
Large Scale String Analytics in Arkouda
Zhihui Du, Oliver Alvarado Rodriguez, and David A. Bader

Department of Data Science
New Jersey Institute of Technology

Newark, New Jersey, US
{zhihui.du,oaa9,bader}@njit.edu

Abstract—Large scale data sets from the web, social networks,
and bioinformatics are widely available and can often be rep-
resented by strings and suffix arrays are highly efficient data
structures enabling string analysis. But, our personal devices
and corresponding exploratory data analysis (EDA) tools cannot
handle big data sets beyond the local memory. Arkouda is a
framework under early development that brings together the
productivity of Python at the user side with the high-performance
of Chapel at the server-side. In this paper, an efficient suf-
fix array data structure design and integration method are
given first. A suffix array algorithm library integration method
instead of one single suffix algorithm is presented to enable
runtime performance optimization in Arkouda since different
suffix array algorithms may have very different practical per-
formances for strings in various applications. A parallel suffix
array construction algorithm framework is given to further
exploit hierarchical parallelism on multiple locales in Chapel. A
corresponding benchmark is developed to evaluate the feasibility
of the provided suffix array integration method and measure
the end-to-end performance. Experimental results show that
the proposed solution can provide data scientists an easy and
efficient method to build suffix arrays with high performance
in Python. All our codes are open source and available from
GitHub (https://github.com/Bader-Research/arkouda/tree/string-
suffix-array-functionality).

Index Terms—exploratory data analysis, large scale string sets,
suffix array construction algorithm, Arkouda

I. INTRODUCTION

Suffix trees [11] allow for particularly fast implementations
of many important string operations, such as locating a sub-
string, searching the longest common substring, and so on
[5]. These speedups come at a cost: storing a string’s suffix
tree typically requires significantly more space than storing
the string itself. The construction of such a tree for a string
S of length n takes O(n) in time and a total of 2n nodes (n
leaves, n− 1 internal non-root nodes, 1 root) in space.

The suffix array [27] was invented in 1990 by Manber and
Myers as a new space-efficient data structure. Suffix arrays
with additional tables, such as the longest common prefix
(LCP) array, can reproduce the full functionality of suffix trees
preserving the same time and memory complexity [3].

Just like suffix trees, suffix arrays can be widely employed
to solve many problems that can be modeled as a string
processing problem, such as those found in bioinformatics,
web information search and analysis, and lossless compression
(Burrows-Wheeler transform [16], [26], [34]).

Arkouda [30], [37] is under early development as a frame-
work that brings together the productivity of Python with
world-class high-performance computing. It is built on Python
and Chapel, a modern parallel processing compiler for high-
performance computing solutions. Together, Arkouda+Chapel
allows Python-trained programmers to readily use HPC re-
sources, lowering the barrier allowing data scientists to be
more productive at solving exploratory data analysis (EDA)
problems on large scales.

In this paper, we provide the solution for integrating the
suffix array into Arkouda for interactive data science at scale.
The major contributions are as follows.

1) An efficient suffix array data structure enabling in-
teractive large string analysis at the Python front-end
and high-performance data processing at the Chapel
back-end are proposed and developed in Arkouda. The
presented data structures are the foundation of high-level
and high-performance large-scale string analysis.

2) A suffix array construction algorithm library and its
building method in Arkouda are provided. Such a library
is necessary for Arkouda to dynamically optimize its
performance by selecting suitable suffix array construc-
tion algorithms at run-time based on the features of
different input strings.

3) All the proposed methods have been implemented and
integrated into Arkouda and a corresponding benchmark
has been developed to evaluate the end-to-end perfor-
mance. Experimental results show that the proposed
method can build suffix arrays with negligible overhead
in Arkouda. This work sets up the basic methods and
software tools for interactive string-based data science
at scale.

II. OVERVIEW OF ARKOUDA

Arkouda is a software package that allows a user to interac-
tively issue massively parallel computations on distributed data
using functions and syntax that mimic NumPy and Pandas, the
underlying computational libraries used in the vast majority of
Python data science work-flows.

