
GPU Accelerated Anomaly Detection of Large
Scale Light Curves

Austin Chase Minor, Zhihui Du and Yankui Sun
Dept. Computer Science and Technology

Tsinghua University
Beijing, China

{austin.chase.m,zhihuidu}@gmail.com,syk@tsinghua.edu.cn

David A. Bader
Department of Computer Science
New Jersey Institute of Technology

Newark, NJ, USA
bader@njit.edu

Chao Wu and Jianyan Wei
National Astronomical Observations of China

Chinese Academy of Sciences
Beijing, China

{cwu,wjy}@bao.ac.cn

Abstract—Identifying anomalies in millions of stars in real time
is a great challenge. In this paper, we develop a matched filtering
based algorithm to detect a typical anomaly, microlensing. The
algorithm can detect short timescale microlensing events with
high accuracy at their early stage with a very low false-positive
rate. Furthermore, a GPU accelerated scalable computational
framework, which can enable real time follow-up observation,
is designed. This framework efficiently divides the algorithm
between CPU and GPU, accelerating large scale light curve
processing to meet low latency requirements. Experimental
results show that the proposed method can process 200,000
stars (the maximum number of stars processed by a single
GWAC telescope) in approximately 3.34 seconds with current
commodity hardware while achieving an accuracy of 92% and an
average detection occurring approximately 14% before the peak
of the anomaly with zero false alarm. Working together with the
proposed sharding mechanism, the framework is positioned to be
extendable to multiple GPUs to improve the performance further
for the higher data throughput requirements of next-generation
telescopes.

Index Terms—anomaly detection, matched filtering, GPU,
performance optimization

I. INTRODUCTION

Microlensing is a unique anomaly that occurs when a lens
(or lenses) passes between a light source (star) and an observer
(Earth). These lenses are high mass objects that bend the light
from the source. As described in [1], this anomaly is useful
in the detection of “dark” objects. Therefore, it can be used
to detect objects that do not emit light. This is very useful
in detecting new planets and black holes [2]. Furthermore,
microlensing is a rare astronomical event, especially on the
timescale of hours.

Detecting microlensing events requires super large field of
view telescopes to observe millions of stars. Furthermore,
for short timescale events, fast search methods and high
cadence observation are required. The Ground-based Wide
Angle Camera (GWAC) [3], which can cover about 5,000

This research is supported in part by the Key Research and Development
Program of China (No.2016YFB1000602).

degree2 (each camera will cover up to 200,000 stars) and take
photos every fifteen seconds, is one such system. It is our
target optical instrument source for real time light curves used
in this research. The GWAC system itself is a comprehensive
pipeline. The other pipeline components before detection
use roughly five seconds of processing time. Therefore, any
detection method must complete within ten seconds to be
considered online. Furthermore, detecting these events earlier
than their peak is critical for follow-up telescopes to observe
the anomaly and capture more data. Thus, an efficient anomaly
detection algorithm not only should identify a microlensing
event accurately but also trigger an alarm at the early phase
of an event. Finally, cost efficiency is crucial to support long
time (ten years) observation.

The challenge of this research lies in two aspects. One
is the development of an anomaly identification algorithm
that can detect short timescale microlensing events accurately
from a large number of light curves with high noise. Another
is the optimization of the method for detection in under
ten seconds to enable real time follow-up observation. We
choose to focus on one type of microlensing anomaly, the
Paczyński microlensing anomaly [4]. This anomaly represents
the situation of a single lens passing between an observer and
a single source. This lens causes the brightness from a star to
increase until peak and then back to baseline in a symmetric
fashion. Considering the shape of Paczyński microlensing can
be well defined mathematically, we borrow the successful idea
from gravitational-wave detection [5] and design a matched
filtering based algorithm because of its advantage in accurately
identifying known shape signals from high noise inputs. At the
same time, a GPU accelerated scalable framework is developed
to handle a substantial amount of light curves in real time.
The proposed scalable framework can achieve the performance
required when the data generation rate is improved about
fifteen times in the next-generation GWAC.

In the rest of this paper, we start with a brief discussion of
related work, justifying the need for a new algorithm. We then

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:54:46 UTC from IEEE Xplore. Restrictions apply.

describe our method, showing how it satisfies the necessary re-
quirements of our system and achieves its performance gains.
To show our method’s effectiveness, we give experimental
results to demonstrate its accuracy and performance. Finally,
we end with a conclusion and emphasize where future work
should be invested.

