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a  b  s  t  r  a  c  t

Many  real-world  datasets  can be represented  as graphs.  Using  iterative  solvers  to  approximate  graph  cen-
trality measures  allows  us  to obtain  a ranking  vector  on  the  nodes  of the graph,  consisting  of  a number
for  each  vertex  in  the  graph  identifying  its relative  importance.  In this  work  the centrality  measures  we
use  are  Katz  Centrality  and  PageRank.  Given  an  approximate  solution,  we  use  the  residual  to  accurately
estimate  how  much  of the  ranking  matches  the  ranking  given  by  the  exact  solution.  Using  probabilistic
matrix  norms,  we  obtain  bounds  on the  accuracy  of  the  approximation  compared  to the exact  solution
with  respect  to the  highly  ranked  nodes  and  apply  numerical  analysis  to  the  computation  of central-
ity  with  iterative  methods.  This  relates  the numerical  accuracy  of the linear  solver  to  the  data  analysis
accuracy  of  finding  the correct  ranking.  In particular,  we  answer  the question  of  which  pairwise  rankings
are  reliable  given  an  approximate  solution  to the  linear  system.  Experiments  on  many  real-world  undi-
rected  and  directed  networks  up to several  million  vertices  and  several  hundred  million  edges  validate

our  theory  and  show  that  we are  able  to accurately  estimate  large  portions  of the approximation.  We
also  analyze  the  difference  between  global  centrality  scores  and  personalized  scores  (w.r.t.  specific  seed
vertices).  By  analyzing  convergence  error,  we  develop  confidence  in  the  ranking  schemes  of  data  mining.
We show  we  are  able  to accurately  guarantee  ranking  of  vertices  with  an  approximation  to  centrality
metrics  faster  than  current  methods.

©  2018  Elsevier  B.V.  All  rights  reserved.
. Introduction

Graphs are a very popular means of representing massive
mounts of relational data. One of the most popular questions aris-
ng from the analysis of large graphs is to determine the most
mportant vertices in a graph. Vertex importance is referred to as
entrality, and centrality scores can be used to provide rankings
n the vertices of a graph. While there exist many such centrality
easures, in this work we focus on Katz Centrality and PageR-

nk because of their analytical tractability. Efficiently solving for
ither of these centrality measures in a graph involves solving a
inear system. Obtaining an exact solution via direct methods is
rohibitively computationally expensive, since we  are required to
ake the inverse of a matrix. Although direct methods can usually
btain high accuracy solutions, these methods tend to consume

arge amounts of memory or take a long time to compute. For
xample, when graphs are small-world and scale-free (as are many
eal-world networks), direct methods like Cholesky require O(n2)

∗ Corresponding author.
E-mail addresses: enathan3@gatech.edu (E. Nathan), sanders29@llnl.gov

G. Sanders), henson5@llnl.gov (V.E. Henson), bader@cc.gatech.edu (D.A. Bader).

ttps://doi.org/10.1016/j.jocs.2018.02.010
877-7503/© 2018 Elsevier B.V. All rights reserved.
to O(n3) computations [1]. In many real networks the amount of
data is massive and n can be as large as millions or billions of
vertices, so direct methods such as these do not scale and are
impractical. Moreover, there is no technique to compute an exact
solution for a general graph in finite precision arithmetic, so in prac-
tice, iterative methods are often used to obtain an approximate
solution. Iterative methods tend to use less memory than direct
methods, where each iteration costs O(m), where m is the number
of edges in the graph. However, in order for an iterative method to
be cost effective, the number of iterations must be limited. Many
real-world graphs are sparse and m � n2 [2]. While occasionally
an iterative method may  require the use of a preconditioner if the
system is ill-conditioned, none of the problems analyzed here are
nearly ill-conditioned enough to merit the use of a preconditioner
[3]. The cost required to build a preconditioner would not offset
the performance benefit gained and therefore in this work we  do
not use any preconditioner. In this paper we provide theoretical
guarantees on the accuracy of an approximate solution compared
to the exact solution to certify rankings in the approximation, and

explain how they can be used to limit the number of iterations in
the iterative solver.

https://doi.org/10.1016/j.jocs.2018.02.010
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
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mailto:enathan3@gatech.edu
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.1. Contributions

The main contribution of this work is to relate the two research
reas of numerical analysis and data mining. We  show that we  can
pproximate the centrality scores of vertices on a graph to a high
nough accuracy in order to guarantee vertex ranking in graphs.
heorems 1 and 2 present a new error bound on elements of a rank-
ng vector to provide graph ranking guarantees to the computation
f centrality. We  turn our numerical theory into a new stopping
riterion for iterative solvers in Section 4.2 to identify top ranked
ertices in a graph that reduces runtime compared to running a
olver to machine precision. This paper presents the extended ver-
ion of the work by Nathan et al. in [4]. Specifically, we test our
ethod on larger datasets and extend our previous analysis of Katz

entrality to ranking using PageRank. We  use Lanczos estimates to
ound the ||A||2, the matrix 2-norm of the adjacency matrix A in Sec-
ion 4.3. Our analysis is applied to the computation of both global
nd personalized centrality scores and we develop sound theory
ith empirical analysis for both undirected and directed networks.
ur work allows for approximate solutions to centrality scores to be
sed for providing accurate guarantees of vertex ranking in graphs.
y approximating the solution to a centrality metric we are able
o theoretically guarantee the resultant ranking of highly ranked
ertices.

. Background

.1. Definitions

Let G = (V, E) be a graph, where V is the set of n vertices and E
he set of m edges. Denote the n × n adjacency matrix A of G with
ntries A(i, j) = 1 if there exists an edge from vertex i to j, 0 otherwise.
or undirected graphs, ∀i, j, A(i, j) = A(j, i), and in this work all edge
eights are 1, although all the theory presented in this paper is

asily generalized for weighted graphs.

