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Abstract
A variety of large datasets, such as social networks or biological data, can be represented as graphs. A common query in 
graph analysis is to identify the most important vertices in a graph. Centrality metrics are used to obtain numerical scores 
for each vertex in the graph. The scores are then translated to rankings identifying relative importance of vertices. In this 
work, we focus on Katz centrality, a linear algebra-based metric. In many real applications, since data are constantly being 
produced and changed, it is necessary to have a dynamic algorithm to update centrality scores with minimal computation 
when the graph changes. We present an algorithm for updating Katz centrality scores in a dynamic graph that incrementally 
updates the centrality scores as the underlying graph changes. Our proposed method exploits properties of iterative solvers 
to obtain updated Katz scores in dynamic graphs. Our dynamic algorithm improves performance and achieves speedups of 
over two orders of magnitude compared to a standard static algorithm while maintaining high quality of results.

Keywords Katz centrality · Dynamic graphs · Iterative solvers

1 Introduction

Graphs are a natural representation for modeling relation-
ships between entities, in web traffic, financial transactions, 
computer networks, or society (Benzi and Klymko 2014). 
A significant question arising from the analysis of graphs is 
to identify the most important vertices in a graph (Kempe 
et al. 2003). Vertex importance is termed as centrality and 
centrality scores can be used to provide rankings on the ver-
tices of a graph (Benzi et al. 2013). Consider a web-Google 
graph. When inputting a search query into Google, a user 
typically wants the most relevant results to the search query 
to show up at the top of the returned results. Furthermore, a 
user likely only has enough human resources to examine the 
top 75–100 results. Therefore, correct ranking is important 
with respect to the search results. In a network modeling dis-
ease spread, an analyst might wish to find the sites of disease 
origin. These queries are answered by looking at the highly 
ranked vertices.

In real-world networks today, new data are constantly 
being produced, leading to the notion of dynamic graphs. 
Dynamic graph data can represent the changing relation-
ships in networks. For example, consider a graph modeling 
relationships on Facebook, where vertices are people and 
edges exist between two vertices if the corresponding people 
are friends on Facebook. As new friendships are formed and 
old ones deleted, the corresponding graph will change over 
time to reflect these new relationships. The identification of 
central vertices in an evolving network is a fundamental prob-
lem in network analysis (Benzi et al. (2013)). Development 
of dynamic algorithms for updating centrality measures in 
graphs is therefore an important research problem. A naive 
method of obtaining updated centrality scores in dynamic 
graphs is to recalculate the scores from scratch every time the 
graph is changed. We refer to this simplistic method as static 
recomputation. However, this becomes computationally 
intensive to constantly recalculate from scratch as more and 
more data are added to the graph. Therefore, it is preferable to 
have alternate methods to efficiently obtain updated centrality 
scores in a changing graph. In this work, we present a new 
algorithm for updating Katz centrality in dynamic graphs. 
Katz centrality is a metric that measures the affinity between 
vertices as a weighted sum of the walks between them while 
penalizing longer walks in the network (Katz 1953). The lin-
ear algebraic formulation of Katz centrality lends itself to a 
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dynamic algorithm based in a numerical linear algebra envi-
ronment using iterative solvers. In contrast to a static algo-
rithm that is run once on an unchanging graph, our algorithm 
is able to incrementally update solutions between different 
timepoints as new data are added to a changing graph.

1.1  Contributions

We present a new linear algebra-based method to incremen-
tally update Katz centrality scores in a dynamic graph. Our 
algorithm is faster than recomputing centrality scores from 
scratch every time the graph is updated and returns high-
quality results that are similar to results obtained with a sim-
ple static recomputation method. This paper presents the 
extended version of the work by Nathan and Bader (2017). 
We evaluate our algorithm on larger datasets and present an 
alternate approach and discuss its shortcomings compared to 
our algorithm. We examine how our algorithm behaves with 
respect to both global and personalized centrality scores and 
analyze how the granularity of the time step affects the qual-
ity of our algorithm. We compare our dynamic algorithm 
to multiple static recomputation methods and additionally 
examine the quality of our algorithm if we are only con-
cerned with recall of the highly ranked vertices in dynamic 
graphs. Finally, we present an approach on how to handle 
vertex additions and deletions using our algorithm.

Section 2 discusses relevant work in the literature, and 
Sect. 3 provides the necessary background and definitions 
required to understand our work. In Sect. 4, we present an 
alternate method and provide the motivation for our dynamic 
algorithm. We present our algorithm for updating Katz cen-
trality scores in dynamic graphs in Sect. 5. Section 6 pro-
vides an analysis of our method on both synthetic and real-
world networks with respect to performance and quality. In 
Sect. 7, we discuss a possible approach for handling vertex 
additions and deletions and in Sect. 8 we conclude.

2  Related work

Betweenness and closeness centrality are two very popular 
graph metrics in network analysis for identifying the most 
important vertices in a graph, with specific applications in 
network stability, traffic predictions, and social network anal-
ysis (Benzi et al. 2013). Betweenness centrality (BC(v)) looks 
at the vertices with high betweenness, i.e., those vertices 
whose removal would cause a significant number of shortest 
paths do not exist anymore. This notion was first established 
by Freeman, to compare the number of shortest paths going 
through a vertex v with the total number of shortest paths 
(Freeman 1977) .  Formal ly  i t  i s  def ined as 
BC(v) =

∑
s≠v≠t∈V

�st(v)

�st
 , where �st(v) is the number of shortest 

paths from vertex s to vertex t that include node v and �st is 

the number of shortest paths from s to t in general. Closeness 
centrality (CC(v)) was first introduced by Bavelas in 1950 to 
measure the ‘farness’ of a vertex, defined as the sum of its 
distances from all other vertices, and its ‘closeness,’ defined 
as the reciprocal of the farness (Bavelas 1950). Closeness 
centrality measures how close a vertex is to all other vertices 
based on the shortest-path length. It is formally defined as 
CC(v) =

1∑
t∈V dG(v,t)