II. RELATED WORK

The EWS (Early Warning System) developed for the OGLE
(Optical Gravitational Lensing Experiment) [6] project is an
early microlensing detection system. The algorithm was de-
signed for detecting microlensing events in non-variable stars.
Because the time scale of the target microlensing events can
be as long as several weeks to even one year, the proposed
method cannot be used in the short timescale (from several
hours to dozens of minutes) scenario.

Some machine learning algorithms, such as Hierarchical
Temporal Memory (HTM) [7] and Long Short Term Mem-
ory (LSTM) Neural Networks [8], were developed to iden-
tify anomalies. However, they are too memory and time-
consuming to use in real time settings involving large scale
data.

In the Korea Microlensing Telescope Network (KMTNet)
project [9], a simple and quick algorithm was developed.
The algorithm focuses on detecting “rising” events. If three
consecutive points are beyond the given threshold, an anomaly
alarm will be triggered. However, its accuracy cannot meet the
requirement of the GWAC telescope.

NFD (Normalized Feature Deviation) [10] is the current, in-
use method on the GWAC project, the telescope system we are
targeting. Furthermore, it is a novel method for microlensing
anomaly detection that has shown promise. NFD is a very
lightweight algorithm so it can handle large scale light curves
in real time. However, its false-positive rate is not acceptable
for practical observation. Furthermore, its accuracy could be
further improved.

With this information, we derive a set of qualities that a
successful microlensing detection algorithm must have.

1) High accuracy (low false-positive rate and high true-
positive rate).

2) High performance with low (under 10 seconds) latency.
3) Runnable on commodity hardware (cost-efficient).

III. OUR METHOD

We design a new matched filtering based microlensing
anomaly detection algorithm named PLAD (Practical Light
curve Anomaly Detection). Fundamentally, our system oper-
ates in a simple manner, matching our input with the expected
shape of a microlensing anomaly.

Our proposed method has two significant features. First, our
matched filtering based algorithm can identify anomalies with
very high accuracy. Second, our GPU accelerated, scalable
framework can provide very high performance (on commodity
hardware) to enable real time data processing and follow-up
observation.

A. Method Overview

The data processing flow for our system is given in Fig. 1.
Analyzing this dataflow, we can dissect our algorithm. First,
we have two inputs: light curves and templates. These inputs
are first normalized to fit our matched filter operation and
increase predictive performance. With our normalized inputs,
the templates are used to search the input light curves for
microlensing events. The matched filter outputs (which can
be seen as a form of confidence values) are input into our
detector. Our detector takes these and compares them to its
detection function to determine if an anomaly is occurring.

Input:
Star Light
Curves

Input Normal-
ization

Matched Filter
Light Curves

Template
Normalization

Input:
Microlensing
Templates

Is Filter
Output Above
Threshold?

Do Not Output
Alert

Output Alert Yes

No

Fig. 1. System Diagram

B. Matched Filtering based Algorithm Design

1) Optimal Matching: Matched filtering is an optimal
method for maximizing SNR of a template signal contained
in input in the presence of AGWN (Additive Gaussian White
Noise). Fundamentally, the matched filter operation needs
three inputs: a template (the signal used for searching), an esti-
mate of the AGWN noise level (for SNR scaling), and the input
signal. This can be further augmented, as done in gravitational-
wave research, to include a noise whitening component to
transform certain kinds of non-AGWN to AGWN. With these
inputs, the operation consists of computing the convolution
between the reversed template and the input signal, scaled by
the noise level. This creates a cross-correlation between the
input signal and the template. The maximum of this calculation
is the SNR of the signal in the input and corresponds to the
best time localization of the template in the signal. For more
information on the matched filter operation, see [11], [12].