.2. Centrality measures

In this paper we focus on two popular linear algebra based cen-
rality metrics, Katz Centrality and PageRank. Katz Centrality scores
cKatz) count the number of weighted walks in a network that end at
ach vertex in the graph. A walk of length k in a graph is a sequence
f vertices v1, v2, . . .,  vk where vertices and edges are allowed to
epeat. It is a well-known fact that powers of the adjacency matrix
re used to count walks of different lengths [5], where Ak(i, j) gives
he number of walks of length k from vertex i to j. We  can sum
eighted powers of the adjacency matrix to obtain Katz scores as

n Eq. (1). Successive powers of the parameter  ̨ are used to give
ess weight to longer walks and  ̨ must be in the range (0, 1/||A||2),

here ||A||2 is the matrix 2-norm of A. In this work we analyze the
ffect of varying  ̨ in its range.

∞

k=0

˛kAk+1 = A + ˛A2 + ˛2A3 + · · · + ˛kAk+1 + · · · = A(I − ˛A)−1 (1)

When Katz Centrality was first introduced, Katz used the column
ums of the matrix resolvent to obtain scores as cKatz = A(I − ˛A)−11
6]. We  refer to these as global Katz scores.  From a graph perspective,
hese scores count the total number of weighted walks of all lengths
nding at each vertex. We  can also calculate personalized Katz scores
rom a particular vertex i, or more intuitively, weighted counts of
he number of walks of all lengths starting at vertex i and ending at

ach vertex in the graph. These scores correspond to the ith column
n the matrix A(I − ˛A)−1 and are calculated as cKatz = A(I − ˛A)−1ei,

here ei is the ith canonical basis vector. Similarly, we can define
ersonalized scores from a group of vertices S = {v1, v2, . . .,  v|S|} by
nal Science 26 (2018) 205–216

defining a vector eS = ev1 + ev2 + · · · + ev|S| . The personalized scores

w.r.t. S are then calculated as cKatz = A(I − ˛A)−1eS. In this work
when dealing with personalized scores we only use a single ver-
tex, although the analyses presented can easily be extended to the
group personalized case. The centrality scores obtained by Katz
Centrality can thus be summarized as cKatz = AxKatz, where xKatz is
the solution to the linear system in Equation (2).

MKatzxKatz = bKatz (2)

We define MKatz = I − ˛A and bKatz to be either 1 or ei depend-
ing on whether we  are solving for the global or personalized Katz
scores.

The next centrality metric we analyze in this paper is PageRank
(cPR). PageRank is another walk-based centrality metric that assigns
high scores to vertices that are visited by a large number of random
walks in the network [7]. It was first introduced to rank webpages
in a web search. Given a query from the user, PageRank incorpo-
rates a measure of a webpage’s importance into the results of a
set of webpages that could be relevant to the user’s search query.
To define the PageRank problem, consider a hypothetical random
web surfer navigating between pages online. After visiting a web-
page, this random surfer flips a coin: if the coin comes up heads
he randomly transitions to a link from the current page, otherwise
if the coin comes up tails he teleports to a (possibly random) page
independent of the current page’s identity. If we let P = ATD−1 be
the transition matrix of probabilities, then P(i, j) is the probability
of transitioning from page j to page i. The random surfer transi-
tions according to the link structure of the web  with probability ˛
and teleports randomly with probability 1 − ˛. Most applications
set  ̨ to 0.85 [5], so in this work we also fix  ̨ = 0.85 when analyz-

ing PageRank. The scores are calculated as cPR = (I − ˛AT D−1)
−1

bPR,
where again bPR can be set to either 1 or ei for global or personalized
scores. Similar to Katz Centrality, we can define a linear system
to solve for the PageRank scores (cPR) as in Equation (3), where
MPR = I − ˛ATD−1.

MPRcPR = bPR (3)

2.3. Iterative methods

Since solving for many linear algebra based centrality measures
directly is generally intractable, in practice we  use iterative solvers
to solve for them [8]. Iterative methods approximate the solution x
in a linear system Mx  = b, given M and b, by starting with an initial
guess x0 and iteratively improving the current guess at each itera-
tion. In this work we  use x0 = 0. At each iteration k of the iterative
solver we  obtain new approximations x(k) and c(k) to the unknown
exact solutions x* and c* respectively. The error at each iteration
is denoted as the difference between the exact and approximation,
||x* − x(k)||2 and the residual norm as rk = ||b − Mx(k)||2, where ||·||2
denotes the 2-norm. Since usually the exact solution is not known,
typical stopping criteria for the iterative solver use the residual
norm, terminating when it hits machine precision, rk ≈ 10−15. Since
we analyze both undirected and directed graphs, we use two differ-
ent iterative methods, although the theory presented can be used in
conjunction with other iterative techniques. For undirected graphs,
we use conjugate gradient (without a preconditioner) [9] and for
directed graphs we use the generalize minimum residual method

(GMRES) [10]. We  solve the linear systems in Eqs. (2) and (3). For
Katz Centrality, the problem is more ill-conditioned and harder as

 ̨ → 1/||A||2 and typically requires more iterations to terminate and
converge to machine precision.
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. Related work

