
An Efficient LP Rounding Scheme for Replica
Placement

Zhihui Du
Department of Computer Science

New Jersey Institute of Technology, Nework, New Jersey, US
zhihui.du@njit.edu

Sen Zhang
Department of Mathematics, Computer Sciences and Statistics

State University of New York, College at Oneonta
zhangs@oneonta.edu

David A. Bader
Department of Computer Science

New Jersey Institute of Technology, Nework, New Jersey, US
bader@njit.edu

Jingkun Hu
Worldmoney Blockchain Management Limited

Hong Kong
kun.hu@worldmoney.org

Abstract—Large fault-tolerant network systems with high
Quality of Service (QoS) guarantee are critical in many real world
applications and entail diverse replica placement problems. In
this paper, the replica placement problem in terms of minimizing
the replica placement cost subject to both QoS and fault-tolerant
constraints is formulated as a binary integer linear programming
problem first and then relaxed as a linear programming problem.
Given the optimal fractional linear programming solution, we
propose a two-step rounding algorithm to obtain its integer
solution. In the first step, a half rounding algorithm is used to
simplify the problem. In the second step, a cheapest amortized
cost rounding algorithm uses a novel metric, named amortized
cost, to make locally optimal rounding decision for the remaining
vertices independently. Furthermore, a conflict resolution algo-
rithm is presented to tackle the situations when different vertices
make conflicting rounding decisions. Finally, we prove that the
proposed two-step rounding algorithm has a 2-approximation
ratio when the additional conflict cost meets a given constraint.

Index Terms—Replica Placement, Quality of Service, Fault
Tolerance, Rounding Algorithm, Approximation Ratio

I. INTRODUCTION

High Quality of Service (QoS) and fault-tolerance (FT)
become much more important in emerging applications. When
widely employed replica placement [5] technology is com-
bined with both QoS and FT constraints, the problem becomes
NP-hard [6].

Approximation algorithms [10], [11] are important because
they can run in polynomial time and provide guarantee for
the quality of solution even under the worst case. Considering
replica placement technology has been widely used in many
practical fields such as Content Delivery/Distribution Network
(CDN) [8], cloud [4] and edge computing environment [2], it
is necessary to explore approximation algorithms for replica
placement problems to limit the cost boundary.

When a combinatorial optimization problem can be modeled
as a binary integer linear programming (BILP) problem, the
BILP could be relaxed to a linear programming (LP) problem
to first get the fractional solution. Proper LP rounding [9]
methods then could be used convert the fractional solutions

to obtain sub-optimal integer solution to meet constraints of
the original problems.

In this paper we present a novel LP rounding scheme
to efficiently solve the replica placement problem that aims
to minimize the total replica cost subject to both QoS and
FT constraints simultaneously. Furthermore, we identify the
condition in which the proposed rounding algorithms can
achieve provable constant approximation ratio 2.

The major contributions of this paper are as follows.

1) Propose a two-step LP rounding scheme to significantly
simplify the problem into different solvable steps.

2) Develop a novel cheapest amortized cost rounding and
conflict resolution algorithm to generate optimized inte-
ger programming solution.

3) Prove the proposed rounding algorithm has a 2-
approximation ratio when the conflict amortized cost is
no more than the cheapest amortized cost.

II. PROBLEM DESCRIPTION

In this paper we attack the replica placement optimization
problem that considers both QoS and FT constraints at the
same time [6] by developing a novel rounding scheme. This
section serves as a recap of the problem description, to both
make this paper self-contained and facilitate the presentation
of the proposed LP rounding scheme and approximation ratio
proof.

The application concerns a group of geographically dis-
tributed servers that can provide service directly (with replica)
or indirectly (without replica but it can relay the request to
other servers). Furthermore, each server is associated with a
potential cost if being placed with a replica. Each link between
a pair of servers is associated with a distance weight. All
servers are subject to both QoS requirement, which is defined
with respect to a desired reachable distance threshold, and
fault-tolerance, which is a desired number of replica servers
in its close vicinity. The object is to determine a replica
placement strategy that minimizes the total cost yet meets both

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:53:33 UTC from IEEE Xplore. Restrictions apply.

the above QoS and FT constraints which are allowed to be
customized with respect to individual servers.

