
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2018) 8:26
https://doi.org/10.1007/s13278-018-0504-3

ORIGINAL ARTICLE

Incrementally updating Katz centrality in dynamic graphs

Eisha Nathan1 · David A. Bader1

Received: 1 November 2017 / Revised: 21 March 2018 / Accepted: 22 March 2018 / Published online: 29 March 2018
© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract
A variety of large datasets, such as social networks or biological data, can be represented as graphs. A common query in
graph analysis is to identify the most important vertices in a graph. Centrality metrics are used to obtain numerical scores
for each vertex in the graph. The scores are then translated to rankings identifying relative importance of vertices. In this
work, we focus on Katz centrality, a linear algebra-based metric. In many real applications, since data are constantly being
produced and changed, it is necessary to have a dynamic algorithm to update centrality scores with minimal computation
when the graph changes. We present an algorithm for updating Katz centrality scores in a dynamic graph that incrementally
updates the centrality scores as the underlying graph changes. Our proposed method exploits properties of iterative solvers
to obtain updated Katz scores in dynamic graphs. Our dynamic algorithm improves performance and achieves speedups of
over two orders of magnitude compared to a standard static algorithm while maintaining high quality of results.

Keywords Katz centrality · Dynamic graphs · Iterative solvers

1 Introduction

Graphs are a natural representation for modeling relation-
ships between entities, in web traffic, financial transactions,
computer networks, or society (Benzi and Klymko 2014).
A significant question arising from the analysis of graphs is
to identify the most important vertices in a graph (Kempe
et al. 2003). Vertex importance is termed as centrality and
centrality scores can be used to provide rankings on the ver-
tices of a graph (Benzi et al. 2013). Consider a web-Google
graph. When inputting a search query into Google, a user
typically wants the most relevant results to the search query
to show up at the top of the returned results. Furthermore, a
user likely only has enough human resources to examine the
top 75–100 results. Therefore, correct ranking is important
with respect to the search results. In a network modeling dis-
ease spread, an analyst might wish to find the sites of disease
origin. These queries are answered by looking at the highly
ranked vertices.

In real-world networks today, new data are constantly
being produced, leading to the notion of dynamic graphs.
Dynamic graph data can represent the changing relation-
ships in networks. For example, consider a graph modeling
relationships on Facebook, where vertices are people and
edges exist between two vertices if the corresponding people
are friends on Facebook. As new friendships are formed and
old ones deleted, the corresponding graph will change over
time to reflect these new relationships. The identification of
central vertices in an evolving network is a fundamental prob-
lem in network analysis (Benzi et al. (2013)). Development
of dynamic algorithms for updating centrality measures in
graphs is therefore an important research problem. A naive
method of obtaining updated centrality scores in dynamic
graphs is to recalculate the scores from scratch every time the
graph is changed. We refer to this simplistic method as static
recomputation. However, this becomes computationally
intensive to constantly recalculate from scratch as more and
more data are added to the graph. Therefore, it is preferable to
have alternate methods to efficiently obtain updated centrality
scores in a changing graph. In this work, we present a new
algorithm for updating Katz centrality in dynamic graphs.
Katz centrality is a metric that measures the affinity between
vertices as a weighted sum of the walks between them while
penalizing longer walks in the network (Katz 1953). The lin-
ear algebraic formulation of Katz centrality lends itself to a

 * Eisha Nathan
 enathan3@gatech.edu

 David A. Bader
 bader@gatech.edu

1 School of Computational Science and Engineering, Georgia
Tech, Atlanta, GA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-018-0504-3&domain=pdf

 Social Network Analysis and Mining (2018) 8:26

1 3

26 Page 2 of 15

dynamic algorithm based in a numerical linear algebra envi-
ronment using iterative solvers. In contrast to a static algo-
rithm that is run once on an unchanging graph, our algorithm
is able to incrementally update solutions between different
timepoints as new data are added to a changing graph.

1.1 Contributions

We present a new linear algebra-based method to incremen-
tally update Katz centrality scores in a dynamic graph. Our
algorithm is faster than recomputing centrality scores from
scratch every time the graph is updated and returns high-
quality results that are similar to results obtained with a sim-
ple static recomputation method. This paper presents the
extended version of the work by Nathan and Bader (2017).
We evaluate our algorithm on larger datasets and present an
alternate approach and discuss its shortcomings compared to
our algorithm. We examine how our algorithm behaves with
respect to both global and personalized centrality scores and
analyze how the granularity of the time step affects the qual-
ity of our algorithm. We compare our dynamic algorithm
to multiple static recomputation methods and additionally
examine the quality of our algorithm if we are only con-
cerned with recall of the highly ranked vertices in dynamic
graphs. Finally, we present an approach on how to handle
vertex additions and deletions using our algorithm.

Section 2 discusses relevant work in the literature, and
Sect. 3 provides the necessary background and definitions
required to understand our work. In Sect. 4, we present an
alternate method and provide the motivation for our dynamic
algorithm. We present our algorithm for updating Katz cen-
trality scores in dynamic graphs in Sect. 5. Section 6 pro-
vides an analysis of our method on both synthetic and real-
world networks with respect to performance and quality. In
Sect. 7, we discuss a possible approach for handling vertex
additions and deletions and in Sect. 8 we conclude.

2 Related work

Betweenness and closeness centrality are two very popular
graph metrics in network analysis for identifying the most
important vertices in a graph, with specific applications in
network stability, traffic predictions, and social network anal-
ysis (Benzi et al. 2013). Betweenness centrality (BC(v)) looks
at the vertices with high betweenness, i.e., those vertices
whose removal would cause a significant number of shortest
paths do not exist anymore. This notion was first established
by Freeman, to compare the number of shortest paths going
through a vertex v with the total number of shortest paths
(Freeman 1977) . Formal ly i t i s def ined as
BC(v) =

∑
s≠v≠t∈V

�st(v)

�st
 , where �st(v) is the number of shortest

paths from vertex s to vertex t that include node v and �st is

the number of shortest paths from s to t in general. Closeness
centrality (CC(v)) was first introduced by Bavelas in 1950 to
measure the ‘farness’ of a vertex, defined as the sum of its
distances from all other vertices, and its ‘closeness,’ defined
as the reciprocal of the farness (Bavelas 1950). Closeness
centrality measures how close a vertex is to all other vertices
based on the shortest-path length. It is formally defined as
CC(v) =

1∑
t∈V dG(v,t)

 , where dG(v, t) is the length of the shortest

path between node v and node t. Since both these metrics are
fairly computationally intensive to calculate, in the case of
dynamic graphs it is optimal to have an algorithm that can
update the centrality values with minimal effort as the graph
updates instead of recomputing the centrality values from
scratch. In Wei and Carley (2014), the authors propose an
algorithm to update both betweenness and closeness calcula-
tions together after receiving edge updates to the graph. By
splitting up the calculation of the centrality metrics into two
parts, they avoid performing unnecessary calculations per-
formed in previous time steps. The first step repeats a calcula-
tion process until the shortest path is converged, and the sec-
ond step aggregates the shortest path calculation into
closeness and betweenness centralities. The first step can be
performed for both closeness and betweenness centrality
simultaneously. The authors in Sariyuce et al. (2013) propose
an incremental algorithm for closeness centrality by exploit-
ing specific network topological properties: specifically their
shortest-distance distributions, biconnected components dis-
tributions, and the existence of vertices with identical neigh-
borhoods. They achieve a mean speedup of 43.5× for smaller
graphs with less than 500 K edges and 99.8× for larger graphs
with more than 500 K edges. Finally, the authors in Green
et al. (2012) propose an incremental algorithm for updating
betweenness centrality values by maintaining additional data
structures to store previously computed values. They are able
to achieve speedups of 100–400× on synthetic networks and
speedups of 36–148× on real networks.