Specifically, we use the alternative FFT-based formal-
ism discussed in [13] and [14]. This formalism reduces
the time complexity from O(N2), for naive convolution,
to O(Nlog(N)). However, it is important to note that the
O(Nlog(N)) has many hidden constants from the FFT oper-
ation used that can slow down processing for “small” dataset
sizes. Furthermore, the formalism includes the potential to
address certain types of non-AGWN. However, we modify it
to only consider AGWN of Sn(f) = 2∗∆f (where ∆f is the
bin width used in the FFT operation) and relax the constraint
of outputting the SNR. Furthermore, we discretize it for use
on data samples. Our formalism used can be seen in (1), where
a(t) is the input, b(t) is the template, ã(f) denotes the Fourier

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:54:46 UTC from IEEE Xplore. Restrictions apply.

transform of a(t), and ã∗(f) denotes the complex conjugation
of ã(f).

〈a(t)|b(t)〉 = R

dN/2e∑
0

ã(f)b̃∗(f) + ã∗(f)b̃(f)

 (1)

2) Template Design: There are two major design questions
when designing a template system: “What templates are we
looking for?” and “How do we space these templates?”
Both questions are fundamental. We chose to go with the
Paczyński microlensing anomaly model. This model describes
microlensing anomalies in terms of two parameters: u0 and
Einstein time (tE). u0 determines the peak, and tE controls
the length/timescale of the microlensing event. Since the
number of templates can significantly affect the total detection
time, astronomy related domain knowledge is used to limit
the parameter searching space without missing the target
microlensing events.

With regards to “How do we space these templates?”,
we evenly space templates along a range of values defined
by a high and low threshold and the density (total number
of spacings) desired. We wrote a Python script to generate
all the necessary templates. Through initial experimentation,
the total number of templates necessary is much less than
those generated by a straightforward method that covers every
single desired event in the parameter search space. This is
accomplished in two ways. First, we reduced the dimensions of
our problem. As mentioned, Paczyński microlensing anomalies
consist of two parameters. However, similar to gravitational-
wave research [13] [14] in our initial testing, one dimension
(the length dimension) conveyed most of the appropriate
information. This greatly reduces the total number of templates
needed. Second, we intentionally mismatch the templates by
only generating one template for a group of events instead of
one for each event desired. For more treatment of template
spacing, see [14] where an optimal template spacing solution
is developed for use in gravitational-wave detection.

As a final note, one small, additional optimization is used
in generating templates. As we are focusing on detecting
microlensing events before their peak (online case), we can
bias our templates for detecting early. We do this by only
generating half of the Paczyński microlensing anomaly. This
focuses detection on detecting an anomaly before its peak.
Furthermore, it reduces the amount of data needed to store
and process templates by two.

3) Input: Essential to every matched filtering method are
inputs. Currently, our method handles two different types of
inputs: online and offline. The online input is built to interact
with the GWAC system. The offline input reads from various
different formats. All of our inputs go through a multi-stage
process. First, they are read. In the case of online inputs, this
is done while running. In the case of offline inputs, this is
done at the beginning of the program. Next, each star input
is windowed to include only a subset of current data. We use
this to minimize the amount of data we must process. This

speeds up our program while allowing it to execute in GPU
RAM (approximately 1,920 samples per star per night and at
most 200,000 stars per-frame).

4) Normalization Methods: We normalize our templates in
three ways. First, we ensure our templates start and end at
approximately a magnitude of zero. We do this by subtracting
the minimum value from the microlensing anomaly. This
is to ensure that we do not impart an arbitrary DC term
to different templates, which could impart bias. Second, we
normalize them to unity under the matched filter operation
used. This ensures each template is balanced so that no
template is more powerful than another. Third, we normalize
the templates based on their length. Due to the nature of our
GPU optimization, all templates in our code are converted to
the same length through the FFT. Increasing the length of a
smaller template might change its energy. Therefore, to fit our
optimization, we modify the template normalization process to
use FFT lengths of the maximum length used in our program
for a given set of templates (the maximum length template
rounded to the next power of two).

For the input processing, the principal normalization we
focus on is outlier removal. Outliers in the data could cause
spurious outputs of the matched filter operation. Therefore, we
implemented a simple outlier removal process to remove non-
consecutive outliers that lie three standard deviations above
the average. This corresponds to removing points that are
not within the 0.27% of points, assuming our data follows
a Normal distribution.