To enable exploratory data analysis on large-scale data
sets in Python, Arkouda divides its data into two physical
sections. The first section is the metadata which only includes
attribute information and occupies very little memory space.
The second section is the raw data which includes the actual

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 H
ig

h
Pe

rf
or

m
an

ce
 E

xt
re

m
e

C
om

pu
tin

g
C

on
fe

re
nc

e
(H

PE
C

) |
 9

78
-1

-6
65

4-
23

69
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PE

C
49

65
4.

20
21

.9
62

28
10

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 30,2021 at 16:45:14 UTC from IEEE Xplore. Restrictions apply.

big data sets to be handled by the back-end. Yet, from the
view of the Python programmers, all data is directly available
just like on their local laptop device. This is why Arkouda can
break the limit of local memory capacity, while at the same
time bringing traditional laptop users powerful computing
capabilities that could only be provided by supercomputers.

The computational heart of Arkouda is a Chapel [7] inter-
preter that accepts a predefined set of commands from a client
(currently implemented in Python) and uses Chapel’s built-
in machinery for multi-locale and multi-threaded execution to
evaluate computations at scale [14] [15]. EDA operations in
Arkouda currently scale to hundreds of HPC nodes comprising
tens of thousands of cores and hundreds of terabytes of
memory.

When users are analyzing their data, if only the metadata
section is needed, then the operations can be completed locally.
These actions are carried out just like in previous Python data
processing workflows. If the operations have to be executed
on raw data, the Python program will automatically generate
an internal message and send the message to Arkouda’s
message processing pipeline for external and remote help.
Arkouda’s message processing center (ZeroMQ) is responsible
for exchanging messages between its front-end and back-end.
When the Chapel back-end receives the operation command
from the front-end, it will execute the analyzing task quickly
using HPC resources on the corresponding raw data and return
the required information back to the front-end. Through this,
Arkouda can support Python users to locally handle, on their
devices, large-scale data sets residing on powerful back-end
servers without knowing all the detailed operations at the back-
end.

The final goal of this research is to support interactive data
science at scale. We will focus on the fundamental and parallel
algorithm design, development, and integration with Arkouda
to enable productive data analytics. Besides suffix array, we
will further investigate other basic constructs such as trees,
graphs, and matrices as well as their algorithms to support a
wider range of applications.

In this paper, we will introduce the method and solution to
integrate suffix arrays into Arkouda which is the first step of
the research and development road map.

III. PROPOSED METHOD

Our solution for integrating suffix arrays into Arkouda is
shown in Fig. 1. Arkouda provides a complete framework and
mechanism for the message exchange between the front-end
and the back-end, so our focus is developing the basic suffix
array building blocks and a pipeline to provide a complete
solution by connecting the data structures and functionalities
together at both the front-end and the back-end.

A. Data structure design and implementation

To enable Python programmers to operate on suffix arrays
as if all data are available locally on his/her device, we design
our suffix array data structure as shown in Fig. 2.

Fig. 1. Proposed method to integrate suffix arrays into Arkouda.

The symbol mapping table created and maintained in Chapel
is the basic mechanism for mapping the name ID given by
Python to the corresponding original data in Chapel. Each
entry of the table is a 〈key, value〉 pair. The value part includes
all necessary information of an array in Chapel, such as the
data type, size, number of dimensions, element size, shape,
starting position and distribution of given array. The key part is
the unique ID of the corresponding array. Given a key, we can
search in the symbol mapping table to get its value and then
we will know the raw data represented by the key. When a new
array is created at the Chapel back-end, to make it available
to the Python front-end, we need to build the 〈key, value〉 pair
and insert it into the symbol mapping table. The ID string will
be sent to the front-end as a part of a Python data structure.
In this way, a simple ID string in the Python front-end is
connected with the raw data of the Chapel back-end.

Two classes Strings and SegString have been defined in
Python and Chapel respectively to model a group of strings.
Accordingly, we define two classes SArrays and SegSArray in
Python and Chapel respectively to describe the suffix arrays
of given strings.

An array is the basic data structure that supports parallel
operations in Arkouda. For a group of strings, the raw data
are stored in one large array in the Chapel back-end. All strings
are stored in the large array one by one without any gap. So
the total length of the strings is the length of the large array.
This array is called a “value array” of given strings. To access
a specific string, another array is built to store the starting
position or offset of each string in the value array. This array
is called an “offset array”. The SegString includes the two
kinds of arrays to describe a group of strings.

