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Abstract—Graph algorithms can be expressed in terms of
linear algebra. GraphBLAS is a library of low-level building
blocks for such algorithms that targets algorithm developers.
LAGraph builds on top of the GraphBLAS to target users of
graph algorithms with high-level algorithms common in network
analysis. In this paper, we describe the first release of the
LAGraph library, the design decisions behind the library, and
performance using the GAP benchmark suite. LAGraph, however,
is much more than a library. It is also a project to document and
analyze the full range of algorithms enabled by the GraphBLAS.
To that end, we have developed a compact and intuitive notation
for describing these algorithms. In this paper, we present that
notation with examples from the GAP benchmark suite.

Index Terms—Graph Processing, Graph Algorithms, Graph
Analytics, Linear Algebra, GraphBLAS

I. INTRODUCTION

Graphs represent networks of relationships. They play a key

role in a wide range of applications. Consequently, numerous

graph libraries exist such as igraph [9], NetworkX [3], and

SNAP [17]. These libraries let programmers work with graphs

without the need to master the art of crafting graph algorithms.

There are multiple ways to build libraries of graph algorithms.

One approach views graphs as sparse matrices and graph

algorithms as linear algebra. This perspective led to the

GraphBLAS [18], [20]; a community effort [1] to define low-

level building blocks for graph algorithms as linear algebra.

The GraphBLAS are for graph algorithm developers. They are

too low-level for graph algorithm users. To focus on users

and the algorithms they require, we launched the LAGraph

project [19].

LAGraph is a library of high quality, production-worthy

algorithms constructed on top of the GraphBLAS. In this

paper, we describe the first release of LAGraph [2]. While

LAGraph will eventually work with any implementation of the

GraphBLAS, it is currently tied to the SuiteSparse:GraphBLAS

library [10] (SS:GrB).

In this release of LAGraph, we restricted ourselves to

versions of the algorithms found in the GAP benchmark.

This restricted scope allowed us to focus on the key design

decisions needed to establish a solid foundation for the future.

Those design decisions, the rationale behind them, and a

performance baseline using the GAP benchmark suite [6] are

key contributions of this paper.

1 typedef struct LAGraph_Graph_struct
2 {
3 GrB_Matrix A; // adjacency matrix of the graph
4 LAGraph_Kind kind; // kind of graph: directed, etc.
5

6 // cached properties
7 GrB_Matrix AT; // transpose of A
8 GrB_Vector row_degree;
9 GrB_Vector col_degree;

10 LAGraph_BooleanProperty A_pattern_is_symmetric;
11 int64_t ndiag; // -1 if unknown
12 } *LAGraph_Graph;
13

14 typedef struct LAGraph_Graph_struct *LAGraph_Graph;
15

16 // creating a graph
17 GrB_Matrix M;
18 // ...construction of M omitted
19

20 LAGraph_Graph G;
21 LAGraph_New(&G, &M, LAGRAPH_DIRECTED_ADJACENCY);
22

23 // operating on properties
24 LAGraph_Property_AT(G, msg); // compute/cache

Listing 1: LAGraph Graph data structure and methods.

The LAGraph project is more than a library project. It

is also a repository of algorithms based on the GraphBLAS

to help advance the state of the art in Graph algorithms

expressed as Linear algebra. To support this goal, we created

a concise notation for expressing graph algorithms in terms of

the GraphBLAS. As an example of this notation in action, we

use it to describe the algorithms used in the GAP benchmark

suite. This notation is a key contribution of this paper.

II. DESIGN DECISIONS

LAGraph is for users who want to use graph algorithms that

run on top of the GraphBLAS. Our overarching design goal

is ease of use with flexibility to handle advanced use-cases.

We do not wish to compromise performance, but when the

tradeoff between convenience and performance is unavoidable,

we offer both and let the user choose. LAGraph includes a set

of data structures and utility functions that make it convenient

for developers to write algorithms on top of GraphBLAS with

an approachable API and consistent user experience.
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A. Core data structure

The main data structure in LAGraph is the LAGraph_Graph

which consists of primary components and cached properties.

The data structure is not opaque, providing the user with full

ability to access and modify all internal components. This

contrasts with the opaque objects in the GraphBLAS. This

data structure is shown at the top of Listing 1 and defined

ultimately on Line 14.

The primary components of this struct are a GraphBLAS

matrix named A and an enumeration kind. The kind indicates

how the matrix should be interpreted. Currently, the only

kinds defined are LAGRAPH_ADJACENCY_UNDIRECTED and

LAGRAPH_ADJACENCY_DIRECTED, but more options will be

added in the future. Creating the Graph object is performed

on Line 21 of Listing 1. Following this call, M will be NULL.

The matrix previously pointed to by M now lives at G->A. This

“move” constructor helps avoid memory-freeing errors.

Cached properties include the transpose of A, the row

degrees, column degrees, etc. They can be computed from

the primary components, but doing so repeatedly for each

algorithm utilizing A would be wasteful. Having them live

inside the Graph object simplifies algorithm call signatures.

Utility functions exist to compute each cached property. For

example, Line 24 of Listing 1 will compute the transpose of

G->A and store it as G->AT. Following this call, any algorithm

which is given G will have access to both A and its transpose.

Because the Graph object is not opaque, any piece of code

may set the transpose as well. For instance, if an algorithm

computes the transpose as part of its normal logic, it could

directly set G->AT. The expectation is that the Graph object

will always remain consistent. If G->A is modified, all cached

properties must be either be set as unknown or modified to

reflect the change. Properties which are not known are set to

NULL or LAGRAPH_BOOLEAN_UNKNOWN in the case of boolean

properties. This expectation is a convention that all LAGraph

algorithm implementers are expected to follow.

