
Exploratory Large Scale Graph Analytics in Arkouda
Zhihui Du,Oliver Alvarado Rodriguez and

David A. Bader
{zhihui.du,oaa9,bader}@njit.edu

New Jersey Institute of Technology
Newark, New Jersey, USA

Michael Merrill and William Reus
mhmerrill@mac.com
reus@post.harvard.edu
Department of Defense

USA

ABSTRACT
Exploratory graph analytics helpsmaximize the informational value
for a graph. However, the increasing graph size makes it impossi-
ble for existing popular exploratory data analysis tools to handle
dozens-of-terabytes or even larger data sets in the memory of a
common laptop/personal computer. Arkouda is a framework un-
der early-development that brings together the productivity of
Python at the user side with the high-performance of Chapel at
the server side. In this paper, the preliminary work on overcoming
the memory limit and high performance computing coding road-
block for high level Python users to perform large graph analysis
is presented. A simple and succinct graph data structure design
and implementation at both the Python front-end and the Chapel
back-end in the Arkouda framework are provided. A typical graph
algorithm, Breadth-First Search (BFS), is used to show how we can
use Chapel to develop high performance parallel graph algorithm
productively. Two Chapel based parallel Breadth-First Search (BFS)
algorithms, one high level version and one corresponding low level
version, have been implemented in Arkouda to support analyzing
large graphs. Multiple graph benchmarks are used to evaluate the
performance of the provided graph algorithms. Experimental re-
sults show that we can optimize the performance by tuning the
selection of different Chapel high level data structures and parallel
constructs. Our code is open source and available from GitHub
(https://github.com/Bader-Research/arkouda).

KEYWORDS
Exploratory graph analysis, Parallel graph algorithms, Breadth-First
Search, Real-world graph data sets, High level parallel language

ACM Reference Format:
Zhihui Du,Oliver Alvarado Rodriguez and David A. Bader and Michael
Merrill and William Reus. 2021. Exploratory Large Scale Graph Analytics
in Arkouda. In Proceedings of CHIUW ’21: Chapel Implementers and Users
Workshop (CHIUW ’21). ACM, New York, NY, USA, 9 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHIUW ’21, June 04, 2021, Virtual
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A graph is a well defined mathematical model to formulate the rela-
tionship between different objects and is widely used in numerous
domains such as social sciences, biological systems, and informa-
tion systems. The edge distributions of many large scale real world
problems tend to follow a power-law distribution [1, 11, 26]. Dense
graph data structures and algorithms will consume much more
memory and cannot analyze very large sparse graphs efficiently.
Therefore, parallel algorithms for sparse graphs [23] have become
an important research topic to efficiently analyze the large and
sparse graphs from different real-world problems.

Exploratory data analysis (EDA) [6, 13, 15] was proposed by
Tukey [27] and his associates early in 1960s. The basic idea of EDA
is listening to the data in as many ways as possible until a plausible
story of the data is apparent. Tukey linked EDA with “detective
work" to summarize the main characteristics of data sets. Instead
of checking a given hypothesis with data, EDA primarily is for
seeing what the data can tell us beyond the formal modeling or
hypotheses testing task. In this way EDA tries to maximize the
value of data and has been widely used in different applications,
such as COVID-19 [10], Twitter [19] and so on.

Popular EDA methods and tools, which often run on laptops or
common personal computers, cannot hold terabyte or even larger
sparse graph data sets, let alone produce highly efficient analy-
sis results. Arkouda [21, 24] is an EDA framework under early-
development that brings together the productivity of Python with
world-class high-performance computing. Arkouda allows data sci-
entists to make use of the advantages of both laptop computing and
cloud/supercomputing together. Currently, Arkouda cannot sup-
port graph analysis. In this work we provide the preliminary design
and implementation on extending Arkouda’s data structures and
parallel algorithms to support large scale sparse graph analytics.

In this paper we provide the preliminary solution on integrating
sparse graphs into Arkouda. The major contributions are as follows.

(1) An efficient and succinct Double-Index (DI) graph data struc-
ture and large sparse graph partition method are developed
to support parallel and distributed graph algorithm design.

(2) Two distributed parallel Breadth-First Search (BFS) graph
algorithms are developed based on the high level parallel
language Chapel. High productivity in algorithm design and
quick optimization in performance improvement are the
two major advantages of our Chapel based graph algorithm
development method.

(3) Experimental results show that the proposed graph data
structure and algorithm can support Arkouda to handle dif-
ferent kinds of large graphs. Based on the same algorithm

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CHIUW ’21, June 04, 2021, Virtual Du and Alvarado Rodriguez, et al.

framework, quick and small tuning in high level data struc-
ture and parallel construct selection can achieve more than
8 times speedup.

2 ARKOUDA FRAMEWORK FOR DATA
SCIENCE

As a high level exploratory data analytics framework, Arkouda
aims to support not only flexible, but also high performance large
scale data analysis. Python [25] is an interpreted, high-level and
general-purpose programming language. Python consistently ranks
as one of the most popular programming languages and has ever
growing community. Python has become a very powerful EDA tool.
However, performance and very large scale data processing are
two bottlenecks of Python. Chapel [8] is a high level programming
language designed for productive parallel computing at scale. It
has the same advantages such as portable and open-source like
in Python. Furthermore, it has the scalable and fast features that
Python lacks.

So, Arkouda integrates its front-end Python with its back-end
Chapel with a middle, communicative part ZeroMQ [14]. ZeroMQ
is used for the data and instruction exchangs between Python users
and back-end services. In this way, Arkouda can provide flexible
and high performance large scale data analysis capability.

To break the data volume limit of Python, Arkouda provides a
virtual data view for its Python users. However, the real or raw
data are stored in Chapel. Python users can use the metadata to
access the actual big data sets at the back-end. From the view of
the Python programmers, all data is directly available just like on
their local laptop device. This is why Arkouda can break the local
memory capacity limit, while at the same time bring traditional
laptop users powerful computing capabilities that could only be
provided by supercomputers.

When users are exploring their data, if only the metadata sec-
tion is needed, then the operations can be completed locally and
quickly. These actions are carried out just like in previous Python
data processing workflows. If the operations have to be executed
on raw data, the Python program will automatically generate an
internal message and send the message to Arkouda’s message pro-
cessing pipeline for external and remote help. Arkouda’s message
processing center (ZeroMQ) is responsible for exchanging messages
between its front-end and back-end. When the Chapel back-end
receives the operation command from the front-end, it will execute
the analysis tasks quickly on the powerful HPC resources and large
memory to handle the corresponding raw data and return the re-
quired information back to the front-end. Through this, Arkouda
can support Python users to locally handle, on their personal de-
vices, large scale data sets residing on powerful back-end servers
without knowing all the detailed operations at the back-end.

3 DOUBLE-INDEX SPARSE GRAPH DATA
STRUCTURE AND PARTITION

For sparse matrix representations, compressed sparse row or col-
umn are two very important data structures for sparse graphs. We
borrow the basic idea of such existing data structures and propose
our Double-Index (DI), edge index and vertex index, sparse graph
data structure to enable directly locating vertices from given edge

or locating edges from given vertex. DI has two features: (1) sig-
nificant memory savings for large sparse graphs; (2) supporting
easy and high level array operators. The proposed DI data structure
is new innovation to support large sparse graph exploratory data
analytics.