A. Graph Model

We model the above replicated network topology using a
connected undirected weighted (both vertices and edges) graph
G = (V,E). Let V = {v0, v1, . . . , vN−1} is the set of vertices
whose cardinality is N , each representing a site that can be
placed replica. E = {(u, v)|u, v ∈ V } is a set of edges built
over V . Let L =< l0, l1, . . . , l|E|−1 > be the weights associ-
ated with each e ∈ E. Let S =< s0, s1, . . . , sN−1 > be the
cost vector with each element representing the cost associated
with each v ∈ V . Let Q =< q0, q1, . . . , qN−1 > stand for
the QoS requirements on V with qi corresponding to the QoS
requirement of vi. Let M =< m0,m1, . . . ,mN−1 > stand for
the fault-tolerant requirements on V with mi corresponding to
the fault-tolerant level of vertex vi.

B. Two Auxiliary Sets

The following two critical auxiliary data structures [6]
will be used to facilitate the algorithm presentation in the
subsequent section.

Influencing set IG: ∀v ∈ V , the influencing set of v is
the set of vertices u whose distances to v are within the QoS
requirement of v.

IG(v) = {u|d(v, u) ≤ q(v)}.

Influenced set ID: ∀v ∈ V , the influenced set of v is
the set of vertices u whose distances to v are within the QoS
requirement of u.

ID(v) = {u|d(v, u) ≤ q(u)}.

Here d(u, v) is used to denote the shortest distance among
all paths between v and u. Since we assume the graph is
connected, d(u, v) always exists and can be found by any
well-known all-pairs shortest path algorithms.

From the perspective of QoS, IG(v) denotes a set of
vertices that can meet the QoS requirement of a given v, which
means if any member in IG(v) is placed replica, it can serve
the request of vertex v. ID(v) denotes a set of vertices whose
QoS requirements can be met by v, which means if v is placed
a replica, those vertices in ID(v) will be served. From fault
tolerance perspective, IG(v) denotes a set of vertices whose
failures may influence vertex v; while ID(v) denotes a set
of vertices whose service may be influenced by the failure of
specific replica on given vertex v.

Note that the general problem configuration is very flexible
with respect to both edges and vertexes and the elements in
S and Q vector can take different values.

C. Problem Formulation

Given a graph G = (V,E) with each vertex annotated by
s, q and m values, and each edge annotated by l, if any
replica placement solutions exist for the network, then the
objective of the problem is to find a replica placement solution
IX whose total cost of replicas is minimized subject to the

constraints of QoS and fault tolerance of every vertex at the
same time. Here, IX is a vector of 0/1 values, where ones
refer to a set of vertices which are placed replicas. Formally,
the above problem can be modeled as the following a binary
integer linear programming problem, whose objective is to
minimize the total cost of the network subject to the Q and
M constraints:

Min : Cost(IX) = IX · ST (1)
subject to

∑
j∈IG(vi)

IXj ≥ mi,∀vi ∈ V (2)

IXi ∈ {0, 1} (3)

III. ROUNDING SCHEME

In this section, we describe a rounding scheme to solve the
proposed replica placement problem.

A. Linear Programming Relaxation as a Pre-Process

We relax the {0, 1} constraints of IX in Eq.(3) to the
range of [0, 1], consequently, convert the original binary integer
linear programming optimization problem into a continuous
linear programming optimization problem which can be ef-
ficiently solved by LP solvers. The optimal result computed
from this relaxed linear programming optimization problem
then will be subsequently used as the input of our rounding
algorithms.

According to Eq.(2), the number of constraints of our
problem is a linear function of number of variables, it is thus
easy to see that a linear programming solver will be able to run
in polynomial time with respect to the numbers of the variables
and the constraints to produce fractional coefficients.

B. Two-Step Rounding Scheme

We present an efficient rounding scheme to obtain an
integer solution from the optimal fractional linear solution. It
includes two rounding algorithms: half rounding and cheapest
amortized cost rounding. The pseudo-codes of the two-step
rounding scheme is given in Alg. 1.