B. User modes

Algorithms in LAGraph target two user modes: Basic and

Advanced. The Basic user mode is for those who want things

to “just work”, are less concerned about performance, and may

be less experienced with graph libraries. The Advanced user

mode is for those whose primary concern is performance and

are willing to conform to stricter requirements to achieve that

goal.

Algorithms targeting the Basic mode typically have limited

options. Often, there will only be one function for a given

algorithm. Under the hood, that single algorithm might take

different paths depending on the shape or size of the input graph.

The idea is that a basic user wants to compute PageRank or

Betweenness Centrality, but does not want to have to understand

the five different ways to compute them. They simply want

the correct answer.

Algorithms targeting the Advanced mode are often highly

specialized implementations of an algorithm. The Advanced

mode user is expected to understand details such as push-

pull [24] and batch mode and why different techniques are

better for each graph. Advanced mode algorithms are very

strict in their input. If the input does not match the expected

kind, an error will be raised.

Advanced mode algorithms will also raise an error if a

cached property is needed by an algorithm, but is not currently

available on the Graph object. While Basic mode algorithms

are free to compute and cache properties on the Graph object,

Advanced mode algorithms never will. The idea is to never

surprise the user with unexpected additional computation. An

Advanced mode user must opt-in to all computations.

Often, Basic mode algorithms will inspect the input, possibly

compute properties or transform the data, and finally call one

of the Advanced mode algorithms to do the actual work on

the graph. Having these two user modes allows LAGraph to

target a wider range of users who vary in their experience with

graph algorithms.

C. Algorithm calling conventions

Algorithms in LAGraph follow a general calling convention.

1 int algorithm
2 (
3 // outputs
4 TYPE *out1,
5 TYPE *out2,
6 ...
7 // input/output
8 TYPE inout,
9 ...

10 // inputs
11 TYPE input1,
12 TYPE input2,
13 ...
14 // error message holder
15 char *msg
16 )

The return value is always an int with the following meaning:

• =0 -> success

• <0 -> error

• >0 -> warning

The meaning of a given error or warning value is algorithm-

specific and should be listed in the documentation for the

algorithm.

We distinguish three types of arguments:

• Outputs appear first and are passed by reference. A pointer

should be created by the caller, but memory will be

allocated by the algorithm. If the output is not needed,

a NULL is passed and the algorithm will not return that

output.

• Input/Output arguments are passed by value. The expec-

tation is that the object will be modified. This supports

features such as batch mode in which a frontier is updated

and returned to the caller. It also supports Basic mode

algorithms which may modify a Graph object by adding

cached properties.

• Inputs are passed by value and should never be changed

by the algorithm.
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The final argument of any LAGraph algorithm holds the error

message. This must be char[] of size LAGRAPH_MSG_LEN.

When the algorithm returns an error or a warning, a message

may be placed in this array as additional information. Because

the caller creates this array, the caller must free the memory

or reuse it as appropriate. If the algorithm is successful, it

should fill the message array with an empty string to clear any

previous message.

D. Error handling

Because every algorithm in LAGraph can return an error, the

return value of every call should be checked before proceeding.

To make this less burdensome for a C-based library, LAGraph

provides a convenience macro which works similar to try/catch

in other languages.

1 #define LAGraph_TRY(LAGraph_method)
2 {
3 int LAGraph_status = LAGraph_method;
4 if (LAGraph_status < 0)
5 {
6 LAGraph_CATCH (LAGraph_status);
7 }
8 }

LAGraph_CATCH can be defined before an algorithm and

will be called in the event of an error. This allows for proper

freeing of memory and other necessary tasks.

A similar macro, GrB_TRY, will call GrB_CATCH when

making GraphBLAS calls which return a GrB_Info value

other than GrB_SUCCESS or GrB_NO_VALUE.

LAGraph_TRY and GrB_TRY provide an easy to use and easy

to read method for dealing with error checking while writing

graph algorithms.

E. Contributing algorithms

The LAGraph project welcomes contributions from graph

practitioners who understand the GraphBLAS vision of using

the language of linear algebra to express graph computations.

However, as a matter of practical concern, many users want a

stable experience when using LAGraph for doing real work.

To balance these, the LAGraph repository will have both a

stable and an experimental folder.

New algorithms or modifications of existing algorithms will

first be added to the experimental folder. The release schedule

of experimental algorithms will generally be much faster than

the stable release, and there is no expectation of a bug-free

experience. The goal is to generate lots of ideas and allow

uninhibited contributions to push the boundary of what is

possible with the GraphBLAS. The stable release will be fully

tested and will move much slower, targeting the needs of those

who want to use LAGraph as a complete, production-grade

library rather than as a research project.

III. GRAPHBLAS THEORY AND NOTATION

In this section, we summarize the key concepts in Graph-

BLAS, then present a concise notation for the operations and

methods defined in the GraphBLAS standard. Additionally,

we demonstrate how the operations can be interpreted as

graph processing primitives if graphs are encoded as adjacency

matrices and nodes are selected using vectors.1

A. Overview

We first give a brief overview of the theoretical aspects

of the GraphBLAS. For more details, we refer the reader to

tutorials [22] and the specification documents [7], [12].
a) Data structures: GraphBLAS builds on the duality

between graph and matrix data structures. Namely, a directed

graph G = (V,E) can be represented with a boolean adjacency
matrix A ∈ B|V |×|V | where Ai,j = TRUE iff (vi, vj) ∈ E.