3.1 Directed Graphs
For directed graphs, the edge index array consists of two arrays
with the same shape. One is the source vertex array and the other
is the destination vertex array. If there are a total of𝑀 edges and
𝑁 vertices, we will use the numbers from 0 to 𝑀 − 1 to identify
different edges and the numbers from 0 to 𝑁 −1 to identify different
vertices.

For example, given edge 𝑒 =< 𝑖, 𝑗 >, we will let 𝑆𝑅𝐶 [𝑒] = 𝑖 and
𝐷𝑆𝑇 [𝑒] = 𝑗 where 𝑆𝑅𝐶 is the source vertex array and 𝐷𝑆𝑇 is the
destination vertex array; 𝑒 is the edge ID number. Both 𝑆𝑅𝐶 and
𝐷𝑆𝑇 have the same size𝑀 . When all edges are stored into 𝑆𝑅𝐶 and
𝐷𝑆𝑇 , we will sort them based on their vertex ID value and remap
the edge ID from 0 to𝑀 − 1. Based on the sorted edge index array,
we can build the vertex index array, which also consists of two of
the same shape arrays. For example, we let edge 𝑒1000 have ID 1000.
If 𝑒1000 =< 50, 3 >, 𝑒1001 =< 50, 70 > and 𝑒1002 =< 50, 110 > are all
the edges starting from vertex 50, then we will assign the entry of
one vertex index array 𝑆𝑇𝑅 [50] = 1000 and another vertex index
array 𝑁𝐸𝐼 [50] = 3. This means that for given vertex 50, the edges
starting with vertex 50 are stored in edge index array starting at
position 1000 and there are totally 3 such edges. If there are no
edges from vertex 𝑖 , we will let 𝑆𝑇𝑅 [𝑖] = −1 and 𝑁𝐸𝐼 [𝑖] = 0. In this
way, we can directly locate all the connected edges and neighbors
of any given vertex.

For a given array 𝐴, we use 𝐴[𝑖 .. 𝑗] to express the elements in 𝐴

from 𝐴[𝑖] to 𝐴[𝑗]. 𝐴[𝑖 .. 𝑗] is also called an array section of 𝐴. So,
for a given vertex with index 𝑖 , it will have 𝑁𝐸𝐼 [𝑖] neighbours and
their vertex IDs are from𝐷𝑆𝑇 [𝑆𝑇𝑅 [𝑖]] to𝐷𝑆𝑇 [𝑆𝑇𝑅 [𝑖]+𝑁𝐸𝐼 [𝑖]−1].
This can be expressed as an array section 𝐷𝑆𝑇 [𝑆𝑇𝑅 [𝑖] ..𝑆𝑇𝑅 [𝑖] +
𝑁𝐸𝐼 [𝑖] − 1] (here we assume the out degree of 𝑖 is not 0). For any
vertex 𝑖 , its adjacency list can be directly expressed as < 𝑖, 𝑥 >

where 𝑥 in 𝐷𝑆𝑇 [𝑆𝑇𝑅 [𝑖] ..𝑆𝑇𝑅 [𝑖] + 𝑁𝐸𝐼 [𝑖] − 1].
Fig. 1 shows 𝑀 sorted edges represented by the 𝑆𝑅𝐶 and 𝐷𝑆𝑇

arrays. Any one of the 𝑁 vertices 𝑛𝑘 can find its neighbours us-
ing 𝑁𝐸𝐼 and 𝑆𝑇𝑅 arrays with O(1) time complexity. This figure
shows how 𝑁𝐸𝐼 and 𝑆𝑇𝑅 arrays can help us locate neighbours and
adjacency lists quickly.

3.2 UnDirected Graphs
For undirected graphs, an edge < 𝑖, 𝑗 > means that we can also ar-
rive at 𝑖 from 𝑗 . We can use the data structures 𝑆𝑅𝐶, 𝐷𝑆𝑇, 𝑆𝑇𝑅, 𝑁𝐸𝐼

to search the neighbours of 𝑗 in 𝑆𝑅𝐶 and create the adjacency
list. However, this search cannot be done in O(1) time complex-
ity. To achieve O(1) search time complexity for an undirected
graph, we introduce another four arrays called reversed index ar-
rays 𝑆𝑅𝐶𝑟, 𝐷𝑆𝑇𝑟, 𝑆𝑇𝑅𝑟, 𝑁𝐸𝐼𝑟 . For any edge < 𝑖, 𝑗 > in 𝑆𝑅𝐶 and
𝐷𝑆𝑇 , we will have the corresponding reverse edge < 𝑗, 𝑖 > in 𝑆𝑅𝐶𝑟
and 𝐷𝑆𝑇𝑟 , where 𝑆𝑅𝐶𝑟 has the exact same elements as in 𝐷𝑆𝑇 and
𝐷𝑆𝑇𝑟 has the exact same elements as in 𝑆𝑅𝐶 . 𝑆𝑅𝐶𝑟 and 𝐷𝑆𝑇𝑟 are
also sorted and 𝑁𝐸𝐼𝑟 and 𝑆𝑇𝑅𝑟 are the index array of the number

Exploratory Large Scale Graph Analytics in Arkouda CHIUW ’21, June 04, 2021, Virtual

Figure 1: Double Index data structure for sparse graph.

of neighbours and the index array of the starting neighbour index
just like in the directed graph. So for a given edge < 𝑖, 𝑗 > of an
undirected graph, the neighbours of vertex 𝑖 will include the ele-
ments in 𝐷𝑆𝑇 [𝑆𝑇𝑅 [𝑖] ..𝑆𝑇𝑅 [𝑖] + 𝑁𝐸𝐼 [𝑖] − 1] and the elements in
𝐷𝑆𝑇𝑟 [𝑆𝑇𝑅𝑟 [𝑖] ..𝑆𝑇𝑅𝑟 [𝑖]+𝑁𝐸𝐼𝑟 [𝑖]−1]. The adjacency list of the ver-
tex 𝑖 should be < 𝑖, 𝑥 >where𝑥 in𝐷𝑆𝑇 [𝑆𝑇𝑅 [𝑖] ..𝑆𝑇𝑅 [𝑖]+𝑁𝐸𝐼 [𝑖]−1]
or < 𝑖, 𝑥 > where 𝑥 in 𝐷𝑆𝑇𝑟 [𝑆𝑇𝑅𝑟 [𝑖] ..𝑆𝑇𝑅𝑟 [𝑖] + 𝑁𝐸𝐼𝑟 [𝑖] − 1].

3.3 Graph Partition
For real-world power law graphs, the edge and vertex distributions
are highly skewed. Few vertices will have very large degrees but
many vertices have very small degrees. If we partition the graph
evenly based on the vertices, it will be easy to cause load balanc-
ing problem because the processor which holds the vertices that
have a large number of edges will often have very heavy load. So,
we equally divide the total number of edges into different proces-
sors/computing nodes instead.

