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Abstract
Graphs that model social networks, numerical simulations, 
and the structure of the Internet are enormous and cannot 
be manually inspected. A popular metric used to analyze 
these networks is Betweenness Centrality (BC), which has 
applications in community detection, power grid contin-
gency analysis, and the study of the human brain. However, 
these analyses come with a high computational cost that 
prevents the examination of large graphs of interest.

Recently, the use of Graphics Processing Units (GPUs) 
has been promising for efficient processing of unstruc-
tured data sets. Prior GPU implementations of BC suffer 
from large local data structures and inefficient graph tra-
versals that limit scalability and performance. Here we 
present a hybrid GPU implementation that provides good 
performance on graphs of arbitrary structure rather than 
just scale-free graphs as was done previously. Our methods 
achieve up to 13× speedup on high-diameter graphs and an 
average of 2.71× speedup overall compared to the best exist-
ing GPU algorithm. We also observe near linear speedup 
when running BC on 192 GPUs.

1. INTRODUCTION
Network analysis is a fundamental tool for domains as 
diverse as compilers,17 social networks,14 and computational 
biology.5 Real world applications of these analyses involve 
tremendously large networks that cannot be inspected manu-
ally. An example of a graph analytic that has found significant 
attention in recent literature is BC. Betweenness centrality 
has been used for finding the best location of stores within 
cities,20 studying the spread of AIDS in sexual networks,13 
power grid contingency analysis,11 and community detec-
tion.23 The variety of fields and applications in which this 
method of analysis has been employed shows that graph 
analytics require algorithmic techniques that make them 
performance portable to as many network structures as 
possible. Unfortunately, the fastest known algorithm for 
calculating BC scores has O(mn) complexity for unweighted 
graphs with n vertices and m edges, making the analysis of 
large graphs challenging. Hence there is a need for robust, 
high-performance graph analytics that can be applied to a 
variety of network structures and sizes.

Graphics Processing Units (GPUs) provide excellent per-
formance for regular, dense, and computationally demand-
ing subroutines such as matrix multiplication. However, 
there has been recent success in accelerating irregular, 
memory-bound graph algorithms on GPUs as well.6, 17, 19 
Prior implementations of betweenness centrality on the 

The original version of this paper is entitled “Scalable 
and High Performance Betweenness Centrality on the 
GPU” and was published in the Proceedings of the 26th 
ACM/IEEE International Conference of High Performance 
Computing, Networking, Storage, and Analysis (SC ‘14), 
572–583.

GPU have outperformed their CPU counterparts, particu-
larly on scale-free networks; however, they are limited in 
scalability to larger graph instances, use asymptotically inef-
ficient algorithms that mitigate performance on high diam-
eter graphs, and aren’t general enough to be applied to the 
variety of domains that can leverage their results.

This article alleviates these problems by making the fol-
lowing contributions:

• We provide a work-efficient algorithm for betweenness 
centrality on the GPU that works especially well for net-
works with a large diameter.

• For generality, we propose an algorithm that chooses 
between leveraging either the memory bandwidth 
of the GPU or the asymptotic efficiency of the work 
being done based on the structure of the graph being 
processed. We present an online approach that uses 
a small amount of initial work from the algorithm to 
suggest which method of parallelism would be best for 
processing the remaining work.

• We implement our approach on a single GPU system, 
showing an average speedup of 2.71× across a variety of 
both real-world and synthetic graphs over the best previ-
ous GPU implementation. Additionally, our implementa-
tion attains near linear speedup on a cluster of 192 GPUs.

2. BACKGROUND
2.1. Definitions
Let a graph G = (V, E) consist of a set V of n = |V| vertices and 
a set E of m = |E| edges. A path from a vertex u to a vertex v is 
any sequence of edges originating from u and terminating at 
v. Such a path is a shortest path if its sequence contains a mini-
mal number of edges. A Breadth-First Search (BFS) explores 
vertices of a graph by starting a “source” (or “root”) vertex 
and exploring its neighbors. The neighbors of these vertices 
are then explored and this process repeats until there are 
no remaining vertices to be explored. Each set of inspected 
neighbors is referred to as a vertex frontier and the set of out-
going edges from a vertex frontier is referred to as an edge-
frontier. The diameter of a graph is the length of the longest 
shortest path between any pair of vertices. A scale-free graph 
has a degree distribution that follows a power law, where a 
small number of vertices have a large number of outgoing 
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between these pairs of vertices and has a high BC score. In 
contrast, vertex 8 does not belong on a path between any 
pair of the remaining vertices in the graph and thus has a BC 
score of zero. Note that the scores reflected in Figure 1 treat 
a path from vertex u to vertex v as equivalent to a path from 
vertex v to vertex u since these paths are undirected. In other 
words, to avoid double counting the number of (undirected) 
shortest paths we divide the scores by two.