Correspondingly, we define a new class SegSArray in
Chapel to describe the suffix array data structure of given
strings. SegSArray also has its offset array and value array
that are defined as an offsets and a values SymEntry instance.
When suffix arrays have been built for a group of strings, both
their value array and their offset array description information
will be added to the symbol mapping table for future access.
Given offsetName and valueName, the offsets and offsets object
instances can be accessed by looking up the symbol mapping
table.

Analogous data structures are defined in Python at the front-
end. Based on the existing Strings class, we define a new class
SArrays to describe a group of suffix arrays. It is very similar
to the Strings class except that its element data is a suffix array

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 30,2021 at 16:45:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Data structure design of suffix array in Arkouda.

instead of a string.

B. Algorithm Design and Integration

After the first suffix array construction algorithm with
O(n log n) time complexity was proposed in 1990 by Manber
and Myers [27], it took about thirteen years to achieve the
time complexity of O(n) in 2003 [18]–[20]. However, such
algorithms need additional O(n) working space during the
building of the suffix array. Then, it took another thirteen
years to achieve the O(1) working space or in-place and
O(n) time complexity algorithm for integer alphabets in 2016
[25]. The suffixes’ distribution and the length of different
inputs are two important aspects that can affect the practical
performance of existing Suffix Array Construction Algorithms
(SACAs) and better time complexity does not necessarily
mean faster execution time. Antonitio et al. discussed the
inconsistency between algorithm time complexity and practical
execution time [4]. Different parallel SACAs [1], [8]–[10],
[21]–[23], [26], [39], [40], [42] have been developed on
shared-memory multiprocessors, distributed memory clusters,
and many threads GPUs to exploit the HPC technology to
further improve the practical performance.

Fig. 3. Algorithm design and implementation method in Arkouda.

We use Chapel to develop scalable parallel suffix array al-
gorithms to achieve portable performance on different parallel
hardware. The basic idea is given in Fig. 3. For a given suffix
array request from the Python front-end, our method can select
the suitable suffix array construction algorithm based on the

available hardware, and the input strings automatically. We
need to develop different kinds of suffix array construction
algorithms to generate an available algorithm library. Here,
we divide the algorithms into two types based on if they can
run on many locales (distributed memory systems) in Chapel.
We will not only design our novel algorithms but also rewrite
some existing excellent algorithms in Chapel to take advantage
of the advanced features of Chapel to improve their portability
and scalability. At the same time, we can integrate some
existing algorithms into Arkouda quickly but, the restriction
is that they can only run on one locale.

A Chapel SACA module is developed to include all such
SACAs. Currently, we have integrated two algorithms into the
SACA module. One is the self-developed skew algorithm [18]
in Chapel. The advantage of the skew algorithm is that it is
conceptually simple and has low O(n) time complexity.

The basic idea of the skew algorithm is: (1) Divide the
given string into substrings (the length is 3). (2) Recursively
sort the 2

3 part of the substrings. (3) Sort the 1
3 substrings

based on the sorted 2
3 substrings and finally merge the two

parts together to form the sorted suffix array. The recursive
sort for the 2

3 substrings, linear induction algorithm for the 1
3

substrings based on the sorted 2
3 substrings and linear merge

method are the key for skew algorithm to achieve linear time
complexity.

The other is an open-source algorithm. We take advantage of
Chapel’s C interoperability to integrate the existing algorithm
quickly. Currently, the existing fastest sequential suffix array
algorithm is divsufsort [32] (it can support OpenMP, but it
is sequential in major.) and it is selected as the first open-
source suffix array implementation method. The implementa-
tion method involves using “Extern Declarations” to make the
C codes available for Chapel. Here, we use the explicit instead
of implicit strategy to integrate the C codes.

C. Suffix array construction pipeline

To integrate the suffix array into Arkouda, we need to add
separate suffix array building functions at both the front-end
and back-end. The role of the front-end function is to provide
the descriptive information of a group of strings and issue
the suffix array building command. The role of the back-end
function is to locate the position of all the strings, build their

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 30,2021 at 16:45:14 UTC from IEEE Xplore. Restrictions apply.

suffix arrays, and return the offset and value IDs of built suffix
arrays to the front-end.