Figure 2: Edge based Sparse Graph Partition.

Fig. 2 shows the basic idea of our sparse graph partition method.
When we partition an edge’s vertex entry in index array 𝑁𝐸𝐼 and
𝑆𝑇𝑅 to the same processors, this method can increase the locality
when we search from edge to vertex or from vertex to edge. How-
ever, this requires us to distribute 𝑁𝐸𝐼 and 𝑆𝑇𝑅 in an irregular way
since the edge index array and the vertex index array have different
shapes. Currently we cannot implement this distribution in existing
Chapel methods easily, so we just partition 𝑁𝐸𝐼 and 𝑆𝑇𝑅 arrays
evenly as the edges.

4 PARALLEL BFS ALGORITHM
We select one typical graph algorithm, Breadth-First Search, to
show how we can implement exploratory large graph analytics in

Arkouda. Two significant features of our parallel BFS algorithm
design are different from existing BFS algorithm design: (1) Our
BFS algorithm can exploit parallelism in graph search easily and
efficiently based on the proposed DI graph data structure. (2) We
employ the high level parallel language Chapel to develop the
BFS algorithm so we can significantly improve the productivity of
parallel algorithm design.

For especially large graphs, one cannot be held in one shared
memory computer, however, it can be handled with distributed
memory computers, such as computing clusters to execute the BFS
in parallel. In Chapel, the locale type refers to a unit of the machine
resources on which your program is running. Locales have the
capability to store variables and to run Chapel tasks. In practice for
a standard distributed memory architecture a single multicore/SMP
node is typically considered a locale. Shared memory architectures
are typically considered a single locale. We have developed two
versions of parallel BFS algorithms in Arkouda. The first is the high
level multi-locale version and the second is the corresponding low
level version. We will give the details in the following subsections.

4.1 High Level Multi-Locale BFS Algorithm
The standard level by level BFS algorithmworks as follows. For each
vertex at the current level or frontier, we will search its unvisited
next level vertices. When all the vertices at the current level have
been expanded, we will switch the next level vertices to the current
level and repeat the search until no vertices can be expanded in the
current level.

The basic idea of our algorithm is that we take advantage of
the multi-locale feature of Chapel to handle very large graphs in
distributed memory. The distributed data are processed at their
locales or their local memory. Furthermore, each shared memory
computing node can process its owned data also in parallel. Our
multi-locale BFS algorithm can exploit the following features. (1)
The edges of the DI graph data have been distributed evenly onto
the distributed memory to balance the load. (2) Each distributed
node only expands the vertices it owns in the current frontier. This
can be done in distributed memory in parallel.

Our method is described in Alg. 1. Line 1 initializes the return
array. Line 2 sets the starting vertex’s search level as 0. Line 3
initializes the current search level as 0. Lines 4 and 5 create two
distributed bag classes to manage the current and next search fron-
tiers. Line 6 adds the starting search vertex into the current frontier.
The parallel code is very simple and easy. From line 7 to line 25
we will continue the standard loop if the current search frontier
is not empty. From line 8 to line 21 we use the coforall parallel
construct to execute the search on each locale in parallel. From
line 10 to line 20 we will execute parallel search on each locale.
On each locale, we will check each vertex in the current frontier
but only the vertices on the current locale will be expanded (line
11). In this way, we will expand the current frontier in parallel on
all the locales without any overlapping. In line 12 we will build
the set of neighbours 𝑆𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 of the current vertex 𝑖 . Since
some neighbours have been visited before (line 14), we will only
expand the unvisited vertices and add them into the next frontier
set 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹 (line 15). At the same time, we will assign the visiting
level to the expanded vertices with 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 + 1 (line 16). After

CHIUW ’21, June 04, 2021, Virtual Du and Alvarado Rodriguez, et al.

Algorithm 1: High level Chapel based parallel BFS for
distributed memory supercomptuers

Input: A graph𝐺 and the starting vertex 𝑟𝑜𝑜𝑡
Output: An array𝑑𝑒𝑝𝑡ℎ to show the different visiting level for each vertex

1 𝑑𝑒𝑝𝑡ℎ = −1 // initialize the visiting level of all the vertices
2 𝑑𝑒𝑝𝑡ℎ [𝑟𝑜𝑜𝑡] = 0 // set starting vertex’s level is 0
3 𝑐𝑢𝑟_𝑙𝑒𝑣𝑒𝑙 = 0 //set current level
4 𝑆𝑒𝑡𝐶𝑢𝑟𝐹 = 𝑛𝑒𝑤 𝐷𝑖𝑠𝑡𝐵𝑎𝑔 (𝑖𝑛𝑡, 𝐿𝑜𝑐𝑎𝑙𝑒𝑠) // allocate a distributed bag to hold vertices in the

current frontier
5 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹 = 𝑛𝑒𝑤 𝐷𝑖𝑠𝑡𝐵𝑎𝑔 (𝑖𝑛𝑡, 𝐿𝑜𝑐𝑎𝑙𝑒𝑠) // allocate another bag to hold vertices in the next

frontier
6 𝑆𝑒𝑡𝐶𝑢𝑟𝐹 .𝑎𝑑𝑑 (𝑟𝑜𝑜𝑡) //insert the starting vertex into the current vertices bag
7 while (!𝑆𝑒𝑡𝐶𝑢𝑟𝐹 .𝑖𝑠𝐸𝑚𝑝𝑡𝑦 ()) do
8 coforall (loc in Locales) do
9 // parallel search on each locale

10 forall (i in 𝑆𝑒𝑡𝐶𝑢𝑟𝐹) do
11 if (i is on current locale) then
12 𝑆𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 = {𝑘 |𝑘 is the neighbour of 𝑖}
13 forall (j in 𝑆𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟) do
14 if (𝑑𝑒𝑝𝑡ℎ [𝑗] == −1) then
15 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹 .𝑎𝑑𝑑 (𝑗)
16 𝑑𝑒𝑝𝑡ℎ [𝑗] = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 + 1
17 end
18 end
19 end
20 end
21 end
22 𝑆𝑒𝑡𝐶𝑢𝑟𝐹 <=> 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹 // exchange values
23 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹 .𝑐𝑙𝑒𝑎𝑟 ()
24 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙+ = 1;
25 end
26 return𝑑𝑒𝑝𝑡ℎ

all locales have expanded their vertices in the current frontier, we
will exchange the value of the current frontier and the next frontier
(line 22), clean the vertices in the next frontier (line 23), add the
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 to next level (line 24) . Then the next loop will begin
from the new frontier. When all vertices have been visited, we will
return the search array 𝑑𝑒𝑝𝑡ℎ as the final search result.

From this algorithm description, we can see it is very simple and
natural to describe the level by level parallel method to implement
the BFS algorithm in Chapel. The 𝐷𝑖𝑠𝑡𝐵𝑎𝑔 data structure can be
used to hold the current and the next frontier set easily and effi-
ciently. At the same time, the coforall and forall parallel construct
can express the parallel expansion in a very efficient way. At line
8 multiple locales can execute the search in parallel. At line 10
different vertices in the current frontier can be expanded in parallel.
At line 13, different expanded vertices can be added into the next
frontier in parallel. We can exploit the parallelism in a hierarchical
way to improve the total performance.

