0 −I

)}
. (D1)

For the product Q of multiple cones, we let the set G
consist of direct sums of entries from Gk. This definition
implies that the matrices G ∈ G map the set Q onto
itself. Thus for a fixed choice G ∈ G, we may consider a
change of variables x′ = Gᵀx, s′ = G−1s, y′ = y. We let
X ′ and S′ be the arrowhead matrices for x′ and s′, and,
following the same logic as above, we arrive at a Newton
system

(
S′Gᵀ 0 0 0 X ′G−1 0

0 0 κ 0 0 τ

)


∆x
∆y
∆τ
∆θ
∆s
∆κ

 =

(
σµe−X ′S′e
σµ− κτ

)
.

(D2)
The solution to this linear set of equations (along with
the feasibility equations of eq. (21)) will be distinct for
different choices of G. The choice G = I recovers eq. (24)
and is called the Alizadeh-Haeberly-Overton (AHO) di-
rection. Ref. [47] showed that the IPM can reduce the
duality gap by a constant factor after O(

√
r) iterations

for any choice of G. However, some choices of G can yield
additional potentially desirable properties; for example,
the Nesterov-Todd search direction scales the cone such
that x′ = s′. However, in our numerical simulations of
the QIPM, we did not observe any obvious benefits of
choosing a search direction other than the AHO direc-
tion.
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Appendix E: Numerical results for feasible QIPMs

In section VI, we presented numerical results for the
“II-QIPM,” for which intermediate points could be infea-
sible. Here we also present some results for two variants
of the “feasible” QIPM inspired by the work of Ref. [14],
denoted by “IF-QIPM” and “IF-QIPM-QR,” as summa-
rized in table II. The IF-QIPM uses the null space basis B
outlined in appendix C, whereas the IF-QIPM-QR ver-
sion uses a null space basis B determined using a QR
decomposition. In all cases, we simulated the algorithm
for enough iterations to reduce the duality gap to 10−3,
whereas for the II-QIPM we simulated down to 10−7.

In figs. 13 to 15, we present the analogous results
for the feasible IPMs as were displayed in figs. 9 to 11
for the infeasible case. We find that the IF-QIPM-
QR has the best performance, though this must be
weighed against the fact that an expensive QR decom-
position must be classically pre-computed to implement
this method. However, the advantage of the IF-QIPM-
QR method is not large enough for any of the qualita-
tive conclusions in section VII to change. The IF-QIPM
method has the worst performance, which we believe is
due to the fact that the null-space basis found by inspec-
tion turns out to be a very ill-conditioned matrix (its
condition number was observed to be in the vicinity of
1000). Additionally, the IF-QIPM appears to have the
largest instance-to-instance variation of any of the meth-
ods, leading to lower quality numerical fits.

TABLE XII. Fit parameters for the Frobenius condition num-
ber for the four horizontal-axis locations considered on the
scaling plot of fig. 13. We note that the IF-QIPM-QR version
has the best empirical scaling, although calculating the QR
decomposition requires a one-time classical cost proportional
to O(L3).

Dual.
Gap

IF-QIPM IF-QIPM-QR

1.0 κF (G) ∼ n0.6±0.6 κF (G) ∼ n0.228±0.002

0.1 κF (G) ∼ n0.6±0.3 κF (G) ∼ n0.66±0.03

0.01 κF (G) ∼ n0.8±0.5 κF (G) ∼ n0.73±0.03

0.001 κF (G) ∼ n1.0±0.8 κF (G) ∼ n0.98±0.04

TABLE XIII. Fit parameters for the square of the inverse
of the required tomography precision to stay near the central
path. The uncertainties correspond to one standard deviation
errors on the parameter estimates from the fit.

Dual.
Gap

IF-QIPM IF-QIPM-QR

1.0 ξ−2 ∼ O(n−0.01±0.02) ξ−2 ∼ O(n−0.20±0.07)

0.1 ξ−2 ∼ O(n−1.2±0.01) ξ−2 ∼ O(n−0.6±0.1)

0.01 ξ−2 ∼ O(n0.7±0.5) ξ−2 ∼ O(n0.9±0.2)

0.001 ξ−2 ∼ O(n3.5±1.0) ξ−2 ∼ O(n0.9±0.2)

TABLE XIV. Estimated scaling of the quantum algorithm
as a function of portfolio size for the two feasible versions of
the quantum algorithm. The uncertainties correspond to one
standard deviation errors on the parameter estimates from
the fit. We estimate the best known classical algorithm to
scale as Õ(n3.5) so an exponent of b < 3.5 is consistent with
a quantum speedup.

Dual.
Gap

IF-QIPM IF-QIPM-QR

1.0 O(n1.45±0.01) O(n1.51±0.06)

0.1 O(n0.8±0.5) O(n1.4±0.1)

0.01 O(n1±1) O(n1.7±0.2)

0.001 O(n2±2) O(n2.7±0.3)
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FIG. 13. Median Frobenius condition number for 128 randomly sampled stock portfolios from the DWCF index as a function
of portfolio size for duality gaps of 1.0, 0.1, 0.01, and 0.001. The error bars show the 68th percentile, which corresponds to one
standard deviation if the distribution is Gaussian. We find that a linear trend appears to work quite well for the IF-QIPM-QR
case, but that the IF-QIPM is quite noisy.
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FIG. 14. Median value of the square of the required inverse tomography precision required to remain in the neighborhood
of the central path for 128 randomly sampled stock portfolios from the DWCF index as a function of portfolio size for duality
gaps of 1.0, 0.1, 0.01, and 0.001. The error bars show the 68th percentile, which corresponds to one standard deviation if the
distribution is Gaussian. We also plot a fit of the form anb, which we use to estimate the exponent b. The estimated exponent
values are given in table VIII.
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FIG. 15. Median value of the estimated algorithm scaling factor computed as the median of n1.5κF /ξ
2 for 128 randomly

sampled stock portfolios from the DWCF index as a function of portfolio size for duality gaps of 1.0, 0.1, 0.01, and 0.001. The
error bars show the 68th percentile, which corresponds to one standard deviation if the distribution is Gaussian. We also plot
a fit of the form anb, which we use to estimate the exponent b. The estimated exponent values are given in table IX. The best
known classical algorithm scales as Õ(nκ2

F ) ∼ Õ(n3.5), so any exponent less than that is consistent with a quantum speedup.
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