Several centrality measures can be expressed as functions of
the adjacency matrix of a graph (Benzi et al. 2013). The cen-
trality metric is obtained by solving a linear system, and the
solution is then a vector consisting of a number for each vertex
in the graph identifying its relative importance. Obtaining an
exact solution via direct methods is prohibitively computation-
ally expensive, since we are typically required to take the inverse
of a matrix. The most accurate way to obtain the exact solution
would be by LU decomposition, which costs (n2) , where n is
the number of vertices in the graph. In many real networks, the
amount of data is massive and n can be as large as millions or
billions of vertices, so direct methods such as these do not scale
and are impractical. Moreover, there is no technique to compute
an exact solution for a general graph in finite precision arithme-
tic, so in practice, iterative methods are often used to obtain an
approximate solution. We explain this in more detail in Sect. 3.1.

Social Network Analysis and Mining (2018) 8:26

1 3

Page 3 of 15 26

PageRank is a common method for ranking vertices in
graphs, where a high score means random walks through the
graph tend to visit the highly ranked vertices, and was first
introduced rank webpages in a web search (Page et al. 1999).
Given a search term from the user, PageRank incorporates
a measure of a webpage’s importance into the results of a
set of webpages that could be relevant to the desired search
term. However, over time many more applications have
risen, such as in bibliometrics, social, and information net-
work analysis. For example, personalized PageRank vectors
have been used for local community detection (Riedy 2016).
It has also been used in analysis of road networks and for
link prediction and recommendation systems (Gleich 2015).
To define the PageRank problem, we consider a random
surfer model: a hypothetical random web surfer navigating
between webpages online. When this random surfer visits a
webpage, he tosses a coin; if the coin comes up heads he ran-
domly clicks on a link from the current page and transitions
there, if the coin comes up tails, he teleports to a (possibly
random) page independent of the current page’s identity. Let
P = ATD−1 be the transition matrix of probabilities, specifi-
cally P(i, j) is the probability of transitioning from page j
to page i. Assume the random surfer transitions according
to the link structure of the web with probability � and tel-
eports randomly with probability 1 − � . When teleporting
randomly, the surfer teleports according to a teleportation
distribution vector � , where � is typically a uniform distribu-
tion over all pages. Many applications typically set � to 0.85.
Then, the solution � to the equation (I − �P)� = (1 − �)�
gives the desired PageRank vector.

There has been much work in the literature for updating
PageRank for dynamic graphs, and these techniques fall under
two general areas: (1) linear algebraic methods that mainly use
techniques from linear and matrix algebra (Chen et al. 2004;
Chien et al. 2001) and (2) Monte Carlo methods that use a
small number of simulated random walks per vertex (Sarma
et al. 2011; Gyöngyi et al. 2004). “Aggregation” methods
operate under the assumption that changes to the graph will
affect only a localized portion of the PageRank vector (Lang-
ville and Meyer 2002, 2004). These methods partition the set
of vertices into two disjoint sets: C is the set of all vertices
close to/affected by the changes made to the underlying net-
work and V∖C consists of the remaining vertices. The vertices
in V∖C are aggregated into a single hyper-vertex and a smaller
graph is created. Using the smaller graph, the PageRank val-
ues of all vertices are updated and the result is pushed back
to the initial larger graphs. While initially accurate for the
first few edge updates, since this method ultimately produces
an approximation to the exact PageRank vector, there is the
possibility that the error could accumulate over time. More
importantly, these types of techniques do not fare very well for
real-time monitoring applications in terms of performance and
can end up being very slow. The second class of techniques

rely on Monte Carlo methods for the incremental computation
of random walk methods such as PageRank (Bahmani et al.
2010). While they are far more efficient for performance and
produce better quality results, thus far these techniques have
only been studies in static networks. These methods maintain
a small number of short random walk segments starting at
each vertex in the graph. For the case of identifying the top
k vertices, these methods are able to provide highly accu-
rate estimates of the centrality values for the top vertices, but
smaller values in the personalized case are nearly identical
and therefore impossible to tell apart. Finally, Riedy (2016)
provides a formula for updating PageRank using the notion of
iterative refinement to update the residual of the linear system
after receiving graph updates. Katz centrality is a similar lin-
ear algebraic centrality metric to PageRank; however, while
there is much work on dynamic PageRank in the literature, as
far as the authors are aware there is no work on dynamic Katz
centrality. Therefore, in this work, we focus on Katz centrality
and develop an algorithm for updating scores on vertices in
a dynamic graph.

3 Background and definitions

Many data analysis problems are phrased as numerical prob-
lems for a more tractable solution (Kokiopoulou et al. 2011).
In this work, we use a linear algebra-based method to com-
pute Katz centrality to obtain updated centrality scores on
the vertices of a dynamic graph.

Let G = (V ,E) be a graph, where V is the set of n vertices
and E the set of m edges. Denote the n × n adjacency matrix
A of G as

We use und i rec ted , unweigh ted g raphs so
∀i, j, A(i, j) = A(j, i) and all edge weights are 1. A dynamic
graph can change over time due to edge insertions and dele-
tions and vertex additions and deletions. As a graph changes,
we can take snapshots of its current state. We denote the
current snapshot of the dynamic graph G and correspond-
ing adjacency matrix A at time t by Gt = (Vt,Et) and At ,
respectively. In this work, the vertex set is constant over
time so ∀t,Vt = V , and we deal only with edge insertions,
although our algorithm can be applied for edge deletions
as well. Given edge updates to the graph, we write the new
adjacency matrix at time t + 1 as At+1 = At + �A , where �A
represents the new edges being added into the graph.

Katz centrality scores count the number of weighted
walks in a graph between vertices in a graph, while penaliz-
ing longer walks in the network by a user-chosen parameter
� . A walk of length k in a graph is a sequence of k vertices
v1, v2,… , vk where both vertices and edges are allowed to

A(i, j) =

{
1, if (i, j) ∈ E,

0, otherwise.