The magnitude of BC values also scales with the size of 
the network. For a fair comparison of BC values between 
vertices of two different graphs, a commonly used tech-
nique is to normalize the BC scores by their largest possi-
ble value4: (n − 1)(n − 2). Such a comparison could be useful 
for comparing discrete slices of a network that changes 
over time.15

Naïve implementations of Betweenness Centrality solve 
the all-pairs shortest-paths problem using the O(n3) Floyd-
Warshall algorithm and augment this result with path 
counting. Brandes improved upon this approach with an 
algorithm that runs in O(mn) time for unweighted graphs.3 
The key concept of Brandes’s approach is the dependency of 
a vertex v with respect to a given source vertex s:

  (2)

The recursive relationship between the dependency of a 
vertex and the dependency of its successors allows a more 
asymptotically efficient calculation of the centrality metric. 
Brandes’s algorithm splits the betweenness centrality calcu-
lation into two major steps:

1. Find the number of shortest paths between each pair 
of vertices.

2. Sum the dependencies for each vertex.

We can redefine the calculation of BC scores in terms of 
dependencies as follows:

  (3)

2.3. GPU architecture and programming model
The relatively high memory bandwidth of GPUs compared 
to that of conventional CPUs has resulted in many high- 
performance GPU graph algorithms.15, 17, 19 Compared to 
CPUs, GPUs tend to rely on latency hiding rather than cach-
ing and leverage a Single-Instruction, Multiple-Thread (SIMT) 
programming model. The SIMT model allows for transis-
tors to be allocated to additional processor cores rather than 
structures for control flow management.

GPUs are comprised of a series of Streaming Multiprocessors 
(SMs), each of which manages hundreds of threads. The 
threads within each SM execute in groups of 32 threads (on 
current NVIDIA architectures) called warps. Although the 
execution paths of the threads within each warp may diverge, 
peak performance is attained when all threads within a warp 
execute the same instructions. Synchronization between 
the warps of a particular SM is inexpensive but properly syn-
chronizing all of the SMs of the GPU requires the launch of a 

edges and a large number of vertices have a small number of 
outgoing edges.2 Finally, a small world graph has a diameter 
that is proportional to the logarithm of the number of vertices 
in the graph.25 In these networks every vertex can be reached 
from every other vertex by traversing a small number of edges.

Representation of sparse graphs in memory. The most 
intuitive way to store a graph in memory is as an adjacency 
matrix. For unweighted graphs, element Aij of the matrix is 
equal to 1 if an edge exists from i to j and is equal to 0 other-
wise. The real-world graphs that we examine in this article, 
however, are sparse, meaning that a vast majority of the ele-
ments are zeros in the adjacency matrix representation of 
these data sets. Rather than using O(n2) space to store the 
entire adjacency matrix, we use the Compressed Sparse Row 
(CSR) format, as shown in Figure 1. This representation 
consists of two arrays: row offsets (R) and column indices (C). 
The column indices array is a concatenation of each vertex’s 
adjacency list into an array of m elements. The row offsets 
array in an n + 1 element array that points at where each ver-
tex’s adjacency list beings and ends within the column indi-
ces array. For example, the adjacency list of a vertex u starts 
at C[R[u] ] and ends at C[R[u+1]−1] (inclusively).

2.2. Brandes’s algorithm
Betweenness centrality was originally developed in the 
social sciences for classifying people who were central to 
networks and could thus influence others by withholding 
information or altering it.8 The metric attempts to distin-
guish the most influential vertices in a network by measur-
ing the ratio of shortest paths passing through a particular 
vertex to the total number of shortest paths between all pairs 
of vertices. Intuitively, this ratio determines how well a ver-
tex connects pairs of other vertices in the network. Formally, 
the Betweenness centrality of a vertex v is defined as:

  (1)

where σst is the number of shortest paths between vertices 
s and t and σst(v) is the number of those shortest paths that 
pass through v.