5) Detector Design: Our detector is designed around issues
in the matched filter process. As seen in gravitational-wave
research, matched filter output is complicated by the presence
of “glitches”, which can cause outputs similar to true anomaly
detections [15] and [16]. There are many ways to handle this.
We chose to focus on a simple and efficient method that
should minimize the effect of very short transient glitches.
Our method relies on the assumption that if an input contains
a microlensing anomaly, then it will contain it for multiple
windows of data in a row. Using this assumption, we only
consider an anomaly to be a valid anomaly if the matched
filter output (for any template, as determined by the maximum
operation over all the templates’ outputs) is above the detector
threshold for three windows of data. This should help reduce
the effect of very short transient anomalies.

C. GPU Accelerated Scalable Framework

1) CPU-GPU Collaborative Design: Our complete algo-
rithm functionality is divided into two segments, a CPU
segment and a GPU segment. In the main split of operations,
outlier removal, loading data, and windowing are assigned to
the CPU. The computation-intensive matched filtering opera-
tion is assigned to the GPU. Through initial testing, we saw
a marked improvement through GPU-ization of the matched
filter operation. Furthermore, the loading of the data and the
processing of the data is orchestrated so that new data can be
loaded while old data is being processed. This is accomplished

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:54:46 UTC from IEEE Xplore. Restrictions apply.

through locking and copying the current data. Afterward, the
current data is unlocked so that new data can be added.

2) Multi-source/sink Matched Filter Optimization: Another
way of viewing the problem of processing multiple inputs in
a matched filter is as a multi-source/sink matched filter. With
this framework, our problem becomes, “How do we compute
multiple sources to multiple templates in an efficient manner?”
This is an analogue to the matrix multiplication operation. In
this operation, we have multiple rows being applied (element-
by-element multiplied and added) to many columns. If we
assign the rows of one matrix to be stars and the columns of
another matrix to be templates or vise-versa, we can compute
multiple stars against multiple templates. As an additional
added benefit, matrix multiplication, on the GPU, is a heavily
optimized operation. Compared to a naive GPU threading
design, we can have confidence of great performance using
matrix multiplication on the GPU. The relation and setup of a
matrix multiplication to compute our inner product definition
can be found in Fig. 2. (Note, we must first use FFT on the
individual inputs.)

We further implement one more matched filter optimization.
We batch our stars and templates into groups before com-
puting the matrix multiplication based matched filter. Thus,
our matched filter matrix multiplication is computed multiple
times for the combinations of the different groups. There are
three benefits to this. First, if all of the data does not fit into the
GPU’s RAM, then we can group it differently to fit. Second,
we can determine through testing the optimal grouping for
maximum throughput for any given GPU. Third, in future
work, we can extend our method to use multiple GPUs by
assigning different group combinations to different GPUs.

Star1

Star2

Starm

×

m×MaxTemplateLength

T
em

p
la
te

1

T
em

p
la
te

2

T
em

p
la
te

n

MaxTemplateLength× n

∑
i s̃
∗
(1,i)t̃(1,i)

∑
i s̃
∗
(1,i)t̃(2,i)∑

i s̃
∗
(2,i)t̃(1,i)

+

∑
i s̃(1,i)t̃

∗
(1,i)

∑
i s̃(1,i)t̃

∗
(2,i)∑

i s̃(2,i)t̃
∗
(1,i)

=

∑
i s̃(1,i)t̃

∗
(1,i) + s̃∗(1,i)t̃(1,i)

Useful formulas and notation:
〈a|b〉 = R

[∑K
0 s̃(1,i)t̃

∗
(1,i) + s̃∗(1,i)t̃(1,i)

]
K = dN/2e
ã = Fourier transform of a
ã∗ = Complex conjugation of ã

Fig. 2. Matrix Multiplication based Inner Product

3) Work Sharding: Instead of only requiring high through-
put, our problem is challenging in that it also requires strict
latency bounds. As mentioned, we must finish processing each
set of images every ten seconds. Combined with windowing,
this opens up interesting avenues for speed improvement.
Noticing that windowing implies that we process some data
points more than once, we implemented a system of work

sharding where we skip some data points while still processing
the overall signal. This sharding relies on the microlensing
anomaly being detectable for more than a very small number
of points. Furthermore, we are still able to process the overall
signal due to the high cadence of the GWAC telescope. The
two optimizations that allow work sharding to work are skip-
deltas and fragments. These both describe different but related
functionalities.