 Social Network Analysis and Mining (2018) 8:26

1 3

26 Page 4 of 15

repeat. Counts of walks in a graph can be calculated using
powers of the adjacency matrix (Higham 2008). Specifically,
Ak(i, j) represents the number of walks of length k from ver-
tex i to j. To obtain weighted counts of walks of all lengths
in the network, we can derive the following infinite series:

This infinite series converges to the matrix resolvent
A(I − �A)−1 . Katz originally used the row sums of this
matrix to calculate centrality scores as A(I − �A)−1� . The
result is an n × 1 vector where the jth value in this vector
represents the total number of weighted walks of all lengths
starting at vertex j. We refer to these as global Katz scores.
Similarly, we can derive a corresponding formula for per-
sonalized Katz scores as A(I − �A)−1�i , where �i is the ith
canonical basis vector. The result is again an n × 1 vector,
where the jth value in this vector represents the number of
weighted walks of all lengths starting at vertex i and end-
ing at vertex j. We set � = 0.85∕‖A‖2 to mimic PageRank
computations (Gleich 2015), and in this work we study both
global and personalized scores.

3.1 Iterative methods

Directly solving for the exact Katz centrality scores � is on
the order of (n2) and quickly becomes very expensive and
impractical as n grows large. Therefore, in practice we use
iterative methods to obtain an approximation which costs
(m) provided the number of iterations is not very large. Many
real-world graphs are sparse and m ≪ n2 (Albert et al. 1999).
Iterative methods approximate the solution � to a linear sys-
tem M� = � , given M and � by starting with an initial guess
�(0) and improving the current guess with each iteration until
some stopping criterion is reached. This stopping criterion can
be a predetermined number of iterations, a desired level of
accuracy, or some application-specific terminating criterion.
At each iteration k of the iterative solver, we obtain a new
approximation �(k) . Unless otherwise stated, all the work here
assumes a starting approximation �(0) as the all zeros vector,
although any starting vector can be chosen. The residual at the
kth iteration is denoted as �(k) = � −M�(k) and is a measure
of how close the current solution �(k) is to solve the system
M� = � . We let M = I − �A , so we solve the linear system
M� = � for � using an iterative method and then obtain the
Katz scores using a matrix-vector multiplication in (m) as

∞∑

i=0

�
i−1Ai = A + �A2 + �

2A3 +⋯ + �
k−1Ak +⋯ .

� = A� . We set � = � for the global scores and � = �i for the
personalized scores. The iterative method we use here is the
Jacobi algorithm (Saad 2003) outlined in Algorithm 1. Here,
D is the matrix consisting of the diagonal entries from M and R
is the matrix of all off-diagonal entries of M. We terminate the
solver when the solution changes by less than a fixed tolerance
tol (Riedy 2016), or when ‖�k+1 − �k‖2.

Our dynamic algorithm is also motivated by principles
of iterative refinement, another iterative method that adds
a correction to the current guess to obtain a more accurate
approximation (Wilkinson 1994). To compute the solution �
to the linear system M� = � , iterative refinement repeatedly
performs the following steps at each iteration k.

1. Compute residual �(k) = � −M�(k)

2. Solve system M�(k) = �(k) for correction �(k)
3. Add correction to obtain new solution �(k+1) = �(k) + �(k)

Note that we can use any other iterative method to solve the
system in Step 2.

4 Motivation and initial approach

4.1 Static algorithm

Given edge updates to the graph, the static algorithm to rec-
ompute the Katz centrality scores in the updated graph first
calculates � from scratch using an iterative method and then
calculates � using a single matrix-vector multiplication. This
procedure is given in Algorithm 2 to obtain the new solution
�t+1 at time t + 1 given updates �A to the graph. After a batch
of edges has been inserted into the network, the adjacency
matrix is updated to At+1 and the vector �t+1 is recomputed
using the Jacobi method from Algorithm 1.

Social Network Analysis and Mining (2018) 8:26

1 3

Page 5 of 15 26

Since calculating �t given �t at any timepoint t is one
matrix-vector multiplication and can be done in (m) , this
is not the bottleneck of the static algorithm. As more data are
added to the graph, the number of iterations taken to update
�t+1 in Line 4 increases and pure recomputation becomes
increasingly expensive as the graph size increases. We thus
focus the development of our dynamic algorithm on limiting
the number of iterations taken to obtain the updated vector
�t+1 . Calculating � is the same in the static and our dynamic
algorithm and so for the rest of the paper we focus our dis-
cussions on the vector �.

4.2 Motivation

In many low-latency applications, the number of edge
updates, or equivalently, the size of �A , is significantly
smaller than the size of the entire graph A. If the change �A
is small relative to the size of the graph, the new graph will
be similar to the old graph. It follows that the new solution
�t+1 at time t + 1 might be similar to the old solution �t at
time t. This is the intuition behind our dynamic algorithm.
Figure 1 plots the difference between subsequent solutions
for global scores each time the graph changes for the Face-
book graph. The x axis simulates time as more edges are
being added into the graph. We insert 1000 edges into the
graph at each time step. The y axis is the 2-norm difference
between solutions at consecutive timepoints, ‖�t+1 − �t‖2 .
Since the Katz scores themselves can be as high as 104 , a
difference of 10−1 across insertions of edges over time is
relatively small. This indicates that the solutions across
timepoints are not very different, suggesting that the static
algorithm of recomputing the centrality metric from scratch
is doing a lot of unnecessary work. Therefore, our dynamic
algorithm therefore only targets places in the vector that are
affected by updates to the graph.

4.3 Initial approach

Here we present a “first-pass” algorithm and discuss its
shortcomings. This provides the motivation for the devel-
opment of our dynamic algorithm in Sect. 5. Suppose we
have the solution �t for the adjacency matrix At at a spe-
cific timepoint t. We want to solve for the new solution
at time t + 1 as �t+1 = �t + �x . Given edge updates to
the graph, we want to solve for the vector �t+1 in the lin-
ear system (I − �At+1)�t+1 = � for the global scores, or
(I − �At+1)�t+1 = �i for the personalized scores equivalently.
Using basic algebra, we can rearrange the terms in the linear
system to derive an iterative update as follows:

Since (I − �At)�t = � , we can split and rearrange the terms
as

and turn this into an iterative update to solve for �x:

However, this simplistic approach tends to accumulate
error instead of converging to the same solution as static
recomputation. We provide a more in-depth analysis of the
quality of this alternate method in Sect. 6. This approach
(henceforth referred to as the “alternate” method) is based
off of a forward error analysis. Forward error of an algo-
rithm tells us the difference between the result we obtain
and the actual solution (Higham 2002). In our case for an
exact solution �∗ , the forward error is the quantity �∗ − �t+1
where �t+1 = �t + �x as derived above in Eq. 2. By aiming
to minimize this quantity, we will see that the error tends to
unfortunately rapidly increase. Therefore, we next present
our dynamic algorithm based off of a backward error analy-
sis in Sect. 5. Backward error is the smallest quantity � such
that (I − �At+1)(�t+1 + �) = � , or in other words, we obtain
an understanding on what problem we actually solved.