Consider Figure 1. Vertex 3 is the only vertex that lies on 
paths from its left (vertices 4 through 8) to its right (vertices 
0 through 2). Hence vertex 3 lies on all of the shortest paths 

BC[7] = 0

BC[6] = 7 BC[5] = 6

BC[3] = 15

BC[0] = 3

BC[8] = 0

R = [0, 3, 5, 8, 12, 16, 20, 24, 27, 28]

C = [1, 2, 3  ê0, 2  ê 0, 1, 3  ê 0, 2, 4, 5  ê 3, 5, 6, 7  ê 3, 4, 6, 7  ê 4, 5, 7, 8  ê4, 5, 6  ê 6]
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Figure 1. Example betweenness centrality scores and CSR 
representation for a small graph.
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particular iteration (but will be unnecessarily inspected dur-
ing every iteration). Finally, the bottom portion of Figure 2 
shows a work-efficient traversal iteration where each vertex 
in the frontier is assigned a thread. In this case only use-
ful work is conducted although a load imbalance may exist 
among threads.

3.2. GPU-FAN
The GPU-FAN package from Shi and Zhang was designed for 
the analysis of biological networks representing protein 
communications or genetic interactions.22 Similar to the 
implementation from Jia et al., GPU-FAN uses the edge-parallel 
method for load balancing across threads. The GPU-FAN 
package, however, focuses only on fine-grained parallelism, 
using all threads from all thread blocks to traverse edges 
in parallel for one source vertex of the BC computation at a 
time. In contrast, the implementation from Jia et al. uses the 
threads within a block traverse edges in parallel while sepa-
rate thread blocks each focus on the independent roots of 
the BC computation.

4. METHODOLOGY
4.1. Work-efficient approach
Taking note of the issues mentioned in the previous section, 
we now present the basis for our work-efficient implemen-
tation of betweenness centrality on the GPU. Our approach 
leverages optimizations from the literature in addition to 

separate kernel, or function that executes on the device. GPU 
threads have access to many registers (typically 255 or so), 
a small amount (typically 48KB) of programmer managed 
shared memory unique to each SM, and a larger global mem-
ory that can be accessed by all SMs.

3. PRIOR GPU IMPLEMENTATIONS
Two well-known GPU implementations of Brandes’s algo-
rithm have been published within the last few years. Jia et 
al.10 compare two types of fine-grained parallelism, showing 
that one is preferable over the other because it exhibits bet-
ter memory bandwidth on the GPU. Shi and Zhang present 
GPU-FAN22 and report a slight speedup over Jia et al. by using 
a different distribution of threads to units of work. Both 
methods focus their optimizations on scale-free networks.

3.1. Vertex and edge parallelism
Jia et al. discussed two distributions of threads to graph enti-
ties: vertex-parallel and edge-parallel.10 The vertex-parallel 
approach assigns a thread to each vertex of the graph and 
that thread traverses all of the outgoing edges from that 
vertex. In contrast, the edge-parallel approach assigns a 
thread to each edge of the graph and that thread traverses 
that edge only. In practice, the number of vertices and edges 
in a graph tend to be greater than the available number of 
threads so each thread sequentially processes multiple ver-
tices or edges.

For both the shortest path calculation and the depen-
dency accumulation stages the number of edges traversed 
per thread by the vertex-parallel approach depends on the 
out-degree of the vertex assigned to each thread. The differ-
ence in out-degrees between vertices causes a load imbal-
ance between threads. For scale-free networks this load 
imbalance can be a tremendous issue, since the distribution 
of outdegrees follows a power law where a small number of 
vertices will have a substantial number of edges to traverse.2 
The edge-parallel approach solves this problem by assigning 
edges to threads directly. Both the vertex-parallel and edge-
parallel approaches from Jia et al. use an inefficient O(n2 + m) 
graph traversal that checks if each vertex being processed 
belongs to the current depth of the search.