Based on the SArrays class, we can introduce the suffix
array building function suffix array based on the given Strings
object. This function will build suffix arrays for given strings
object. The built suffix arrays will reside on the back-end, but
returned IDs of the raw data will be kept in the Pdarray object
as well as other attributes (metadata).

For the suffix array function, we only need to pass the basic
information about the Strings object, including the data type
strings.objtype, the offset array ID strings.offsets.name that can
be used to access the raw offset array at the back-end, and the
original strings array (value array) ID strings.bytes.name used
to access the raw string at the back-end. Then, we compose a
message including all the above information and call ZeroMQ
to send the message to the back-end. ZeroMQ will return the
resulting message to Python, which includes all the newly
built suffix arrays descriptive information, and we can use this
information to build a SArrays object to access the suffix arrays
in the future.

There are three big steps to build suffix arrays at the back-
end. First, we need to get all the raw data of the given strings.
Just as in the definition of class Strings, size means the total
number of strings. nBytes means the total length of the strings.
length is the length of each string and offsets is the starting
index of each string. We use startposition and endposition to
indicate each string. Second, when we know all the necessary
information of each string, we can call the specific suffix
array algorithm to build the suffix array of a given string.
Different suffix array construction procedures can be executed
in parallel. We use the forall parallel structure in Chapel to
build the suffix array of different strings in parallel. Third, after
all the suffix arrays are built, the offset information about all of
the suffix arrays is kept in sasoff and all the indices of all the
suffix arrays are kept in sasval. Two symbol entry objects will
be created to describe offset array and value array information.
Such information will be added to the symbol table to use its
string ID to further access the original data. The IDs of the
two symbol entry objects will be returned back to the front
end.

D. Parallel Suffix Array Construction Algorithm Framework

A parallel algorithm is necessary for very large suffix
array construction. To enable large-scale data parallelism, we
propose the parallel framework as in Alg. 1.

Let n be the total length of the given string and p be the
total number of parallel execution units. For simplicity, we
can assume n can be evenly divided by p. The basic idea is
we first divide a large string into the same length independent
substrings. Then, we can employ any parallel or sequential
suffix array algorithm to build p partial suffix arrays. Since
no communication is needed at this step, it can achieve linear
speedup and it is also very easy to implement.

In the third step, we can employ any parallel multi-way
merge algorithm to merge different partial suffix arrays into
one complete suffix array. Just as we mentioned before, since

the properties of strings, such as the average Longest Common
Prefix (LCP) length, can significantly affect the practical
performance of a suffix array construction algorithm, this
framework is helpful for a specific application to employ the
best suitable algorithm to improve its performance.

Algorithm 1: Parallel Suffix Array Construction
input : String S of length n
output: Suffix Array SA

1 Divide S into p substrings S0, ..., Sp−1 with length
dnp e;

2 Employ optimized suffix array construct algorithm on
each substring in parallel and generate partial suffix
array SA0, ..., SAp−1;

3 Employ partial suffix array merging on
SA0, ..., SAp−1 in parallel and generate suffix array
SA;

4 return SA

IV. EXPERIMENTAL RESULTS

A. Testing method

To evaluate the results of the proposed integrated solution,
we develop a simple “sa.py” Python test benchmark. Two
kinds of strings are generated as inputs. The first is randomly
generated strings and the second is real-world benchmark
strings. In order to check the results, we transfer all suffix ar-
rays to the front end (this is not necessary for actual situations).
Furthermore, we test the end-to-end suffix arrays generation
time to evaluate the performance. All the experiments are
executed in a server with an 8-core Intel(R) Xeon(R) E5-
2680 2.70GHz CPU. The total memory is 16MB. In a Jupyter
Notebook environment, our experiments show that large-scale
string analysis can be done in Arkouda easily with high
performance.

B. Experimental results

First, the correctness evaluation is done. The workflow is as
follows. (1) Generate random strings. (2) Build suffix arrays
for the strings. (3) The values of the string and the suffix array
are transmitted to the front end for correctness comparison.