 , where dG(v, t) is the length of the shortest 

path between node v and node t. Since both these metrics are 
fairly computationally intensive to calculate, in the case of 
dynamic graphs it is optimal to have an algorithm that can 
update the centrality values with minimal effort as the graph 
updates instead of recomputing the centrality values from 
scratch. In Wei and Carley (2014), the authors propose an 
algorithm to update both betweenness and closeness calcula-
tions together after receiving edge updates to the graph. By 
splitting up the calculation of the centrality metrics into two 
parts, they avoid performing unnecessary calculations per-
formed in previous time steps. The first step repeats a calcula-
tion process until the shortest path is converged, and the sec-
ond step aggregates the shortest path calculation into 
closeness and betweenness centralities. The first step can be 
performed for both closeness and betweenness centrality 
simultaneously. The authors in Sariyuce et al. (2013) propose 
an incremental algorithm for closeness centrality by exploit-
ing specific network topological properties: specifically their 
shortest-distance distributions, biconnected components dis-
tributions, and the existence of vertices with identical neigh-
borhoods. They achieve a mean speedup of 43.5× for smaller 
graphs with less than 500 K edges and 99.8× for larger graphs 
with more than 500 K edges. Finally, the authors in Green 
et al. (2012) propose an incremental algorithm for updating 
betweenness centrality values by maintaining additional data 
structures to store previously computed values. They are able 
to achieve speedups of 100–400× on synthetic networks and 
speedups of 36–148× on real networks.

Several centrality measures can be expressed as functions of 
the adjacency matrix of a graph (Benzi et al. 2013). The cen-
trality metric is obtained by solving a linear system, and the 
solution is then a vector consisting of a number for each vertex 
in the graph identifying its relative importance. Obtaining an 
exact solution via direct methods is prohibitively computation-
ally expensive, since we are typically required to take the inverse 
of a matrix. The most accurate way to obtain the exact solution 
would be by LU decomposition, which costs (n2) , where n is 
the number of vertices in the graph. In many real networks, the 
amount of data is massive and n can be as large as millions or 
billions of vertices, so direct methods such as these do not scale 
and are impractical. Moreover, there is no technique to compute 
an exact solution for a general graph in finite precision arithme-
tic, so in practice, iterative methods are often used to obtain an 
approximate solution. We explain this in more detail in Sect. 3.1.
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PageRank is a common method for ranking vertices in 
graphs, where a high score means random walks through the 
graph tend to visit the highly ranked vertices, and was first 
introduced rank webpages in a web search (Page et al. 1999). 
Given a search term from the user, PageRank incorporates 
a measure of a webpage’s importance into the results of a 
set of webpages that could be relevant to the desired search 
term. However, over time many more applications have 
risen, such as in bibliometrics, social, and information net-
work analysis. For example, personalized PageRank vectors 
have been used for local community detection (Riedy 2016). 
It has also been used in analysis of road networks and for 
link prediction and recommendation systems (Gleich 2015). 
To define the PageRank problem, we consider a random 
surfer model: a hypothetical random web surfer navigating 
between webpages online. When this random surfer visits a 
webpage, he tosses a coin; if the coin comes up heads he ran-
domly clicks on a link from the current page and transitions 
there, if the coin comes up tails, he teleports to a (possibly 
random) page independent of the current page’s identity. Let 
P = ATD−1 be the transition matrix of probabilities, specifi-
cally P(i, j) is the probability of transitioning from page j 
to page i. Assume the random surfer transitions according 
to the link structure of the web with probability � and tel-
eports randomly with probability 1 − � . When teleporting 
randomly, the surfer teleports according to a teleportation 
distribution vector � , where � is typically a uniform distribu-
tion over all pages. Many applications typically set � to 0.85. 
Then, the solution � to the equation (I − �P)� = (1 − �)� 
gives the desired PageRank vector.

There has been much work in the literature for updating 
PageRank for dynamic graphs, and these techniques fall under 
two general areas: (1) linear algebraic methods that mainly use 
techniques from linear and matrix algebra (Chen et al. 2004; 
Chien et al. 2001) and (2) Monte Carlo methods that use a 
small number of simulated random walks per vertex (Sarma 
et al. 2011; Gyöngyi et al. 2004). “Aggregation” methods 
operate under the assumption that changes to the graph will 
affect only a localized portion of the PageRank vector (Lang-
ville and Meyer 2002, 2004). These methods partition the set 
of vertices into two disjoint sets: C is the set of all vertices 
close to/affected by the changes made to the underlying net-
work and V∖C consists of the remaining vertices. The vertices 
in V∖C are aggregated into a single hyper-vertex and a smaller 
graph is created. Using the smaller graph, the PageRank val-
ues of all vertices are updated and the result is pushed back 
to the initial larger graphs. While initially accurate for the 
first few edge updates, since this method ultimately produces 
an approximation to the exact PageRank vector, there is the 
possibility that the error could accumulate over time. More 
importantly, these types of techniques do not fare very well for 
real-time monitoring applications in terms of performance and 
can end up being very slow. The second class of techniques 

rely on Monte Carlo methods for the incremental computation 
of random walk methods such as PageRank (Bahmani et al. 
2010). While they are far more efficient for performance and 
produce better quality results, thus far these techniques have 
only been studies in static networks. These methods maintain 
a small number of short random walk segments starting at 
each vertex in the graph. For the case of identifying the top 
k vertices, these methods are able to provide highly accu-
rate estimates of the centrality values for the top vertices, but 
smaller values in the personalized case are nearly identical 
and therefore impossible to tell apart. Finally, Riedy (2016) 
provides a formula for updating PageRank using the notion of 
iterative refinement to update the residual of the linear system 
after receiving graph updates. Katz centrality is a similar lin-
ear algebraic centrality metric to PageRank; however, while 
there is much work on dynamic PageRank in the literature, as 
far as the authors are aware there is no work on dynamic Katz 
centrality. Therefore, in this work, we focus on Katz centrality 
and develop an algorithm for updating scores on vertices in 
a dynamic graph.

3  Background and definitions

Many data analysis problems are phrased as numerical prob-
lems for a more tractable solution (Kokiopoulou et al. 2011). 
In this work, we use a linear algebra-based method to com-
pute Katz centrality to obtain updated centrality scores on 
the vertices of a dynamic graph.