The adjacency matrices used in GraphBLAS algorithms are

not necessarily square: e.g., induced subgraphs, where source

nodes are selected from V1 ⊆ V and target nodes are selected

from V2 ⊆ V , can be represented with A ∈ B|V1|×|V2|. The

transposition of A ∈ Dn×m is denoted with AT ∈ Dm×n

where AT(i, j) = A(j, i). Compared to A, matrix AT contains

the edges in the reverse direction.

Vectors can be used to encode data for nodes, e.g., u ∈ B|V |

can be used to select a subset of nodes. For vectors, u denotes

a column vector and uT denotes a row vector. Vectors and

matrices can be defined over different types, e.g., an unsigned

integer (UINT64) matrix can encode the number of paths

between two nodes, while a floating point (FP64) matrix can

encode edge weights.

In practice, adjacency matrices representing graphs are

sparse, i.e., most of their elements are zero, lending themselves

to compressed representations such as CSR/CSC. The zero
elements take their values during operations based on the

identity of the semiring’s ⊕ operation (see below).
b) Semirings: GraphBLAS uses matrix operations to

express graph processing primitives, e.g., a matrix-vector

multiplication A⊕.⊗ u finds the incoming neighbors of the

set of nodes selected by vector u in the graph of A.

GraphBLAS allows users to perform the multiplication

operations over an arbitrary semiring. The multiplication

operator ⊗ is used for combining the values of matching input

elements, while the addition operator ⊕ defines how the results

should be summarized. For example, the min.plus semiring

uses plus as the multiplication operator to compute the path

length and min as the addition operator to determine the length

of the shortest path. The algorithms presented in this paper use

a number of non-conventional semirings such as any.secondi,
plus.first, and plus.pair. These are summarized in Table II and

defined in Sec. VI.
c) Masks and accumulators: All GraphBLAS operations

whose output is a vector or a matrix allow the use of masks to

limit the scope of the computation and an accumulator �, a

binary operator, that determines how the result of an operation

should be applied to their output. The semantics of masks is

that the computation should be performed on a given set of

nodes (for vector masks) or on a given set of edges (for matrix

masks). The accumulator determines how the results should

1We use these specialized vectors/matrices here for illustration purposes –
the GraphBLAS standard allows the definition of arbitrary vectors/matrices.
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operation/method description notation

mxm matrix-matrix multiplication C〈M〉�=A⊕.⊗B
vxm vector-matrix multiplication wT〈mT〉�=uT ⊕.⊗A
mxv matrix-vector multiplication w〈m〉�=A⊕.⊗ u

eWiseAdd
element-wise addition using operator op C〈M〉�=A op∪ B
on elements in the set union of structures of A/B and u/v w〈m〉�=u op∪ v

eWiseMult
element-wise multiplication using operator op C〈M〉�=A op∩ B
on elements in the set intersection of structures of A/B and u/v w〈m〉�=u op∩ v

extract
extract submatrix from matrix A using indices i and indices j C〈M〉�=A(i, j)
extract the j th column vector from matrix A w〈m〉�=A(:, j )
extract subvector from u using indices i w〈m〉�=u(i)

assign

assign matrix to submatrix with mask for C C〈M〉(i, j)�=A
assign scalar to submatrix with mask for C C〈M〉(i, j)�=s
assign vector to subvector with mask for w w〈m〉(i)�=u
assign scalar to subvector with mask for w w〈m〉(i)�=s

apply apply unary operator f with optional thunk k
C〈M〉�=f (A, k)
w〈m〉�=f (u, k)

select apply select operator f with optional thunk k
C〈M〉�=A〈f (A, k)〉
w〈m〉�=u〈f (u, k)〉

reduce
row-wise reduce matrix to column vector w〈m〉�=[⊕j A(:, j )]
reduce matrix to scalar s�=[⊕i,j A(i , j )]
reduce vector to scalar s�=[⊕i u(i)]

transpose transpose C〈M〉�=AT

dup
duplicate matrix C↤ A
duplicate vector w↤ u

build
matrix from tuples C ↤ {i, j, x}
vector from tuples w ↤ {i, x}

extractTuples extract index arrays (i, j) and value arrays (x)
{i, j, x}↤ A
{i, x}↤ u

extractElement extract element to scalar
s = A(i , j )
s = u(i)

setElement set element
C(i , j ) = s
w(i) = s

TABLE I: GraphBLAS operations and methods based on [11], [7]. Notation: Matrices and vectors are typeset in bold, starting

with uppercase (A) and lowercase (u) letters, respectively. Scalars including indices are lowercase italic (k , i , j ) while arrays

are lowercase bold italic (x, i, j). ⊕ and ⊗ are the addition and multiplication operators forming a semiring and default to

conventional arithmetic + and × operators. � is the accumulator operator. Operations can be modified via a descriptor; matrices

can be transposed (BT), the mask can be complemented (C〈¬M〉), and the mask can be valued (shown above) or structural

(C〈s(M)〉). A structural mask can also be complemented (C〈¬s(M)〉). The result can be cleared (replaced) after using it as

input to the mask/accumulator step (C〈M, r〉). Not all methods are listed (creating new operators, monoids, and semirings,

clearing a matrix/vector, etc.).

name ⊕ ⊗ D zero

conventional plus times UINT64 0
any.secondi any secondi UINT64 0
min.plus min plus FP64 −∞
plus.first plus first UINT64 0
plus.second plus second UINT64 0
plus.pair plus pair UINT64 0

TABLE II: Semirings used in this paper

be applied to the (potentially non-empty) output matrix/vector.