Algorithm 1: Two-Step Rounding Algorithm
input : M,S, LX
output: integer solution IX

1 IX = 0;
2 forall LXi ∈ LX do
3 if (LXi ≥ 0.5) then
4 IXi = 1
5 end
6 end
7 if (IX can meet constraint M) then
8 return IX
9 end

10 else
11 Call the cheapest amortized cost rounding algorithm Alg. 2 to update IX
12 return IX
13 end

Let LX =< LX0, ..., LXN−1 > be the fractional co-
efficients of linear programming solution. Let IX =<
IX0, ..., IXN−1 > be initialized to be all zeros and be
holding the binary integer values obtained from the rounding
algorithms. During the half rounding step, for each LXi ≥ 0.5,
we will round this fractional value to 1 (IXi = 1). At the end
of the first step, if the solution vector IX can already meet
all the constraints, the algorithm will finish with a feasible

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:53:33 UTC from IEEE Xplore. Restrictions apply.

solution and it can be proved that the cost of IX is no more
than 2 times cost of the optimal linear programming solution
LX (see the proof of theorem IV.1).

If the rounding result IX from the first step cannot meet all
vertices’ constraints, we will simplify the problem as follows.
For each vertex that has been rounded to 1 due to LXi ≥ 0.5,
we will remove vi from all other vertices’ influencing set and
at the same time reduce the fault-tolerance requirement of that
vertex by 1. Consequently, we only need to consider those
coefficients in the linear programming solution whose values
are less than 0.5 to meet the unsatisfied vertices. The second
step will be applied to this simplified problem and employ the
cheapest amortized cost rounding algorithm to select a subset
of the remaining fractional values and round them to 1 to meet
the integer programming constraints.

C. Reformulation of the Simplified Problem

The problem after half rounding is formulated as follows.
Given a linear programming solution LX, 0 < LXi <
0.5, 0 ≤ i ≤ Z − 1, we have |VZ |= Z vertices with replica
cost S =< S0, ..., SZ−1 > that can meet |VW |= W vertices
with fault-tolerance requirements M =< m0, ...,mW−1 >.
We will define the LXM matrix to describe the solution of
the simplified problem as follows.

LXMW×Z =

lx0,0 ... lx0,Z−1
lx1,0 ... lx1,Z−1

...
lxW−1,0 ... lxW−1,Z−1

 (4)

where lxi,j = LXj if the replica on vertex j ∈ VZ can
support vertex i ∈ VW , otherwise lxi,j = 0. For the simplified
problem, we have

IG(vi) = {uj |lxi,j > 0, vi ∈ VW }

and
ID(uj) = {vi|lxi,j > 0, uj ∈ VZ}.

In summary, each row of LXMW×Z describes the reduced
influencing set of a vertex to be further satisfied, and each
column represents the influenced set of a contributing vertex
with a remaining non-zero coefficient.

D. Cheapest Amortized Cost Rounding

We first define the concept of amortized cost and then use it
in designing our cheapest amortized cost rounding algorithm.

Definition III.1. Amortized Cost: If one replica on vertex
uj ∈ VZ has cost S(uj) and the replica can support ID(uj)

vertices to meet their requirements, then AC(uj) =
S(uj)
|ID(uj)|

is defined as the amortized cost of the replica on vertex uj .
It is the amortized cost of each supported vertex in ID(uj) if
they equally share and pay the total cost S(uj) on vertex uj .

Based on amortized cost for each vertex in VZ , we can gen-
erate the amortized cost vector AC =< AC0, ..., ACZ−1 >
using S and the influenced set of each vertex. Then we can
define the amortized cost matrix ACM = (aci,j)W×Z , where

aci,j = ACj if lxi,j > 0. Otherwise aci,j = 0. Here i is the
ith vertex in VZ and j is the jth vertex in VW .

We then sort the vertices in VZ in their amortized cost
increasing order and the vertices in VW also in increasing
order based on their cheapest supporting vertex’s amortized
cost.