At line 8, we use coforall instead of forall to implement dis-
tributed parallel computing on each distributed memory computing
node. At line 11, we just select the vertices owned by the current
locale. In this way, we can increase the access locality and avoid
expanding the same edges on multiple locales.

4.2 Low Level Multi-Locale BFS Algorithm
In the high level BFS algorithm, we use two 𝐷𝑖𝑠𝑡𝐵𝑎𝑔 classes to hold
all the current frontier and the next frontier. The communication
between different locales is implicit. This can make our parallel
program become simple and easy. To evaluate the performance of
such high level data structures in Chapel, we directly use arrays
to hold the vertices in current and next frontiers and explicitly
implement the corresponding communication between different
locales. In this way, we can check if the high level data structure
𝐷𝑖𝑠𝑡𝐵𝑎𝑔 introduces significantly performance overhead.

To optimize the performance, we use a distributed array 𝑐𝑢𝑟𝐹𝐴𝑟𝑦
to clearly distinguish the frontier elements owned by different lo-
cales. We also use a distributed array 𝑟𝑒𝑐𝑣𝐴𝑟𝑦 to hold the expanded
vertices from different locales. In this way, we can exploit the local-
ity and optimize the communication during the graph search. The
low level algorithm is given in Alg. 2.

From line 1 to line 6 the low level BFS algorithm is just like
the high level BFS algorithm except that we replace 𝑆𝑒𝑡𝐶𝑢𝑟𝐹 with
𝑐𝑢𝑟𝐹𝐴𝑟𝑦 and replace 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹 with 𝑟𝑒𝑐𝑣𝐴𝑟𝑦. The basic algorithm
structure is similar to the Alg. 1. From line 8 to line 32 we will finish
one level vertex expansion. A set data structure 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝑙𝑜𝑐𝑎𝑙 is
created to hold the expanded elements owned by the current locale
(line 9) and the elements can be added in parallel. If the expanded
elements are not owned by the current locale, we create another
set data structure 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝑅𝑒𝑚𝑜𝑡𝑒 to hold such elements (line 10).
Instead of parallel search on all the current frontier, in the low level
version, each locale will first get its owned vertices (line 11). Then
for each locale, it uses the parallel construct 𝑐𝑜 𝑓 𝑜𝑟𝑎𝑙𝑙 to expand the
next frontier in parallel (line 12). The difference with Alg. 1 is that
we put the expanded elements into different sets. If they are local,
we put them into 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝐿𝑜𝑐𝑎𝑙 set in parallel (from line 16 to line
18). If they are not owned by the current locale, we will put them
into 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝑅𝑒𝑚𝑜𝑡𝑒 (from line 19 to line 21). After the vertex
expansion at each level, each locale will scatter the next frontier
elements in the 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝑅𝑒𝑚𝑜𝑡𝑒 to their owners (line 26 to line 28).
At the same time, elements in the next frontier owned by the current
locale 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝐿𝑜𝑐𝑎𝑙 will be merged into the distributed array
𝑐𝑢𝑟𝐹𝐴𝑟𝑦 (line 29 to line 31). All the above vertex operations can be
done in parallel without data races. Parallel construct 𝑐𝑜 𝑓 𝑜𝑟𝑎𝑙𝑙 has
implicit synchronization mechanism. So after line 32, we can make
sure that all data communication has been completed and we can
safely use the data in 𝑟𝑒𝑐𝑣𝐴𝑟𝑦. From line 33 to line 35, each locale
will combine the next frontier elements generated by the current
locale and the other locales to form the current frontier.

The low level BFS algorithm can exploit locality, avoid idle par-
allel threads, use an aggregation method to optimize the commu-
nication performance. However, we have to take care of the data
distribution and data communication. Even though, this optimiza-
tion cannot beat the high level data structure implementation for
our Delaunay benchmark test (see section 5.2.2). This comparison
shows the advantage of Chapel’s high level data structure in easy
programming and high performance.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
To evaluate the results of the proposed integrated solution, we used
two kind of graphs. The first is the R-MAT method [7] to generate
the testing graphs. The other kind of graphs are from standard
benchmarks. We develop a simple bsf.py Python testing program
to drive the experiments.

For the R-MAT graphs, we set the vertices count of four different
graphs as the following values: 32768, 65536,131072, and 262144.
The possibility of the dense edges area is set as 0.75. All other three
parts’ possibility share the remainder 0.25 equally. Each vertex has
2 edges so we will generate 65536, 131072, 262144, and 524288 edges

Exploratory Large Scale Graph Analytics in Arkouda CHIUW ’21, June 04, 2021, Virtual

Algorithm 2: Low level parallel BFS for distributed mem-
ory supercomptuers

Input: A graph𝐺 and the starting vertex 𝑟𝑜𝑜𝑡
Output: An array𝑑𝑒𝑝𝑡ℎ to show the different visiting level for each vertex

1 𝑑𝑒𝑝𝑡ℎ = −1 // initialize the visiting level of all the vertices
2 𝑑𝑒𝑝𝑡ℎ [𝑟𝑜𝑜𝑡] = 0 // set starting vertex’s level is 0
3 𝑐𝑢𝑟_𝑙𝑒𝑣𝑒𝑙 = 0 //set current level
4 Create distributed array 𝑐𝑢𝑟𝐹𝐴𝑟𝑦 to hold current frontier of each locale
5 Create distributed array 𝑟𝑒𝑐𝑣𝐴𝑟𝑦 to receive expanded vertices from other locales
6 put 𝑟𝑜𝑜𝑡 into 𝑐𝑢𝑟𝐹𝐴𝑟𝑦

7 while (!𝑐𝑢𝑟𝐹𝐴𝑟𝑦.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 ()) do
8 coforall (loc in Locales) do
9 create 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝐿𝑜𝑐𝑎𝑙 to hold expanded vertices owned by current locale

10 create 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝑅𝑒𝑚𝑜𝑡𝑒 to hold expanded vertices owned by other locales
11 𝑚𝑦𝐶𝑢𝑟𝐹 ←current locale’s frontier in 𝑐𝑢𝑟𝐹𝐴𝑟𝑦 and then clear 𝑐𝑢𝑟𝐹𝐴𝑟𝑦

12 coforall (i in𝑚𝑦𝐶𝑢𝑟𝐹) do
13 𝑆𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 = {𝑘 |𝑘 is the neighbour of 𝑖}
14 forall (j in 𝑆𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟) do
15 if (𝑑𝑒𝑝𝑡ℎ [𝑗] == −1) then
16 if (j is local) then
17 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝐿𝑜𝑐𝑎𝑙 .𝑎𝑑𝑑 (𝑗)
18 end
19 else
20 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝑅𝑒𝑚𝑜𝑡𝑒.𝑎𝑑𝑑 (𝑗)
21 end
22 𝑑𝑒𝑝𝑡ℎ [𝑗] = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 + 1
23 end
24 end
25 end
26 if (!𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝑅𝑒𝑚𝑜𝑡𝑒.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 ()) then
27 scatter elements in 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝑅𝑒𝑚𝑜𝑡𝑒 to 𝑟𝑒𝑐𝑣𝐴𝑟𝑦

28 end
29 if (!𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐹𝐿𝑜𝑐𝑎𝑙 .𝑖𝑠𝐸𝑚𝑝𝑡𝑦 ()) then
30 move elements in 𝑆𝑒𝑡𝑁𝑒𝑥𝑡𝐿𝑜𝑐𝑎𝑙 to 𝑐𝑢𝑟𝐹𝐴𝑟𝑦

31 end
32 end
33 coforall (loc in Locales) do
34 𝑐𝑢𝑟𝐹𝐴𝑟𝑦 ← collect elements from 𝑟𝑒𝑐𝑣𝐴𝑟𝑦

35 end
36 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙+ = 1
37 end
38 return𝑑𝑒𝑝𝑡ℎ

for different R-MAT graphs. We will generate both directed and
undirected R-MAT graphs.