The interplay of masks and the accumulators is discussed in

the specifications [7], [12].

d) Notation: To present our algorithms, we use the

mathematical notation given in Table I. Matrices and vectors

are typeset in bold, starting with uppercase (A) and lowercase

(u) letters, respectively. Scalars including indices are lowercase

italic (k , i , j ) while arrays are lowercase bold italic (x, i, j).

B. Operations

a) Matrix multiplication: The matrix-matrix multiplica-
tion operation A⊕.⊗B expresses a navigation step that starts

in the edges of A and traverses from their endpoints using the

edges of B. The result matrix C has elements Ci,j representing

the summarized paths (e.g., number of paths, shortest paths)

between start node i in the graph of A and end node j in the

graph of B.

The vector-matrix multiplication operation uT ⊕.⊗A per-

forms navigation starting from the nodes selected in vector u
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along the edges of matrix A. The result vector w contains the

set of reached nodes with the values computed on the semiring

(combining the source node values with the outgoing edge

values using ⊗ then summarizing these for each target node

using ⊕). The matrix-vector multiplication operation A⊕.⊗u
performs navigation in the reverse direction on the edges of A.

b) Element-wise addition: The element-wise addition
operations u op∪ v and A op∪ B apply the operator op on the

elements selected by the union of the structures of its inputs,

i.e., nodes/edges which are present in at least one of the input

matrices.

c) Element-wise multiplication: The element-wise multi-
plication operation uop∩v and Aop∩B apply the operator op
on the elements selected by the intersection of the structures
of its inputs, i.e., nodes/edges which are present in both inputs.

d) Extract: For adjacency matrix A, the extract submatrix
operation A(i, j) returns a matrix containing the elements from

A with row indices in i and column indices in j. In graph

terms, the submatrix represents an induced subgraph where the

source nodes of the edges are in array i and the target nodes

of the edges are in array j. The extract vector operation A(i , :)
selects a column vector containing node i ’s neighbors along

incoming edges. The extract subvector operation u(i) selects

the nodes with indices in array i.
e) Assign: The assign operation has multiple variants. The

first assigns a matrix to a submatrix selected by row indices i
and column indices j: C〈M〉(i, j)�=A. This operator is useful

to project an induced subgraph back to the original graph. The

second assigns a vector to a subvector selected by indices i:
w〈m〉(i)�= u. Finally, both the selected submatrix/subvector

can be assigned with a scalar value: C〈M〉(i, j) �= s and

w〈m〉(i)�= s . In all cases, the scope of the assignment can

be further constrained using masks (see Sec. III-C).

f) Apply and select: The apply and select operations

evaluate a unary operator f with an optional input k (the thunk)

on all elements of the input matrix/vector. When evaluated

on a given element, function f can access the indices of the

element, allowing the operation to be constrained on regions

of the matrix such as its lower triangle. In the case of apply,

denoted with f (A, k) and f (u, k), the resulting elements are

returned as part of the output. The select operation requires f to

be a boolean function and zeros out elements that return FALSE.

Intuitively, A〈f (A, k)〉 and u〈f (u, k)〉 express filtering on the

edges of matrix A and the nodes of vector u, respectively.

g) Reduce: For adjacency matrix A, the row-wise reduc-
tion w〈m〉 �= [⊕j A(:, j )] represents a summarization of the

values on outgoing edges for each node (represented by row

vector A(:, j )) to vector w. For matrix A, the reduction to
scalar s �= [⊕i,j A(i , j )] represents a summarization of all

edge values. For vector u, the reduction to scalar s�=[⊕i u(i)]
represents a summarization of all node values.

h) Transposition: Transposition can be applied as a

standalone GraphBLAS operation C〈M〉 �= AT and also

to the input/output matrices of operations, for example:

C[T]〈M〉 �=A[T] ⊕.⊗B[T]

C. Masks

Masks are used to limit the scope of GraphBLAS operations

w.r.t. their outputs. For operations resulting in a vector, the

mask is based on a vector m. For those resulting in a matrix, it

is based on a matrix M. Here, we only discuss matrix masks.

Extension to vectors is straightforward.

By default, the elements of the mask that exist and are non-

zero select corresponding elements of the output matrix that

should be computed. There are three variations on the mask

that impact the output of a GraphBLAS operation:

1) Does the computation need to be performed on the

elements selected by the mask (〈M〉) or the complement

of these elements (〈¬M〉)?
2) How are existing elements of the output matrix treated

that fall outside the ones selected by the mask? By default,

masks use merge semantics, i.e., the computation can only

affect elements selected by the mask, elements outside the

mask are unaffected. If replace semantics is set, masks

annihilate all elements outside the mask. This is denoted

with 〈M, r〉.
3) How the elements are selected? By default, masks are

valued, i.e., values in the mask are checked and elements

with explicit zero values (e.g., 0 for plus.times) are not

considered to be part of the mask. To only consider the

pattern of the mask, i.e., the elements of the mask that

exist, a structural mask should be used, denoted with

〈s(M)〉.
Operations can use replace semantics and structural masks

at the same time, denoted with 〈s(M), r〉
D. Methods

GraphBLAS provides methods for initializing and duplicat-

ing vectors and matrices (e.g., let: w ∈ Qn
32 and C ↤ A),

setting the values of individual elements (w(2) = TRUE),

extracting the tuples in the form of index/value arrays from

matrices/vectors and building them from tuples (w ↤ {i, x} and

{i, x} ↤ u). Additionally, methods are provided for creating

new operators, monoids, and semirings, clearing a matrix/vector,

etc.