The end-to-end performance evaluation is done to show the
effect of our integration. For random strings, we start the timer
before calling the suffix array function and stop it when the
function returns. We execute the same function 10 times and
calculate the average execution time. We test with random
strings with length from 1M to 4M characters (see Fig. 4). The
execution time (left plot) increases linearly with the number of
strings. We define the sorting efficiency as the average number
of bytes that can be sorted in one second. The efficiency (right
plot) shows that the sorting efficiency of 1MB is much better
than 4MB (more than 5 times).

To properly demonstrate how Arkouda can be utilized by
data scientists in the field, we also present execution results
of generating suffix arrays using real data sets. The data sets

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 30,2021 at 16:45:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The execution time and efficiency of parallel forall suffix array
sorting for ramdom strings.

utilized include book text [35], genomic and protein sequences
[2], and domain name system (DNS) addresses [43]. In these
data sets, suffix arrays can be utilized to solve problems like
computing the maximal repeated pairs, supermaximal repeats,
or maximal unique matches [3]. Solving these problems
can yield important information such as repeating substrings
of protein sequences in different diseased cells or quickly
searching through a list of DNS names looking for a specific
malicious DNS name. Furthermore, not only was the Arkouda
server being hosted, but also a Jupyter server to enable the use
of Jupyter notebooks. With an SSH tunnel, we were able to
connect our local device to our HPC server and run Arkouda
jobs from the local Jupyter GUI. The environment setup for
this is visualized in Fig. 5.

Fig. 5. Jupyter notebook based real-word data set testing setup.

Various data were selected from varying domains to prop-
erly demonstrate the interdisciplinary applications that suffix
arrays may have ranging from biology to computer network-
ing. Table I summarizes the important information of the
selected data sets. A name is given to each set that is then
used in following figures with results. Further, the alphabet
size is shown as A. size. This size is equivalent to the number
of unique characters found in the file. For example, the file
named ecoli contains the full genetic sequence for the ecoli
bacterium which is made up of only the characters a, c, t, and
g. Therefore, its A. Size is 4. The B. Size column holds how
long the file is in bytes. This is the same as the length of the
file in characters.

A suffix array was generated for each file and the elapsed
time was recorded. The start timer was called right before the

TABLE I
REAL-WORLD DATA SETS

Name A. Size B. Size Descriptions
mj 20 448779 Protein sequence for M. jannaschii.
hi 20 509519 Protein sequence for H. influenzae.
pi 10 1000000 The first million digits of pi.
sc 20 2900352 Protein sequence for S. cerevisiae.
hs 20 3295751 Protein sequence for H. sapiens.

bible 63 4047392 The entire King James Bible.
ecoli 4 4638690 Genomic sequence for E. coli.

us dns 59 20526804 List of DNS names for the U.S.

invocation of the function that generates a suffix array from a
file and the stop timer was called right after this invocation was
terminated. For 7 of the 8 files, the suffix array was generated
100 times and the average time was calculated. Due to the
immense size of the us dns data set, suffix array generation
was only invoked 10 times, and the average of the elapsed
time of the 10 invocations was taken.

Figures 6 shows the sorting efficiency for different data sets.
As string size increased, the sorted bytes per second decreased.

Fig. 6. Number of megabytes sorted in unit time with divsufsort.

To check the message exchanging overhead, as we did for
the random strings, we ran the suftest executable generated
by a local compilation of the libdivsufsort library. The code
of suftest was edited to capture the start time before file
reading instead of directly before the function that generates
the suffix array. The purpose of this test is to see how much
the execution time increases with divsufsort being utilized in
Arkouda. The increase in execution time should be negligible
and we are able to see that in Table II. Rather, for the largest
data set, of 20,526,804 bytes, there is actually an execution
time decrease (speed increase) by utilizing Arkouda. This is
due to the compilation of the Arkouda server with the Chapel
fast flag. Enabling this flag turns off all the runtime checks,
optimizes the compiled C code, and specializes the executable
to the underlying CPU architecture, if previously specified
by the user. As is also evident in Table II, the largest speed
decreases had to do with the smallest mj and hi files whereas
once the file is over one million bytes, the speed decrease
is almost nonexistent or there is actually a speed increase as
shown with us dns, the list of United States domain names.

Lastly, it is important to note the memory-wise limitations
of Arkouda (because our testing hardware platform is not

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 30,2021 at 16:45:14 UTC from IEEE Xplore. Restrictions apply.