Figure 2 illustrates the distribution of threads to work 
for the vertex-parallel and edge-parallel methods. Using the 
same graph as shown in Figure 1, consider a Breadth-First 
Search starting at vertex 4. During the second iteration of the 
search, vertices 1, 3, 5, and 6 are in the vertex frontier, and 
hence their edges need to be inspected. The vertex-parallel 
method, shown in the top portion of Figure 2, distributes 
one thread to each vertex of the graph even though the edges 
connecting most of the vertices in the graph do not need to 
be traversed, resulting in wasted work. Also note that each 
thread is responsible for traversing a different number of 
edges (denoted by the small squares beneath each vertex), 
leading to workload imbalances. The edge-parallel method, 
shown in the middle portion of Figure 2, does not have the 
issue of load imbalance because each thread has one edge 
to traverse. However, this assignment of threads also results 
in wasted work because the edges that do not originate from 
vertices in the frontier do not need to be inspected in this 

1 2 2 1 1 3 9 7

1 53 6

921 3 4 5 6 87

Outgoing edges that do not need to be inspected

Outgoing edges that need to be inspected

Vertex not belonging to the current frontier

Vertex belonging to the current frontier

Edge that does not need to be inspected

Edge that needs to be inspected

...

Figure 2. Illustration of the distribution of threads to units of work. 
Top: Vertex-parallel. Middle: Edge-parallel. Bottom: Work-efficient.
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duplicate queue entries are allowed. Since we only require 
one thread for each element in Qcurr rather than one thread 
for every vertex or edge in the graph, this atomic operation 
experiences limited contention and thus doesn’t signifi-
cantly reduce performance.

The conditional on Line 11 checks to see if the queue con-
taining vertices for the next depth of the search is empty; if 
so, the search is complete, so we break from the outermost 
while loop. Otherwise, we transfer vertices from Qnext to Qcurr, 
add these vertices to the end of S for the dependency accu-
mulation, and do the appropriate bookkeeping to set the 
lengths of these arrays.

Algorithm 2 shows a work-efficient dependency accu-
mulation. We are able to eliminate the use of atomics by 
checking successors rather than the predecessors of each 
vertex. Rather than having multiple vertices that are cur-
rently being processed in parallel update the dependency of 
their common ancestor atomically, the ancestor can update 
itself based on its successors without the need for atomic 
operations.14

our own novel techniques. The most important distinction 
between our approach and prior work is that we use explicit 
queues for graph traversal. Since levels of the graph are pro-
cessed in parallel we use two queues to distinguish vertices 
that are in the current level of the search (Qcurr) from vertices 
that are to be processed during the next level of the search 
(Qnext). For the dependency accumulation stage we initialize 
S and its length. In this case, we need to keep track of verti-
ces at all levels of the search and hence we only use one data 
structure to store these vertices. To distinguish the sections 
of S that correspond to each level of the search we use the 
ends array, where endslen = 1 + maxv∈V {d[v]} at the end of the 
traversal. Vertices corresponding to depth i of the traversal 
are located from index ends[i] to index ends[i + 1] − 1 (inclu-
sively) of S. This usage of the ends and S arrays is analogous 
to the arrays used to store the graph in CSR format.

A work-efficient shortest path calculation stage is shown 
in Algorithm 1. The queue Qcurr is initialized to contain only the 
source vertex. Iterations of the while loop correspond to the 
traversal of depths of the graph. The parallel for loop in Line 
3 assigns one thread to each element in the queue such that 
edges from other portions of the graph aren’t unnecessar-
ily traversed. The atomic Compare And Swap (CAS) opera-
tion on Line 5 is used to prevent multiple insertions of the 
same vertex into Qnext. This restriction allows us to safely 
allocate O(n) memory for Qnext instead of O(m) in the case that 

Note that the parallel for loop in Line 3 of Algorithm 2 
assigns threads only to vertices that need to accumulate 
their dependency values; this is where the bookkeeping done 
to keep track of separate levels of the graph traversal in the 
ends array comes to fruition. Rather than naïvely assigning 
a thread to each vertex or edge and checking to see if that 
vertex or edge belongs to the current depth we instead can 
instantly extract vertices of that depth since they are a con-
secutive block of entries within S. This strategy again pre-
vents unnecessary branch overhead and accesses to global 
memory that are made by previous implementations. For fur-
ther implementation details we refer the reader to the associ-
ated conference paper.16

4.2. Rationale for hybrid methods
The major drawback of the approach outlined in the previ-
ous section is the potential for significant load imbalance 
between threads. Although our approach efficiently assigns 

 