5 Dynamic algorithm

Our dynamic algorithm computes the correction �x , the
difference in the solutions at timepoints t and t + 1 , using
principles of iterative refinement. For the purposes of deriv-
ing the algorithm, we do so w.r.t. the global scores. For

� = (I − �At+1)�t+1

� = (I − �At+1)(�t + �x)

� = (I − �At+1)�t + (I − �At+1)�x

� = �t − �(At + �A)�t + �x − �At+1�x

� = �t − �At�t − ��A�t + �x − �At+1�x

� = (I − �At)�t − ��A�t + �x − �At+1�x

(1)�x = �At+1�x + ��A�t,

(2)�x
(k+1) = �At+1�x

(k) + ��A�t

Fig. 1 Difference in consecutive solutions over time. Small changes
in solutions suggest a dynamic algorithm could work by applying
incremental updates to previous solutions

 Social Network Analysis and Mining (2018) 8:26

1 3

26 Page 6 of 15

personalized scores w.r.t. vertex i, we simply replace the
vector � with �i . Since we use the old solution as a starting
point for the new solution, we first measure how close the
old solution is to solve the system for the new graph. We do
so by introducing the concept of an “approximate residual”
denoted as �̃t+1 . This can be written in terms of the current
residual at time t, �t = � −Mt�t , edge updates �A , and the
old solution �t . The algorithm to compute �̃t+1 is given in
Algorithm 3 with the corresponding proof of correctness
in Theorem 1.

Theorem 1 Algorithm 3 correctly calculates the approximate
residual at time t + 1.

Proof The approximate residual �̃t+1 measures how close
the current solution �t is to solve the updated system At+1.

 □

We then use the approximate residual �̃t+1 to solve a lin-
ear system for the correction �x . Solved exactly, this linear
system will give the same scores as static recomputation, but
solved to some preset tolerance as discussed earlier, it will
provide a good quality approximation of the updated central-
ity scores. We examine the effect of varying the tolerance on
the performance of our dynamic algorithm in Sect. 6. This
procedure and the corresponding proof of correctness are
given in Algorithm 4 and Theorem 2, respectively.

Theorem 2 Algorithm 4 correctly calculates the correction
�x at time t + 1.

Proof Since the approximation residual �̃t+1 measures how
close the current solution is to the solution of the updated
system, we use �̃t+1 to solve for the correction �x using prin-
ciples of iterative refinement.

�̃t+1 = � −Mt+1�t

= � − (I − �At+1)�t

= � − �t + �At+1�t

= � − �t + �At�t − �At�t + �At+1�t

= �t + �(At+1 − At)�t

= �t + ��A�t

We can turn this into an iterative update:

This formulation lends itself quite nicely to using the Jacobi
algorithm. □

The final step of our algorithm is to update the residual
�t for the next timepoint. We do so by calculating �� , the
difference in the two residuals at time t and t + 1 . This
procedure is given in Algorithm 5 with the corresponding
proof of correctness in Theorem 3.

Theorem 3 Algorithm 5 correctly updates the residual at
time t + 1.

Proof The residual �t+1 at time t + 1 measures the correct-
ness of the updated solution �t+1 . We write the new residual
�t+1 in terms of the old residual �t to obtain the difference
between the two as ��.

 □

The entire procedure for updating Katz centrality scores
in a dynamic graph is outlined in Algorithm 6, Dynamic_
katz, and uses the three previously described subroutines.
First, in line 2 we calculate the current residual �t , which is
easily obtained given the current snapshot of the graph At
and solution �t at time t. In line 3, we form the new snapshot
of the graph At+1 using the new batches of edges that are
being inserted into the graph. In line 4, we call the first sub-
routine Get_approximate_resiDual, Algorithm 3, to return
the approximate residual �̃t+1 . Next in line 5 we solve for the
difference �x between the vectors �t+1 and �t using the sub-
routine obtain_Del_x, Algorithm 4. In line 6, we calculate

(I − �At+1)�x = �̃t+1 = �t + ��A�t

�x − �At+1�x = �t + ��A�t

�x
(k+1) = �At+1�x

(k) + ��A�t + �t

�t+1 = � − (I − �At+1)�t+1

= � − (I − �At+1)(�t + �x)

= � − (I − �At+1)�t − (I − �At+1)�x

= �̃t+1 − (I − �At+1)�x

= �t + ��A�t − (I − �At+1)�x

= �t + ��

∴�� = �ΔA�t − (I − �At+1)�x

Social Network Analysis and Mining (2018) 8:26

1 3

Page 7 of 15 26

the new solution �t+1 using the old solution �t and the cal-
culated correction �x . Finally, after updating the solution
from time t to the solution at t + 1 , lines 7 and 8 update the
residual between these two timepoints using the subroutine
upDate_resiDual in Algorithm 5. Finally, at the end of the
procedure in line 9 we return the new solution �t+1.

Note that while in this paper we only examine edge inser-
tions in a dynamic graph, the algorithm is equally well suited
for handling edge deletions. Changes to the graph are rep-
resented by �A . If we are inserting edge (i, j) into the graph
at time t, we set �A(i, j) = 1 . Similarly if we want to delete
edge (i, j), we can write �A(i, j) = −1.

5.1 Complexity analysis

The majority of the work done by the dynamic algorithm
is in Algorithm 4 (obtain_Del_x). Since we still require a
matrix-vector multiplication by At+1 at the end of the algo-
rithm, the worst-case complexity of the dynamic algorithm
is the same as static recomputation and is (m) , apart from
a constant (based on the number of iterations taken by the
iterative solver). However, in practice we observe that we are
able to obtain significant speedups in both time and itera-
tions compared to static recomputation while maintaining a
good quality of results returned. This is due to the fact that
the number of iterations taken by our dynamic algorithm is
far fewer than that of static recomputation and we are able
to converge to the solution faster.

6 Results

6.1 Experimental setup

We test our method of updating Katz centrality scores in
dynamic graphs on both synthetic and real-world networks.
For synthetic networks, we use Erdos–Renyi (Erdös and
Rényi 1959) and R-MAT graphs (Chakrabarti et al. 2004).
In the Erdos–Renyi model, a graph is constructed by con-
necting vertices randomly. All edges have the same prob-
ability for existing in the graph. While Erdos–Renyi graphs
consist of a uniform distribution of edges existing in the
graphs, they do not model real-world behavior accurately.
For that reason, we also use R-MAT graphs, since they are

designed to mimic real-world graphs. An R-MAT genera-
tor creates scale-free networks designed to simulate real-
world networks. This provides a basis of how we expect
our method to behave on real datasets, which we also test
in this section. Consider an adjacency matrix: the matrix is
subdivided into four quadrants, where each quadrant has a
different probability of being selected. Once a quadrant is
selected, this quadrant is recursively subdivided into four
subquadrants and using the same probabilities, we select
one of the subquadrants. This process is repeated until we
arrive at a single cell in the adjacency matrix. An edge is
assigned between the two vertices making up that cell. For
real-world networks, we draw from the KONECT collection
of datasets (Kunegis 2013). The five datasets used are given
in Table 1 and comprise a mixture of citation and social
networks. These graphs are chosen because they have time
stamps associated with the edges to represent temporal data.