TABLE II
PERCENT INCREASE IN EXECUTION TIME FROM LIBDIVSUFSORT TO

DIVSUFSORT COMPILED BY ARKOUDA

Name B. Size % Increase
mj 448779 32.14
hi 509519 44.82
pi 1000000 9.01
sc 2900352 1.68
hs 3295751 4.86

bible 4047392 7.16
ecoli 4638690 2.93

us dns 20526804 -1.91

powerful enough) when it comes to executing large string files.
Arkouda can handle 20MB, 66MB, and 100MB files well.
However, once you get over the 100MB limit, dependent on
the hardware resources available and the amount of memory
the divsufsort algorithm requires, the server is unable to
allocate enough memory for the operations and the operation
fails. The largest file used for testing was 100MB; when
attempting to create a suffix array for a 500MB file, the
execution failed. The file size limit for our Arkouda setup
can therefore be said to be somewhere between 100MB and
500MB. Table III shows the execution times for generating
suffix arrays from files composed of varying domain names.

TABLE III
EXECUTION TIMES FOR 20MB, 66MB, AND 100MB FILES COMPOSED OF

VARYING DNS NAMES.

File Size (MB) Execution Time (s)
20 5.29
66 35.48

100 62.43

V. RELATED WORK

Research on suffix arrays has increased since Manber and
Myers [27] introduced this data structure as an alternative to
suffix trees in the early 1990s. The efforts on suffix array
algorithm design has three important directions: linear time
complexity algorithms, succinct or light weight algorithms and
parallel algorithms.

The research in [18]–[20] were the early achievements
that reduced the time complexity from O(n log n) to O(n).
Research [13], [28] can achieve O(n) working space. The
survey paper [36] described many time and space complexity
research in this field.

Homann et al. [12] introduced the mkESA tool on multi-
threaded CPUs, which is a parallelized version of the ‘Deep-
Shallow’ algorithm of Manzini and Ferragina [29]. Mohamed
and Abouelhoda [31] proposed a parallelized variant of the
bucket pointer refinement (bpr) algorithm of Schürmann and
Stoye [38] on multicore architectures, leveraging shared mem-
ory. Shun’s problem-based benchmark suite (PBBS) [41] lever-
ages the task-parallel Cilk Plus programming model in its
parallel multicore skew implementation. Flick and Aluru’s [9]
parallel distributed memory SACA has a similar approach to

LS method [24]. Nong et al. [22], [23] implement their linear
and light-weight suffix sorting on a multicore computer.

Osipov [33] and Deo and Keely [8] have performed seminal
work on developing highly parallel shared-memory GPU algo-
rithms for suffix array construction. There are some following
GPU Parallel suffix array algorithms, such as in [26], [42],
[44], [45].

Disk sorting [6], [17] is another effort to solve the large
scale string problem and our parallel suffix array construction
algorithm framework is based on the out of core sorting
method.

VI. CONCLUSION

The suffix array is a fundamental data structure in large
scale string analysis. In this work, we provide the solution
to integrate a suffix array into Arkouda to enable large scale
string data analytics.

This work demonstrates that the increasing Python commu-
nity can take advantage of the Arkouda framework to conduct
very large string analysis just like on their laptops or PCs.
High level Python users will have the capability to do large
scale data analytics easily and efficiently. Specifically, our
work shows that (1) The proposed suffix array integration
method is feasible and can take advantage of the Chapel forall
construct efficiently to provide coarse grain parallelism to
improve a group of suffix arrays’ building performance. This
work provides the basic data structure support for large scale
string analysis. (2) The Arkouda framework is easy to extend
with new data structures and functions. This feature is very
useful for a software framework under developement. At the
same time, Arkouda’s message exchange overhead between
the Python front-end and the Chapel back-end can almost be
ignored in large scale data analysis. This performance result
means that Arkouda has the potential to support very efficient
interactive exploratory data analysis at scale as it becomes a
fully developed system.

In the future, we will further develop different parallel
suffix array algorithms based the proposed parallel framework.
Especially, we will develop multi-locale parallel algorithms
that can exploit hierarchical parallelism. To achieve practical
performance, we plan to develop and integrate different kinds
of suffix array algorithms into Arkouda’s algorithm library
so the runtime will have more choices to select the best
version for different applications. The dynamic algorithms
selection, hierarchical parallelism and the codesign between
application, algorithm and hardware will significantly improve
the performance of our solution.