Algorithm 2: Cheapest Amortized Cost Rounding
Algorithm

input : M,S, LX
output: an integer solution IX

1 Calculate the amortized cost vector AC.
2 Sort VZ in amortized cost increasing order.
3 Sort VW based on each vi ’s cheapest supporting vertex’s amortized cost in increasing order.
4 IXM = 0
5 forall vi ∈ VW do
6 Select the cheapest amortized cost vertex in IG(vi).
7 Update IXM(vi, :) based on the selecting results.
8 end
9 if (no conflict in IXM) then

10 Let IXj = 1, ∀ixi,j = 1.
11 end
12 else
13 Call Alg.3 to resolve the conflict and update IX .
14 end
15 return IX

For ∀vi ∈ VW , if mvi
= k > 1, we can split vi into k

virtual vertex vi0 to vik−1
and each virtual vertex has mil =

1, 0 ≤ l ≤ k − 1. At the same time, we can set each vertex’s
fractional solution based on IG(vi) and make their sum equal
to 1. In this way, all the unsatisfied vertices will have fault-
tolerance requirement with 1. So we only need to handle the
special case when all vertices have the value m = 1.

The basic idea of the cheapest amortized cost rounding is
given in Alg.2. ∀vi ∈ VW , it will select the cheapest amortized
cost vertex in its influencing set and set corresponding entries
in IXM to 1. So after the rounding, each vertex vi will have
an integer programming solution vector IXM(vi, :) which
means the vi row of matrix IXM . In this way, we will build
an integer programming solution matrix IXM = (ixi,j)W×Z
and it has the same shape as LXM , where ixvi,uj

= 1 means
that vertex vi ∈ VW selects the replica on vertex uj ∈ VZ ,
otherwise ixvi,uj = 0.
∀uj ∈ VZ , and ∀vi1, vi2 ∈ VW , if we have ixvi1,uj =

ixv2,uj , it means that all vertices in VW have made the same
decision on selecting or discarding the replica on vertex uj ∈
VZ . So we can just let IXj = 1,∀ixi,j = 1 and get the
cheapest amortized cost rounding solution. Otherwise it means
that at least two vertices vi1, vi2 ∈ VW and their decisions on
at least one vertex uj ∈ VZ conflict, or ixvi1 , uj 6= ixv2,uj .
Let ConflictSet = {vc|vc ∈ VZ ∧ (vc has conflict)} be the
set of conflict vertices. For each conflict vertex vc, we will
have two kind of costs, Cheapest Amortized Cost and Conflict
Amortized Cost.

CheapestAmortizedCost(vc) =
∑
{acvi,uc

|∀vi ∈ VW , ixvi,uc
= 1} (5)

It is the amortized cost that should be paid by those vertices
that select the replica on vc. We also have

ConflictAmortizedCost(vc) =
∑
{acvi,uc

|∀vi ∈ VW , ixvi,uc
= 0} (6)

and it is the amortized cost that would not be paid by those
vertices that discard the replica on vc . So the payment conflict
on vc is generated.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:53:33 UTC from IEEE Xplore. Restrictions apply.

If there is conflict on any vertex, we will call the conflict
resolution algorithm Alg.3 to get an updated integer program-
ming solution IX to remove the conflict. We prove that if the
condition inequality (7) holds,

ConflictAmortizedCost(vc) ≤ CheapestAmortizedCost(vc),

∀vc ∈ ConflictSet (7)

our algorithm will have a 2-approximation ratio (see theorem
IV.4).

Algorithm 3: Conflict Resolution Algorithm
input : M,S, LXM,ACM, IXM
output: IX

1 forall uj ∈ VZ do
2 if (vertex uj has conflict) then
3 Calculate CostA(uj) and CostB(uj)

4 if CostA(uj) ≤ CostB(uj) then
5 Select strategy A and update corresponding entry in IXM
6 end
7 else
8 Select strategy B and update corresponding entry in IXM
9 end

10 end
11 end
12 Let IXj = 1, ∀ixi,j = 1

13 return IX

In Alg.3, we will check all vertices in VZ to get the final
solution IX without conflict and over-provisioning vertex.