To have a baseline for comparison, we treat scores
obtained from static recomputation as ground truth. Every
time we update the centrality scores using our dynamic algo-
rithm, we recompute the centrality vector statically using
Algorithm 2. Denote the vector obtained by static recom-
putation by �S and the vector obtained by our dynamic
algorithm by �D . We create an initial graph G0 using the
first half of edges, which provides a starting point for both
the dynamic and static algorithms. To simulate a stream of
edges in a dynamic graph, we insert the remaining edges in
batches of size b and apply both algorithms. For the syn-
thetic graphs, the edges are permuted randomly during inser-
tion. Edges in real graphs are inserted in time-stamped order.
We use batch sizes of b = 1, 10, 100, and 1000 and vary the
tolerance to which we solve for in Algorithm 1 (the Jacobi
method) and provide analysis on how this affects the results
of our algorithm.

6.2 Synthetic graphs

In this section, we present results on Erdos–Renyi and
R-MAT generated graphs. For each type of graph, we gener-
ate graphs with the number of vertices as a power of 2, rang-
ing from 210 to 214 . We vary the average degree of the graphs
from 10 to 50. For each total number of vertices and average
degree, five graphs are created and tested. The results shown
are averaged over these five trials. All results shown for the
synthetic cases use a batch size of 1, meaning after we create
the initial graph G0 , we sequentially insert the remaining 1/2
of edges. The trends for other batch sizes are similar.

The primary motivation behind a dynamic approach is
to prune any unnecessary work in the static algorithm to
develop a faster method of obtaining the centrality vector
for dynamic graphs. Therefore, we evaluate the performance
of the dynamic algorithm in terms of speedup compared to

 Social Network Analysis and Mining (2018) 8:26

1 3

26 Page 8 of 15

the static algorithm. For a particular timepoint after insert-
ing a batch of edges, denote the time taken to compute Katz
scores by the static recomputation by TS and the time taken
by our dynamic algorithm as TD . We calculate the algorith-
mic speedup in time of the dynamic algorithm against the
static algorithm as

Since we are using iterative methods to calculate the central-
ity vectors, we also evaluate the performance of the dynamic
algorithm with respect to the reduction in number of itera-
tions. For a particular timepoint t, denote the number of
iterations taken by recomputation as IS and the time taken
by the streaming approach as ID . Calculate the speedup w.r.t
the number of iterations as

Tables 2 and 3 give the average speedup in time and
reduction in iterations, respectively, for Erdos–Renyi graphs,
and Tables 4 and 5 show the same values for R-MAT graphs.
As we increase the average degree for both types of graphs,
the speedups in time and iterations are larger. Additionally,
we see greater speedups for graphs with larger values of
n. The dynamic algorithm likely has more of an effect for
larger graphs because there is more work to be done for
larger graphs with the static algorithm. Unlike the static
algorithm, our dynamic algorithm only traverses parts of
the graph where updates have occurred. These trends persist
for both Erdos–Renyi and R-MAT graphs, but typically we
find that R-MAT graphs have greater speedups than their
respective Erdos–Renyi counterparts.

6.3 Performance on real graphs

Next we examine the performance of our algorithm on the
real-world graphs. First, we look at the effect of the ter-
minating tolerance on the speedup (in both time and itera-
tions) obtained in Fig. 2. Specifically, Fig. 2a, b plots the
speedup in time for global and personalized scores, respec-
tively, and Fig. 2c, d plots the speedup in iterations for global

speeduptime =
TS

TD
.

speedupiter =
IS

ID
.

and personalized scores, respectively. Results are averaged
across the five real datasets and show maximum (in blue),
median (in green), and minimum (in red) speedups. Note
that the y axis in Fig. 2a, b is on a log scale with base 10
and the y axis in Fig. 2c, d is on a log scale with base 2 for
clarity.

For the global scores, we observe that as the increase in
the value of the tolerance to which we solve for, we obtain
greater speedups. This intuitively makes sense because as
we increase the value of the tolerance required to terminate
(meaning a less accurate solution will suffice), the iterative
solver will take fewer iterations to converge and our dynamic
algorithm will have more of an effect. For the personalized
scores, we see more of a plateau and the speedups obtained
seem to be independent of the preset tolerance. This is due to
the fact that the personalized scores themselves are so small.
Therefore, it may likely take the same number of iterations to
converge to a tolerance of at least 10−1 as it does to converge
to 10−3 for example, so we see very little differences in the
speedups for these tolerances. We also note that the speed-
ups (in both time and iterations) for the personalized scores
are greater than their global counterparts. Since the values of
the scores are so small in the personalized case, the iterative
solver likely takes more total iterations to converge and the
dynamic algorithm has more of an effect here. Nevertheless,
overall we obtain speedups of several orders of magnitude
and for the global scores on average about 100× speedup in
time and 32× speedup in iterations. Similarly for the person-
alized scores, we obtain on average about a 200× speedup
in time and about a 64× speedup in iterations. Even for very
low values of the tolerance (meaning we desire more precise
solutions), such as 10−8 , we always obtain > 1× speedup.
This indicates we can obtain fairly accurate scores and with
our method do so much faster than static recomputation.

Next we examine the speedups obtained as a function
of batch size and compare our dynamic algorithm against
two different static methods in Fig. 3. Both static methods
evaluate �S using Algorithm 2 but start with different initial
starting vectors in line 3 in Algorithm 1 (Jacobi).

1. Method 1: uses an initial starting vector of �(0) = �.
2. Method 2: uses the previous solution as a starting point

for the Jacobi algorithm. Essentially, if we are comput-
ing �t+1 , line 3 in Algorithm 1 becomes �(0) = �t.

Figure 3a, b plots the speedup w.r.t time versus batch size for
global and personalized scores, respectively, comparing our
dynamic algorithm against static recomputation. Similarly,
Fig. 3c, d plots the speedup w.r.t iterations versus batch size
for global and personalized scores, respectively. We show
the maximum, median, and minimum speedup averaged over
the 5 real graphs. Method 1 is plotted with a solid line with
squares and Method 2 is plotted with a dotted line. For this,

Table 1 Graphs used in experiments

Columns are graph name, number of vertices, and number of edges

Graph |V| |E|

Facebook 63,731 817,035
Gowalla 196,591 950,327
DBLP 317,080 1,049,866
Dogster 426,820 8,546,581
YouTube 1,134,890 2,987,624

Social Network Analysis and Mining (2018) 8:26

1 3

Page 9 of 15 26

we examine results only for a terminating tolerance of 10−4
although the trends observed for other tolerances are similar.
Note again that the y axis in Fig. 3a, b is on a log scale with
base 10 and the y axis in Fig. 3c, d is on a log scale with base
2. In Fig. 3a, we see that our dynamic algorithm can be over
two orders of magnitude faster for a batch size of 1 than both
static recomputation approaches. It is expected that Method
2 is faster than Method 1, since we initialize Jacobi with the
vector �t that is likely closer to the new solution �t+1 than
� , but our dynamic algorithm is still able to outperform this
method in both time and iterations. The median speedup
in time for the global scores is about 100× for a batch size
of 1 and about 200× for the personalized scores for a batch

size of 1. Even for a batch size of 1000 edges, we always
have greater than a 1 × speedup. Figure 3c shows that we can
obtain over an 80× reduction in iterations for both global and
personalized scores for a batch size of 1. This is especially
significant because the static method can take hundreds or
thousands of iterations to converge in some cases, so our
algorithm would provide large savings of resources in many
applications. Finally, we see a greater speedup in both time
and iterations for the smaller batch sizes of 1 and 10. As
mentioned earlier, this is because as the batch size increases,
the dynamic algorithm nears the work of a static algorithm.
This shows that the dynamic approach is most useful for
monitoring applications where the rankings must be updated
after only a small number of data changes.