Let G = (V ,E) be a graph, where V is the set of n vertices 
and E the set of m edges. Denote the n × n adjacency matrix 
A of G as

We use  und i rec ted ,  unweigh ted  g raphs  so 
∀i, j, A(i, j) = A(j, i) and all edge weights are 1. A dynamic 
graph can change over time due to edge insertions and dele-
tions and vertex additions and deletions. As a graph changes, 
we can take snapshots of its current state. We denote the 
current snapshot of the dynamic graph G and correspond-
ing adjacency matrix A at time t by Gt = (Vt,Et) and At , 
respectively. In this work, the vertex set is constant over 
time so ∀t,Vt = V  , and we deal only with edge insertions, 
although our algorithm can be applied for edge deletions 
as well. Given edge updates to the graph, we write the new 
adjacency matrix at time t + 1 as At+1 = At + �A , where �A 
represents the new edges being added into the graph.

Katz centrality scores count the number of weighted 
walks in a graph between vertices in a graph, while penaliz-
ing longer walks in the network by a user-chosen parameter 
� . A walk of length k in a graph is a sequence of k vertices 
v1, v2,… , vk where both vertices and edges are allowed to 

A(i, j) =

{
1, if (i, j) ∈ E,

0, otherwise.
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repeat. Counts of walks in a graph can be calculated using 
powers of the adjacency matrix (Higham 2008). Specifically, 
Ak(i, j) represents the number of walks of length k from ver-
tex i to j. To obtain weighted counts of walks of all lengths 
in the network, we can derive the following infinite series:

This infinite series converges to the matrix resolvent 
A(I − �A)−1 . Katz originally used the row sums of this 
matrix to calculate centrality scores as A(I − �A)−1� . The 
result is an n × 1 vector where the jth value in this vector 
represents the total number of weighted walks of all lengths 
starting at vertex j. We refer to these as global Katz scores. 
Similarly, we can derive a corresponding formula for per-
sonalized Katz scores as A(I − �A)−1�i , where �i is the ith 
canonical basis vector. The result is again an n × 1 vector, 
where the jth value in this vector represents the number of 
weighted walks of all lengths starting at vertex i and end-
ing at vertex j. We set � = 0.85∕‖A‖2 to mimic PageRank 
computations (Gleich 2015), and in this work we study both 
global and personalized scores.

3.1  Iterative methods

Directly solving for the exact Katz centrality scores � is on 
the order of (n2) and quickly becomes very expensive and 
impractical as n grows large. Therefore, in practice we use 
iterative methods to obtain an approximation which costs 
(m) provided the number of iterations is not very large. Many 
real-world graphs are sparse and m ≪ n2 (Albert et al. 1999). 
Iterative methods approximate the solution � to a linear sys-
tem M� = � , given M and � by starting with an initial guess 
�(0) and improving the current guess with each iteration until 
some stopping criterion is reached. This stopping criterion can 
be a predetermined number of iterations, a desired level of 
accuracy, or some application-specific terminating criterion. 
At each iteration k of the iterative solver, we obtain a new 
approximation �(k) . Unless otherwise stated, all the work here 
assumes a starting approximation �(0) as the all zeros vector, 
although any starting vector can be chosen. The residual at the 
kth iteration is denoted as �(k) = � −M�(k) and is a measure 
of how close the current solution �(k) is to solve the system 
M� = � . We let M = I − �A , so we solve the linear system 
M� = � for � using an iterative method and then obtain the 
Katz scores using a matrix-vector multiplication in (m) as 

∞∑

i=0

�
i−1Ai = A + �A2 + �

2A3 +⋯ + �
k−1Ak +⋯ .

� = A� . We set � = � for the global scores and � = �i for the 
personalized scores. The iterative method we use here is the 
Jacobi algorithm (Saad 2003) outlined in Algorithm 1. Here, 
D is the matrix consisting of the diagonal entries from M and R 
is the matrix of all off-diagonal entries of M. We terminate the 
solver when the solution changes by less than a fixed tolerance 
tol (Riedy 2016), or when ‖�k+1 − �k‖2.

Our dynamic algorithm is also motivated by principles 
of iterative refinement, another iterative method that adds 
a correction to the current guess to obtain a more accurate 
approximation (Wilkinson 1994). To compute the solution � 
to the linear system M� = � , iterative refinement repeatedly 
performs the following steps at each iteration k.

1. Compute residual �(k) = � −M�(k)

2. Solve system M�(k) = �(k) for correction �(k)
3. Add correction to obtain new solution �(k+1) = �(k) + �(k)

Note that we can use any other iterative method to solve the 
system in Step 2.

4  Motivation and initial approach

4.1  Static algorithm

Given edge updates to the graph, the static algorithm to rec-
ompute the Katz centrality scores in the updated graph first 
calculates � from scratch using an iterative method and then 
calculates � using a single matrix-vector multiplication. This 
procedure is given in Algorithm 2 to obtain the new solution 
�t+1 at time t + 1 given updates �A to the graph. After a batch 
of edges has been inserted into the network, the adjacency 
matrix is updated to At+1 and the vector �t+1 is recomputed 
using the Jacobi method from Algorithm 1.
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Since calculating �t given �t at any timepoint t is one 
matrix-vector multiplication and can be done in (m) , this 
is not the bottleneck of the static algorithm. As more data are 
added to the graph, the number of iterations taken to update 
�t+1 in Line 4 increases and pure recomputation becomes 
increasingly expensive as the graph size increases. We thus 
focus the development of our dynamic algorithm on limiting 
the number of iterations taken to obtain the updated vector 
�t+1 . Calculating � is the same in the static and our dynamic 
algorithm and so for the rest of the paper we focus our dis-
cussions on the vector �.

4.2  Motivation

In many low-latency applications, the number of edge 
updates, or equivalently, the size of �A , is significantly 
smaller than the size of the entire graph A. If the change �A 
is small relative to the size of the graph, the new graph will 
be similar to the old graph. It follows that the new solution 
�t+1 at time t + 1 might be similar to the old solution �t at 
time t. This is the intuition behind our dynamic algorithm. 
Figure 1 plots the difference between subsequent solutions 
for global scores each time the graph changes for the Face-
book graph. The x axis simulates time as more edges are 
being added into the graph. We insert 1000 edges into the 
graph at each time step. The y axis is the 2-norm difference 
between solutions at consecutive timepoints, ‖�t+1 − �t‖2 . 
Since the Katz scores themselves can be as high as 104 , a 
difference of 10−1 across insertions of edges over time is 
relatively small. This indicates that the solutions across 
timepoints are not very different, suggesting that the static 
algorithm of recomputing the centrality metric from scratch 
is doing a lot of unnecessary work. Therefore, our dynamic 
algorithm therefore only targets places in the vector that are 
affected by updates to the graph.