If ∃uj ∈ VZ has decision conflict, we have developed two
strategies A and B to resolve the conflict. The basic idea of
strategy A is letting all vertices select uj . If there is over-
provisioning vertex ujo after solving the conflict on uj , we
will discard it. So the total cost of solution A to resolve the
conflict on vertex uj is the sum of additional rounding up cost
by removing the over-provisioning vertex’s cost if such vertex
exists. Let

UpSet(uj) = {< vi, uj > |(ixvi,uj
== 0) ∧ (lxvi,uj

> 0)}

OverUpSet(uj) = {< vi, ujo > |(ixvi,ujo
== 1)∧

ujo is an over-provisioning vertex}

then we have

CostA(uj) =
∑

<vi,uj>∈UpSet(uj)

acvi,uj −
∑

<vi,uj>∈OverUpSet(uj)

acvi,uj

Alternatively, the basic idea of strategy B is letting all vertices
discard uj instead of choosing it. However, if we let vi discard
uj , we must select another vertex uj+r whose amortized cost
is no less than AC(uj) to meet the replica requirement of vi.
To avoid introducing new conflict, if one vertex selects uj+r,
then all the vertices will be forced to select it. So the cost of
strategy B to resolve the conflict on vertex uj is the total new
rounded vertex’s cost subtracting the original rounding cost on
vertex uj . Let

RightSet(uj) = {< vx, uj+r > |(ixvi,uj == 1)∧

(lxvx,uj+r > 0) ∧ (ixvx,uj+r == 0)}

and
DownSet(uj) = {< vi, uj > |ixvi,uj == 1}

Similar to strategy A, if there is an over-provisioning vertex
ujo after rounding all uj+r , B solution will also discard the
replica on this vertex and add the corresponding tuple into
OverRightSet(uj). So the total cost of strategy B can be
defined as follows.

CostB(uj) =
∑

<ui,vj>∈RightSet(uj)

acvi,uj
−

∑
<vi,uj>∈DownSet(uj)

acvi,uj
−

∑
<vi,uj>∈OverRightSet(uj)

acvi,uj

We will select the smallest r that can resolve the conflict to
reduce the cost of solution B.

Based on the cost of two conflict resolution strategies, if
CostA(uj) ≤ CostB(uj) then we will select A strategy.
It means that we will let ixvi,uj

= 1 for ∀vi ∈ VZ and
lxvi,uj

> 0 to resolve the conflict. At the same time, over-
provisioning vertex ujo will be discarded by letting ixvi,ujo =
0 for ∀vi ∈ VW . Otherwise, for the B strategy, we will
let ixvi,uj

= 0 for ∀ < vi, uj >∈ DownSet(uj) and let
ixvi,uj

= 1 for ∀ < vi, uj >∈ RightSet(uj). Similarly, if
there is over-provisioning vertex ujo, it will be discarded by
letting ixvi,ujo = 0 for ∀vi ∈ VW .

After this checking and employing one of the two conflict
resolution strategies, we will achieve an integer solution with
no conflict and no removable over-provisioning vertex in VZ .
Then we just let IXj = 1,∀ixi,j = 1 and IX will be the
solution of our cheapest amortized cost rounding method.

IV. APPROXIMATION RATIO ANALYSIS AND PROOF

It is clear that the time complexity of half rounding is O(n)
and the cheapest amortized cost rounding is O(n2). So both of
our rounding algorithms are polynomial time complexity. Then
we will prove that the proposed two-step rounding scheme
has a 2-approximation ratio when condition inequality (7)
holds. Since our rounding scheme consists of two algorithms:
half rounding and cheapest amortized cost rounding, we will
prove that 1). the total cost of half rounding vertices will
not be more than two times of the corresponding optimal
linear programming solution’s cost; and 2). the cost due to
cheapest amortized cost rounding on the rest vertices will
also be no more than two times of the corresponding optimal
linear programming solution’s cost. So the total cost of our
rounding scheme has a 2-approximation ratio. By combining
the two rounding solutions together, we will generate a feasible
solution of the original problem.

First, we will prove the half rounding theorem.

Theorem IV.1 (2 approximation ratio of half rounding). The
total cost of half rounding vertices is no more than twice cost
of the corresponding vertices in optimal linear programming
solution.

Proof. Let
LX =< LX0, ..., LXN−1 >,

0 ≤ LXi ≤ 1, 0 ≤ i ≤ N−1 be the solution of optimal linear
programming and integer solution

IX =< IX0, ..., IXN−1 >,

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:53:33 UTC from IEEE Xplore. Restrictions apply.

if 0.5 ≤ LXi then let IXi = 1, otherwise IXi = 0, 0 ≤ i ≤
N − 1 be the result of half rounding.