Next we examine the behavior of both algorithms with
respect to raw iteration counts over time. Henceforth when
referring to the static algorithm, we use Method 2 from
above. Figure 4 plots the raw number of iterations used by
the static (the dotted blue line) and dynamic (the solid green
line) algorithms for different batch sizes for the Facebook
graph. We sample at 100 evenly spaced timepoints for each
batch size. Figure 4a–d plots the comparison for batch sizes
b = 1, 10, 100, 1000 , respectively. All four figures show the
same general behavior: while the number of iterations for
static recomputation continues to steadily increase as edges
are added into the graph, the dynamic algorithm maintains
a stable number of iterations over time. This is because the
dynamic algorithm only targets the places in the vector that
are affected by edge updates. For example, take Fig. 4b.
The dotted blue line shows that the number of iterations for
the static recomputation of the centrality vector continually
increases over time as more edges are added into the graph,
eventually reaching about 175 iterations once all edges are
added. However, for the dynamic algorithm shown in the
solid green line, the number of iterations is stable at around
1–20 iterations for all points in time. It is important to note
that this trend persists regardless of the batch size. Even for
very large batch sizes of b = 1000 , while there are small
fluctuations in the number of iterations, there is no trend of
increasing iteration counts over time, meaning our algorithm
is robust to many edge insertions.

6.4 Quality on real graphs

We have seen that we are able to achieve results faster using
a dynamic algorithm compared to static recomputation every
time the graph changes when calculating centrality scores in
dynamic networks. However, it is also important to ensure
that the centrality scores returned by the dynamic algorithm
are similar to those returned by the static algorithm. To eval-
uate the quality of our algorithm, we measure two quantities:
(1) recall of top k vertices measured as

Table 2 Speedup in time for Erdos–Renyi graphs

Average degree 10 20 30 40 50

n = 1024 1.44× 1.62× 1.8× 1.99× 2.17×
n = 2048 1.51× 1.77× 2.0× 2.25× 2.49×
n = 4096 1.66× 2.03× 2.37× 2.85× 3.34×
n = 8192 1.95× 2.55× 3.05× 4.02× 5.09×
n = 16,384 2.51× 3.5× 4.34× 6.0× 8.02×

Table 3 Speedup in iterations for Erdos–Renyi graphs

Average degree 10 20 30 40 50

n = 1024 4.56× 5.01× 5.37× 5.71× 5.99×
n = 2048 4.82× 5.4× 5.82× 6.17× 6.5×
n = 4096 5.05× 5.77× 6.27× 6.7× 7.1×
n = 8192 5.25× 6.12× 6.69× 7.24× 7.73×
n = 16,384 5.40× 6.42× 7.04× 7.73× 8.33×

Table 4 Speedup in time for R-MAT graphs

Average degree 10 20 30 40 50

n = 1024 1.75× 1.95× 2.15× 2.44× 2.7×
n = 2048 1.98× 2.39× 2.7× 3.14× 3.56×
n = 4096 2.42× 3.12× 3.62× 4.3× 5.08×
n = 8192 3.35× 4.32× 5.25× 6.41× 7.46×
n = 16,384 4.63× 6.26× 7.64× 9.15× 10.46×

Table 5 Speedup in iterations for R-MAT graphs

Average degree 10 20 30 40 50

n = 1024 4.89× 5.29× 5.6× 6.01× 6.38×
n = 2048 5.12× 5.77× 6.27× 6.73× 7.12×
n = 4096 5.34× 6.2× 6.69× 7.24× 7.66×
n = 8192 5.81× 6.52× 7.18× 7.77× 8.25×
n = 16,384 6.0× 6.89× 7.62× 8.29× 8.72×

 Social Network Analysis and Mining (2018) 8:26

1 3

26 Page 10 of 15

recallk =
|CS(k) ∩ CD(k)|

|CS(k)|
,

where CS(k) and CD(k) are the set of the top k highly ranked
vertices from the statically and dynamically computed cen-
trality vectors, respectively, and (2) average error computed

Fig. 2 Speedup (time) for
global scores. Higher is better. a
Speedup (time) for personalized
scores, b Speedup (iterations)
for global scores, c Speedup
(iterations) for personalized
scores, d Speedup (time and
iterations) versus tolerance

(a) Speedup (time) for global scores. (b) Speedup (time) for personalized scores

(c) Speedup (iterations) for global scores. (d) Speedup (iterations) for personalized
scores.

Fig. 3 Speedup in time for
global scores, a speedup in
time for personalized scores, b
speedup in iterations for global
scores, c speedup in iterations
for personalized scores, d
speedup (time and iterations)
versus batch size. Higher is
better

(a) Speed up in time forglobal scores. (b) Speed up in time for personalized scores.

(c) Speed up in iterations for global scores. (d) Speedup in iterations for personalized
scores.

Social Network Analysis and Mining (2018) 8:26

1 3

Page 11 of 15 26

as the pointwise difference between the statically and
dynamically computed vectors

Table 6 presents the average recall of the top 10, 100, and
1000 vertices in the different graphs for both our dynamic
algorithm and the alternate approach presented in Sect. 4.3.
We use a terminating tolerance of 10−4 . Immediately we note
that our algorithm has a perfect recall of the top k verti-
ces in all cases except for one graph (Dblp) for one value
of k = 100 , and the recall is 0.99 here. The quality of the
alternate approach suffers and is not able to maintain per-
fect recall in many cases. Furthermore, will see next that
the actual values of the scores themselves (measured by the
average error) between the dynamically computed vector
from the alternate method compared to static recomputation
are not similar at all, and we obtain very high errors using
this alternate method.

Table 7 presents the average error for each of the graphs
tested and for all batch sizes for both our dynamic method
and the alternate method. We again use results from a toler-
ance of 10−4 . The average error obtained from our dynamic
algorithm for global and personalized scores is 1.32e−02
and 8.69e−05, respectively. However, the average error
obtained from the alternate approach compared to static rec-
omputation for global and personalized scores is 6.19e+03
and 1.14e−01, respectively. For both global and personal-
ized scores, the errors from the alternate method are several

error = ‖�S − �D‖∞.