 1  Stage 1: Shortest Path Calculation
 2  while true do
 3      for v ∈ Qcurr do in parallel
 4     for w ∈ neighbors(v) do
 5      if  atomicCAS(d[w], ∞, d[v] + 1) = ∞ then
 6        t ← atomicAdd(Qnext_len, 1)
 7        Qnext[t] ← w

 8      if  d[w] = d[v] + 1 then
 9         atomicAdd(σ[w], σ[v])

10     barrier()
11     if Qnext_len = 0 then
12      depth ← d[S[Slen

13      break

14     else
15      for  tid ← 0 … Qnext_len do in parallel
16       Qcurr[tid] ← Qnext[tid]
17       S[tid + Slen] ← Qnext[tid]

18      barrier()
19      ends[endslen] ← ends[endslen Qnext_len

20      endslen ← endslen + 1
21      Qcurr_len ← Qnext_len

22      Slen ← Slen + Qnext_len

23      Qnext_len ← 0
24      barrier()

 1  Stage 2: Dependency Accumulation
 2  while depth > 0 do
 3     for tid ← ends[depth] . . . ends[depth do in 

parallel
 4        w ← S[tid]
 5        dsw ← 0
 6        sw ← σ[w]
 7        for v  ∈ neighbors(w) do
 8          if  d[v] = d[w] + 1 then

 9            

10         δ [w] ← dsw

11      barrier()
12     depth ← depth

Algorithm 2: Work-efficient betweenness centrality depen-
dency accumulation.

Algorithm 1: Work-efficient betweenness centrality shortest 
path calculation.
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whose vertices mostly belong to one large connected com-
ponent, the amount of time to process each source vertex is 
roughly equivalent, as the same number of edges need to be 
traversed for each source vertex. Therefore the amount of 
time required to process k source vertices is roughly k times 
the time required to process one source vertex.21

Algorithm 3: Sampling method for selecting parallelization 
strategy.

threads to units of useful work, the distribution of edges 
to threads is entirely dependent on the structure of the 
graph. Our approach is significantly faster than other meth-
ods on graphs with a large diameter because such graphs 
tend to have a more uniform distribution of outdegree. On 
scale-free or small world graphs, however, the algorithm 
outlined in the previous section does not improve perfor-
mance. Based on this result we propose a hybrid approach 
that chooses between the edge-parallel and work-efficient 
methods based on the structure of the graph. Rather than 
preprocessing the graph to attempt to determine if it can be 
classified as a scale-free or small world graph, we implement 
our hybridization as an online approach.

Figure 3 illustrates our rationale behind the decision to 
use a hybrid algorithm. Each sub-figure shows how the ver-
tex frontier evolves for three randomly chosen source ver-
tices within a graph. Note that the axes of the sub-figures 
are on different scales to appropriately show trends in the 
frontiers. Although the position of the source vertex plays an 
important role in precisely how the vertex frontier changes 
with search iteration, we can see that the general sizes and 
changes in size of the vertex frontier across iterations of the 
search are more dependent on the overall structure of the 
graph. For high-diameter graphs such as rgg_n_2_20 and 
delaunay_n20 (Figures 3a and 3b), the vertex frontier grows 
gradually and is always a small portion of the total number 
of vertices in the graph. For graphs with a smaller diameter 
such as kron_g500-logn20 (Figure 3c), the vertex frontier 
grows large after just a few iterations and contains over half 
of the total number of vertices in the graph at its peak.

Intuitively, for large vertex frontiers, the edge-parallel 
approach is favorable because of its memory through-
put whereas for small vertex frontiers the work-efficient 
approach is favorable because the number of edges that will 
be traversed is significantly smaller than the total number of 
edges in the graph.

4.3. Sampling
The exact computation of betweenness centrality computes 
a BFS for each vertex in the graph. Since all of these searches 
are independent, they can be executed in parallel. For graphs 
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Figure 3. Evolution of vertex frontiers (as a percentage of total vertices) for different classifications of graphs.

Using the above analysis, an estimate of the average size 
of the connected components within the graph (and thus 
the preferred method of parallelism) is obtained by pro-
cessing a small subset of its vertices. Algorithm 3 shows 
how this method is implemented. We initially use the 
work-efficient method to process a small subset of source 
vertices, recording the maximium depth of each of their 
BFS traversals. We then use the median of this set to be 
our estimate of the graph diameter. If this median is 
smaller than a threshold (determined by the parameter γ) 
then it is likely that our graph is a small-world or scale-
free graph and that we should switch to using the edge-
parallel approach.