First, skip-deltas answer the questions of “When a window
of data is ready for processing?” Intuitively, a skip-delta
“skips” over a certain number of points before allowing the
algorithm to process a star’s window again. For example, a
skip-delta of 15 would cause a star that has recently been
processed to wait 15 data points (15 seconds times 15 samples)
before being processed again. In this time period, the window
of the star is still updated. Thus, at the next processing
time, our algorithm processes the freshest data for the star.
Furthermore, skip-deltas are guaranteed to not increase false-
positives. To prove this, consider that we use no skip-delta and
set our threshold so that no false-positives are detected. The
set of matched filter outputs produced by using skip-deltas is
a subset of this data. Therefore, it is impossible that it would
have additional false-positives. The same cannot be said about
decreasing false-positives. It is possible that skip-deltas will
skip over bad windows of data leading to a reduction in false-
positives, if they exist. Finally, as to its effect on true-positives,
if the anomaly is detectable over many points, it should not
affect things significantly. Furthermore, any reduction should
be concentrated in a delay to the detection of the anomaly.

Second, fragments answer the question of “What set of
frames is each star computed on?” This is crucial. Skip-deltas
by themselves only increase the throughput. However, if we
can shard the stars into groups, then we can process different
groups at different times, reducing per-frame processing time
and helping with latency. For example, if we notice that it takes
twenty seconds to process all of the stars, we can assign the
number of fragments to 2 and use a skip-delta of 2 to shard
the computation into two ten-second operations, processing
half of the stars on one frame and half of the stars on the
other frame. Our program uses fragments to establish frame
sets to compute the different shards on.

IV. EXPERIMENTAL RESULTS

A. Experiments Setup and Design

For testing, we implemented our algorithm in Rust using
ArrayFire for the GPU operations. Unless mentioned or clear
from context, each of our tests ran our algorithm with outlier
removal enabled. Furthermore, our window size was set to
be 60 samples. This corresponds to 15 minutes of data.
For detection, we used our detect-after-three scheme. For
templates, we used 600 half-width templates with a u0 of 1
and tE ranging between 1,800 and 87,616 seconds. Optimal
thresholds were calculated using a binary search across the
threshold space down to a precision of 10−3.

Regarding our performance tests, all of our results were
timed from the start of the program (including data loading)

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:54:46 UTC from IEEE Xplore. Restrictions apply.

using the POSIX shell time utility. Furthermore, the perfor-
mance dataset was loaded locally using the offline data path
discussed earlier. To reduce loading time for the massive
number of stars, each star was stored in a space-efficient
format inside of an SQLite3 database. Our templates were
kept in GPU memory throughout the entire run. The default
batching of stars and templates (grouping each into groups of
1,024) was used. Finally, our program was compiled with the
release flag and ran.

All performance tests were run on a commodity hard-
ware machine running Ubuntu 18.04.4 (Kernel 5.6.15-050615-
generic). The CPU used was an AMD Ryzen 5 3600 consisting
of 6 cores and 12 threads running at 3.6 GHz with a max boost
of 4.2 GHz. The storage used was an Intel 660p Series M.2
512 GB PCI-e x4 NAND SSD. The RAM used was a Corsair
Vengeance LPX 32GB DDR4 3000 SDRAM stick. Finally,
the GPU used was the Gigabyte Radeon RX 5700 XT OC 8G
graphics card with 8GB of GDDR6 RAM running with the
AMDGPU PRO 20.10 OpenCL driver.

GPU time is calculated by subtracting the real time of a run
from the system time and user time. The system time and user
represent the total processor time [17]. Thus, the remaining
time is time spent waiting. We assume that this time is time
spent waiting on the GPU as our RAM is fast, and we are not
reading or writing data to the SSD after loading the templates
and stars.

We tested our accuracy against the GWAC Variable Star
dataset from [10] generated using their test dataset generator.
(All NFD results used are from [10]. For details on the param-
eters under which NFD was tested on the GWAC Variable Star
dataset, see [10].) We tested our performance against a custom
dataset consisting of 200,000 stars each of 1,922 samples (8.01
hours).