The graph benchmarks utilized for testing include the Delaunay,
Kronecker (notation as KRON in the following part), and Random
Geometric graphs (notation as RGG in the following part) from
the tenth DIMACS implementation challenge [3]. The number of
edges and vertices will be approximately doubled to reach the next
graph in the same benchmark series. All data for these graphs
can be found online. For the intents and purposes of this paper,
Table 1 summarizes some important information on the graphs
selected and utilized for testing. All benchmark graphs utilized were
undirected, and some were weighted. The number of connected
components are listed as well under the CCs column. For those
files where the number of connected components exceeded 1, 99%+
of the number of vertices found in the graph, were also found in
the largest component. The diameter pictured is a rough estimate
taken by iterating over the first 100 all-pairs shortest paths created
by the NetworkX python graph tool. The actual diameter of these
graphs may be bigger that what is shown.

Testing of the methods was conducted in an environment com-
posed of a 32 node cluster with a FDR Infiniband between the nodes
in the cluster. Each node has two 10-core Intel Xeon E5-2650 v3
@ 2.30GHz and 512GB DDR4 memory. Infiniband connections be-
tween nodes is commonly found in high performing computers.
Every node is made up of 512GB of RAM and two Xeon E5-2650
processors with 20 cores total between the two processors. Due
to Arkodua being designed primarily for data analysis in a HPC

Table 1: Important parameters for each graph benchmark
file utilized.

Name Vertices Edges Weighted CCs Biggest CC Size Diameter(≥)
delaunay_n17 131072 393176 0 1 131072 163
delaunay_n18 262144 786396 0 1 262144 226
delaunay_n19 524288 1572823 0 1 524288 309
delaunay_n20 1048576 3145686 0 1 1048576 442
delaunay_n21 2097152 6291408 0 1 2097152 618
delaunay_n22 4194304 12582869 0 1 4194304 861
delaunay_n23 8388608 25165784 0 1 8388608 1206
delaunay_n24 16777216 50331601 0 1 16777216 1668
rgg_n_2_21_s0 2097148 14487995 0 4 2097142 1151
rgg_n_2_22_s0 4194301 30359198 0 2 4194299 1578
rgg_n_2_23_s0 8388607 63501393 0 4 8388601 2129
rgg_n_2_24_s0 16777215 132557200 0 1 16777215 3009

kron_g500-logn18 210155 10583222 1 8 210141 4
kron_g500-logn19 409175 21781478 1 27 409123 4
kron_g500-logn20 795241 44620272 1 45 795153 4
kron_g500-logn21 1544087 91042010 1 94 1543901 4

setting, an architecture setup that aptly fits an HPC scenario was
chosen for testing.

For R-MAT, Delaunay, KRON and RGG graphs, we will first
build the graphs into distributed memory based on our partition
method and then execute the parallel BFS algorithm with different
number locales to check their performance (we will cancel some
tests if the execution time is too long to keep the experiments in
reasonable time arrangement). For R-MAT graphs, we implement
the R-MAT algorithm to generate the R-MAT graph in parallel each
time. For the benchmark graphs, each locale will read the graph file
in parallel using Chapel file IO and just select the data that should
be stored at its locale. After the graph data are ready in memory,
we will sort the edges and organize the graph based on our DI data
structure. Furthermore, for the high level multi-locale algorithm,
we will show how a simple replacement in the data structure and
parallel construct can affect the performance significantly.

5.2 Experimental Results
For large scale graph analytics, there are two major steps. The first
is building the graph into memory at the Arkouda back-end. The
second step is conducting different analysis methods on the graph
in memory to gain insight from the given graph. Here we use a
parallel BFS algorithm to demonstrate how we can conduct analysis
on large graphs. In this section, we will provide the experimental
results of our graph building and graph analyzing methods.

5.2.1 Graph Building. The experimental results from Fig. 3 to Fig.
10 show the graph building time and the building efficiency of dif-
ferent graphs in Arkouda. We can see that for Fig. 7 and Fig. 9, the
building time will increase linearly with the number of edges, no
matter how many locales we use. However, it will take more time
when handling the same amount of edges with more locales. The
reason lies in the data movement overhead among locales. More lo-
cales mean that more data movement between distributed memory
will be needed. The building efficiency Fig. 8 and Fig. 10 also have
perfect flat lines. The flat line means that each core will have the
same efficiency no matter how many edges or how many cores are
used. Our experiments show that the best construction efficiency
of the RGG graph is 1736 edges/second/core. The lowest building
efficiency is 255 edges/second/core for the largest R-MAT graph

CHIUW ’21, June 04, 2021, Virtual Du and Alvarado Rodriguez, et al.

because the R-MAT graph will need additional time to generate the
graph.

Figure 3: Graph building
time (R-MAT).

Figure 4: Graph building
efficiency (R-MAT).

We model the graph building time with the following multivari-
ate nonlinear equation. Let 𝐸 be the number of edges in the graph
and 𝐿 be the number of locales that will be used to build the graph.
The building time will be

𝑇 (𝐸, 𝐿) = 𝑎 × 𝐸/𝐿 + 𝑏 × 𝐸 × 𝐿 + 𝑐
This model means that we assume that the computing time will in-
crease linearly with 𝐸/𝐿 and the communication time will increase

Figure 5: Graph building
time (Delaunay).

Figure 6: Graph building
efficiency (Delaunay).

Figure 7: Graph building
time (KRON).

Figure 8: Graph building
efficiency(KRON).

Figure 9: Graph building
time (RGG).