4.3  Initial approach

Here we present a “first-pass” algorithm and discuss its 
shortcomings. This provides the motivation for the devel-
opment of our dynamic algorithm in Sect. 5. Suppose we 
have the solution �t for the adjacency matrix At at a spe-
cific timepoint t. We want to solve for the new solution 
at time t + 1 as �t+1 = �t + �x . Given edge updates to 
the graph, we want to solve for the vector �t+1 in the lin-
ear system (I − �At+1)�t+1 = � for the global scores, or 
(I − �At+1)�t+1 = �i for the personalized scores equivalently. 
Using basic algebra, we can rearrange the terms in the linear 
system to derive an iterative update as follows:

Since (I − �At)�t = � , we can split and rearrange the terms 
as

and turn this into an iterative update to solve for �x:

However, this simplistic approach tends to accumulate 
error instead of converging to the same solution as static 
recomputation. We provide a more in-depth analysis of the 
quality of this alternate method in Sect. 6. This approach 
(henceforth referred to as the “alternate” method) is based 
off of a forward error analysis. Forward error of an algo-
rithm tells us the difference between the result we obtain 
and the actual solution (Higham 2002). In our case for an 
exact solution �∗ , the forward error is the quantity �∗ − �t+1 
where �t+1 = �t + �x as derived above in Eq. 2. By aiming 
to minimize this quantity, we will see that the error tends to 
unfortunately rapidly increase. Therefore, we next present 
our dynamic algorithm based off of a backward error analy-
sis in Sect. 5. Backward error is the smallest quantity � such 
that (I − �At+1)(�t+1 + �) = � , or in other words, we obtain 
an understanding on what problem we actually solved.

5  Dynamic algorithm

Our dynamic algorithm computes the correction �x , the 
difference in the solutions at timepoints t and t + 1 , using 
principles of iterative refinement. For the purposes of deriv-
ing the algorithm, we do so w.r.t. the global scores. For 

� = (I − �At+1)�t+1

� = (I − �At+1)(�t + �x)

� = (I − �At+1)�t + (I − �At+1)�x

� = �t − �(At + �A)�t + �x − �At+1�x

� = �t − �At�t − ��A�t + �x − �At+1�x

� = (I − �At)�t − ��A�t + �x − �At+1�x

(1)�x = �At+1�x + ��A�t,

(2)�x
(k+1) = �At+1�x

(k) + ��A�t

Fig. 1  Difference in consecutive solutions over time. Small changes 
in solutions suggest a dynamic algorithm could work by applying 
incremental updates to previous solutions
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personalized scores w.r.t. vertex i, we simply replace the 
vector � with �i . Since we use the old solution as a starting 
point for the new solution, we first measure how close the 
old solution is to solve the system for the new graph. We do 
so by introducing the concept of an “approximate residual” 
denoted as �̃t+1 . This can be written in terms of the current 
residual at time t, �t = � −Mt�t , edge updates �A , and the 
old solution �t . The algorithm to compute �̃t+1 is given in 
Algorithm 3 with the corresponding proof of correctness 
in Theorem 1.

Theorem 1 Algorithm 3 correctly calculates the approximate 
residual at time t + 1.

Proof The approximate residual �̃t+1 measures how close 
the current solution �t is to solve the updated system At+1.

  □

We then use the approximate residual �̃t+1 to solve a lin-
ear system for the correction �x . Solved exactly, this linear 
system will give the same scores as static recomputation, but 
solved to some preset tolerance as discussed earlier, it will 
provide a good quality approximation of the updated central-
ity scores. We examine the effect of varying the tolerance on 
the performance of our dynamic algorithm in Sect. 6. This 
procedure and the corresponding proof of correctness are 
given in Algorithm 4 and Theorem 2, respectively.

Theorem 2 Algorithm 4 correctly calculates the correction 
�x at time t + 1.

Proof Since the approximation residual �̃t+1 measures how 
close the current solution is to the solution of the updated 
system, we use �̃t+1 to solve for the correction �x using prin-
ciples of iterative refinement.

�̃t+1 = � −Mt+1�t

= � − (I − �At+1)�t

= � − �t + �At+1�t

= � − �t + �At�t − �At�t + �At+1�t

= �t + �(At+1 − At)�t

= �t + ��A�t

We can turn this into an iterative update:

This formulation lends itself quite nicely to using the Jacobi 
algorithm.   □

The final step of our algorithm is to update the residual 
�t for the next timepoint. We do so by calculating �� , the 
difference in the two residuals at time t and t + 1 . This 
procedure is given in Algorithm 5 with the corresponding 
proof of correctness in Theorem 3.

Theorem 3 Algorithm 5 correctly updates the residual at 
time t + 1.

Proof The residual �t+1 at time t + 1 measures the correct-
ness of the updated solution �t+1 . We write the new residual 
�t+1 in terms of the old residual �t to obtain the difference 
between the two as ��.

  □

The entire procedure for updating Katz centrality scores 
in a dynamic graph is outlined in Algorithm 6, Dynamic_
katz, and uses the three previously described subroutines. 
First, in line 2 we calculate the current residual �t , which is 
easily obtained given the current snapshot of the graph At 
and solution �t at time t. In line 3, we form the new snapshot 
of the graph At+1 using the new batches of edges that are 
being inserted into the graph. In line 4, we call the first sub-
routine Get_approximate_resiDual, Algorithm 3, to return 
the approximate residual �̃t+1 . Next in line 5 we solve for the 
difference �x between the vectors �t+1 and �t using the sub-
routine obtain_Del_x, Algorithm 4. In line 6, we calculate 

(I − �At+1)�x = �̃t+1 = �t + ��A�t

�x − �At+1�x = �t + ��A�t

�x
(k+1) = �At+1�x

(k) + ��A�t + �t

�t+1 = � − (I − �At+1)�t+1

= � − (I − �At+1)(�t + �x)

= � − (I − �At+1)�t − (I − �At+1)�x

= �̃t+1 − (I − �At+1)�x

= �t + ��A�t − (I − �At+1)�x

= �t + ��

∴�� = �ΔA�t − (I − �At+1)�x
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the new solution �t+1 using the old solution �t and the cal-
culated correction �x . Finally, after updating the solution 
from time t to the solution at t + 1 , lines 7 and 8 update the 
residual between these two timepoints using the subroutine 
upDate_resiDual in Algorithm 5. Finally, at the end of the 
procedure in line 9 we return the new solution �t+1.