The GWAC Variable Star dataset used consists of 3,240
stars. Each star is made up of one Paczyński microlens-
ing event at the end of the signal and a single sine-wave
background source with noise. Furthermore, the background
sine-wave in each star has a DC term of 0. Regarding the
length of the data, each star signal consists of 24 (approxi-
mately eight-hour) days. Each day corresponds to a typical
observation period for the GWAC telescope, which is eight
hours. Furthermore, to match real world conditions, the phase
of the background sine-wave is changed every eight-hour
period to simulate waiting a new day before another night
of observation. For further details on this dataset, see [10].

To test the effect of work sharding on accuracy and per-
formance, we used two different strategies. For the accuracy
dataset, a combination of skip-delta and fragments would have
been inefficient to use. This is due to our accuracy dataset
having very few stars (small amounts of data are parallelized
poorly on the GPU). Therefore, we only used skip-deltas to
approximate sharding. This processes the same amount of data
as using fragments and skip-deltas together. It only processes
different windows which should not, in general, change the
accuracy profile. For the performance dataset, we set fragments
and skip-deltas to be equal to the same number. This creates

the proper work sharding setup we described earlier.
The source code for PLAD’s implementation is available on

GitLab1.

B. Accuracy Results

Accuracy is measured in regards to two quantities: SPR
and ADP. Sample precision rate (SPR) is a measure of the
predictive power. It is the rate of true-positives given there
are no false-positives. Average detecting position (ADP) is a
measure of detecting position. It computes the position of the
detection within an anomaly. Since Paczyński microlensing
anomalies are symmetric, ADP is a percentage value from
-50% to 50%, with 0% representing the peak of the anomaly.

As seen in Table I, the proposed PLAD method surpasses
the predictive performance of NFD both when and when not
using work sharding. Furthermore, with a near 20% increase
in detection performance (SPR), our good results are not
the result of Monte-Carlo differences in small parts of the
data. They are an improvement in the detection of the data.
Furthermore, this is further confirmed by the analysis of the
ability to detect anomalies early (before peak). PLAD (for a
skip-delta of 1) achieved an approximately 17% increase in
early detection time compared to NFD. Therefore, PLAD not
only can detect more anomalies, but it can also allow for the
gathering of more data on on-going anomalies through early
detection, on average -14% before the peak of the anomaly.

Regarding the effect of work sharding on predictive perfor-
mance, we see minimal effects on accuracy (SPR). By increas-
ing the number of shards, some windows of data are skipped.
These windows might consist of more or less false/true-
positives. Though fixed and deterministic windows are chosen
at each time, it is practically impossible to determine which set
of windows contains more or less false/true-positive windows.
However, due to the high cadence of the telescope, these
skipped windows should not affect the final result significantly.

Concerning the effect of work sharding on ADP, our ADP
only decreases slightly. Under the assumption that a microlens-
ing anomaly is detectable for a number of windows in a row
(number of detectable windows greater than or equal to the
number of shards) near the peak, this slight decrease is in
line with our observation that the worst-case scenario in this
situation is that the current window being analyzed is the
final window before true-positive windows appear. Thus, the
proposed PLAD algorithm would need to wait the number of
shards before detection.

TABLE I
ACCURACY AND EARLY ALARM RESULTS

Method SPR ADP
NFD 73.2% 3.0%

PLAD (Skip-delta = 1) 92.28% -14.24%
PLAD (Skip-delta = 15) 92.16% -11.75%

As we can see in Table II, PLAD is generally resistant
to false-positives. There exists a range of approximately 20

1Source code located at gitlab.com/acminor/plad-rust

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:54:46 UTC from IEEE Xplore. Restrictions apply.

threshold units where our algorithm only looses 479 stars
(drops accuracy to 77.4%). This is still greater than the NFD’s
performance on our dataset. Furthermore, in this range, loss
in ADP does not result in after peak prediction (on average).
Therefore, we still can detect before the peak of the anomaly,
and PLAD still beats NFD’s performance on our dataset.
The most important thing about these findings is that we can
sacrifice very little true-positives to improve resistance to false-
positives.This is key in balancing the proper usage of shared
follow-up telescopes.