IV. ALGORITHMS

A. Breadth-First Search (BFS)

The breadth-first search (BFS) builds on the observation that

vector-matrix multiplication fTA expresses navigation from

the nodes selected by vector f in the graph represented by

A. The direction-optimizing push/pull BFS [5] is simple to

express in GraphBLAS [24]. If A is held by row, then fTA
is a push step, while Bf is a pull step, where B = AT is the

explicit transpose of A, also held by row. Other GraphBLAS

libraries, e.g., GraphBLAST, store both directions and perform

direction-optimization automatically [25]. The push-only BFS

is shown in Alg. 1, while the push/pull BFS is Alg. 2.

The GraphBLAS BFS relies on the any.secondi semiring to

compute a single step, qT〈¬s(pT), r〉 = qTA, where q is the

current frontier, p is the parent vector, and A is the adjacency
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matrix. The mask is a complemented structural mask which

means the mask corresponds to the empty elements of the

mask vector. Replace semantics are indicated (due to the r
in the mask expression) so any elements of the vector other

than those selected by the mask are deleted. The result is the

assignment to the parent vector on line 8 updates the vector

with the parents of the the newly visited nodes.

Consider a matrix multiply for conventional linear algebra,

where the ⊕ monoid sums a set of t entries to obtain a

single scalar for computing cij =
∑

aikbkj in the matrix

multiply C = AB. The any monoid performs the reduction

of t entries to a single number by merely selecting any one

of the t entries as the result cij . The selection is done non-

deterministically, allowing for a benign race condition. In

the BFS, this corresponds to selecting any valid parent of a

newly discovered node. Indeed, the creation of the any operator

was inspired by Scott Beamer’s bfs.cc method in the GAP

benchmark, which has the same benign race condition. The

any monoid translates the concept of this benign race condition

to construct a valid BFS tree into a linear algebraic operation,

suitable for implementation in GraphBLAS.

The secondi operator is the multiplicative operator in the

any.secondi semiring, where the result of aikbkj is simply the

index k in the semiring for C = AB. This gives the id of the

parent node for a newly discovered node in the next frontier.

The any monoid then selects any valid parent k.

Algorithm 1: Parents BFS (push-only).

Input: A, startVertex
1 Function ParentsBFS
2 p(startVertex ) = startVertex
3 q(startVertex ) = startVertex
4 for level = 1 to nrows(A)− 1 do
5 qT〈¬s(pT), r〉 = qT any.secondiA
6 p〈s(q)〉 = q
7 if nvals(q) = 0 then
8 return

Algorithm 2: Direction-Optimizing Parent BFS.

Input: A,AT, startVertex
1 Function DirectionOptimizingBFS
2 q(startVertex ) = 0
3 for level = 1 to nrows(A)− 1 do
4 if Push(A,q) then
5 qT〈¬s(pT), r〉 = qT any.secondiA

6 else
7 q〈¬s(p), r〉 = AT any.secondi q

8 p〈s(q)〉 = q
9 if nvals(q) = 0 then

10 return

B. Betweenness Centrality (BC)

Algorithm 3: Betweenness centrality.

1 Function BrandesBC
// P(k, j) = # paths from kth source to node j
// F: # paths in the current frontier

2 let: P ∈ Qns×n
64

3 let: F ∈ Qns×n
64

4 P(1 : k, s) = 1
// First frontier:

5 F〈¬s(P)〉 = P plus.firstA
// BFS phase:

6 for d = 0 to nrows(A) do
7 let: S[d ] ∈ Bns×n

8 S[d ]〈s(F)〉 = 1 // S[d] = pattern of F

9 P+= F
10 F〈¬s(P), r〉 = F plus.firstA
11 if nvals(F) = 0 then
12 break

// Backtrack phase:

13 let: B ∈ Qns×n
64

14 B(:) = 1.0
15 let: W ∈ Qns×n

64

16 for i = d − 1 downto 0 do
17 W〈s(S[i ]), r〉 = B div∩ P
18 W〈s(S[i − 1]), r〉 = W plus.firstAT

19 B+=W ×∩ P

// centrality(j) =
∑

i(B(i, j)− 1)

20 centrality(:) = −ns
21 centrality += [+i B(i , :)]

The vertex betweenness centrality metric is based on

the number of shortest paths through any given node,∑
s�=i�=t σ(s, t|i)/σ(s, t), where σ(s, t) is the total number of

shortest paths from node s to t, and σ(s, t|i) is the total number

of shortest paths from node s to t that pass through node i.
This is expensive to compute, so in practice, a subset of source

nodes are chosen at random (a batch), of size ns .

Like the BFS, direction-optimization is incredibly simple

to add to the LAGraph algorithm for batched betweenness

centrality (BC). It only requires a simple heuristic to determine

which direction to use, followed by masked matrix-matrix

multiplication with the matrix or its transpose: F〈¬s(P)〉 =
FBT (the pull) or F〈¬s(P)〉 = FA (the push), where A is

the adjacency matrix of the graph and B = AT is its explicit

transpose, F is the frontier, and the complemented structural

mask ¬s(P) is the set of unvisited nodes. The multiplication

FBT relies on the descriptor to represent the transpose of B,

which is not explicitly transposed. In the backward phase, the

pull step is W = WAT while the push is W = WB, where

W is the ns-by-n matrix in which centrality is accumulated

(where ns = 4 is a typical batch size).

To simplify the presentation of the entire BC algorithm,

Alg. 3 does not show the direction-optimization. It is the same
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transformation as the pair of BFS algorithms, where the push-

only step (line 5 of Alg. 1), is expanded to a push/pull heuristic

(lines 4-7 of Alg. 2).