Many data analysis problems are answered by solving an
nduced numerical problem [11]. In this paper, by treating the
ata analysis problem of identifying the highly ranked vertices as
btaining an approximate solution to a linear system, we  present
ow error in this approximation affects the solution to the original
anking problem. Apart from Katz Centrality and PageRank, several
entrality measures can be expressed as functions of the adjacency
atrix of a graph [12]. We  focus on linear solved based techniques

n this paper. Other matrix functions can have precision based itera-
ive stopping criterions, which can be guided by our work presented
ere. For example, eigenvector centrality ranks vertices according
o the eigenvector corresponding to the largest eigenvalue of the
djacency matrix [13]. Eigenvector centrality takes into account all
alks through the network by considering both direct connections

o vertices (edges to neighbors) as well as indirect (paths through
he network). It is defined as the solution x to the linear equation
x = �x, where � is the largest eigenvalue of A. The next two mea-
ures rank vertices with respect to counting walks in the network.
he subgraph centrality of a vertex weights walks in the graph of
ength k by a factor of 1

k! [14]. The number of walks of length k

etween nodes i and j is given by [Ak](i, j). This gives rise to the
eries

∑∞
k=0Ak/k!. The total subgraph communicability of a vertex

s defined in terms of the row sums of matrix functions of the adja-
ency matrix of the network. The most common function is that of
he matrix exponential: eA = I + A + A2

2! + A3

3! + · · · + Ak

k! =
∑∞

k=0
Ak

k! .
he subgraph centrality of node i is given by [eA](i, i) while the sub-
raph communicability between nodes i and j is given by [eA](i, j)
5]. A high subgraph centrality indicates a more important vertex
n the network and a high subgraph communicability between two
ertices indicates that information flows more easily between those
wo nodes compared to other pairs of nodes with lower subgraph
ommunicability.

Ranking vertices in graphs and finding the top ranked vertices
s of very practical relevance to data analysts. Relative importance
f top vertices with respect to a particular seed set and ranking in
ractical settings are studied in [15]. As mentioned in Section 2,
olving for many linear algebra based centrality measures directly
s generally intractable so iterative solvers are used to approximate
hem [8]. To identify highly ranked vertices using linear algebra-
ased centrality, previous work in the literature typically first runs
n iterative solver to machine precision. The vertices returned as
highly ranked” are then the ones at the top of the sorted ranking
ector (i.e., the ones with a larger centrality score) [16,17]. How-
ver, there are several problems with this approach. First, running
o machine precision is slow and can require many iterations to
onverge. Second, there is not guarantee of correctness compared
o the unknown exact solution, meaning that while we  are pro-
ided with the ranking, there is no way to determine which part
f the ranking we can treat with confidence. Understanding the
rror in the approximate solution to the numerical problem is key
o understanding the error in the data mining problem of ranking.

We focus on approximating the Katz score of the vertices in
he graph to a high enough accuracy to certify that the top of the
anking vector is accurate compared to the exact solution. Several
ther methods for approximating Katz scores across the network
nly examine paths up to a certain length [16] or employ low-rank
pproximation [17]. In [18], the authors provide theoretical guar-
ntees for pairwise Katz scores and provide an algorithm to find the
atz scores from one vertex to the rest of the graph with reduced

omplexity. They use the Lanczos process to provide upper and
ower bounds on the estimate of the pair-wise scores and exploit
ocalization of the Katz matrix to provide estimates on the Katz
cores. Our work differs in that we provide confidence as to which
nal Science 26 (2018) 205–216 207

portion of the global ranking is correct and use the size of the resid-
ual to provide an accurate estimation of the ranking. Furthermore,
we extend our analysis to PageRank. Several of the techniques pre-
sented in this paper can be used for other matrix estimates or
functions to know when the iterative method converges.

We relate the two  research areas of numerical analysis and data
mining by understanding how the error in a solver affects the data
analysis problem of ranking. The main contribution of this paper is
bounding the error between the approximate and exact solutions to
accurately certify top portions of the ranking with thorough experi-
mentation to validate our results. We  derive the bound and provide
error analysis in Section 4. Numerical experiments validating the
bound including analysis of both precision and performance of our
method are presented in Section 5. Finally, in Section 6 we conclude
and discuss further uses of this work.

4. Theory

Recall that to solve for both Katz Centrality and PageRank,
we are solving a linear system. For Katz Centrality we solve for
the vector cKatz = A(I − ˛A)−1bKatz, or equivalently solve the lin-
ear system (I − ˛A)xKatz = MKatzxKatz = bKatz and then obtain cKatz

as AxKatz, where the right-hand side b is set accordingly as
described in Section 2.2. For PageRank we solve for the vector

cPR = (I − ˛AT D−1)
−1

bPR, or equivalently we solve the linear system
(I − ˛ATD−1)cPR = MPRcPR = bPR. When the solution c = M−1b to either
linear system is approximated, there will be differences between
the approximate solution and the exact solution, where c is either
cKatz or cPR. We  prove that these differences along with the ranking
values can indicate how far down the ranking we can go before the
approximation error makes it unreliable.

For iteration k of the iterative solver, define d(k) = �(k)c(k), where
�(k) is the permutation such that d(k) is the vector c(k) ordered
in decreasing order so that d(k)

i
≥ d(k)

i+1. Define �min(M)  to be the
smallest eigenvalue of the matrix M and �min(M) to be the small-
est singular value of the matrix M,  where M is either MKatz or MPR.
Again recall that the residual norm is given as rk = ||b − Mx(k)||2.

4.1. Error analysis

Theorem 1 below provides guarantees as to when the rank of
vertex i above j is correct from the approximate solution using Katz
Centrality.

Theorem 1. For undirected graphs, for any i < j, the rank of vertex i
above j using Katz Centrality is correct if |d(k)

i
− d(k)

j
| > 2�k for �k =

||A||2
�min(MKatz) rk . For directed graphs, for any i < j, the rank of vertex i above

j is correct if |d(k)
i

− d(k)
j

| > 2�k for �k = ||A||2
�min(MKatz) rk .