Figure 10: Graph building
efficiency (RGG).

linearly with the product 𝐸 × 𝐿. For all the results, the RMSE (Root
Mean Square Error) is less than 390 and the R-squared value is larger
than 0.79 which means more than 79% of the observed variation can
be explained by the model’s inputs. We can use the models to do
some prediction. For examples, for the com-friendster.ungraph.txt
1 which has 1,806,067,135 edges, the predicted building time on 2
locales will be 8.31 hours if we use the RGG data. It really takes 8.5
hours to build the graph in memory and the predicted value is very
close to the practical value. However, if we use the data of Delaunay
and KRON that have less edges, the predicted building time will
be much longer. The experimental results in Fig. 3 and Fig. 5 can
help us see what happened for different graphs. We can see in Fig.
3, locales with 8 and 16 have a good linear growth trend. However,
the curve with locale 4 will increase very fast when the number
of edges is becoming larger although the total number of edges is
less than the number in KRON and RGG benchmark. The major
reason is that compared with the benchmark method, R-MAT graph
building method will have additional graph generation time. When
a graph touches the limit of its computing resources or the heavy
workload watermark, it cannot maintain a linear trend. A heavy
load will reduce the core’s performance and efficiency. For Fig. 5,
the Delaunay graph’s building time with 2 locales will also increase
fast when the number of edges is larger than 25,165,784. The reason
is that Delaunay graphs have much more vertices than the other
benchmarks. Therefore, for the same number of edges, the Delau-
nay benchmark will need more computation and memory. When
the graph touches the suitable resource limit, the lack of hardware
resource will also cause loss in performance and efficiency. Beyond
the resource bound is the major reason why the graph building
efficiency will decrease in Fig. 4 and Fig. 6. From all the graphs,
we can conclude that the graph building efficiency curve will first
increase, then stay almost the same and finally reduce when the
graph workload touches the computing or memory limit of the
given platform.

5.2.2 BFS Performance. In this part we will focus on the perfor-
mance comparison of different BFS implementations. So we will
use deterministic graph benchmarks instead of R-MAT graphs that
can lead to different performance with the same method because
of the randomness in the graphs.

To evaluate the performance of the proposed high level multi-
locale BFS algorithm and the low level algorithm, we implement
the algorithm with different data structures and parallel constructs
provided in Chapel to show the performance difference.

We use four different Delaunay benchmark graphs to show the
performance of our BFS algorithms. Fig. 11 will be used as an exam-
ple to explain the meaning of different algorithm implementations.
On the 𝑥 axis ,𝑀 means the result of our manually optimized low
level Alg. 2. 𝐵𝑎𝑔𝐿 is the result of high level multi-locale Alg. 1.
𝐵𝑎𝑔𝐺 means that we will remove line 11 of Alg. 1 and all locales
will search on the whole frontier instead of the vertices owned by
itself. 𝑆𝑒𝑡𝐿 is the case that we just replace the high level data struc-
ture 𝐷𝑖𝑠𝑡𝐵𝑎𝑔 with 𝑆𝑒𝑡 in Alg. 1. Except using the 𝑠𝑒𝑡 data structure,
𝑆𝑒𝑡𝐺 is similar to 𝐵𝑎𝑔𝐺 . 𝐷𝑜𝑚𝐿 and 𝐷𝑜𝑚𝐺 are just like 𝑆𝑒𝑡𝐿 and
𝑆𝑒𝑡𝐺 except we will replace𝐷𝑖𝑠𝑡𝐵𝑎𝑔with𝐷𝑜𝑚𝑎𝑖𝑛. In our high level
multi-locale BFS algorithm framework, 𝐷𝑖𝑠𝑡𝐵𝑎𝑔, 𝑆𝑒𝑡 and 𝐷𝑜𝑚𝑎𝑖𝑛

1https://snap.stanford.edu/data/com-Friendster.html

Exploratory Large Scale Graph Analytics in Arkouda CHIUW ’21, June 04, 2021, Virtual

can provide the same function to hold the current frontier and the
next frontier elements. At the same time, they also have the same
or similar method to use the data structure. For example, they all
have the 𝑎𝑑𝑑 function to add element into 𝐷𝑖𝑠𝑡𝐵𝑎𝑔, 𝑆𝑒𝑡 or 𝐷𝑜𝑚𝑎𝑖𝑛.

For all the high level multi-locale BFS methods in Fig. 11 to Fig.
14, the legend 𝐹𝑜𝑟𝐴𝑙𝑙 means we will use 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel construct
to expand the vertex at line 10 in Alg. 1. The legend 𝐶𝑜𝐹𝑜𝑟𝐴𝑙𝑙

means that we will use the 𝑐𝑜 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel construct to expand
the vertices. However, for the manually optimized low level method,
the legend 𝐶𝑜𝐹𝑜𝑟𝑎𝑙𝑙 means that we will use the 𝑐𝑜 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel
construct to expand the owned vertices by each locale at line 12 in
Alg. 2. The legend 𝐹𝑜𝑟𝐴𝑙𝑙 means that we will use the 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel
construct to expand the owned vertices by each locale.

Figure 11: BFS time
(𝑑𝑒𝑙𝑎𝑢𝑛𝑎𝑦_𝑛17).

Figure 12: BFS time
(𝑑𝑒𝑙𝑎𝑢𝑛𝑎𝑦_𝑛18).

From the experimental results in Fig. 11 to Fig. 14, we have the
following observations: (1) For all the data structures 𝐷𝑖𝑠𝑡𝐵𝑎𝑔, 𝑆𝑒𝑡
and 𝐷𝑜𝑚𝑎𝑖𝑛, the performance of distributed parallel computing
version (BagL, SetL and DomL) will better than the shared com-
puting version (BagG, SetG and DomG). It is easy to understand
that the shared computing will have a lot of duplicated computa-
tions and the distributed resources cannot be used efficiently. (2)
For most of the distributed parallel computing versions, the perfor-
mance of the 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel construct is better than the 𝑐𝑜 𝑓 𝑜𝑟𝑎𝑙𝑙
parallel construct. The reason is that the size of our frontier (from
hundreds to thousands and beyond) is relatively larger than the
parallel units (20 in our system). The 𝑐𝑜 𝑓 𝑜𝑟𝑎𝑙𝑙 construct will gener-
ate many parallel threads but they cannot be run immediately. So
the 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel construct that only generates the same number
of threads as the maximum cores will be more efficient. However,
for our manually optimized low level version, the 𝑐𝑜 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel
construct implementation has better performance when the graph
size if small. The performance of 𝑓 𝑜𝑟𝑎𝑙𝑙 will catch up when the
graph size become larger (see Fig. 14). The reason is that our low
level implementation can avoid idle threads and the number of

Figure 13: BFS time
(𝑑𝑒𝑙𝑎𝑢𝑛𝑎𝑦_𝑛19).

Figure 14: BFS time
(𝑑𝑒𝑙𝑎𝑢𝑛𝑎𝑦_𝑛20).

parallel threads created by 𝑐𝑜 𝑓 𝑜𝑟𝑎𝑙𝑙 is less than the high level im-
plementation (about 1

𝑛𝑢𝑚𝐿𝑜𝑐𝑎𝑙𝑒𝑠
of the size of current frontier). (3)

For different high level data structures (DistBag, Set and Domain),
their optimized 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel performance is very close to each
other. The major operation in our algorithm is add an element into
a set in parallel. Surprisingly, DistBag has not shown obvious ad-
vantage in our preliminary tests. (4) Our manually optimized low
level algorithm cannot have better performance than the high level
algorithms. This means that Chapel’s high level data structures
(DistBag, Set and Domain) can implement the data insertion into
a set and the communication among different locales with high
performance.

