
Extended Abstract: K-Truss Implementation in Arkouda

Joseph Patchett
New Jersey Institute of Technology

Newark, New Jersey 07102
Email: jtp47@njit.edu

Zhihui Du
New Jersey Institute of Technology

Newark, New Jersey 07102
Email: zhihui.du@njit.edu

David Bader
New Jersey Institute of Technology

Newark, New Jersey 07102
Email: bader@njit.edu

1. Introduction
The k-Truss algorithm is the decomposition of a graph

into cliques where every edge is incident to k− 2 triangles.
The results of this decomposition have implications in na-
tional security, social media, and community identification.
These results can be used to interpret how connected a
community is e.g. how interconnected a group on social
media is. Higher values of k imply a higher degree of
connection. The maximal k-truss is the subgraph for which
there is the largest k. For certain graphs like those in social
media the maximal k-Truss is not informative, therefore our
algorithm allows different choices of k to tailor to the needs
of each use case.

Our implementation of the k-Truss algorithm in Arkouda
finds all maximal k-trusses in a graph. Arkouda [1], [2] is
an open-source framework for large scale graph analytics
that allows users to access a powerful server driven backend
from their own personal computer. Real-world data and the
graphs resulting from that data have become increasingly
complex. Arkouda utilizes a powerful Chapel [3] back-end,
ZeroMQ [4] for message communication, and a Python
[5] front-end for users. Computations that require complex
calculations and large networks will be handled on the back-
end abstracted from the user. Our major contribution is
extending the abilities of Arkouda and k-truss is a typical
graph algorithm for such a framework.

2. Approach
We build off of previous work done on Arkouda, the

inherent parallel methods in Chapel, and work on k-Truss
implementations. Our algorithm works for undirected graphs
that are maintained on an Arkouda server. We use the double
index edge structure to efficiently iterate and maintain the
triangle counts for each edge. This structure is a list of
source and destination arrays and allows for a quick ref-
erence for each edge. For certain graphs like those in social
media the maximal k-Truss is not informative, therefore
our algorithm allows different choices of k. This allows all
manners of users to work with and interpret the results.

The steps are as follows.

1) Using the double index edge structure, triangles
incident to each edge are counted. Edges with fewer
than k − 2 triangles are passed into the frontier.

2) For each edge, 〈u, v〉, in the frontier, we decrement
the triangle count for all edges, 〈u,w〉 and 〈v, w〉.

3) If those edges are now incident to a natural number
fewer than k−2 triangles then these edges are added
to the frontier.

4) This is continued until all edges incident to fewer
than k− 2 triangles have been iterated through and
updated.

5) The subgraph with all edges incident to greater than
or equal to k − 2 is returned to the user.

For the user this approach has several benefits over
traditional methods for k-truss: not only are all large scale
calculations handled on the server side, but also actual graph
data is maintained server side. Users can tackle graph data
science problems orders of magnitude beyond what they
could on their personal machines.

In further work we seek to expand the already impressive
capabilities of Arkouda. We look to add additional function-
ality to handle directed graphs and give options to return the
distinct residual subgraphs created by k-truss.

Acknowledgments

The authors would like to thank Michael Merrill and
William Reus and the rest of the Arkouda Team. This
research was funded in part by NSF grant number CCF-
2109988.

References

[1] M. Merrill, W. Reus, and T. Neumann, “Arkouda: interactive data
exploration backed by Chapel,” in Proceedings of the ACM SIGPLAN
6th on Chapel Implementers and Users Workshop, 2019, pp. 28–28.

[2] W. Reus, “CHIUW 2020 Keynote: Arkouda: Chapel-Powered, Interac-
tive Supercomputing for Data Science,” in Chapel Implementers and
Users Workshop, 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2020, pp. 650–
650.

[3] B. L. Chamberlain, E. Ronaghan, B. Albrecht, L. Duncan, M. Fergu-
son, B. Harshbarger, D. Iten, D. Keaton, V. Litvinov, P. Sahabu et al.,
“Chapel comes of age: Making scalable programming productive,”
Cray User Group, 2018.

[4] P. Hintjens, ZeroMQ: messaging for many applications. O’Reilly
Media, Inc., 2013.

[5] G. Rossum, Python reference manual. CWI (Centre for Mathematics
and Computer Science), 1995.

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