Proof. Using foundations of error analysis in linear solvers, we  can
bound the point-wise error in the ranking, which will then provide
a sufficient error gap in the elements of the approximation to the
ranking vector.

||d∗
Katz − d(k)

Katz ||∞ = ||c∗
Katz − c(k)

Katz ||∞
≤ ||c∗

Katz − c(k)
Katz ||2

= ||Ax∗
Katz − Ax(k)

Katz ||2
≤ ||A||2||x∗

Katz − x(k)
Katz ||2

= ||A|| ||M−1 b − x(k) ||
2 Katz Katz Katz 2

≤ ||A||2||M−1
Katz ||2||bKatz − MKatzx(k)

Katz ||2
≤ ||A||2||M−1

Katz ||2rk
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For undirected graphs (with A symmetric), we have ||MKatz ||−1 ≤
1

�min(MKatz) , so we can write:

|d∗
Katz − d(k)

Katz ||∞ ≤ ||A||2
�min(MKatz)

rk (4)

:  �k

For directed graphs (with A nonsymmetric), ||MKatz||−1 is
ounded by the inverse of the minimum singular value instead of
he inverse of the minimum eigenvalue:

||d∗
Katz − d(k)

Katz ||∞ ≤ ||A||2
�min(MKatz)

rk

=: �k

(5)

Since d(i)(k)
Katz − d(i)∗

Katz < �k and d(j)∗
Katz − d(j)(k)

Katz < �k, this

eans that d(i)∗
Katz − d(j)∗

Katz > d(i)(k)
Katz − d(j)(k)

Katz − 2�k. If d(i)(k)
Katz −

(j)(k)
Katz > 2�k, then d(i)∗

Katz − d(j)∗
Katz > 0 meaning that the ranking

f vertex i above j is correct.
Similarly, we can derive a corresponding bound for PageRank to

uarantee the ranking of vertices in the approximate ranking vec-
or. We  again separate the bounds into the undirected and directed
raph cases.

heorem 2. For undirected graphs, for any i < j, the rank of ver-
ex i above j is correct using PageRank if |d(k)

i
− d(k)

j
| > 2�k for �k =

1
�min(MPR) rk . For undirected graphs, for any i < j, the rank of vertex

 above j is correct using PageRank if |d(k)
i

− d(k)
j

| > 2�k for �k =
1

�min(MPR) rk .

roof.

||d∗
PR − d(k)

PR ||∞ = ||c∗
PR − c(k)

PR ||∞
≤ ||c∗

PR − c(k)
PR ||2

= ||M−1
PR bPR − x(k)

PR ||2
≤ ||M−1

PR ||2||bPR − MPRx(k)
PR ||2

≤ ||M−1
PR ||2rk

For undirected graphs (with A symmetric), we  have ||MPR||−1 ≤
1

�min(MPR) , so we can write:

|d∗
PR − d(k)

PR ||∞ ≤ 1
�min(MPR)

rk (6)

:  �k

For directed graphs (with A nonsymmetric), ||MPR||−1 is bounded
y the inverse of the minimum singular value instead of the inverse
f the minimum eigenvalue:

|d∗
PR − d(k)

PR ||∞ ≤ 1
�min(MPR)

rk (7)

:  �k

Again, since d(i)(k)
PR − d(i)∗

PR < �k and d(j)∗
PR − d(j)(k)

PR < �k,

his means that d(i)∗
PR − d(j)∗

PR > d(i)(k)
PR − d(j)(k)

PR − 2�k. If

(i)(k)
PR − d(j)(k)

PR > 2�k, then d(i)∗
PR − d(j)∗

PR > 0 meaning that the
anking of vertex i above j is correct.

We observe in practice that the bounds in Theorems 1 and 2 are

ight enough to produce relevant results in many practical applica-
ions (seen in Section 5) and lend themselves to the development
f a new stopping criterion for iterative solvers when identifying
he highly ranked vertices in a graph.
nal Science 26 (2018) 205–216

4.2. New stopping criterion

Current methods for identifying the top vertices in a graph
involve running an iterative solver to machine precision to obtain
an approximation of c*. We  introduce a new stopping criterion to
find these top vertices that typically provides results much faster
than existing methods, using the theory developed in Theorems 1
and 2 above. Furthermore, our method provides theoretically sound
guarantees as to the correctness of the top vertices, unlike the com-
mon  method of simply running a solver to machine precision and
blindly hoping the resulting vector is good enough for the desired
data mining task.

Suppose a user desires a set of j vertices containing the top R
highly ranked vertices in a graph, with precision �*. How large does
j need to be before we  can accurately certify (or guarantee) that the
top vertices are in the set? We  are not concerned with the internal
ordering of this set, but rather that the top R vertices are contained
somewhere within the superset of j vertices. The desired precision
�* gives a sense of how many false positives we will tolerate in our
set. We  answer this question using our theory.

Here, we present the implementation for the theory for Katz
Centrality on undirected graphs, but the same principle can be
applied to develop a stopping criterion for PageRank or directed
networks. For brevity, we drop the Katz subscript in this section.
This procedure is given in Algorithm 1, for an adjacency matrix
A, right-hand side b, number of top vertices R, desired precision
�*, maximum number of iterations kmax, and upper bound �up on
||A||2. Note we discuss bounds for ||A||2 in the next section. For all
the experiments presented in this paper, kmax is set to 1000 itera-
tions but none of the trials ever reach this maximum value. At each
iteration of conjugate gradient, the current solution c(k) is ordered
in decreasing order to produce the vector d(k) as described earlier.
We find the first position j > R in d(k) where we find the necessary
gap of |d(k)

R − d(k)
j

| > 2�k. The precision for these values of R and j is

defined as � = R
j−1 . If for this value of j we have the desired precision

�*, meaning � = R
j−1 ≥ �∗, then we  terminate, else we iterate again

using conjugate gradient to obtain a more accurate approximation.
Intuitively the precision shows how far past position R we must

travel down the vector to find the necessary gap to ensure we  are
returning the top R vertices in the graph. Conjugate gradient can
be organized to return x(k), c(k), and the residual norm rk at each
iteration (denoted CGiteration in Algorithm 1).

Algorithm 1. Obtain top R vertices in network with precision �*.