The major advantage of our manually optimized low level im-
plementation is that we can extend the vertices owned by different
locales independently to get next frontier without generating any
idle threads. However, for the high level method, we have to create
the same number of threads on each locale to check if the element
is owned by the local locale. If a vertex is not owned by the current
locale, this thread will become idle. The disadvantage of our low
level method is that we have to create two additional sets to keep
the local elements and remotes. And we need to send the remote
elements to their owners. We will incur additional cost for such
operations.

The reverse Cuthill–McKee algorithm (RCM) [9] can reduce the
bandwidth of a sparse matrix and improve the data access locality.
So we employ the RCMmethod as the pre-processing step to relabel
the vertices, in this way we can improve the BFS performance. In
Table 2 we give the experimental results without and with RCM
pre-processing results. In the column of “RCM", "N" means without
RCM pre-processing and “Y" means with RCM pre-processing.

We can see that the RCM method can substantially improve
the performance in almost all cases. The best performance can be
improved about 1.24 fold for the 4 different benchmarks.We can also
see that the best performance is also different. For the performance
without RCM pre-processing, the 𝑆𝑒𝑡 data structure together with
the 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel construct can achieve the best performance
among all the cases. After RCM pre-processing, the 𝐷𝑖𝑠𝑡𝐵𝑎𝑔 data
structure together with the 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel construct can achieve
the best performance. It seems that 𝐷𝑖𝑠𝑡𝐵𝑎𝑔 data structure is more
sensitive to the data locality.

Our experimental results also show that for very large graphs,
the 𝑐𝑜 𝑓 𝑜𝑟𝑎𝑙𝑙 parallel construct can cause runtime errors because
of limited resources. To avoid this problem, we can set a threshold
value to switch between 𝑐𝑜 𝑓 𝑜𝑟𝑎𝑙𝑙 and 𝑓 𝑜𝑟𝑎𝑙𝑙 based on the total
number of threads and the available resources. The performance
results show that for the same algorithm framework, we can select
suitable data structures and parallel constructs to achieve much
better performance in Chapel programming. So we can quickly
optimize the performance and this is the basic reason why we can
develop parallel graph algorithms in Chapel in a productive and
efficient way.

6 RELATEDWORK
Since BFS is a very basic graph algorithm, it has been investigated
from different aspects. For shared-memory BFS algorithms, Leis-
erson et al. [17] proposed a data structure “bag" to replace shared

CHIUW ’21, June 04, 2021, Virtual Du and Alvarado Rodriguez, et al.

Table 2: Execution time of different BFS implementations.

Graph Parallel Construct RCM M BagL BagG SetL SetG DomL DomG

delaunay_n17
CoForall N 22.20 16.87 32.28 18.84 33.05 17.18 32.06

Y 14.90 14.77 26.68 16.94 29.11 14.42 26.65

Forall N 63.42 14.28 44.14 13.97 26.99 14.20 27.02
Y 24.28 10.85 33.75 12.02 21.85 12.16 21.85

delaunay_n18
CoForAll N 48.57 33.76 64.58 43.08 70.55 34.25 63.84

Y 31.08 30.91 55.62 47.10 70.52 32.51 55.58

ForAll N 155.39 28.37 87.79 27.59 53.58 28.26 54.07
Y 37.56 23.37 73.45 25.28 43.52 25.58 44.05

delaunay_n19
CoForAll N 110.93 68.72 131.04 102.32 156.55 69.08 128.39

Y 63.77 63.83 114.82 114.05 159.83 62.55 109.56

ForAll N 453.23 56.54 175.88 55.62 107.17 56.49 107.56
Y 69.90 46.23 141.92 49.65 86.68 50.27 86.50

delaunay_n20
CoForAll N 259.44 139.16 265.08 255.28 361.99 138.98 258.44

Y 126.62 127.22 231.47 286.72 386.11 133.12 229.45

ForAll N 305.01 125.89 387.61 120.19 236.20 123.91 236.66
Y 172.16 92.87 293.59 99.46 176.49 101.05 176.03

queue to improve the parallelism in expanding the next frontier
of vertices. Of course, their “bag" is different from the “distbag" in
Chapel. However, we share the same idea of employing efficient
data structures to support parallel algorithm design. They optimized
the implementation of the reducer and all their methods have been
integrated into their Cilk++ compiler.

There are many approaches that can exploit specific hardware ar-
chitecture. For example, Bader et al. [4] employed the fine-grained,
low-overhead synchronization Cray MTA-2 computer to develop
a load-balanced BFS algorithm using thousands of hardware threads.
Mizell et al. [22] implemented the BFS algorithm on the 128-processor
Cray XMT system.

There are also many BFS algorithms on GPU. For examples, Luo
et al. [18] used a hierarchical data structure at grid, block and warp
levels to store and access the frontier vertices, and demonstrate that
their algorithm is up to 10 times faster than the Harish-Narayanan
algorithm on NVIDIA GPUs and low-diameter sparse graphs. Mer-
rill et al. [20] used efficient prefix sum computations to deliver
excellent performance on diverse graphs.

For very large graphs, distributed-memory BFS algorithms are
necessary. Beamer et al. [5] proposed a hybrid strategy to com-
bine the “top-down” and “bottom-up” expansions together. The
basic idea is employing “top-down” expansion when the frontier
has a small number of vertices. Otherwise the “bottom-up" expan-
sion method will be used to avoid searching too many edges. Azad
et al. [2] employed a variant of the standard breadth-first search
algorithm, reverse Cuthill-McKee algorithm, to improve the perfor-
mance. The Cuthill–McKee algorithm will relabel the vertices of
the graph to reduce the bandwidth of the adjacency matrix. Jiang
et al. [16] used both Reverse Cuthill-Mckee algorithm and SIMD
executions to improve their BFS algorithm’s performance. Fan et al.
[12] employed several technologies, such as asynchronous virtual
ring method, thread caching scheme and vertex ID reordering to
improve the BFS performance.

The major difference between our idea and the existing BFS
algorithms is high algorithm design productivity and quick opti-
mization. The basic idea of our graph algorithms design in Chapel
is taking advantage of the high level data structure provided by
Chapel to simplify the algorithm design and employing the parallel
constructs provided by Chapel to exploit the parallelism. Our ex-
perimental results show that with the same algorithm framework,

small change in data structure or parallel construct can cause very
significant performance differences. The purpose of Chapel based
graph algorithm design in Arkouda is the productive algorithm
design and quick performance optimization to support exploratory
data analysis at scale.

7 CONCLUSION
Large graph analytics is a challenging problem and in this paper
we present our preliminary work to show how we can use the open
source framework Arkouda to handle this problem. The advan-
tage of Arkouda lies in two aspects: high productivity and high
performance. High productivity means that end users can use a
popular EDA language such as Python to achieve insight from large
scale graphs. High performance means that the end users can break
the limit of their laptop and personal computer’s capabilities in
memory and calculation to handle very large graphs using Chapel
at the server side. Taking advantage of the high level parallel pro-
gramming language Chapel, the high performance solution is also
highly productive. This means that we can design and develop high
performance graph analysis algorithms using Chapel quickly and
efficiently.