Note that while in this paper we only examine edge inser-
tions in a dynamic graph, the algorithm is equally well suited 
for handling edge deletions. Changes to the graph are rep-
resented by �A . If we are inserting edge (i, j) into the graph 
at time t, we set �A(i, j) = 1 . Similarly if we want to delete 
edge (i, j), we can write �A(i, j) = −1.

5.1  Complexity analysis

The majority of the work done by the dynamic algorithm 
is in Algorithm 4 (obtain_Del_x). Since we still require a 
matrix-vector multiplication by At+1 at the end of the algo-
rithm, the worst-case complexity of the dynamic algorithm 
is the same as static recomputation and is (m) , apart from 
a constant (based on the number of iterations taken by the 
iterative solver). However, in practice we observe that we are 
able to obtain significant speedups in both time and itera-
tions compared to static recomputation while maintaining a 
good quality of results returned. This is due to the fact that 
the number of iterations taken by our dynamic algorithm is 
far fewer than that of static recomputation and we are able 
to converge to the solution faster.

6  Results

6.1  Experimental setup

We test our method of updating Katz centrality scores in 
dynamic graphs on both synthetic and real-world networks. 
For synthetic networks, we use Erdos–Renyi (Erdös and 
Rényi 1959) and R-MAT graphs (Chakrabarti et al. 2004). 
In the Erdos–Renyi model, a graph is constructed by con-
necting vertices randomly. All edges have the same prob-
ability for existing in the graph. While Erdos–Renyi graphs 
consist of a uniform distribution of edges existing in the 
graphs, they do not model real-world behavior accurately. 
For that reason, we also use R-MAT graphs, since they are 

designed to mimic real-world graphs. An R-MAT genera-
tor creates scale-free networks designed to simulate real-
world networks. This provides a basis of how we expect 
our method to behave on real datasets, which we also test 
in this section. Consider an adjacency matrix: the matrix is 
subdivided into four quadrants, where each quadrant has a 
different probability of being selected. Once a quadrant is 
selected, this quadrant is recursively subdivided into four 
subquadrants and using the same probabilities, we select 
one of the subquadrants. This process is repeated until we 
arrive at a single cell in the adjacency matrix. An edge is 
assigned between the two vertices making up that cell. For 
real-world networks, we draw from the KONECT collection 
of datasets (Kunegis 2013). The five datasets used are given 
in Table 1 and comprise a mixture of citation and social 
networks. These graphs are chosen because they have time 
stamps associated with the edges to represent temporal data.

To have a baseline for comparison, we treat scores 
obtained from static recomputation as ground truth. Every 
time we update the centrality scores using our dynamic algo-
rithm, we recompute the centrality vector statically using 
Algorithm 2. Denote the vector obtained by static recom-
putation by �S and the vector obtained by our dynamic 
algorithm by �D . We create an initial graph G0 using the 
first half of edges, which provides a starting point for both 
the dynamic and static algorithms. To simulate a stream of 
edges in a dynamic graph, we insert the remaining edges in 
batches of size b and apply both algorithms. For the syn-
thetic graphs, the edges are permuted randomly during inser-
tion. Edges in real graphs are inserted in time-stamped order. 
We use batch sizes of b = 1, 10, 100, and 1000 and vary the 
tolerance to which we solve for in Algorithm 1 (the Jacobi 
method) and provide analysis on how this affects the results 
of our algorithm.

6.2  Synthetic graphs

In this section, we present results on Erdos–Renyi and 
R-MAT generated graphs. For each type of graph, we gener-
ate graphs with the number of vertices as a power of 2, rang-
ing from 210 to 214 . We vary the average degree of the graphs 
from 10 to 50. For each total number of vertices and average 
degree, five graphs are created and tested. The results shown 
are averaged over these five trials. All results shown for the 
synthetic cases use a batch size of 1, meaning after we create 
the initial graph G0 , we sequentially insert the remaining 1/2 
of edges. The trends for other batch sizes are similar.

The primary motivation behind a dynamic approach is 
to prune any unnecessary work in the static algorithm to 
develop a faster method of obtaining the centrality vector 
for dynamic graphs. Therefore, we evaluate the performance 
of the dynamic algorithm in terms of speedup compared to 



 Social Network Analysis and Mining (2018) 8:26

1 3

26 Page 8 of 15

the static algorithm. For a particular timepoint after insert-
ing a batch of edges, denote the time taken to compute Katz 
scores by the static recomputation by TS and the time taken 
by our dynamic algorithm as TD . We calculate the algorith-
mic speedup in time of the dynamic algorithm against the 
static algorithm as

Since we are using iterative methods to calculate the central-
ity vectors, we also evaluate the performance of the dynamic 
algorithm with respect to the reduction in number of itera-
tions. For a particular timepoint t, denote the number of 
iterations taken by recomputation as IS and the time taken 
by the streaming approach as ID . Calculate the speedup w.r.t 
the number of iterations as

Tables 2 and 3 give the average speedup in time and 
reduction in iterations, respectively, for Erdos–Renyi graphs, 
and Tables 4 and 5 show the same values for R-MAT graphs. 
As we increase the average degree for both types of graphs, 
the speedups in time and iterations are larger. Additionally, 
we see greater speedups for graphs with larger values of 
n. The dynamic algorithm likely has more of an effect for 
larger graphs because there is more work to be done for 
larger graphs with the static algorithm. Unlike the static 
algorithm, our dynamic algorithm only traverses parts of 
the graph where updates have occurred. These trends persist 
for both Erdos–Renyi and R-MAT graphs, but typically we 
find that R-MAT graphs have greater speedups than their 
respective Erdos–Renyi counterparts.

6.3  Performance on real graphs

Next we examine the performance of our algorithm on the 
real-world graphs. First, we look at the effect of the ter-
minating tolerance on the speedup (in both time and itera-
tions) obtained in Fig. 2. Specifically, Fig. 2a, b plots the 
speedup in time for global and personalized scores, respec-
tively, and Fig. 2c, d plots the speedup in iterations for global 

speeduptime =
TS

TD
.

speedupiter =
IS

ID
.

and personalized scores, respectively. Results are averaged 
across the five real datasets and show maximum (in blue), 
median (in green), and minimum (in red) speedups. Note 
that the y axis in Fig. 2a, b is on a log scale with base 10 
and the y axis in Fig. 2c, d is on a log scale with base 2 for 
clarity.