5. RESULTS
5.1. Experimental setup
Single-node GPU experiments were implemented using the 
Compute Unified Device Architecture (CUDA) 6.0 Toolkit. 
The CPU is an Intel Core i7-2600K processor running at 3.4 
GHz with an 8MB cache and 16GB of DRAM. The GPU is a 

Our implementation is available at https://github.com/Adam27X/hybrid_BC.

 Input: Set of nsamps connected component sizes (keys)
1 sort(keys)
2 barrier()
3 if keys[nsamps/2] < γ * log2(n) then
4   //Switch to the edge-parallel method
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For the delaunay mesh graphs as shown in Figure 4b we 
can see that the edge-parallel method and the sampling 
approach both outperform GPU-FAN for all scales. The 
edge-parallel approach even outperforms the sam-
pling approach for graphs containing less than 10,000 
vertices; however, it should be noted that these differ-
ences in timings are trivial as they are on the order of 
milliseconds. As the graph size increases the sampling 
method clearly becomes dominant and the speedup it 
achieves grows with the scale of the graph. Finally, we 
compare the sampling approach to GPU-FAN for kron in 
Figure 4c. Although GPU-FAN is marginally faster than 
the sampling approach for the smallest scale graph we 
can see that the sampling approach is best at the next 
scale and the trend shows the amount by which the sam-
pling approach is best grows with scale. Furthermore, 
neither of the previous implementations could support 
this type of graph at larger scales whereas the sampling 
method can support even larger scales.

5.3. Benchmarks
Figure 5 provides a comparison of the various parallel-
ization methods discussed in this article to the edge-
parallel method from Jia et al.10 For road networks and 
meshes (af_shell, del20, luxem) all of the methods out-
perform the edge-parallel method by about 10×. The 
amount of unnecessary work performed by the edge-
parallel method for these graphs is severe. For the 
remaining graphs (scale-free and small-world graphs) 
using the work-efficient method alone performs slower 
than the edge-parallel method whereas the sampling 
method is either the same or slightly better. In these 
cases we see the advantage of choosing our method of 
parallelization online.

In the most extreme case, the edge-parallel approach 
requires more than two and half days to process the 
af_shell9 graph while the sampling approach cuts this 
time down to under five hours. Similarly, the edge-par-
allel approach takes over 48 min to process the luxem-
bourg.osm road network whereas the sampling approach 
requires just 6 min. Overall, sampling performs 2.71× 
faster on average than the edge-parallel approach.

GeForce GTX Titan that has 14 SMs and a base clock of 837 
MHz. The Titan has 6GB of GDDR5 memory and is a CUDA 
compute capability 3.5 (“Kepler”) GPU.

Multi-node experiments were run on the Keeneland 
Initial Delivery System (KIDS).24 KIDS has two Intel Xeon 
X5660 CPUs running at 2.8 GHz and three Tesla M2090 
GPUs per node. Nodes are connected by an Infiniband 
Quadruple Data Rate (QDR) network. The Tesla M2090 
has 16 SMs, a clock frequency of 1.3 GHz, 6GB of GDDR5  
memory, and is a CUDA compute capability 2.0 (“Fermi”) GPU.

We compare our techniques to both GPU-FAN22 and Jia et 
al.10 when possible, using their implementations that have 
been provided online. The graphs used for these compari-
sons are shown in Table 1. These graphs were taken from 
the 10th DIMACS Challenge,1 the University of Florida 
Sparse Matrix Collection,7 and the Stanford Network Analysis 
Platform (SNAP).12 These benchmarks contain both real-
world and randomly generated instances of graphs that 
correspond to a wide variety of practical applications and 
network structures. We focus our attention on the exact 
computation of BC, noting that our techniques can be trivi-
ally adjusted for approximation.

5.2. Scaling
First we compare how well our algorithm scales with 
graph size for three different types of graphs. Since the 
implementation of Jia et al. cannot read graphs that con-
tain isolated vertices, we were unable to obtain results 
using this reference implementation for the random 
geometric (rgg) and simple Kronecker (kron) graphs. 
Additionally, since the higher scales caused GPU-FAN 
to run out of memory, we simply extrapolated what we 
would expect these results to look like from the results 
at lower scales (denoted by dotted lines). Note that from 
one scale to the next the number of vertices and number 
of edges both double.