VII. ACKNOWLEDGEMENT

We appreciate the help from Michael Merrill, William Reus
and the Arkouda community, as well as Brad Chamberlain, El-
liot Joseph Ronaghan, Engin Kayraklioglu, David Longnecker
and the Chapel community when we integrated the algorithms
into Arkouda. This research was funded in part by NSF grant
number CCF-2109988.

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 30,2021 at 16:45:14 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Ahmed Abdelhadi, AH Kandil, and Mohamed Abouelhoda. Cloud-based
parallel suffix array construction based on MPI. In 2nd Middle East
Conference on Biomedical Engineering, pages 334–337. IEEE, 2014.

[2] Jurgen Abel. Protein corpus.
[3] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch.

Replacing suffix trees with enhanced suffix arrays. Journal of discrete
algorithms, 2(1):53–86, 2004.

[4] A Antonitio, P Ryan, Bill Smyth, Andrew Turpin, and X Yu. New
suffix array algorithms-linear but not fast? In Proceedings of the 15th
Australasian workshop on combinatorial algorithms (AWOCA), pages
148–156. Australian Computer Society, 2004.

[5] Alberto Apostolico. The myriad virtues of subword trees. In Combina-
torial algorithms on words, pages 85–96. Springer, 1985.

[6] Timo Bingmann, Johannes Fischer, and Vitaly Osipov. Inducing suffix
and LCP arrays in external memory. Journal of Experimental Algorith-
mics (JEA), 21:1–27, 2016.

[7] Bradford L. Chamberlain. Chapel. In Pavan Balaji, editor, Programming
Models for Parallel Computing, chapter 6, pages 129–159. MIT Press,
November 2015.

[8] Mrinal Deo and Sean Keely. Parallel suffix array and least common
prefix for the GPU. In Proceedings of the 18th ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages
197–206, 2013.

[9] Patrick Flick and Srinivas Aluru. Parallel distributed memory construc-
tion of suffix and longest common prefix arrays. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–10, 2015.

[10] Amol Ghoting and Konstantin Makarychev. Indexing genomic sequences
on the IBM Blue Gene. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, pages 1–
11, 2009.

[11] Dan Gusfield. Algorithms on stings, trees, and sequences. 1997.
[12] Robert Homann, David Fleer, Robert Giegerich, and Marc Rehmsmeier.

mkESA: enhanced suffix array construction tool. Bioinformatics,
25(8):1084–1085, 2009.

[13] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a
time-and-space barrier in constructing full-text indices. SIAM Journal
on Computing, 38(6):2162–2178, 2009.

[14] Parry Husbands and Charles Isbell. The Parallel Problems Server: A
Client-Server Model for Interactive Large Scale Scientific Computation.
Proceedings of VECPAR’98, June 1998.

[15] Parry Husbands, Charles L. Isbell, and Alan Edelman. Interactive
Supercomputing with MITMatlab. August 2001.

[16] Juha Kärkkäinen. Fast BWT in small space by blockwise suffix sorting.
Theoretical Computer Science, 387(3):249–257, 2007.

[17] Juha Kärkkäinen and Dominik Kempa. Engineering a lightweight
external memory suffix array construction algorithm. Mathematics in
Computer Science, 11(2):137–149, 2017.

[18] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array
construction. In International colloquium on automata, languages, and
programming, pages 943–955. Springer, 2003.

[19] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park.
Constructing suffix arrays in linear time. Journal of Discrete Algorithms,
3(2-4):126–142, 2005.

[20] Pang Ko and Srinivas Aluru. Space efficient linear time construction of
suffix arrays. Journal of Discrete Algorithms, 3(2-4):143–156, 2005.

[21] Julian Labeit, Julian Shun, and Guy E Blelloch. Parallel lightweight
wavelet tree, suffix array and FM-index construction. Journal of Discrete
Algorithms, 43:2–17, 2017.

[22] Bin Lao, Ge Nong, Wai Hong Chan, and Yi Pan. Fast induced sorting
suffixes on a multicore machine. The Journal of Supercomputing,
74(7):3468–3485, 2018.