For the global scores, we observe that as the increase in 
the value of the tolerance to which we solve for, we obtain 
greater speedups. This intuitively makes sense because as 
we increase the value of the tolerance required to terminate 
(meaning a less accurate solution will suffice), the iterative 
solver will take fewer iterations to converge and our dynamic 
algorithm will have more of an effect. For the personalized 
scores, we see more of a plateau and the speedups obtained 
seem to be independent of the preset tolerance. This is due to 
the fact that the personalized scores themselves are so small. 
Therefore, it may likely take the same number of iterations to 
converge to a tolerance of at least 10−1 as it does to converge 
to 10−3 for example, so we see very little differences in the 
speedups for these tolerances. We also note that the speed-
ups (in both time and iterations) for the personalized scores 
are greater than their global counterparts. Since the values of 
the scores are so small in the personalized case, the iterative 
solver likely takes more total iterations to converge and the 
dynamic algorithm has more of an effect here. Nevertheless, 
overall we obtain speedups of several orders of magnitude 
and for the global scores on average about 100× speedup in 
time and 32× speedup in iterations. Similarly for the person-
alized scores, we obtain on average about a 200× speedup 
in time and about a 64× speedup in iterations. Even for very 
low values of the tolerance (meaning we desire more precise 
solutions), such as 10−8 , we always obtain > 1× speedup. 
This indicates we can obtain fairly accurate scores and with 
our method do so much faster than static recomputation.

Next we examine the speedups obtained as a function 
of batch size and compare our dynamic algorithm against 
two different static methods in Fig. 3. Both static methods 
evaluate �S using Algorithm 2 but start with different initial 
starting vectors in line 3 in Algorithm 1 (Jacobi).

1. Method 1: uses an initial starting vector of �(0) = �.
2. Method 2: uses the previous solution as a starting point 

for the Jacobi algorithm. Essentially, if we are comput-
ing �t+1 , line 3 in Algorithm 1 becomes �(0) = �t.

Figure 3a, b plots the speedup w.r.t time versus batch size for 
global and personalized scores, respectively, comparing our 
dynamic algorithm against static recomputation. Similarly, 
Fig. 3c, d plots the speedup w.r.t iterations versus batch size 
for global and personalized scores, respectively. We show 
the maximum, median, and minimum speedup averaged over 
the 5 real graphs. Method 1 is plotted with a solid line with 
squares and Method 2 is plotted with a dotted line. For this, 

Table 1  Graphs used in experiments

Columns are graph name, number of vertices, and number of edges

Graph |V| |E|

Facebook 63,731 817,035
Gowalla 196,591 950,327
DBLP 317,080 1,049,866
Dogster 426,820 8,546,581
YouTube 1,134,890 2,987,624
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we examine results only for a terminating tolerance of 10−4 
although the trends observed for other tolerances are similar. 
Note again that the y axis in Fig. 3a, b is on a log scale with 
base 10 and the y axis in Fig. 3c, d is on a log scale with base 
2. In Fig. 3a, we see that our dynamic algorithm can be over 
two orders of magnitude faster for a batch size of 1 than both 
static recomputation approaches. It is expected that Method 
2 is faster than Method 1, since we initialize Jacobi with the 
vector �t that is likely closer to the new solution �t+1 than 
� , but our dynamic algorithm is still able to outperform this 
method in both time and iterations. The median speedup 
in time for the global scores is about 100× for a batch size 
of 1 and about 200× for the personalized scores for a batch 

size of 1. Even for a batch size of 1000 edges, we always 
have greater than a 1 × speedup. Figure 3c shows that we can 
obtain over an 80× reduction in iterations for both global and 
personalized scores for a batch size of 1. This is especially 
significant because the static method can take hundreds or 
thousands of iterations to converge in some cases, so our 
algorithm would provide large savings of resources in many 
applications. Finally, we see a greater speedup in both time 
and iterations for the smaller batch sizes of 1 and 10. As 
mentioned earlier, this is because as the batch size increases, 
the dynamic algorithm nears the work of a static algorithm. 
This shows that the dynamic approach is most useful for 
monitoring applications where the rankings must be updated 
after only a small number of data changes.

Next we examine the behavior of both algorithms with 
respect to raw iteration counts over time. Henceforth when 
referring to the static algorithm, we use Method 2 from 
above. Figure 4 plots the raw number of iterations used by 
the static (the dotted blue line) and dynamic (the solid green 
line) algorithms for different batch sizes for the Facebook 
graph. We sample at 100 evenly spaced timepoints for each 
batch size. Figure 4a–d plots the comparison for batch sizes 
b = 1, 10, 100, 1000 , respectively. All four figures show the 
same general behavior: while the number of iterations for 
static recomputation continues to steadily increase as edges 
are added into the graph, the dynamic algorithm maintains 
a stable number of iterations over time. This is because the 
dynamic algorithm only targets the places in the vector that 
are affected by edge updates. For example, take Fig. 4b. 
The dotted blue line shows that the number of iterations for 
the static recomputation of the centrality vector continually 
increases over time as more edges are added into the graph, 
eventually reaching about 175 iterations once all edges are 
added. However, for the dynamic algorithm shown in the 
solid green line, the number of iterations is stable at around 
1–20 iterations for all points in time. It is important to note 
that this trend persists regardless of the batch size. Even for 
very large batch sizes of b = 1000 , while there are small 
fluctuations in the number of iterations, there is no trend of 
increasing iteration counts over time, meaning our algorithm 
is robust to many edge insertions.