Fig. 4 Raw number of iterations
for the Facebook graph for
different batch sizes. Dynamic
algorithm is plotted in solid
green line and static algorithm
is plotted in dotted blue line. a
b = 1 , b b = 10 , c b = 100 , d
b = 1000

(a) b = 1 (b) b = 10

(c) b = 100 (d) b = 1000

Table 6 Summary statistics of recall of top vertices for different
graphs for a terminating tolerance of 10−4

Type Graph Top 10 Top 100 Top 1000

(a) Our dynamic algorithm
 Global Facebook 1.00 1.00 1.00

Gowalla 1.00 1.00 1.00
DBLP 1.00 0.99 1.00
Dogster 1.00 1.00 1.00
YouTube 1.00 1.00 1.00

 Personalized Facebook 1.00 1.00 1.00
Gowalla 1.00 1.00 1.00
DBLP 1.00 1.00 1.00
Dogster 1.00 1.00 1.00
YouTube 1.00 1.00 1.00

(b) Alternate approach
 Global Facebook 0.91 0.84 0.89

Gowalla 0.92 1.00 0.99
DBLP 1.00 0.93 0.92
Dogster 1.00 0.95 0.96
YouTube 1.00 0.97 0.95

 Personalized Facebook 0.89 0.94 0.91
Gowalla 0.90 0.93 0.96
DBLP 0.95 0.97 0.95
Dogster 0.98 0.92 0.91
YouTube 0.93 0.82 0.87

 Social Network Analysis and Mining (2018) 8:26

1 3

26 Page 12 of 15

orders of magnitude higher than the corresponding errors
from our method. In fact, the errors for the global scores
from the alternate method are in the thousands or tens of
thousands. The errors for the personalized scores from the
alternate method are significantly smaller than the errors for
the global scores from the alternate method (on the order of
≈ 10−2). However, the values in the personalized centrality
vector themselves are on the order of 10−2 to 10−3 so errors
of ≈ 10−2 for the personalized scores from the alternate
approach still indicate that this is a poor method.

Next we look at the behavior of both the alternate method
and our dynamic algorithm over time. Figure 5 plots the
average error over time for our dynamic algorithm (the fig-
ures on the left) and the alternate method (the figures on
the right). We show results for a batch size of 1 for global
scores, although results for other batch sizes are similar. For
our dynamic algorithm, we note that for no graph do we see
a trend of error increasing over time, unlike those from the
alternate method. In fact using our dynamic algorithm, the
average error in the two largest graphs (Gowalla and you-
tube) actually decreases as we insert more edges into the
graph using our dynamic algorithm. This is in stark contrast
to the alternate method where we see only a trend of error
increasing over time showing that the forward error analysis
approach only accumulates error instead of converging to the

answer obtained by static recomputation. Additionally, note
that the scales of the y axis on the figures plotting results
from our dynamic algorithm are at most 10−2 indicating that
values in the vector obtained from our dynamic algorithm
match those obtained from static recomputation, while the
y axis on the figures from the alternate method range as
high as 104 . In summary, we note that the alternate method
presented is not sufficient to calculate the updated central-
ity metric and the increasing and large values of the average
error prove this method returns results of poor quality.

Finally, Fig. 6 explores in detail the underlying impact of
the time step granularity on the quality of our algorithm. Fig-
ure 6a plots the error versus batch size for the global scores
and Fig. 6b plots the error versus batch size for the personal-
ized scores for all five real graphs tested. In both cases, we
see a trend of increasing error as a function of increasing
batch size. This is because the underlying assumption of
our algorithm relies on the fact that there exists smoothness
between consecutive time steps. With a larger number of
edge insertions in one batch, the solutions before and after
the batch of insertions will differ considerably. Therefore, it
is not surprising that larger batch sizes impact the quality of
the algorithm more than smaller batch sizes. However, even
though there is a trend of increasing error for larger batch
sizes compared to smaller batch sizes, the average error is
still relatively low compared to the values in the central-
ity vector themselves, and we therefore conclude that our
dynamic algorithm is able to maintain similar quality to
static recomputation.

7 Adding and removing vertices

Adding and removing edges is fairly straightforward since
edges only require updating the ΔA matrix with either a 1
(insertions) or −1 (deletions) in the corresponding position
for the edge in question. However, adding and removing
vertices becomes slightly trickier, since our work is based
in linear algebra with fixed size matrices. One solution to
this is to assume some reasonable bound on the total num-
ber of vertices allowed (this can be application dependent
or based on available storage). The algorithm would then
start with a matrix A0 with empty rows for vertices that do
not exist yet in the graph and as the vertices are added with
edges into the existing graph, the corresponding rows are
also updated. Deleting a vertex can be handled in a similar
manner by allowing the vertex to technically exist but remain
disconnected from the entire graph. Essentially when delet-
ing vertex i from the graph, we can cope by zeroing out the
ith row in the adjacency matrix.

Table 7 Summary statistics of average error versus batch size for dif-
ferent graphs for a terminating tolerance of 10−4

Type Graph b = 1 b = 10 b = 100 b = 1000

(a) Our dynamic algorithm
 Global Facebook 1.64e−03 2.77e−03 4.52e−03 5.00e−03

Gowalla 6.52e−03 1.55e−02 2.38e−02 2.95e−02
DBLP 3.32e−05 9.87e−05 2.88e−04 1.89e−03
Dogster 2.01e−03 1.75e−02 2.05e−02 2.01e−02
YouTube 7.78e−03 2.17e−02 3.67e−02 4.58e−02

 Personal-
ized

Facebook 6.11e−07 2.76e−06 1.71e−05 1.08e−03
Gowalla 5.11e−07 2.51e−06 3.54e−04 2.41e−04
DBLP 6.03e−09 7.53e−09 7.20e−09 1.29e−05
Dogster 1.08e−07 2.13e−06 4.48e−06 1.23e−05
YouTube 1.34e−07 3.36e−06 1.11e−06 5.38e−06

(b) Alternate approach
 Global Facebook 1.84e+03 1.84e+03 1.84e+03 1.84e+03

Gowalla 2.93e+03 2.93e+03 2.93e+03 2.92e+03
DBLP 6.15e+01 6.15e+01 6.14e+01 6.14e+01
Dogster 2.20e+03 8.59e+03 2.61e+04 2.74e+04
YouTube 8.03e+03 1.08e+04 1.08e+04 1.08e+04

 Personal-
ized

Facebook 8.48e−03 4.22e−03 6.73e−01 7.07e−01
Gowalla 4.56e−02 8.91e−02 1.05e−02 4.15e−03
DBLP 1.18e−03 4.40e−05 4.57e−02 8.40e−05
Dogster 4.33e−02 4.03e−02 1.01e−02 3.79e−01
YouTube 1.07e−01 1.54e−02 3.25e−02 5.87e−02