[23] Bin Lao, Ge Nong, Wai Hong Chan, and Jing Yi Xie. Fast in-place suffix
sorting on a multicore computer. IEEE Transactions on Computers,
67(12):1737–1749, 2018.

[24] N Jesper Larsson and Kunihiko Sadakane. Faster suffix sorting.
Theoretical Computer Science, 387(3):258–272, 2007.

[25] Zhize Li, Jian Li, and Hongwei Huo. Optimal in-place suffix sorting.
In International Symposium on String Processing and Information
Retrieval, pages 268–284. Springer, 2018.

[26] Chi-Man Liu, Ruibang Luo, and Tak-Wah Lam. GPU-accelerated
BWT construction for large collection of short reads. arXiv preprint
arXiv:1401.7457, 2014.

[27] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[28] Michael A Maniscalco and Simon J Puglisi. Faster lightweight suffix ar-
ray construction. In Proc. of International Workshop On Combinatorial
Algorithms (IWOCA), pages 16–29. Citeseer, 2006.

[29] Giovanni Manzini and Paolo Ferragina. Engineering a lightweight suffix
array construction algorithm. Algorithmica, 40(1):33–50, 2004.

[30] Michael Merrill, William Reus, and Timothy Neumann. Arkouda:
interactive data exploration backed by Chapel. In Proceedings of the
ACM SIGPLAN 6th on Chapel Implementers and Users Workshop, pages
28–28, 2019.

[31] Hisham Mohamed and Mohamed Abouelhoda. Parallel suffix sorting
based on bucket pointer refinement. In 2010 5th Cairo International
Biomedical Engineering Conference, pages 98–102. IEEE, 2010.

[32] Yuta Mori. libdivsufsort, 2015. URL: https://github.com/y-
256/libdivsufsort.

[33] Vitaly Osipov. Parallel suffix array construction for shared memory
architectures. In International Symposium on String Processing and
Information Retrieval, pages 379–384. Springer, 2012.

[34] Jacopo Pantaleoni. A massively parallel algorithm for constructing the
BWT of large string sets. arXiv preprint arXiv:1410.0562, 2014.

[35] Matt Powell. The Canterbury Corpus, Jan 2001.
[36] Simon J Puglisi, William F Smyth, and Andrew H Turpin. A taxonomy

of suffix array construction algorithms. ACM Computing Surveys
(CSUR), 39(2):4–es, 2007.

[37] William Reus. CHIUW 2020 Keynote Arkouda: Chapel-Powered, In-
teractive Supercomputing for Data Science. In 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 650–650. IEEE, 2020.

[38] Klaus-Bernd Schürmann and Jens Stoye. An incomplex algorithm
for fast suffix array construction. Software: Practice and Experience,
37(3):309–329, 2007.

[39] Julian Shun. Fast parallel computation of longest common prefixes. In
SC’14: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 387–398.
IEEE, 2014.

[40] Julian Shun and Guy E Blelloch. A simple parallel Cartesian tree
algorithm and its application to parallel suffix tree construction. ACM
Transactions on Parallel Computing (TOPC), 1(1):1–20, 2014.

[41] Julian Shun, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons,
Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. Brief
announcement: the problem based benchmark suite. In Proceedings of
the twenty-fourth annual ACM symposium on Parallelism in algorithms
and architectures, pages 68–70, 2012.

[42] Weidong Sun. Using GPU to accelerate suffix array construction.
In 2014 7th International Conference on Biomedical Engineering and
Informatics, pages 677–682. IEEE, 2014.

[43] Bohdan Turkynewych. Domains project: Processing petabytes of data
so you don’t have to, Jan 2020.

[44] Leyuan Wang, Sean Baxter, and John D Owens. Fast parallel suffix
array on the GPU. In European Conference on Parallel Processing,
pages 573–587. Springer, 2015.

[45] Leyuan Wang, Sean Baxter, and John D Owens. Fast parallel skew and
prefix-doubling suffix array construction on the GPU. Concurrency and
Computation: Practice and Experience, 28(12):3466–3484, 2016.

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 30,2021 at 16:45:14 UTC from IEEE Xplore. Restrictions apply.