C. PageRank (PR)

PageRank (PR) computes the importance of each node

as a recursively-defined metric: a web page is important if

important pages link to it. Alg. 4 shows the GraphBLAS

implementation of PR as specified in the GAP benchmark. It

uses the plus.second semiring, where second(x, y) = y, so it

can ignore any edge weights in the input matrix. The PR in

GAP does not properly handle dangling vertices in the graph.

The Graphalytics benchmark has a PageRank variant which

avoids this problem [14]. We have included this version to

compare its performance with the GAP benchmark algorithm

pr.cc.

Algorithm 4: PageRank (as specified in the GAPBS).

Data: A ∈ Bn×n // adjacency matrix

damping // damping factor

tol // stopping tolerance
itermax // maximum number of iterations

Result: r ∈ Qn

1 Function PageRank
2 teleport = 1−α

n
3 r(0 : n− 1) = 1

n , t = Qn

4 dout = [+j A(:, j)] // precomputed rowdegree
5 d = dout div∩ damping // prescale with damping
6 for k = 1 to numIterations do
7 swap t and r // t is now the prior rank

8 w = t div∩ d
9 r(0 : n− 1) = teleport

10 r+=AT plus.secondw
11 t−= r
12 t = abs(t)
13 if [+i t(i)] < tol then
14 return // since 1-norm of change is small

D. Single-Source Shortest Paths (SSSP)

A Delta-Stepping Single-Source Shortest Paths algorithm

in GraphBLAS is shown in Alg. 5. It relies on the min.plus
semiring. Since it is a fairly complex algorithm, refer to [21]

for a description of the method.

E. Triangle Counting (TC)

The triangle counting (TC) problem is to compute the

number of unique cliques of size 3 in a graph. The TC

algorithm is shown in Alg. 6, based on [23]. It starts with a

heuristic that decides when to sort the input graph by ascending

degree. Next, it constructs the lower and upper triangular part

and computes a masked matrix multiply using the plus.pair
semiring. Internally, a dot product method is used in SS:GrB,

because U is transposed via the descriptor. The pair is the

simple function pair(x, y) = 1. When used in a semiring, it

Algorithm 5: SSSP (delta-stepping).

Data:
A,AH,AL ∈ Q|V |×|V |

s, i ∈ UINT64

Δ ∈ Q

t, tReq ∈ Q|V |

tBi
, e ∈ UINT64|V |

1 Function DeltaStepping
2 AL = A〈0 < A ≤ Δ〉
3 AH = A〈Δ < A〉
4 t(:) = ∞
5 t(s) = 0
6 while nvals(t〈iΔ ≤ t〉) �= 0 do
7 s = 0
8 tBi

= t〈iΔ ≤ t < (i + 1)Δ〉
9 while tBi

�= 0 do
10 tReq = t×∩ tBi

11 tReq = AT
L min.plus tReq

12 e = t〈0 < e⊕ tBi
〉

13 tBi
= t〈iΔ ≤ tReq < (i + 1)Δ〉

14 tBi
= tBi

〈tReq < t〉
15 t = tmin∪ tReq

16 tReq = AT
H min.plus (t×∩ e)

17 t = tmin∪ tReq

18 i = i + 1

Algorithm 6: Triangle counting.

Data: A ∈ Bn×n

Result: t ∈ UINT64

1 Function TriangleCount
2 sample the mean and median degree of A
3 if mean > 4×median then
4 p = permutation to sort degree, ascending order

5 A = A(p,p)

6 L = tril(A)
7 U = triu(A)
8 C〈s(L)〉 = L plus.pairUT

9 t = [+ij C(i , j )]

acts like the times operator of the conventional semiring, except

that it can ignore the values of its inputs and treat them both

as 1. This semiring is useful for structural computations, such

as triangle counting, when the edge weights of a graph may

be present but should be ignored in a particular algorithm.

F. Connected Components

The connected components algorithm in LAGraph (Alg. 7)

is written by Zhang, Azad, and Buluç [26], [27]. The method

maintains a forest of trees represented by a parent vector, and

iteratively merges trees until no more merging is possible.

The method as shown in Alg. 7 is a simplified variant
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that operates on the entire graph. In the LAGraph version,

a subgraph is constructed first, and the method finds the

connected components of the subgraph, and then operates

on the entire graph.

Algorithm 7: Connected components (FastSV).

1 Function FastSV
2 n = nrows(A)
3 gf = f
4 dup = gf
5 mngf = gf
6 {i, x} ↤ f
7 repeat

// Step 1: Stochastic hooking

8 mngf = mngf minA
9 mngf = mngf second.min gf

10 f(x) = f minmngf
// Step 2: Aggressive hooking

11 f = f minmngf
// Step 3: Shortcutting

12 f = f min gf
// Step 4: Calculate grandparents

13 {i, x} ↤ f
14 gf = f(x)

// Step 5: Check termination

15 diff = dup �= gf
16 sum = [+idiff(i)]
17 dup = gf
18 until sum == 0

V. UTILITY FUCTIONS

LAGraph includes a set of utility functions that operate on

a graph. All function names are prefixed with LAGraph_ so

we exclude that prefix in the names below, for brevity.

• Graph Properties: An LAGraph_Graph includes cached

properties which can be assigned by Basic methods, or

which are required by Advanced methods.

DeleteProperties clears all properties, Property_AT

computes the transpose of the adjacency matrix G->A,

Property_RowDegree computes the row degrees of

G->A, Property_ColDegree computes the column de-

grees of G->A, and Property_ASymmetricPattern de-

termines if the pattern of G->A is symmetric or unsym-

metric.