Based on the basic array data structure in Arkouda, we define
a double index graph data representation to exploit the different
kinds of array operators in Arkouda. At the same time, our graph
representation can enable edge and vertex locating with O(1) time
complexity. We have implemented the double index graph data
structure in Arkouda. We developed a typical graph algorithm
breadth first search in the high level parallel language Chapel to sup-
port basic graph analysis in Arkouda. The proposed BFS algorithms
show that we can develop parallel algorithms and optimize their
performance based on the same algorithm framework in Chapel
efficiently. Selecting suitable data structures and parallel constructs
can significantly improve the algorithm performance in Chapel.

This work shows that Arkouda is a promising framework to
support large scale graph analytics. Of course, the reported work is
the first step to evaluate the feasibility and performance of Arkouda
based large graph analytics. In future work, we will provide more
graph algorithms and further optimize the performance of our
algorithms in Arkouda. At the same time, we will compare our
method with other approaches.

Exploratory Large Scale Graph Analytics in Arkouda CHIUW ’21, June 04, 2021, Virtual

ACKNOWLEDGMENTS
We appreciate the help from Brad Chamberlain, Elliot Joseph Ron-
aghan, Engin Kayraklioglu, David Longnecker and the Chapel com-
munity when we integrated the algorithms into Arkouda. This
research was funded in part by NSF grant number CCF-2109988.

REFERENCES
[1] Lada A Adamic, Bernardo A Huberman, AL Barabási, R Albert, H Jeong, and G

Bianconi. 2000. Power-law distribution of the world wide web. Science 287, 5461
(2000), 2115–2115.

[2] Ariful Azad, Mathias Jacquelin, Aydin Buluç, and Esmond G Ng. 2017. The re-
verse Cuthill-McKee algorithm in distributed-memory. In 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 22–31.

[3] David A. Bader, Andrea Kappes, Henning Meyerhenke, Peter Sanders, Christian
Schulz, and Dorothea Wagner. 2017. Benchmarking for Graph Clustering and
Partitioning. Encyclopedia of Social Network Analysis and Mining (2017), 1–11.
https://doi.org/10.1007/978-1-4614-7163-9_23-1

[4] David A Bader and Kamesh Madduri. 2006. Designing multithreaded algorithms
for breadth-first search and st-connectivity on the Cray MTA-2. In 2006 Interna-
tional Conference on Parallel Processing (ICPP’06). IEEE, 523–530.

[5] Scott Beamer, Aydin Buluc, Krste Asanovic, and David Patterson. 2013. Dis-
tributed memory breadth-first search revisited: Enabling bottom-up search. In
2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops
and Phd Forum. IEEE, 1618–1627.

[6] John T Behrens. 1997. Principles and procedures of exploratory data analysis.
Psychological Methods 2, 2 (1997), 131.

[7] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[8] Bradford L Chamberlain, Elliot Ronaghan, Ben Albrecht, Lydia Duncan, Michael
Ferguson, Ben Harshbarger, David Iten, David Keaton, Vassily Litvinov, Pre-
ston Sahabu, et al. 2018. Chapel comes of age: Making scalable programming
productive. Cray User Group (2018).

[9] Elizabeth Cuthill and James McKee. 1969. Reducing the bandwidth of sparse
symmetric matrices. In Proceedings of the 1969 24th national conference. 157–172.

[10] Samrat K Dey, Md Mahbubur Rahman, Umme R Siddiqi, and Arpita Howlader.
2020. Analyzing the epidemiological outbreak of COVID-19: A visual exploratory
data analysis approach. Journal of medical virology 92, 6 (2020), 632–638.

[11] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law
relationships of the internet topology. ACM SIGCOMM computer communication
review 29, 4 (1999), 251–262.

[12] Dongrui Fan, Huawei Cao, Guobo Wang, Na Nie, Xiaochun Ye, and Ninghui Sun.
2020. Scalable and efficient graph traversal on high-throughput cluster. CCF
Transactions on High Performance Computing (2020), 1–13.

[13] Irving J Good. 1983. The philosophy of exploratory data analysis. Philosophy of
science 50, 2 (1983), 283–295.

[14] Pieter Hintjens. 2013. ZeroMQ: messaging for many applications. " O’Reilly Media,
Inc.".

[15] Andrew T Jebb, Scott Parrigon, and Sang Eun Woo. 2017. Exploratory data
analysis as a foundation of inductive research. Human Resource Management
Review 27, 2 (2017), 265–276.

[16] Zite Jiang, Tao Liu, Shuai Zhang, Zhen Guan, Mengting Yuan, and Haihang You.
2020. Fast and Efficient Parallel Breadth-First Search with Power-law Graph
Transformation. arXiv preprint arXiv:2012.10026 (2020).

[17] Charles E Leiserson and Tao B Schardl. 2010. A work-efficient parallel breadth-
first search algorithm (or how to cope with the nondeterminism of reducers).
In Proceedings of the twenty-second annual ACM symposium on Parallelism in
algorithms and architectures. 303–314.

[18] Lijuan Luo, Martin Wong, and Wen-mei Hwu. 2010. An effective GPU implemen-
tation of breadth-first search. In Design Automation Conference. IEEE, 52–55.

[19] Theo Lynn, Pierangelo Rosati, Binesh Nair, and Ciáran Mac an Bhaird. 2020. An
Exploratory Data Analysis of the# Crowdfunding Network on Twitter. Journal
of Open Innovation: Technology, Market, and Complexity 6, 3 (2020), 80.

[20] DuaneMerrill, Michael Garland, and AndrewGrimshaw. 2015. High-performance
and scalable GPU graph traversal. ACM Transactions on Parallel Computing
(TOPC) 1, 2 (2015), 1–30.

[21] MichaelMerrill,William Reus, and TimothyNeumann. 2019. Arkouda: interactive
data exploration backed by Chapel. In Proceedings of the ACM SIGPLAN 6th on
Chapel Implementers and Users Workshop. 28–28.

[22] D Mizell and KMaschhoff. 2009. Early experiences with large-scale XMT systems.
In Proc. Workshop on Multithreaded Architectures and Applications (MTAAP’09).

[23] Michael J Quinn and Narsingh Deo. 1984. Parallel graph algorithms. ACM
Computing Surveys (CSUR) 16, 3 (1984), 319–348.

[24] William Reus. 2020. CHIUW 2020 Keynote Arkouda: Chapel-Powered, Interac-
tive Supercomputing for Data Science. In 2020 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW). IEEE, 650–650.
[25] Guido Rossum. 1995. Python reference manual. (1995).
[26] Andrew T Stephen and Olivier Toubia. 2009. Explaining the power-law degree

distribution in a social commerce network. Social Networks 31, 4 (2009), 262–270.
[27] John W Tukey. 1977. Exploratory data analysis. Vol. 2. Reading, MA.

https://doi.org/10.1007/978-1-4614-7163-9_23-1

	Abstract
	1 Introduction
	2 Arkouda Framework for Data Science
	3 Double-Index Sparse Graph Data Structure and Partition
	3.1 Directed Graphs
	3.2 UnDirected Graphs
	3.3 Graph Partition

	4 Parallel BFS Algorithm
	4.1 High Level Multi-Locale BFS Algorithm
	4.2 Low Level Multi-Locale BFS Algorithm

	5 Experimental results
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