Noting the log-log scale on the axes, we can see from 
Figure 4a that the sampling approach outperforms the 
algorithm from GPU-FAN by over 12× for all scales of rgg. 
It is interesting to note that the sampling approach only 
takes slightly more time than GPU-FAN when the sam-
pling approach processes a graph four times as large. 

Table 1. Graph datasets used for this study.

Graph Vertices Edges Max degree Diameter Description

af_shell9 504,855 8,542,010 39 497 Sheet metal forming
caidaRouterLevel 192,244 609,066 1,071 25 Internet router-level  

topology
cnr-2000 325,527 2,738,969 18,236 33 Web crawl
com-amazon 334,863 925,872 549 46 Amazon product 

co-purchasing
delaunay_n20 1,048,576 3,145,686 23 444 Random triangulation
kron_g500-logn20 1,048,576 44,619,402 131,503 6 Kronecker
loc-gowalla 196,591 1,900,654 29,460 15 Geosocial
luxembourg.osm 114,599 119,666 6 1,336 Road map
rgg_n_2_20 1,048,576 6,891,620 36 864 Random geometric
smallworld 100,000 499,998 17 9 Small world  

phenomenon
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5.4. Multi-GPU experiments
Although our approaches leverage both coarse and fine-
grained parallelism there is still more available parallel-
ism than can be handled by a single GPU. Our methods 
easily extend to multiple GPUs as well as multiple nodes. 
We extend the algorithm by distributing a subset of roots 
to each GPU. Since each root can be processed indepen-
dently in parallel, we should expect close to perfect scal-
ing if each GPU has a sufficient (and an evenly distributed) 
amount of work.

Since the local data structures for each root are inde-
pendent (and thus only need to reside on one GPU), we 
replicate the data representing the graph itself across all 
GPUs to eliminate communication bottlenecks. Once each 
GPU has its local copy of the BC scores these local copies 
are accumulated for all of the GPUs on each node. Finally, 
the node-level scores are reduced into the global BC scores 
by a simple call to MPI_Reduce(). Figure 6 shows how well 
our algorithm scales out to multiple GPUs for delaunay, 

Figure 5. Comparison of work-efficient and sampling methods.
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rgg, and kron graphs. It shows that linear speedup is eas-
ily achievable if the problem size is sufficiently large (i.e., 
if there is sufficient work for each GPU). Linear speedups 
are achievable at even smaller scales of graphs for denser 
network structures. For instance, using 64 nodes provides 
about a 35× speedup over a single node for scale 16 delau-
nay graph whereas using the same number of nodes at the 
same scale for rgg and kron graphs provides over 40× and 
50× speedups respectively. The scaling behavior seen in 
Figure 6 is not unique to these graphs because of the vast 
amount of coarse-grained parallelism offered by the algo-
rithm. For graphs of large enough size this scalability can 
be obtained independently of network structure.

6. CONCLUSION
In this article we have discussed various methods for com-
puting Betweenness Centrality on the GPU. Leveraging 
information about the structure of the graph, we pres-
ent several methods that choose between two methods 
of parallelism: edge-parallel and work-efficient. For high-
diameter graphs using asymptotically optimal algorithms 
is paramount to obtaining good performance whereas for 
low-diameter graphs it is preferable to maximize memory 
throughput, even if unnecessary work is completed. In 
addition our methods are more scalable and general than 
existing implementations. Finally, we run our algorithm 
on a cluster of 192 GPUs, showing that speedup scales 
almost linearly with the number of GPUs, regardless of 
network structure. Overall, our single-GPU approaches 
perform 2.71× faster on average than the best previous 
GPU approach.

For future work we would like to efficiently map addi-
tional graph analytics to parallel architectures. The impor-
tance of robust, high-performance primitives cannot be 
overstated for the implementation of more complicated 
parallel algorithms. Ideally, GPU kernels should be mod-
ular and reusable; fortunately, packages such as Thrust9 
and CUB (CUDA Unbound)18 are beginning to bridge this 
gap. A software environment in which users have access 
to a suite of high-performance graph analytics on the GPU 
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would allow for fast network analysis and serve as a build-
ing block for more complicated programs.
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Figure 6. Multi-GPU scaling by number of nodes for various graph structures. Each node contains three GPUs.
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