• Display and debug: CheckGraph checks the validity of

a graph. Since the graph is not opaque, a user application

is able to change a graph arbitrarily and thus might make

it an invalid object. DisplayGraph displays a graph and

its properties.

• Memory management: Wrappers for malloc, calloc,

realloc, and free are provided, allowing a user appli-

cation to select the memory manager to be used. These

default to the ANSI C11 library functions.

• Graph I/O: BinRead and BinWrite read/write a

GrB_Matrix in binary form. MMRead and MMWrite read-

/write a GrB_Matrix in Matrix Market form.

• Matrix operations: Pattern returns a boolean matrix

containing the pattern of a matrix. IsEqual determines

if two matrices are equal. It selects the appropriate

GrB_EQ_T operator that matches the matrix type, and then

calls IsAll. IsAll compares two matrices and returns

false if the pattern of the two matrices differ. It then uses a

given comparator operator to compare all pairs of entries,

and returns true if all comparisons return true.

• Degree operations: SortByDegree returns a permuta-

tion that sorts a graph by its row/column degrees, and

SampleDegree computes a quick estimate of the mean

and median row/column degrees.

• Error handling: LAGraph_TRY and GrB_TRY are helper

macros for a simple try/catch mechanism. They re-

quire the user application to define LAGraph_CATCH and

GrB_CATCH.

• Other: TypeName returns a string with the name of a

GrB_Type. KindName returns a string with of graph kind

(directed or undirected). Tic and Toc provide a portable

timer. Sort1, Sort2, and Sort3 sort 1, 2, or 3 integer

arrays.

VI. EVALUATION

The performance of LAGraph can only be considered in

context of an implementation of the underlying GraphBLAS

library. This is discussed in Section VI-A, followed by perfor-

mance results of the new LAGraph API on the 6 algorithms

in the GAP Benchmark [5].

A. SuiteSparse Extensions

In a prior paper ([4]), an early draft of SS:GrB, (Suite-

Sparse:GraphBLAS v4.0.0, Aug 2020), was compared with the

GAP benchmark [5] and four other graph libraries. This prior

version of SS:GrB included two primary data structures for its

sparse matrices: compressed sparse vector, and a hypersparse

variant [8], both held by row or by column. It included a

draft implementation of a bitmap data structure that could

only be used in a prototype breadth-first search. Since then,

SuiteSparse:GraphBLAS v4.0.3 has been released, with full

support for bitmap and full matrices for all its operations. In

an m-by-n bitmap matrix, the values are held in a full array

of size mn, and another int8_t array of size mn holds the

sparsity pattern of the matrix. A full matrix is a simple dense

array of size mn.

The bitmap format is particularly important for the “pull”

phase of an algorithm, as used in direction-optimizing breadth-

first-search [5], [24]. The GAP benchmark suite uses this

method by holding its frontier as a bitmap in the pull step and

as a list in the push step. The GAP BFS was typically the

fastest BFS amongst the 6 graph libraries compared in [4] (for

4 of the 5 benchmark graphs). With the addition of the bitmap

format to SS:GrB, LAGraph+SS:GrB is able to come within a

factor of 2 or so of the performance of the highly-tuned BFS
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Algorithm : graph, with run time in seconds
package Kron Urand Twitter Web Road
BC : GAP 31.52 46.36 10.82 3.01 1.50
BC : SS 23.61 32.69 9.25 8.20 34.40
BFS : GAP .31 .58 .22 .34 .25
BFS : SS .52 1.22 .33 .66 3.32
PR : GAP 19.81 25.29 15.16 5.13 1.01
PR : SS 22.17 27.71 17.21 9.30 1.34
CC : GAP .53 1.66 .23 .22 .05
CC : SS 3.36 4.47 1.47 1.97 .98
SSSP : GAP 4.91 7.23 2.02 .81 .21
SSSP : SS 17.37 25.54 8.54 9.61 46.79
TC : GAP 374.08 21.83 79.58 22.18 .03
TC : SS 917.99 34.01 239.58 34.65 .23

TABLE III: Run time of GAP and LAGraph+SS:GrB

GAP benchmark (see the results in the next section), for those

4 graphs. At the same time, however, the BFS is very easily

expressed in LAGraph as easy-to-read and easy-to-write code.

This enables non-experts to obtain a reasonably high level of

performance with modest programming effort when writing

graph algorithms.

Additional optimizations added to SS:GrB in the past year

include a lazy sort. Normally, SS:GrB keeps its vectors sorted

(row vectors in a CSR matrix, or column vectors if the

matrix is held by column), with entries sorted in ascending

order of column or row index, respectively. This simplifies

algorithms that operate on a GrB_Matrix. However, some

algorithms naturally produce a jumbled result (matrix multiply

in particular), while others are tolerant of jumbled input

matrices. We thus allow the sort to be left pending. The lazy

sort joins two other kinds of pending work in SS:GrB: pending
tuples and zombies [11]. A pending tuple is an entry that is held

inside a matrix in an unsorted list, awaiting insertion into the

CSR/CSC format of a GrB_Matrix. A zombie is the opposite:

it is an entry in the CSR/CSC format that has been marked for

deletion, but has not yet been deleted from the matrix. With

lazy sort, the sort is postponed until another algorithm requires

sorted input matrices. If the sort is lazy enough, it might never

occur, which is the case for the LAGraph BFS and BC.

Positional binary operators have also been added, such as

the any.secondi semiring, which makes the BFS much faster.