To solve for PageRank instead of Katz Centrality, we modify Line
3 to M = I − ˛ATD−1 and change the bound accordingly in Line 7.

For the directed graph case, we use GMRES (with restarts every 20
iterations) instead of conjugate gradient in Line 5 and again modify
the bound in Line 7. The vector b is set to 1 or ei accordingly if we
are solving for the global or personalized scores respectively.
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.3. Bounds on ||A||2

We  obtain a tight bound on �k which allows us to certify that
he ranking of vertex i above j is correct if the gap between two
lements in the ranking vector is greater than our error bound,
d(k)

i
− d(k)

j
| > 2�k. The iterative solver can be organized to read-

ly provide the residual norm rk at each iteration, and �min(M)  or
min(M) can be computed provided  ̨ is chosen in the given range.
o certify portions of the ranking vector, we desire �k to be as small
s possible to find places in the vector where the necessary gap
d(k)

i
− d(k)

j
| exists. For the bounds on Katz Centrality, obtaining a

ight bound on ||A||2 is key to bounding �k; we present and compare
wo methods of bounding ||A||2.

The Gershgorin Circle Theorem [19] bounds the eigenvalues of
he symmetric matrix A. Let Ti =

∑
j /=  i|aij|, the sum of the nondiago-

al entries in row i. Then D(aii, Ti) is the closed interval centered at
ii with radius Ti and every eigenvalue � ∈ �(A) must lie within
t least one interval D(aii, Ti), where �(A) is the spectrum of A.
ince the diagonal entries aii of A are 0, the discs are all centered
round the origin and ∀i, Ti = di = the degree of vertex i. We  then have
|A||2 = max�i < maxTi = dmax, where dmax is the largest degree in the
raph. While this provides a basis for an upper bound of the matrix
-norm of A, many real-world graphs such as social networks have

 scale-free distribution and thus contain vertices with a very large
egree [20]. Therefore, this is often a non-optimal bound. By using

ust a few matrix–vector multiplications applied to random vectors,
e can compute tighter bounds with high certainty.

We  next examine probabilistic matrix norm bounds [21] and
onsider replacing the true bound �up with an estimate of a bound
ith some probability. These bounds are developed using the
olynomials p, q implicitly formed as a part of the Lanczos bidi-
gonalization process with starting vector v1, which is chosen
andomly with unit norm. For ˇ0 = 0 and u(0) = 0 and k ≥ 1, the defin-
ng relations of Lanczos bidiagonalization are stated as

�ju(j) = Av(j) − ˇj−1u(j−1)

ˇjv(j+1) = AT u(j) − �jv(j),

where �j = u(j)T
Av(j) and ˇj = u(j)T

Av(j+1) are nonnegative.
herefore the following recurrence relations hold for the recurrent
olynomials derived as below:

�j+1pj(t) = qj(t) − ˇjpj−1(t)

ˇj+1qj+1(t) = tpj(t) − �j+1qj(t),

for p−1(t) = 0 and q0(t) = 1 for j ≥ 0. The bound is stated in Theo-
em 3 and the algorithm from [21] is reproduced here for clarity.
ote in Algorithm 2 that the matrices U and V are the concatenated
olumn vectors uj and vj respectively. The result is an upper bound
up(�) for ||A||2 with probability 1 − �, where � is the user-chosen
robability of bound failure. Define ı = � · 1

2 B
(

n−1
2 , 1

2

)
where B is

uler’s Beta function, B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt.

heorem 3. [21] Suppose we have carried out k steps of the Lanczos
idiagonalization process with starting vector v1, and let � ∈ (0, 1).
hen the largest zero of the polynomials,

1(t) = qk(t2) − 1/ı, f2(t) = tpk(t2) − 1/ı

with ı given above, is an upper bound �up(�) for ||A||2 with prob-

bility at least 1 − �.

lgorithm 2. Lanczos bidiagonalization to calculate probabilistic
pper bounds.
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As a result of thorough experimentation, for all bounds used in
this paper, we select values of � = 0.01 and k = 10. For k = 10, in order
to calculate �up(0.01) we are required to calculate the largest root
of a tenth order polynomial. Since this does not change regardless
of problem size n, this calculation is asymptotically a fixed cost. We
use Python’s Sympy package to calculate the roots of these polyno-
mials. The deterministic Gershgorin bounds yield large values of
||A||2, rendering these bounds useless. On average, these bounds
return estimates of ||A||2 that are 30.9× greater than the true 2-
norm. In contrast, the probabilistic bounds presented in Theorem
3 return estimates of ||A||2 that are only on average 1.07× greater
than the true 2-norm, meaning that these are able to be used for
practical purposes.

Remark 1. Future work will examine obtaining the bound in real-
time without any additional computational cost. In the Lanczos
algorithm to obtain �up we are applying A to obtain u = Av, and
in conjugate gradient we are applying A to obtain (I − ˛A)x(k) in
each iteration. These two  operations can be combined and we  can
apply A to both vectors in the same algorithm, effectively perform-
ing both Algorithms 1 and 2 simultaneously, which is important for
distributed implementations of these algorithms.

5. Results

In this section we  present comparisons to existing methods for
identifying the top ranked vertices with respect to performance
and experiments validating our bound with respect to precision.
We are interested in determining if our method correctly identifies
the set of top vertices and if so, how much faster we  are able to cer-
tify this set. The common method of iterating to machine precision
does not theoretically certify this set but our theory can be used on
the machine precision solution as well. We  conduct experiments
on both undirected and directed networks from the KONECT [22]
collection, including social networks, autonomous systems, cita-
tion, co-authorship, and web graphs. Table 1 gives the undirected
networks used and Table 2 gives the directed networks used.