So the total cost of solution IX is

∑
IXi 6=0

IXi × Si ≤
∑

IXi 6=0

2× LXi × Si ≤
∑

IXi 6=0

LXi × Si +
∑

LXi × Si

≤ 2× Cost(LP).

Here Cost(LP) means the cost of corresponding vertex in
linear programming solution.

The cheapest amortized cost rounding algorithm’s proof
includes two parts. In the first part we will prove this method
can generate a feasible integer programming solution. In the
second part we will prove that the 2-approximation ratio holds.

Lemma IV.2 (Feasibility of cheapest amortized cost round-
ing). The cheapest amortized cost rounding mechanism can
generate a feasible integer solution IX based on the optimal
linear programming solution LX .

Proof. Based on the procedure of Alg.2, if the first cheapest
amortized cost vertex can meet all given requirements without
any conflict, it will be a feasible solution. If there is any
conflict, both A and B strategies can solve the conflict without
violating the constraints. So the proposed cheapest amortized
cost rounding can generate a feasible solution.

To prove the proposed cheapest amortized cost rounding has
2-approximate ratio, based on the analysis in subsec III-D, we
only need to prove the case when M = 1. Here we will first
give a basic inequality about the cost for each vertex vi ∈ VW .

Lemma IV.3 (Basic inequality based on amortized cost).
∀vi ∈ VW and IG(vi) is sorted in amortized cost increasing
order, we have the following inequality.

acvi,u0 ≤

|IG(vi)|−1∑
uj∈IG(vi),j=0

lxvi,uj
× acvi,uj

−
|IG(vi)|−1∑

uj∈IG(vi),j=0

lxvi,uj
×∆vi,uj

vi,u0
(8)

where ∆
vi,uj
vi,u0 = acvi,uj

− acvi,u0
≥ 0.

Proof. Since LX is an optimal solution, ∀vi ∈ VW , it must
meet the following constraint.

|IG(vi)|−1∑
uj∈IG(vi),j=0

LXuj
≥M(vi) = m = 1.

If we let acmax = max{acvi,u0
, ..., acvi,um−1

} =
acvi,um−1 = acvi,u0 , then we will have the following results.

acvi,u0
= acmax ≤ (

|IG(vi)|−1∑
uj∈IG(vi),j=0

lxvi,uj
)× acmax ≤

|IG(vi)|−1∑
uj∈IG(vi),j=0

lxvi,uj × acvi,uj −
|IG(vi)|−1∑

uj∈IG(vi),j=0

lxvi,uj ×∆vi,uj
vi,u0

where ∆
vi,uj
vi,u0 = acvi,uj − acvi,u0 ≥ 0

Theorem IV.4 (The cheapest amortized cost rounding has
a 2-approximation ratio for M = 1). The cost of cheapest
amortized cost rounding mechanism has no more than twice
cost of the optimal linear programming solution for a special
case M = 1.

Proof. If M = 1, ∀vi ∈ VW , we have the basic inequality (8).
After each vertex selects its first cheapest amortized cost vertex
and set the corresponding entry of IXM , let HeadSet =
{uj |∀vi ∈ VW , ixvi,uj = 1}. It is the set of vertices which
have the cheapest amortized cost in each IG(vi). If there is
no conflict in IXM , then we can sum the inequality (8) for
∀vi ∈ VW . ∑

vi∈VW

acvi,u0
≤

∑
vi∈VW

(

|IG(vi)|−1∑
uj∈IG(vi),j=0

lxvi,uj
× acvi,uj

−
|IG(vi)|−1∑

uj∈IG(vi),j=0

lxvi,uj
×∆vi,uj

vi,u0
)

The result can be expressed as follows.

∑
uj∈HeadSet

S(uj) ≤
∑

vi∈VW

|IG(vi)|−1∑
uj∈IG(vi),j=0

lxvi,uj
× acvi,uj

−
∑

vi∈VW

|IG(vi)|−1∑
uj∈IG(vi),j=0

lxvi,uj ×∆vi,uj
vi,u0

= Cost(LP)−
∑

vi∈VW

|IG(vi)|−1∑
uj∈IG(vi),j=0

lxvi,uj
×∆vi,uj

vi,u0
≤ Cost(LP)

The left hand side is the total cost of all the selected vertices
and the right hand side is the original linear programming
solution’s cost. This is very excellent result and no any
additional cost increase compared with the linear programming
solution. So the 2-approximation boundary can definitely be
met.

