
A GraphBLAS Implementation of
Triangle Centrality

Fuhuan Li, David A. Bader
Department of Data Science

New Jersey Institute of Technology
Newark, New Jersey, USA
{fl28,bader}@njit.edu

Abstract—Identifying key members in large social network
graphs is an important graph analytic. Recently, a new centrality
measure called triangle centrality finds members based on the
triangle support of vertices in graph. In this paper, we describe
our rapid implementation of triangle centrality using Graph-
BLAS, an API specification for describing graph algorithms
in the language of linear algebra. We use triangle centrality’s
algebraic algorithm and easily implement it using the SuiteSparse
GraphBLAS library. A set of experiments on large, sparse graph
datasets is conducted to verify the implementation.

Index Terms—Graph algorithms, Sparse matrix computations,
High Performance Data Analytics

I. INTRODUCTION

Graphs are ubiquitous data structures in numerous domains,
such as cybersecurity, finance, and social media. Given a
specific graph, finding the most important vertices has many
applications in real-world entities like web searching and is
a crucial part in graph analysis. The fundamental mathemat-
ical concept of the centrality is not well defined, hence the
notion of centrality has led to many different graph centrality
measures such as degree centrality, closeness centrality, and
betweenness centrality.

A triangle in graph is a subset of three vertices where all
three edges exist between the vertices. Triangles represent
cohesiveness, and higher triangle counts in a graph means in-
creased interconnections among vertices. A vertex is important
if the vertex and its neighbors are regarded as a more cohesive
group where information could spread from any individual to
another much faster. In other words, a vertex can be important
because it, as well as its neighbors, are in many triangles.
Recently, Burkhardt [1] introduced triangle centrality as a new
centrality measure that captures the influence of triangles on
the importance of vertices.

In this paper, we describe triangle centrality of a graph
and its algebraic form. Based on the algebraic algorithm,
we describe our new GraphBLAS implementation and give
performance results using an implementation of GraphBLAS
from Tim Davis’s SuiteSparse.

II. TRIANGLE CENTRALITY

A. Definition

The notion of triangle centrality is based on the triangle
counts from a vertex and each of its neighbors. Hence a vertex

is important if it is in many triangles or if its neighbors are in
many triangles. The precise definition of the triangle centrality
from [1] is as follows.

TC(v) =

1
3

∑
u∈N+

4(v)4(u) +
∑

w∈{N(v)\N4(v)}4(w)

4(G)

for a simple undirected graph denoted by G = (V,E) with
n = |V | vertices and m = |E| edges. The neighborhood
of a vertex v is N(v) = {u|(u, v) ∈ E}. The subset of
neighbors in triangles with v will be denoted by N4(v) =
{u ∈ N(v)|N(u) ∩ N(v) 6= ∅} and if v is included then the
closed triangle neighborhood of v is N+

4(v) = {v} ∪N4(v).
We denote local triangle count for a vertex v by 4(v) and the
total triangle count of G by 4(G).

By definition, the centrality values indicate the proportion
of triangles centered at a vertex which is bounded in the range
[0, 1].

B. Algebraic Derivation
The triangle centrality can also be formulated in linear alge-

bra (see [1]). From theorem 1 in [2], given G and Hadamard
product T = (A2 ◦ A), then 4(v) = 1

2‖Tv‖1= Tv
T 1 and

4(G) = 1
61TT1. Here, T represents the triangle neighbors of

each vertex. Tv is a column vector of T , and the indices of Tv

corresponding to nonzeros represent the triangle neighbors of
v. Hence N4(v) = supp(Tv). Then we can make substitution
using T

TC(v) =

∑
u∈{v}∪supp(Tv)

‖Tu‖1+3
∑

w∈supp(Av−Tv)
‖Tw‖1

1TT1

since the sum
∑

u∈{v}∪supp(Tv)
‖Tu‖1 can be achieved by

(T T̆v +Tv)T 1, where T̆ denotes the binary form of the matrix
or vector. Similarly, the sum of triangle counts from non-
triangle neighbors can be obtained by (T (Av − T̆v))T 1. Then
the triangle centrality formulation can be transformed into
matrix vector product.

TC(v) =
(3Av − 2T̆v + Iv)TT1

1TT1
This leads to the linear algebraic formulation for triangle
centrality in matrix notion as follows

C =
(3A− 2T̆ + I)T1

1TT1

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 H
ig

h
Pe

rf
or

m
an

ce
 E

xt
re

m
e

C
om

pu
tin

g
C

on
fe

re
nc

e
(H

PE
C

) |
 9

78
-1

-6
65

4-
23

69
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PE

C
49

65
4.

20
21

.9
62

28
06

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 30,2021 at 16:37:00 UTC from IEEE Xplore. Restrictions apply.

Based on the linear algebra form, we can use algebraic
algorithm of triangle centrality.

Algorithm 1: Algebraic triangle centrality
Input: A, adjacency matrix in sparse matrix representation
Input: T = A2 ◦ A, graph triangle matrix in sparse matrix representation

1 Create binary matrix T̆

2 set X := 3A − 2T̆ + I
3 set y := T1

4 set k := 1T y

Output: C := 1
k

Xy

III. IMPLEMENTATION

GraphBLAS [3] is an API specification that defines standard
building blocks for graph algorithms in the language of linear
algebra. It is built upon the notion that a sparse matrix can
be used to represent graphs as either an adjacency matrix or
an incidence matrix. It provides a powerful framework for
creating graph algorithms based on the elegant mathematics
of sparse matrix operations on a semiring [4]. In this work,
we use the SuiteSparse:GraphBLAS [5] version 5.1.5. We are
able to rapidly implement triangle centrality in GraphBLAS
due to its concise algebraic form.