For the results shown here, we  vary values of the desired preci-
sion as � ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and the top R as R = 10, 100,

and 1000. For Katz Centrality, we  vary the  ̨ parameter as a fraction
of its upper bound 1/||A||2. For personalized centrality results, we
form the vector ei by choosing a vertex i randomly from the top 10%
of highest degree vertices.
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Table 1
Undirected graphs used in experiments. Columns are graph name, number of ver-
tices, number of edges, and type of graph.

Graph |V| |E| Type

Douban 154,908 327,162 Social
Gowalla 196,591 950,327 Social
Dblp 317,080 1,049,866 Coauthorship
Dogster 426,820 8,546,581 Social
Catster 623,766 15,699,276 Social
Youtube 1,134,890 2,987,624 Social
Skitter 1,696,415 11,095,298 Computer
Flickr 1,715,255 15,551,250 Social
California 1,965,206 2,766,607 Infrastructure
Facebook 63,731 817,035 Social
Pgp 10,680 24,316 Online
Livejournal 5,204,175 49,174,464 Social
Orkut 3,072,441 117,184,899 Social

Table 2
Directed graphs used in experiments. Columns are graph name, number of vertices,
number of edges, and type of graph.

Graph |V| |E| Type

Edinburgh 23,132 312,342 Lexical
Cora 23,166 91,500 Citation
Lkml 63,399 1,096,440 Social
Epinions 75,879 508,837 Social
Enron 87,273 1,148,072 Social
Baidu 2,141,300 17,794,839 Hyperlink
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number of false positives returned in the set, or equivalently, obtain
Wiki-German 3,225,565 8,1626,917 Hyperlink
Wiki-English 18,268,991 172,183,984 Hyperlink

.1. Speedup in iterations

We  first analyze the effect of our stopping criterion on reducing
he number of iterations taken by an iterative solver to identify
he top R vertices in a graph. We  denote the number of iterations
aken by either conjugate gradient/GMRES to converge to machine
recision as IE and the number of iterations using our new stopping
riterion as IA and calculate speedup w.r.t. number of iterations as

peedup = IE
IA

.

In this section we only show results obtained with a precision of
.0 (so for a desired set of the top R vertices we return a set guaran-
eed to have no false positives) and we show results for all values
f R (10, 100, and 1000). For Katz Centrality results, we sample all
alues of  ̨ as well. Fig. 1 plots the distribution of the speedups for
ndirected graphs. Figs. 1a and b plot the histograms for global and
ersonalized Katz Centrality scores, respectively, and Figs. 1c and

 show global and personalized results for PageRank, respectively.
or the undirected graphs, for Katz scores we have an average of
.99× speedup for global scores and 4.03× for personalized scores,
nd for PageRank an average of 6.24× speedup for global scores
nd 10.23×  for personalized scores. Fig. 2 plots the distribution of
he speedups for directed graphs, again for global and personal-
zed Katz and PageRank scores. For the directed networks, for Katz
cores we obtain an average of 4.60× speedup for global scores and
.04× for personalized scores, and for PageRank an average of 2.52×
peedup for global scores and 23.91×  for personalized scores. In all
ases we obtain a speedup greater than 1× (meaning our method
s always faster) and up to a speedup of a maximum of over two
rders of magnitude. This shows that we are able to identify the top

 in a fraction of the time using our stopping criterion compared
o running until machine precision, while providing a theoretical

uarantee that these vertices are in the top of the ranking vector.
his is especially significant because running to machine precision
an sometimes take hundreds or thousands of iterations.
nal Science 26 (2018) 205–216

For all the experiments, iterating to machine precision is our
baseline for comparison and the method we  evaluate our algorithm
against. While running to a low tolerance may  suffice in many cases,
without any theoretical guarantees it is impossible to know how
stable and accurate the solution actually is. Furthermore, running
to a low tolerance of approximately 10−3 is not guaranteed to return
a correct set of the highly ranked vertices. For example, while iter-
ating to a low tolerance of exactly 1e−3  certifies the highly ranked
vertices in some cases, for other graphs even just an additional three
or four more iterations are needed in order to accurately certify the
top 10, 100, and 1000 vertices. Essentially, we  are unable to know
exactly the tolerance to which we should solve to until we use our
stopping criterion to know when we can accurately guarantee the
highly ranked vertices. In order to guarantee accurate results, our
theory must be used in conjunction with an iterative method.

5.2. Performance vs. quality

We  have shown that we are able to obtain speedups w.r.t. iter-
ation counts using our theory versus running an iterative solver to
machine precision. In this section we  examine the effect varying
the precision of the returned set of top vertices has on the speedup
obtained.

We  first explain the behavior of the sorted ranking vector d of
a single undirected graph, facebook, a citation network, using Katz
Centrality in Fig. 3. Fig. 3a plots the sorted values of d on a log-scale
for all the vertices and Fig. 3b zooms in on selected regions from
Fig. 3a. The top plot of Fig. 3b shows values for vertices 110–140
(vertices at the beginning of the sorted vector) and the bottom
plot shows values for vertices n − 711–n − 681 (vertices with scores
toward the end of the vector). The value of �k obtained as a part of
our theory is absolute. We  are able to resolve the part of the vector
that the data mining task cares about, namely the top of the vector
(the highly ranked vertices), with a guarantee that they are cor-
rect compared to the exact solution. However, for another use case
where the user desires all the vertices in the graph to be returned
correctly, since the values typically get closer to each other the fur-
ther one traverses down the ranking vector, the value of �k will not
be sufficient to provide the necessary gap between two elements
toward the end of the vector. This is seen in Fig. 3b. For the top
right plot, the two pairs of open red squares indicate pairs of ver-
tices where the gap is sufficient to certify the ranking of one vertex
above the other. Using our previous notation, this is translated into
a required precision of 1.0 (where we  look for gaps between suc-
cessive vertices). For the first pair, the difference in the scores is
9.4 × 109 × 2�k and the difference between the second pair of ver-
tices is 9.9 × 109 × 2�k. However, in the bottom right plot (values
for vertices further down the ranking vector) where the values are
very close together, the required gap 2�k is larger than the differ-
ence between successive pairs of points. The two  pairs of open red
squares indicate pairs of vertices with values too close together to
obtain the necessary gap.