6.4  Quality on real graphs

We have seen that we are able to achieve results faster using 
a dynamic algorithm compared to static recomputation every 
time the graph changes when calculating centrality scores in 
dynamic networks. However, it is also important to ensure 
that the centrality scores returned by the dynamic algorithm 
are similar to those returned by the static algorithm. To eval-
uate the quality of our algorithm, we measure two quantities: 
(1) recall of top k vertices measured as

Table 2  Speedup in time for Erdos–Renyi graphs

Average degree 10 20 30 40 50

n = 1024 1.44× 1.62× 1.8× 1.99× 2.17×
n = 2048 1.51× 1.77× 2.0× 2.25× 2.49×
n = 4096 1.66× 2.03× 2.37× 2.85× 3.34×
n = 8192 1.95× 2.55× 3.05× 4.02× 5.09×
n = 16,384 2.51× 3.5× 4.34× 6.0× 8.02×

Table 3  Speedup in iterations for Erdos–Renyi graphs

Average degree 10 20 30 40 50

n = 1024 4.56× 5.01× 5.37× 5.71× 5.99×
n = 2048 4.82× 5.4× 5.82× 6.17× 6.5×
n = 4096 5.05× 5.77× 6.27× 6.7× 7.1×
n = 8192 5.25× 6.12× 6.69× 7.24× 7.73×
n = 16,384 5.40× 6.42× 7.04× 7.73× 8.33×

Table 4  Speedup in time for R-MAT graphs

Average degree 10 20 30 40 50

n = 1024 1.75× 1.95× 2.15× 2.44× 2.7×
n = 2048 1.98× 2.39× 2.7× 3.14× 3.56×
n = 4096 2.42× 3.12× 3.62× 4.3× 5.08×
n = 8192 3.35× 4.32× 5.25× 6.41× 7.46×
n = 16,384 4.63× 6.26× 7.64× 9.15× 10.46×

Table 5  Speedup in iterations for R-MAT graphs

Average degree 10 20 30 40 50

n = 1024 4.89× 5.29× 5.6× 6.01× 6.38×
n = 2048 5.12× 5.77× 6.27× 6.73× 7.12×
n = 4096 5.34× 6.2× 6.69× 7.24× 7.66×
n = 8192 5.81× 6.52× 7.18× 7.77× 8.25×
n = 16,384 6.0× 6.89× 7.62× 8.29× 8.72×
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recallk =
|CS(k) ∩ CD(k)|

|CS(k)|
,

where CS(k) and CD(k) are the set of the top k highly ranked 
vertices from the statically and dynamically computed cen-
trality vectors, respectively, and (2) average error computed 

Fig. 2  Speedup (time) for 
global scores. Higher is better. a 
Speedup (time) for personalized 
scores, b Speedup (iterations) 
for global scores, c Speedup 
(iterations) for personalized 
scores, d Speedup (time and 
iterations) versus tolerance

(a) Speedup (time) for global scores. (b) Speedup (time) for personalized scores

(c) Speedup (iterations) for global scores. (d) Speedup (iterations) for personalized
scores.

Fig. 3  Speedup in time for 
global scores, a speedup in 
time for personalized scores, b 
speedup in iterations for global 
scores, c speedup in iterations 
for personalized scores, d 
speedup (time and iterations) 
versus batch size. Higher is 
better

(a) Speed up in time forglobal scores. (b) Speed up in time for personalized scores.

(c) Speed up in iterations for global scores. (d) Speedup in iterations for personalized
scores.
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as the pointwise difference between the statically and 
dynamically computed vectors

Table 6 presents the average recall of the top 10, 100, and 
1000 vertices in the different graphs for both our dynamic 
algorithm and the alternate approach presented in Sect. 4.3. 
We use a terminating tolerance of 10−4 . Immediately we note 
that our algorithm has a perfect recall of the top k verti-
ces in all cases except for one graph (Dblp) for one value 
of k = 100 , and the recall is 0.99 here. The quality of the 
alternate approach suffers and is not able to maintain per-
fect recall in many cases. Furthermore, will see next that 
the actual values of the scores themselves (measured by the 
average error) between the dynamically computed vector 
from the alternate method compared to static recomputation 
are not similar at all, and we obtain very high errors using 
this alternate method.

Table 7 presents the average error for each of the graphs 
tested and for all batch sizes for both our dynamic method 
and the alternate method. We again use results from a toler-
ance of 10−4 . The average error obtained from our dynamic 
algorithm for global and personalized scores is 1.32e−02 
and 8.69e−05, respectively. However, the average error 
obtained from the alternate approach compared to static rec-
omputation for global and personalized scores is 6.19e+03 
and 1.14e−01, respectively. For both global and personal-
ized scores, the errors from the alternate method are several 

error = ‖�S − �D‖∞.

Fig. 4  Raw number of iterations 
for the Facebook graph for 
different batch sizes. Dynamic 
algorithm is plotted in solid 
green line and static algorithm 
is plotted in dotted blue line. a 
b = 1 , b b = 10 , c b = 100 , d 
b = 1000

(a) b = 1 (b) b = 10

(c) b = 100 (d) b = 1000

Table 6  Summary statistics of recall of top vertices for different 
graphs for a terminating tolerance of 10−4

Type Graph Top 10 Top 100 Top 1000

(a) Our dynamic algorithm
 Global Facebook 1.00 1.00 1.00

Gowalla 1.00 1.00 1.00
DBLP 1.00 0.99 1.00
Dogster 1.00 1.00 1.00
YouTube 1.00 1.00 1.00

 Personalized Facebook 1.00 1.00 1.00
Gowalla 1.00 1.00 1.00
DBLP 1.00 1.00 1.00
Dogster 1.00 1.00 1.00
YouTube 1.00 1.00 1.00

(b) Alternate approach
 Global Facebook 0.91 0.84 0.89

Gowalla 0.92 1.00 0.99
DBLP 1.00 0.93 0.92
Dogster 1.00 0.95 0.96
YouTube 1.00 0.97 0.95

 Personalized Facebook 0.89 0.94 0.91
Gowalla 0.90 0.93 0.96
DBLP 0.95 0.97 0.95
Dogster 0.98 0.92 0.91
YouTube 0.93 0.82 0.87
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orders of magnitude higher than the corresponding errors 
from our method. In fact, the errors for the global scores 
from the alternate method are in the thousands or tens of 
thousands. The errors for the personalized scores from the 
alternate method are significantly smaller than the errors for 
the global scores from the alternate method (on the order of 
≈ 10−2 ). However, the values in the personalized centrality 
vector themselves are on the order of 10−2 to 10−3 so errors 
of ≈ 10−2 for the personalized scores from the alternate 
approach still indicate that this is a poor method.