TABLE II
SELECTING THRESHOLD VALUE TO EFFICIENTLY REDUCE

FALSE-POSITIVES WITH LOW TRUE-POSITIVE AND EARLY ALARM LOSS,
SKIP-DELTA = 15

Threshold False-positives True-positives ADP
31.250 3,240 0 N/a
39.063 871 2,229 -16.510%
41.016 2 2,994 -12.570%
41.504 1 2,988 -12.023%
41.748 1 2,987 -11.741%
41.763 1 2,986 -11.737%
41.767 1 2,985 -11.749%
41.768 0 2,986 -11.748%
41.769 0 2,986 -11.748%
41.771 0 2,986 -11.742%
41.779 0 2,986 -11.729%
41.809 0 2,986 -11.685%
41.870 0 2,984 -11.632%
41.992 0 2,983 -11.454%
42.969 0 2,952 -10.633%
46.875 0 2,868 -8.208%
62.500 0 2,507 -4.465%

125.000 0 1,441 -1.471%
250.000 0 594 -0.028%
500.000 0 386 1.027%
1000.000 0 0 N/a

C. Performance Results

As seen in Table III, the proposed PLAD’s performance
is consistent. With the consistency property satisfied, we can
discuss our algorithm’s performance generally. First, we notice
that most of our time is GPU computation time. This fits
with our program architecture and run environment. Only a
small fraction of the program reads from disk and only at
the beginning. Furthermore, our standard output is piped to
/dev/null. Therefore, most of our time is spent calculating
on the GPU. If we desire further efficiency gains, then we
must focus on improving GPU speed, efficiency, or count.
Second, sharding our work into 15 shards gains a roughly
13.5x performance improvement demonstrating the power of
sharding in regard to scalability.

As seen in Table IV, PLAD operates within the performance
constraints of the GWAC system, processing 200,000 stars in
3.34 seconds. Furthermore, using our method’s work sharding
functionality, we can process 200,000 stars in less than second.
When the GWAC system upgrades to processing an image
every second, PLAD can continue to work with no changes
to the hardware running it. Work sharding demonstrates our
algorithms future adaptability and scalability, which is crucial
for a project with a ten-year run.

TABLE III
EXECUTION TIME FOR 200,000 STAR DATASET (TIME IN SECONDS),

SHARDS=SKIP-DELTA=FRAGMENTS

CPU GPU
Run Shards Real User System Time Time

1 1 6,231.922 585.412 146.425 731.837 5,500.085
2 1 6,218.907 571.965 148.946 720.911 5,497.996
3 1 6,211.460 568.147 153.670 721.817 5,489.643

Average 1 6,220.763 575.175 149.680 724.855 5,495.908
1 15 461.038 95.967 11.807 107.774 353.264
2 15 459.095 94.275 11.259 105.534 353.561
3 15 460.220 94.894 12.000 106.894 353.326

Average 15 460.118 95.045 11.689 106.734 353.384

TABLE IV
AVERAGE EXECUTION TIME TO PROCESS 200,000 STARS FOR 200,000

STAR DATASET, SHARDS=SKIP-DELTA=FRAGMENTS

Method Time (seconds)
PLAD (1 Shard) 3.34

PLAD (15 Shards) 0.25

V. CONCLUSION

Low latency, high throughput, and scalable parallel algo-
rithms are crucial for accelerating scientific research based
on big data. In this paper, we proposed an accurate matched
filtering based microlensing anomaly detection algorithm with
a very low false-positive rate. Furthermore, our algorithm
can raise an alarm approximately 14% before the peak of
a microlensing event on average. This is important because
more information about the event can be captured by follow-
up observation. Finally, with minimal effect on our detection
goals, we can increase our resistance to potential future false-
positives with very little loss in true-positives. This is key to
properly share and efficiently use follow-up telescopes.

Since microlensing is infrequent and short timescale mi-
crolensing events are even scarcer, a large number of stars
must be monitored constantly. This is a great challenge for
high performance data processing. We develop a systematic
framework that employs the GPU to accelerate the total
performance. Our framework can achieve both high throughput
and low latency using commodity hardware. Furthermore,
through the use of work sharding, we can process 200,000 stars
in under a second with minimal effect on detecting position
and accuracy. Thus, we can scale our method along with future
upgrades to the GWAC telescope system.