Overall the d vector follows an exponential decay pattern. The
plateau-like behavior of the vector at certain points that is more
clearly seen in Fig. 3b can be explained by the fact that the Katz
vector tends to have sets of vertices grouped so tightly together
around the same value that we are unable to have the necessary
separation to apply the error analysis to certify individual vertices’
ranking. Therefore, when we want the top R vertices, it is sometimes
necessary to travel further down the ranking vector to j = R + � to
obtain the required separation between vertices, where � is the
highly ranked vertices with less than perfect (1.0) precision.
Next we  examine the tradeoff between performance and qual-

ity of our algorithm. Recall for the top R vertices returned in a
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Fig. 1. Histograms of speedups in iterations for undirected graphs with precision 1.0. All speedup values are above 1.

Fig. 2. Histograms of speedups in iterations for directed graphs with precision 1.0. All speedup values are above 1.

Fig. 3. Sorted ranking vector dKatz for facebook graph. Values are plotted in blue circles while selected points with an extremely close error gap are shown in red squares.
Left  plot is on a log-scale; right plots are on a linear scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 4. Performance versus required precision for K

uperset of j vertices, we define precision as R
j−1 . Requiring a prede-

ermined precision of �* means we want R
j−1 > �∗. Performance is

gain measured by speedup (in iterations) comparing our method
o iterating to machine precision. Results shown are averaged over
ll the datasets. Fig. 4 plots the average speedup and terminating
esidual for global and personalized scores for Katz Centrality on
ndirected graphs, where the terminating residual is the residual
pon terminating at our new stopping criterion (iteration k = IA).
e plot results for  ̨ = 0.9

||A||2 , although trends seen for other val-
es of  ̨ are similar. Fig. 4a and b plot the average speedup versus
equired precision in iterations for global and personalized scores
espectively, and Fig. 4c and d plot the terminating residual versus
equired precision for global and personalized scores respectively.
ll plots show results for the top R = 10, 100, and 1000 vertices.

In all cases (for both speedup and terminating residual), we  have
ore of an improvement using our stopping criterion for smaller

alues of R. More specifically, we obtain greater speedups and are
ble to terminate at a higher residual (obtaining a less accurate
umerical solution) for smaller values of R. This behavior can be
ttributed to the shape of the centrality vector as explained by Fig. 3
reviously. While the gap 2�k that we are looking for in between
lements of the centrality vector is fixed, elements in the vector
hemselves decrease exponentially. Therefore, for larger values of

 we need to traverse further down the ranking vector to obtain
he necessary gap. Nevertheless, we still see significant speedups
or larger values of R such as 1000. In all cases, even for large R
nd high precision rates, we are able to terminate at a residual
ignificantly above machine precision. For the personalized results
Fig. 4b and d), we see a greater speedup but lower terminating
esidual than their global counterparts (Fig. 4a and c). Intuitively,
e obtain smaller terminating residuals for the personalized results

ecause the values in the ranking vector themselves are smaller. For
 possible reason behind the greater speedup in the personalized
ase, we turn our attention back to the theory presented in Theo-

em 1. Our stopping criterion terminates the iterative solver when
e have a necessary gap between elements in the ranking vector of
�k = 2 ||A||2

�min
rk, where rk is the residual norm. The gap �k differ in the
ntrality on undirected graphs (with  ̨ = 0.9/||A||2).

global and personalized case only in the residual norm. Therefore,
the residual dictates how far we  need to traverse down the ranking
vector until we can guarantee the top vertices in the returned set.
Since the residual in the personalized case is several orders of mag-
nitude smaller than the residual in the global case, we seek a smaller
gap between elements in the ranking vector. We  are therefore able
to stop after fewer iterations, relative to machine precision, in the
personalized case. Finally as expected, as we increase the required
precision we see reduced speedups and smaller terminating resid-
uals. Increasing the required precision means we desire a tighter
set of the top R vertices to be returned. For example, for a preci-
sion of 1.0 we  are looking for a gap of 2�k between elements R and
R + 1, whereas for a precision of 0.5 we  are only looking for a gap
between elements R and 2R + 1. Clearly we will be able to find a gap
between elements that are farther apart such as R and 2R + 1 much
faster than successive elements R and R + 1, so larger speedups for
smaller precisions is not surprising. However, we note that the dif-
ference in speedups for required precisions from about 0.5 to 0.9
is about the same as the difference in speedups for required preci-
sions from about 0.9 to 1.0. This means that we are able to quickly
obtain highly ranked vertices without sacrificing too much quality.

Fig. 5 broadly plots the same results as above except for directed
graphs. We  again plot results for  ̨ = 0.9

||A||2 . Fig. 5a and b plot the
average speedup versus required precision in iterations for global
and personalized scores respectively, and Fig. 5c and d plot the
terminating residual versus required precision for global and per-
sonalized scores respectively. Most of the same trends discussed
from the undirected results are applicable for the directed graphs.
In fact, for the personalized speedups (Fig. 4b), there is a much
stronger trend of obtaining a relatively constant speedup for preci-
sions of 0.5–0.9 and then a sharp drop in speedup for a precision of
1.0. This suggests that while there are vertices in the ranking vector
with these necessary gaps to guarantee ranking, in order to find the
gap between successive vertices the solver needs to reach a high

level of accuracy. From this we  can conclude that if the use case can
tolerate a few false positives in the set of the top R highly ranked
vertices, then we  can obtain the top vertices in a graph quickly with
relatively high precision.
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Fig. 5. Performance versus required precision for Katz Centrality on directed graphs (with  ̨ = 0.9/||A||2).
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Fig. 6. Performance versus required p

Next we analyze the effect of our stopping criterion on PageR-
nk. Here we use the theory from Theorem 2 for both undirected
Fig. 6) and directed (Fig. 7) graphs. Similar to the results for Katz
entrality earlier, we see higher speedups and lower terminating
esiduals for the personalized results (Fig. 6b and d) compared to
heir global counterparts (Fig. 6a and c). For PageRank, however, the
peedups in the personalized case are considerably higher than the

espective global ones. We  also see similar trends of larger speedups
nd higher terminating residuals for smaller values of R. Note that
n Fig. 6a and b there are regions in the plot where the speedup for
n for PageRank on undirected graphs.