Social Network Analysis and Mining (2018) 8:26

1 3

Page 13 of 15 26

Fig. 5 Average error plotted
over time for both our dynamic
algorithm (left figures) and the
alternate method (right figures).
Results are shown for a batch
size of 1 and for global scores.
Lower values are better

 Social Network Analysis and Mining (2018) 8:26

1 3

26 Page 14 of 15

8 Conclusions

We have presented a new algorithm that incrementally
updates the Katz centrality scores when the underlying
graph changes. Our dynamic algorithm is faster than stati-
cally recomputing the centrality scores every time the graph
changes, and the performance improvement is greatest when
low-latency updates are required. However, our approach
is still faster than recomputing from scratch even for large
batch insertions of edges into the graph. We compared our
method to a static recomputation initialized from the all
zeros vector and from the previous time step’s solution and
showed that our method is able to outperform both. Our
dynamic algorithm returns scores that are within negligible
error of the scores returned by static recomputation, and
we showed that the quality of the scores using our dynamic
algorithm does not deteriorate over time. We presented and
explained the problems associated with a simple intuitive
iterative approach and compared it to our dynamic algorithm
and showed that our method is far superior and is able to
maintain good quality of results and does not accumulate
error over time, unlike the alternate method. We analyzed
the effect of the time step granularity on the quality of our
dynamic algorithm and showed that even though the error
between the results of our method and static recomputa-
tion increases for larger batch sizes, the overall error is still
relatively small compared to the actual values of the central-
ity scores themselves and is therefore negligible. Moreover,
our algorithm returns perfect recall of top vertices across all
graphs in nearly all cases. Finally, we presented an approach
for dealing with the addition and removal of vertices from
a dynamic graph, which may be addressed in future work.

Acknowledgements This work is in part supported by a graduate fel-
lowship from the National Physical Science Consortium. The work
depicted in this paper was sponsored in part by the National Science
Foundation under awards #1339745 and #1535058. Any opinions, find-
ings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of the National
Science Foundation.

References

Albert R, Jeong H, Barabási AL (1999) Internet: diameter of the world-
wide web. Nature 401(6749):130–131

Bahmani B, Chowdhury A, Goel A (2010) Fast incremental and per-
sonalized pagerank. Proc VLDB Endow 4(3):173–184

Bavelas A (1950) Communication patterns in task-oriented groups. J
Acoust Soc Am 22:723–730

Benzi M, Estrada E, Klymko C (2013) Ranking hubs and authorities
using matrix functions. Linear Algebra Appl 438(5):2447–2474

Benzi, M, Klymko C (2014) A matrix analysis of different centrality
measures. arXiv preprint arXiv :1312.6722

Chakrabarti D, Zhan Y, Faloutsos C (2004) R-mat: a recursive model
for graph mining. In: SDM, vol 4. SIAM, pp 442–446

Chen YY, Gan Q, Suel T (2004) Local methods for estimating PageR-
ank values. In: Proceedings of the thirteenth ACM international
conference on Information and knowledge management. ACM,
pp 381–389

Chien S, Dwork C, Kumar R, Sivakumar D (2001) Towards exploiting
link evolution

Erdös P, Rényi A (1959) On random graphs, I. Publicationes Math-
ematicae (Debrecen) 6:290–297

Freeman LC (1977) A set of measures of centrality based on between-
ness. Sociometry 40(1):35–41

Gleich DF (2015) Pagerank beyond the web. SIAM Rev 57(3):321–363
Green O, McColl R, Bader DA (2012) A fast algorithm for streaming

between ness centrality. In: Privacy, security, risk and trust (PAS-
SAT), 2012 international conference on and 2012 international con-
ference on social computing (SocialCom). IEEE, pp 11–20

Gyöngyi Z, Garcia-Molina H, Pedersen J (2004) Combating web spam
with trust rank. In: Proceedings of the thirtieth international con-
ference on very large data bases, vol 30. VLDB Endowment, pp
576–587

Higham NJ (2002) Accuracy and stability of numerical algorithms.
SIAM

Higham NJ (2008) Functions of matrices: theory and computation.
SIAM

Katz L (1953) A new status index derived from sociometric analysis.
Psychometrika 18(1):39–43

Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of
influence through a social network. In: Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, pp 137–146

Kokiopoulou E, Chen J, Saad Y (2011) Trace optimization and eigen-
problems in dimension reduction methods. Numer Linear Algebra
Appl 18(3):565–602

Kunegis J (2013) Konect: the koblenz network collection. In: Proceed-
ings of the 22nd international conference on World Wide Web.
ACM, pp 1343–1350

Fig. 6 Effect of time step
granularity (batch size of edge
insertions) on quality of our
algorithm. a Average error ver-
sus batch size for global scores,
b Average error versus batch
size for personalized scores

(a) Average error versus batch size forglo bal
scores.

(b) Average error versus batch size for per-
sonalized scores.

http://arxiv.org/abs/1312.6722

Social Network Analysis and Mining (2018) 8:26

1 3

Page 15 of 15 26

Langville AN, Meyer CD (2002) Updating PageRank using the
group inverse and stochastic complementation. Informe técnico
crsc02-tr32

Langville AN, Meyer CD (2004) Updating the stationary vector of
an irreducible Markov chain with an eye on Googles PageRank.
SIMAX, Citeseer

Nathan E, Bader DA (2017) A dynamic algorithm for updating katz
centrality in graphs. In: Proceedings of the 2017 IEEE/ACM inter-
national conference on advances in social networks analysis and
mining, Sydney, Australia, vol 31

Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation
ranking: bringing order to the web. Technical Report, Stanford
InfoLab

Riedy J (2016) Updating pagerank for streaming graphs. In: IEEE
international parallel and distributed processing symposium work-
shops, 2016, pp 877–884

Saad Y (2003) Iterative methods for sparse linear systems. SIAM
Sariyuce AE, Kaya K, Saule E, Catalyurek UV (2013) Incremental

algorithms for closeness centrality. In: IEEE international confer-
ence on big data, 2013, pp 487–492

Sarma AD, Gollapudi S, Panigrahy R (2011) Estimating PageRank on
graph streams. JACM 58(3):13

Wei W, Carley K (2014) Real time closeness and betweenness central-
ity calculations on streaming network data. Academy of Science
and Engineering, Los Angeles, USA

Wilkinson JH (1994) Rounding errors in algebraic processes. Courier
Corporation

	Incrementally updating Katz centrality in dynamic graphs
	Abstract
	1 Introduction
	1.1 Contributions

	2 Related work
	3 Background and definitions
	3.1 Iterative methods

	4 Motivation and initial approach
	4.1 Static algorithm
	4.2 Motivation
	4.3 Initial approach

	5 Dynamic algorithm
	5.1 Complexity analysis

	6 Results
	6.1 Experimental setup
	6.2 Synthetic graphs
	6.3 Performance on real graphs
	6.4 Quality on real graphs

	7 Adding and removing vertices
	8 Conclusions
	Acknowledgements
	References