There are two next steps. The first step is to use our 200,000
Star dataset to determine optimal group sizes (for modern
GPUs) for batching stars and templates. Furthermore, this
should be done under two different constraints: paging the
templates in and out of GPU memory and keeping them in
GPU memory. The second step is to extend our framework
to run on multiple GPUs to further improve the performance
for next-generation sky survey telescopes, allowing for perfor-
mance gains while skipping less or no data.

REFERENCES

[1] B. Paczynski, “Gravitational microlensing by the galactic halo,” The
Astrophysical Journal, vol. 304, pp. 1–5, 5 1986.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:54:46 UTC from IEEE Xplore. Restrictions apply.

[2] A. Gould and A. Loeb, “Discovering planetary systems through gravita-
tional microlenses,” The Astrophysical Journal, vol. 396, pp. 104–114,
9 1992.

[3] J. Wei, B. Cordier, S. Antier, P. Antilogus, J.-L. Atteia, A. Bajat, S. Basa,
V. Beckmann, M. Bernardini, S. Boissier et al., “The deep and transient
universe in the svom era: new challenges and opportunities-scientific
prospects of the svom mission,” arXiv preprint arXiv:1610.06892, 2016.

[4] B. Paczynski, “Gravitational microlensing by the galactic halo,” The
Astrophysical Journal, vol. 304, pp. 1–5, 1986.

[5] B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ack-
ley, C. Adams, T. Adams, P. Addesso, R. Adhikari et al., “Observation
of gravitational waves from a binary black hole merger,” Physical review
letters, vol. 116, no. 6, p. 061102, 2016.

[6] A. Udalski, M. Szymanski, J. Kaluzny, M. Kubiak, M. Mateo,
W. Krzeminski, and B. Paczynski, “The optical gravitational lensing
experiment. the early warning system,” arXiv preprint astro-ph/9408026,
1994.

[7] S. Ahmad and S. Purdy, “Real-time anomaly detection for streaming
analytics,” arXiv preprint arXiv:1607.02480, 2016.

[8] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in Proceedings,
vol. 89. Presses universitaires de Louvain, 2015.

[9] H.-W. Kim, K.-H. Hwang, Y. Shvartzvald, J. C. Yee, M. D. Albrow, S.-
M. Cha, S.-J. Chung, A. Gould, C. Han, Y. K. Jung et al., “The Korea
Microlensing Telescope Network (KMTNet) Alert Algorithm and Alert
System,” arXiv preprint arXiv:1806.07545, 2018.

[10] J. Qiu, Y. Sun, C. Wu, Z. Du, and J. Wei, “NFD: Toward real-time min-
ing of short-timescale gravitational microlensing events,” Publications
of the Astronomical Society of the Pacific, vol. 130, no. 992, p. 104504,
2018.

[11] G. Turin, “An introduction to matched filters,” IRE Transactions on
Information Theory, vol. 6, no. 3, pp. 311–329, June 1960.

[12] L. A. Wainstein and V. D. Zubakov, Extraction of Signals from Noise.
Englewood Cliffs, N.J.: Prentice-Hall, 1962.

[13] B. J. Owen, “Search templates for gravitational waves from
inspiraling binaries: Choice of template spacing,” Physical Review
D, vol. 53, pp. 6749–6761, Jun 1996. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevD.53.6749

[14] B. J. Owen and B. S. Sathyaprakash, “Matched filtering of gravitational
waves from inspiraling compact binaries: Computational cost and tem-
plate placement,” Physical Review D, vol. 60, no. 2, p. 022002, 1999.

[15] C. Messick, K. Blackburn, P. Brady, P. Brockill, K. Cannon,
R. Cariou, S. Caudill, S. J. Chamberlin, J. D. Creighton,
R. Everett, and e. al., “Analysis framework for the prompt
discovery of compact binary mergers in gravitational-wave data,”
Physical Review D, vol. 95, no. 4, Feb 2017. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevD.95.042001

[16] Q. Chu, “Low-latency detection and localization of gravitational waves
from compact binary coalescences,” phdthesis, The University of West-
ern Australia, 2017.

[17] T. Cokelaer, “Meaning of Real, User and Sys time statistics,” 02 2018.
[Online]. Available: https://thomas-cokelaer.info/blog/2018/02/meaning-
of-real-user-and-sys-time-statistics/

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:54:46 UTC from IEEE Xplore. Restrictions apply.