GraphBLAS can compute the T = A2 ◦ A with a masked
matrix multiply, C〈A〉 = A2. This is a much faster method,
and saves significant memory since it does not calculate all of
A2, only these entries in the pattern of A. The corresponding
code is quite simple. Here is our quite elegant GraphBLAS
implementation of triangle centrality based on the algebraic
algorithm.

GrB Info triangleCentrality (GrB Vector *result ,
GrB Matrix A) {
GrB Index n;
GrB Matrix nrows(&n, A);
GrB Matrix T;
GrB Matrix new(&T, GrB FP64, n, n);
GrB Vector T y;
GrB Vector new(&T y,GrB FP64,n);
GrB Vector y;
GrB Vector new(&y, GrB FP64, n);
GrB Vector new(result, GrB FP64, n);
double k;
// Compute T, y, k
GrB mxm(T, A, NULL, GxB PLUS TIMES FP64, A,

A, NULL);
GrB reduce(y, NULL, NULL, GrB PLUS FP64, T,

NULL);
GrB reduce(&k, NULL, (GrB Monoid)

GrB PLUS MONOID FP64, y, NULL);
// Distributed computing for X
GrB mxv(*result,NULL,GrB PLUS FP64,

GxB PLUS TIMES FP64,A,y,NULL);
GrB apply(*result ,NULL,NULL,GrB TIMES FP64,3,*

result,NULL);
GrB mxv(T y,NULL,NULL,

GxB PLUS SECOND FP64,T,y,NULL);

GrB apply(T y,NULL,NULL,GrB TIMES FP64,2,T y,
NULL);

// Add together to get the final result
GrB eWiseAdd(*result,NULL,GrB PLUS FP64,

GrB MINUS FP64,y,T y,NULL);
GrB apply(*result , NULL, NULL, GrB TIMES FP64,

1 / k, *result, NULL);
return GrB SUCCESS;

}
To demonstrate the performance of this implementation, we

conducted a set of experiments with a four-core Intel CPU,
and 16GB of memory. Results are shown in Table I.

TABLE I
PERFORMANCE OF TRIANGLE CENTRALITY IMPLEMENTATION VIA

GRAPHBLAS (SECOND).

Name n(Vertices) m(Edges) 4(G) (triangles) Time (sec)
com-Youtube 1,134,890 2,987,624 3,056,386 4.08
as-Skitter 1,696,415 11,095,298 28,769,868 16.6
com-LiveJournal 3,997,962 34,681,189 177,820,130 69.4
com-Orkut 3,072,441 117,185,083 627,584,181 686.2

Related work: After Bader shared Burkhardt’s triangle cen-
trality paper with the GraphBLAS committee, Pelletier [6]
implemented a version in pygraphblas, a high-level Python
wrapper for the GraphBLAS C API. Based on the capabilities
of pygraphblas, the author modified the algorithm to improve
the performance which includes computing 3Ay − 2T̆ y + y
rather than (3A− 2T̆ + I)y.

IV. CONCLUSION

In this paper, we describe our rapid implementation of
triangle centrality using GraphBLAS, and demonstrate its
performance on several large, sparse graphs that represent
real-world scenarios. Triangle centrality, as a new centrality
measure, can be a helpful and a complementary tool for
graph analysis. Moreover, due to its elegant linear algebraic
formulation, it is easily implemented in the GraphBLAS
framework.

V. ACKNOWLEDGEMENT

This research was funded in part by NSF grant number
CCF-2109988.

REFERENCES

[1] P. Burkhardt, “Triangle centrality,” arXiv preprint arXiv:2105.00110,
2021.

[2] ——, “Graphing trillions of triangles,” Information Visualization, vol. 16,
no. 3, pp. 157–166, 2017.

[3] J. Kepner, H. Meyerhenke, S. McMillan, C. Yang, J. D. Owens,
M. Zalewski, T. Mattson, J. Moreira, P. Aaltonen, D. Bader, and
et al., “Mathematical foundations of the GraphBLAS,” 2016 IEEE
High Performance Extreme Computing Conference (HPEC), Sep 2016.
[Online]. Available: http://dx.doi.org/10.1109/HPEC.2016.7761646

[4] T.A.Davis, “SuiteSparse:GraphBLAS,” 2021. [Online]. Available:
http://faculty.cse.tamu.edu/davis/GraphBLAS.html

[5] T. A. Davis, “Algorithm 1000: SuiteSparse:GraphBLAS: Graph
algorithms in the language of sparse linear algebra,” ACM Trans.
Math. Softw., vol. 45, no. 4, Dec. 2019. [Online]. Available:
https://doi.org/10.1145/3322125

[6] M. Pelletier, “Triangle centrality pygraphbas code,” 2021. [Online].
Available: https://github.com/Graphegon/pygraphblas

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 30,2021 at 16:37:00 UTC from IEEE Xplore. Restrictions apply.