R = 10 is less than the speedup for R = 100 (for the same precision).
This is likely due to the behavior of the ranking vector for these
values. For example, if the centrality values of vertices in the top
10–20 vertices are very similar, our stopping criterion would have
to iterate further in order to obtain that required gap of 2�k. Like-
wise, if the values for vertices 100 and 101 are very far apart and
the gap is found almost immediately, then the stopping criterion

will be able to terminate sooner. This behavior of the centrality
vector would lead to cases where speedup for higher values of R
is greater than that of lower values of R. Finally, we  examine our



214 E. Nathan et al. / Journal of Computational Science 26 (2018) 205–216

Fig. 7. Performance versus required precision for PageRank on directed graphs.

Fig. 8. Terminating residual obtained as we increase  ̨ for Katz scores in undirected graphs.
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topping criterion on PageRank for directed graphs. Like Katz Cen-
rality on directed graphs, the terminating residual (both global and
ersonalized rankings) stays relatively constant for a required pre-
ision between 0.5–0.8 or 0.9 and then sharply drops for a required
recision of 1.0.

.3. Effect of stopping criterion on harder problems
Finally we investigate on what problems our method proves
o be the most useful. For these results, we focus our analysis
xclusively on Katz Centrality. We  know as  ̨ → 1

||A||2 , the problem
ease  ̨ for Katz scores in directed graphs.

becomes more ill-conditioned and typically requires more itera-
tions to converge to machine precision. Since  ̨ ∈ (0, 1/||A||2), we
apply our stopping criterion to the different graphs for various ˛
in this range. Fig. 8 plots the relationship between  ̨ and the resid-
ual norm obtained when the solver terminates using our criterion
for undirected graphs for global (Fig. 8a) and personalized (Fig. 8b)
rankings. The blue scatterplot points show the averaged values and

the green line in the plots is a line fitted using regression analysis.
We use values of  ̨ ∈ { .05

||A||2 , .1
||A||2 , . . ., .95

||A||2 }. For each value of ˛, the
log of the averaged residual norm obtained upon termination using
our stopping criterion is plotted across graphs. All results are aver-
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ged over values of R = 10, 100, and 1000 and over all the graphs.
hen running to machine precision, the residual norm upon ter-
ination is typically rk ≈ 10−15, but we see that we never have to

terate until machine precision using our new stopping criterion if
e are interested in only the top vertices in a graph. Regression

nalysis of these results shows a strong linear correlation with a
lope of 4.617 and mean sum of squares of 0.724 for the global val-
es and a slope of 17.110 and mean sum of squares of 0.862 for the
ersonalized values. We  repeat the same analysis for the directed
etworks in Fig. 9, with the global results plotted in Fig. 9a and the
ersonalized results plotted in Fig. 9b. The slope of the line plotted
or the global results is 2.74 with a mean sum of squares of 0.804
nd the slope for the personalized results is 2.86 with a mean sum of
quares of 0.544. The linear relationship suggests that we  need less
ccurate approximate solutions for harder problems as  ̨ → 1

||A||2 to
btain the top vertices in the graph. Typically the harder problems
end to take thousands of iterations to converge with the standard
topping criterion of iterating until a residual norm of 10−15, but
ith our stopping criterion we can converge faster at a lower tol-

rance to solve the desired data mining task for the global scores.
he low residual norm suggests we are able to certify the top R
orrectly with low fidelity solutions and we are able to use this
echnique to turn harder linear algebra problems into easier data

ining problems.

. Conclusions

This work bridges the two research areas of numerical accu-
acy of solvers and network analysis by understanding how the
rror in a solver affects the data analysis problem of ranking. We
xtended our previous work of certifying ranking in undirected
raphs using global Katz scores by developing additional theory to
uarantee ranking using PageRank. Additionally, we show our the-
ry holds for directed graphs and furthermore compare results for
lobal versus personalized centrality scores. We  turned the data
nalysis problem of ranking vertices in graph into the numerical
roblem of understanding accuracy in a linear solver. This allows
s to provide guarantees as to how accurate of a solution to the
umerical problem we  need to certify highly ranked vertices in
raphs. We provided theoretical guarantees to bound the error in
n approximate solution from an iterative method to the exact cen-
rality scores (either using Katz or PageRank) of vertices and are able
o identify the most central vertices with high confidence. Using the
heory and error analysis, we developed a new stopping criterion
hat can be used in conjunction with any iterative solver to deter-

ine when to terminate given a desired number of highly ranked
ertices with some preset precision, where the precision provides a
ound on how many false positives we will tolerate being returned.
ith our new stopping criterion, we see a reduction in the number

f iterations taken to solve the data analysis problem of ranking
hile maintaining a high precision rate in identifying top vertices.

n fact, for personalized PageRank scores we obtain speedups of
everal orders of magnitude. As evidenced by the close relationship
etween the theory for Katz Centrality and PageRank, the results
rom this paper can be applied to any linear solver based ranking.
dentifying top ranked vertices by Katz Centrality or PageRank are
ust two examples in practice presented in this work, but the theory
s generalizable to other linear algebra based ranking metrics.
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