If there are conflicts, we let ConflictSet be the set of
vertexes that have conflicts. Let rounding up set be

RU =
⋃

uj∈ConflictSet

(UpSet(uj) ∪RightSet(uj))

and rounding down set be

RD =
⋃

uj∈ConflictSet

(OverUpSet(uj) ∪DownSet(uj) ∪OverRightSet(uj)

If RU ∩ RD 6= φ, then we will let NeutralizedSet =
RU ∩ RD and update both RU = RU − NeutralizedSet
and RD = RD − NeutralizedSet. Then by employing the
conflict resolution strategy, the inequality (8) can be rewritten
as the following expression.

acvi,u0
+

∑
<vi,uj>∈RU

acvi,uj
−

∑
<vi,uj>∈RD

acvi,uj
≤

|IG(vi)|−1∑
uj∈IG(vi),j=0

lxvi,uj
× acvi,uj

−
∑

vi∈VW

|IG(vi)|−1∑
uj∈IG(vi),j=0

lxvi,uj
×∆vi,uj

vi,u0

+
∑

<vi,uj>∈RU

acvi,uj −
∑

<vi,uj>∈RD

acvi,uj (9)

For all the vi ∈ VW , we can also sum the left hand side
and right hand side of inequality (9) together. Let SelectSet

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:53:33 UTC from IEEE Xplore. Restrictions apply.

be the final vertices set whose replicas are selected. Then we
will have the following inequality.

∑
uj∈SelectSet

S(uj) ≤

Cost(LP)−
∑

vi∈VW

|IG(vi)|−1∑
uj∈IG(vi),j=0

lxvi,uj
×∆vi,uj

vi,u0

+
∑

<vi,uj>∈RU

acvi,uj
−

∑
<vi,uj>∈RD

acvi,uj

We can prove the following result holds.∑
<vi,uj>∈RU

acvi,uj −
∑

<vi,uj>∈RD

acvi,uj =

∑
uj∈VZ

(

∑
<vi,uj>∈RUixvi,uj

ID(uj)
S(uj))−

∑
<vi,uj>∈RD

acvi,uj

Based on inequality (7), we have
∑

<vi,uj>∈RU ixvi,uj

ID(uj)
≤ 1

2
, then

∑
uj∈VZ

(

∑
<vi,uj>∈RU ixvi,uj

ID(uj)
S(uj))−

∑
<vi,uj>∈RD

acvi,uj
≤

Cost(LP)−
∑

<vi,uj>∈RD

acvi,uj
≤ Cost(LP)

Combining them together, we have∑
uj∈SelectSet

S(uj) ≤ 2× Cost(LP)

V. RELATED WORK

Aral et al. [2] and Sahoo et al. [8] surveyed the replica
placement problems in a broad range of environments and
applications with varying objectives and constraints. Benoit et
al. studied the problems of replica placement in tree networks
subject to server capacity and distance constraints [1]. They
proved that under single server policy, the general problem is
NP-hard and provided a polynomial time optimal algorithm to
solve the problem in a restricted case of binary trees.

The targeted replica placement is a special binary integer
linear programming (BILP) problem. A BILP could be relaxed
as an LP problem, and sometimes certain clever rounding
algorithms [3] can be used to post-process fractional coeffi-
cients discovered by LP solvers to obtain sub-optimal integer
solutions. Furthermore, some LP-based rounding algorithms
have also been shown to actually be approximation algorithms
to solve many NP-hard combinatorial problems such as vertex
cover, set packing, and multiway-cut [10], [11].

Two widely used rounding approaches for designing and
analyzing such approximation algorithms are deterministic
rounding and randomized rounding. The most frequently used
deterministic rounding algorithms is to round a fractional so-
lution to a binary one by picking some threshold, e.g., 1/2, and
rounding up or down depending on if a fractional co-efficient
is greater than or less than the threshold. The basic idea of
randomized rounding [7] is to use probabilistic methods to
convert an optimal fractional solution to a relaxation of the

problem into an approximately optimal integer solution to the
original problem. A variant of randomized rounding, called
oblivious rounding, has also been introduced in [12] to avoid
the bottleneck of solving the linear program.