Next we look at the behavior of both the alternate method 
and our dynamic algorithm over time. Figure 5 plots the 
average error over time for our dynamic algorithm (the fig-
ures on the left) and the alternate method (the figures on 
the right). We show results for a batch size of 1 for global 
scores, although results for other batch sizes are similar. For 
our dynamic algorithm, we note that for no graph do we see 
a trend of error increasing over time, unlike those from the 
alternate method. In fact using our dynamic algorithm, the 
average error in the two largest graphs (Gowalla and you-
tube) actually decreases as we insert more edges into the 
graph using our dynamic algorithm. This is in stark contrast 
to the alternate method where we see only a trend of error 
increasing over time showing that the forward error analysis 
approach only accumulates error instead of converging to the 

answer obtained by static recomputation. Additionally, note 
that the scales of the y axis on the figures plotting results 
from our dynamic algorithm are at most 10−2 indicating that 
values in the vector obtained from our dynamic algorithm 
match those obtained from static recomputation, while the 
y axis on the figures from the alternate method range as 
high as 104 . In summary, we note that the alternate method 
presented is not sufficient to calculate the updated central-
ity metric and the increasing and large values of the average 
error prove this method returns results of poor quality.

Finally, Fig. 6 explores in detail the underlying impact of 
the time step granularity on the quality of our algorithm. Fig-
ure 6a plots the error versus batch size for the global scores 
and Fig. 6b plots the error versus batch size for the personal-
ized scores for all five real graphs tested. In both cases, we 
see a trend of increasing error as a function of increasing 
batch size. This is because the underlying assumption of 
our algorithm relies on the fact that there exists smoothness 
between consecutive time steps. With a larger number of 
edge insertions in one batch, the solutions before and after 
the batch of insertions will differ considerably. Therefore, it 
is not surprising that larger batch sizes impact the quality of 
the algorithm more than smaller batch sizes. However, even 
though there is a trend of increasing error for larger batch 
sizes compared to smaller batch sizes, the average error is 
still relatively low compared to the values in the central-
ity vector themselves, and we therefore conclude that our 
dynamic algorithm is able to maintain similar quality to 
static recomputation.

7  Adding and removing vertices

Adding and removing edges is fairly straightforward since 
edges only require updating the ΔA matrix with either a 1 
(insertions) or −1 (deletions) in the corresponding position 
for the edge in question. However, adding and removing 
vertices becomes slightly trickier, since our work is based 
in linear algebra with fixed size matrices. One solution to 
this is to assume some reasonable bound on the total num-
ber of vertices allowed (this can be application dependent 
or based on available storage). The algorithm would then 
start with a matrix A0 with empty rows for vertices that do 
not exist yet in the graph and as the vertices are added with 
edges into the existing graph, the corresponding rows are 
also updated. Deleting a vertex can be handled in a similar 
manner by allowing the vertex to technically exist but remain 
disconnected from the entire graph. Essentially when delet-
ing vertex i from the graph, we can cope by zeroing out the 
ith row in the adjacency matrix.

Table 7  Summary statistics of average error versus batch size for dif-
ferent graphs for a terminating tolerance of 10−4

Type Graph b = 1 b = 10 b = 100 b = 1000

(a) Our dynamic algorithm
 Global Facebook 1.64e−03 2.77e−03 4.52e−03 5.00e−03

Gowalla 6.52e−03 1.55e−02 2.38e−02 2.95e−02
DBLP 3.32e−05 9.87e−05 2.88e−04 1.89e−03
Dogster 2.01e−03 1.75e−02 2.05e−02 2.01e−02
YouTube 7.78e−03 2.17e−02 3.67e−02 4.58e−02

 Personal-
ized

Facebook 6.11e−07 2.76e−06 1.71e−05 1.08e−03
Gowalla 5.11e−07 2.51e−06 3.54e−04 2.41e−04
DBLP 6.03e−09 7.53e−09 7.20e−09 1.29e−05
Dogster 1.08e−07 2.13e−06 4.48e−06 1.23e−05
YouTube 1.34e−07 3.36e−06 1.11e−06 5.38e−06

(b) Alternate approach
 Global Facebook 1.84e+03 1.84e+03 1.84e+03 1.84e+03

Gowalla 2.93e+03 2.93e+03 2.93e+03 2.92e+03
DBLP 6.15e+01 6.15e+01 6.14e+01 6.14e+01
Dogster 2.20e+03 8.59e+03 2.61e+04 2.74e+04
YouTube 8.03e+03 1.08e+04 1.08e+04 1.08e+04

 Personal-
ized

Facebook 8.48e−03 4.22e−03 6.73e−01 7.07e−01
Gowalla 4.56e−02 8.91e−02 1.05e−02 4.15e−03
DBLP 1.18e−03 4.40e−05 4.57e−02 8.40e−05
Dogster 4.33e−02 4.03e−02 1.01e−02 3.79e−01
YouTube 1.07e−01 1.54e−02 3.25e−02 5.87e−02
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Fig. 5  Average error plotted 
over time for both our dynamic 
algorithm (left figures) and the 
alternate method (right figures). 
Results are shown for a batch 
size of 1 and for global scores. 
Lower values are better
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8  Conclusions

We have presented a new algorithm that incrementally 
updates the Katz centrality scores when the underlying 
graph changes. Our dynamic algorithm is faster than stati-
cally recomputing the centrality scores every time the graph 
changes, and the performance improvement is greatest when 
low-latency updates are required. However, our approach 
is still faster than recomputing from scratch even for large 
batch insertions of edges into the graph. We compared our 
method to a static recomputation initialized from the all 
zeros vector and from the previous time step’s solution and 
showed that our method is able to outperform both. Our 
dynamic algorithm returns scores that are within negligible 
error of the scores returned by static recomputation, and 
we showed that the quality of the scores using our dynamic 
algorithm does not deteriorate over time. We presented and 
explained the problems associated with a simple intuitive 
iterative approach and compared it to our dynamic algorithm 
and showed that our method is far superior and is able to 
maintain good quality of results and does not accumulate 
error over time, unlike the alternate method. We analyzed 
the effect of the time step granularity on the quality of our 
dynamic algorithm and showed that even though the error 
between the results of our method and static recomputa-
tion increases for larger batch sizes, the overall error is still 
relatively small compared to the actual values of the central-
ity scores themselves and is therefore negligible. Moreover, 
our algorithm returns perfect recall of top vertices across all 
graphs in nearly all cases. Finally, we presented an approach 
for dealing with the addition and removal of vertices from 
a dynamic graph, which may be addressed in future work.
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