B. Performance Results

We ran our benchmarks on an NVIDIA DGX Station

(donated to Texas A&M by NVIDIA). It includes a 20-core

Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, with 40 threads.

All codes were compiled with gcc 5.4.0 (-O3). All default

settings were used, which means hyperthreading was enabled.

The system has 256GB of RAM in a single socket. LAGraph

(Feb 15, 2021) and SuiteSparse:GraphBLAS 4.0.4-draft (Feb

15, 2021) were used. The NVIDIA DGX Station includes four

P100 GPUs, but no GPUs were used by this experiment (a GPU-

accelerated SS:GrB is in progress). Table III lists the run time

(in seconds) for the GAP benchmark and LAGraph+SS:GrB for

the 6 algorithms on the 5 benchmark matrices. The benchmark

matrices are listed in Table IV.

With the addition of the bitmap (needed for the pull step),

the push/pull optimization in BC resulted in a nearly 2x

graph nodes entries in A graph kind
Kron 134,217,726 4,223,264,644 undirected
Urand 134,217,728 4,294,966,740 undirected
Twitter 61,578,415 1,468,364,884 directed
Web 50,636,151 1,930,292,948 directed
Road 23,947,347 57,708,624 directed

TABLE IV: Benchmark matrices (https://sparse.tamu.edu/GAP)

performance gain in the GraphBLAS method for the largest

matrices, as compared to the SS:GrB version used for the

results presented in [4].

With this change, the BC method in LAGraph+SS:GrB is

not only expressible in a simple, elegant code, but it is also

faster than the highly-tuned GAP benchmark method, bc.cc,

for the three largest matrices (1.3x for Kron, 1.5x for Urand,

and 1.2x for Twitter).

The bitmap format (which makes push/pull optimization

simple to express, and fast) and the any.secondi semiring, the

BFS of a directed or undirected graph is easily expressed in

GraphBLAS, and has a performance that is only about 1.5x to

2x slower than the GAP benchmark. We expect the remaining

performance gap arises from two issues:

1) GAP assumes that the graph has fewer than 232 nodes

and edges, and thus uses 32-bit integers throughout.

GraphBLAS is written for larger problems, and thus relies

solely on 64-bit integers. This cannot be easily changed

in GraphBLAS, but rather than “fixing” GraphBLAS to

use smaller integers, the GAP benchmark suite should be

updated for larger graphs. In the current GAP benchmark

graphs, two graphs are chosen with almost exactly 4 billion

edges. Graphs of current interest in large data science can

easily exceed 232 nodes and edges [15].

2) In GraphBLAS, the BFS must be expressed as two calls.

The first computes q〈¬p〉 = qTA, and the second updates

the parent vector, p〈s(q)〉 = q:
GrB_vxm (q, p, NULL, semiring, q, A, GrB_DESC_RSC) ;
GrB_assign (p, q, NULL, q, GrB_ALL, n, GrB_DESC_S) ;

In GAP’s bfs.cc, these two steps are fused, and the

matrix-vector multiplication can write its result directly

into the parent vector p. This could be implemented in

a future GraphBLAS library, since the GraphBLAS API

allows for a non-blocking mode where work is queued

and done later, thus enabling a fusion of these two steps.

SS:GrB exploits the non-blocking mode (for its lazy sort,

pending tuples, and zombies) but does not yet exploit

the fusion of GrB_vxm and GrB_assign. We intend to

exploit this in the future.

Note that for the Road graph, LAGraph+SS:GrB is quite

slow for all but PageRank (PR). The primary reason for this

is the high diameter of the Road graph (about 6980). This

requires 6980 iterations of GraphBLAS in the BFS, each with

a tiny amount of work. Each call to GraphBLAS does several

malloc and frees, and in some cases the workspace must

be initialized. A future version of SS:GrB is planned that

will eliminate this work entirely, by implementing an internal

memory pool. There may be other overheads, but we hope that
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a memory pool, fusion to fully exploit non-blocking mode, and

other optimizations will address this large performance gap for

the Road graph for these algorithms.

LAGraph+SS:GrB is also up to 3x slower than the GAP for

the triangle counting problem (for all but the Road graph, where

it is even slower). This performance gap can be eliminated

entirely in the future, if the GrB_mxm and GrB_reduce are

combined in a single fused step, by a full exploitation of the

GraphBLAS non-blocking mode. The current method computes

C〈s(L)〉 = LUT, followed by the reduction of C to a single

scalar. The matrix C is then discarded. All that GraphBLAS

needs is a fused kernel that does not explicitly instantiate the

temporary matrix C. This is permitted by the GraphBLAS C

API Specification, but not yet implemented in SS:GrB.

VII. CONCLUSION

In this paper we introduced the LAGraph library, the rationale

behind its design, and a performance baseline with the GAP

benchmark suite. We also introduced a notation for graph

algorithms expressed in terms of linear algebra which we hope

becomes a consensus-notation adopted by the larger “Graphs

as Linear Algebra” community.

This paper defines the foundation for our future work on

the LAGraph project. We plan to explore Python wrappers

for LAGraph that work well for data analytics workflows.

In addition to the GAP benchmark, which focuses on graph

algorithms, we will investigate end-to-end workflows based on

the LDBC Graphalytics benchmark [13].

Algorithmically we see a number of research directions to

pursue. With end-to-end workflows, the performance of data

ingestion heavily impacts performance. We are interested in

improving data ingestion performance by exploiting a CPU’s

SIMD instructions [16]. We are also interested in how LAGraph

maps onto GPUs using versions of the GraphBLAS optimized

for GPUs.
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