The optimal replica placement problem that is subject to
both QoS and fault-tolerant constraints was initially formalized
in research [6]. That paper solves the replica placement
problem by developing two heuristic graph algorithms based
on two novel heuristic metrics and the algorithms’ efficiencies
are shown through extensive experimental results. In this paper
our work contributes in terms of designing an efficient LP
rounding scheme and providing a proof that the proposed
rounding scheme can not only provide a feasible integer
solution, but also achieve a strict upper cost 2-approximation
boundary when the conflict amortized cost is no more than the
cheapest amortized cost.

VI. CONCLUSION

As more and more contemporary applications have become
increasingly distributed and decentralized, the need for more
sophisticated replica placement technologies that consider both
QoS and fault tolerance simultaneously is on the rise. So
developing efficient approximation algorithm for such problem
is critical under many practical scenarios.

In this work, we propose a novel two-step rounding scheme
to find sub-optimal solutions to the problem. The first step
uses a half rounding algorithm, which provides a clear ap-
proximation ratio of 2 and is conflict free. The second step
uses a cheapest amortized cost rounding algorithm, where
amortized cost distributes the cost of a candidate replica over
each influenced vertex of the replica. Since cheapest amortized
cost rounding algorithm applies to each vertex individually,
this step potentially could generate rounding conflicts among
multiple vertexes. To resolve the conflicts, we further propose
two adjustment strategies for each vertex with conflicts and
the one with less adjustment cost will be chosen. Finally, we
prove that in the situation when the conflict amortized cost
is no more than the cheapest amortized cost, our rounding
scheme will have a 2-approximation ratio.

REFERENCES

[1] Hubert Larchevêque Anne Benoit and Paul Renaud-Goud. Optimal
algorithms and approximation algorithms for replica placement with
distance constraints in tree networks. In 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, pages 1022–1033,
2012.

[2] Atakan Aral and Tolga Ovatman. A decentralized replica placement
algorithm for edge computing. IEEE transactions on network and
service management, 15(2):516–529, 2018.

[3] Dimitris Bertsimas and Rakesh Vohra. Rounding algorithms for covering
problems. Mathematical Programming, 80:63–89, 1998.

[4] Hamoun Ghanbari, Marin Litoiu, Przemyslaw Pawluk, and Cornel
Barna. Replica placement in cloud through simple stochastic model
predictive control. In 2014 IEEE 7th International Conference on Cloud
Computing, pages 80–87. IEEE, 2014.

[5] Kingsy Grace and Manimegalai Rajkumar. Dynamic replica placement
and selection strategies in data grids—a comprehensive survey. Journal
of Parallel and Distributed Computing, 74(2):2099–2108, 2014.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:53:33 UTC from IEEE Xplore. Restrictions apply.

[6] Jingkun Hu, Zhihui Du, Sen Zhang, and David A. Bader. Qos-aware
and fault-tolerant replica placement. In 20th International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP 2020).
Springer Nature, 2020.

[7] Prabhakar Raghavan and Clark D. Tompson. Randomized rounding:
A technique for provably good algorithms and algorithmic proofs.
Combinatorica, 7:365–374, 1987.

[8] Jagruti Sahoo, Mohammad A Salahuddin, Roch Glitho, Halima Elbiaze,
and Wessam Ajib. A survey on replica server placement algorithms for
content delivery networks. IEEE Communications Surveys & Tutorials,
19(2):1002–1026, 2016.

[9] Srikrishna Sridhar, Ji Liu, Ce Zhang, Christopher Ré, and Stephen J
Wright. An approximate, efficient solver for lp rounding. In NIPS’13:
Proceedings of the 26th International Conference on Neural Information
Processing Systems, volume 2, page 2895–2903, 2013.

[10] Vijay V Vazirani. Approximation algorithms. Springer Science &
Business Media, 2013.

[11] David P Williamson and David B Shmoys. The design of approximation
algorithms. Cambridge university press, 2011.

[12] Neal E. Young. Randomized rounding without solving the linear
program. In Proceedings of the sixth annual ACM-SIAM symposium
on Discrete algorithms, page 170–178, 1995.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 06,2021 at 00:53:33 UTC from IEEE Xplore. Restrictions apply.

