
Comput Optim Appl (2018) 69:1–24
https://doi.org/10.1007/s10589-017-9934-5

Alternating criteria search: a parallel large
neighborhood search algorithm for mixed integer
programs

Lluís-Miquel Munguía1 · Shabbir Ahmed2 ·
David A. Bader1 · George L. Nemhauser2 ·
Yufen Shao3

Received: 6 June 2016 / Published online: 8 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Wepresent a parallel large neighborhood search framework for finding high
quality primal solutions for general mixed-integer programs (MIPs). The approach
simultaneously solves a large number of sub-MIPs with the dual objective of reducing
infeasibility and optimizing with respect to the original objective. Both goals are
achieved by solving restricted versions of two auxiliary MIPs, where subsets of the
variables are fixed. In contrast to prior approaches, ours does not require a feasible
starting solution.We leverage parallelism to performmultiple searches simultaneously,
with the objective of increasing the effectiveness of our heuristic. We computationally
compare the proposed frameworkwith a state-of-the-artMIP solver in termsof solution
quality, scalability, reproducibility, and parallel efficiency. Results show the efficacy
of our approach in finding high quality solutions quickly both as a standalone primal
heuristic and when used in conjunction with an exact algorithm.

Keywords MIPs · Parallel algorithms · Primal heuristics · LNS

This research has been supported in part by ExxonMobil Upstream Research Company, the National
Science Foundation, the Office of Naval Research and the Air Force Office of Scientific Research.

B Lluís-Miquel Munguía
lluis.munguia@gatech.edu

1 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA 30332, USA

3 ExxonMobil Upstream Research Company, Houston, TX 77098, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-017-9934-5&domain=pdf
http://orcid.org/0000-0001-9458-3312

2 L.-M. Munguía et al.

1 Introduction

We present Parallel Alternating Criteria Search, a parallel large neighborhood search
(LNS) heuristic designed for finding high quality feasible solutions to general MIPs.
In discrete optimization, high quality feasible solutions are valuable assets in the opti-
mization process, and constructing them has been one of the main focuses of research
for the past two decades. Berthold [9] and Fischetti et al. [22] present comprehensive
literature reviews on primal heuristics and their applications to MIPs.

Starting heuristics and improvement heuristics are two classes of primal heuristics
that differ in whether they require a starting feasible solution or not. The feasibil-
ity pump [8,19] is a widely used starting heuristic for finding feasible solutions to
MIP instances quickly. It consists of an iterative algorithm that combines linear pro-
gram (LP) relaxations and roundings to enforce LP and integer feasibility until a
feasible solution is found. Successive works built on the original feasibility pump to
improve the solution quality [2] and its overall success rate [5,14,25,41]. Structure-
based heuristics [26] and RENS [11] (relaxation enforced neighborhood search) are
other compelling starting heuristics for finding feasible solutions. RENS belongs to
the class of LNS heuristics, which entail solving carefully restricted sub-MIPs derived
from the original problem. Their effectiveness relies on the ability to use the full
power of a MIP solver to optimize the subproblem. LNS approaches differ in how
the search neighborhood is defined. RENS attempts to find the best possible rounding
when a fractional solution is given. Based on domain propagation and rounding, shift-
and-propagate [12] and ZI rounding [46] are additional successful starting heuristics
which are computationally tested in [3]. More algorithms for finding solutions to MIP
instances can be found in the literature [6,7,28–30].

Improvement heuristics, on the other hand, require a feasible starting solution and
their focus is to improve its quality with respect to the objective. Simple improve-
ment algorithms include the 1-opt [1] and 2-opt [34] heuristics. A large number of
improvement heuristics found in the literature rely on LNS ideas. Successful LNS
heuristics include local branching [20] and subsequent LNS heuristics that use local
branching [33], RINS [18] (relaxation induced neighborhood search) , DINS [27]
(distance induced neighborhood search), proximity search [24] and evolutionary algo-
rithms [42]. The neighborhoods within these heuristics are usually defined using
branch-and-bound information, such as the best available solutions or theLP relaxation
at the current tree node. Because of this requirement, they must be executed as part of
the node processing routine during the branch-and-bound process. Due to this input
dependence, many nodes must be explored before these heuristics become effective
at exploring diversified neighborhoods. Thus, high quality upper bound improve-
ments are rarely found early in the search. In order to address this issue, the search
neighborhoods used in our heuristic are defined using randomization instead of branch-
and-bound dependent information. This allows us to obtain a wide range of diverse
search neighborhoods from the beginning of the search, thus increasing the heuristic’s
effectiveness.

123

Parallel alternating criteria search 3

1.1 Parallel computing applied to integer optimization

Due to recent trends in processor design, parallelism has become ubiquitous in today’s
computers. With the advent of multi-core CPUs, it has become necessary to rethink
most conventional algorithms in order to leverage the benefits of parallel computing.
In the field of discrete optimization, Bader et al. [4] and Koch et al. [38] discuss
potential applications of parallelism. The most widely used strategy entails exploring
the branch-and-bound tree in parallel by solvingmultiple subproblems simultaneously.
Due to its simplicity, most state-of-the-artMIP solvers incorporate this technique, such
as CPLEX [16], GUROBI [13], and ParaSCIP [44]. However, studies have suggested
that parallelizing the branch-and-bound search may not scale well to a large number
of cores [38]. Alternative parallelizations have been proposed in [23] and [15], where
parallelism is used to explore different perturbations of the same problem. Other
options include the application of parallelism to cut generation, primal heuristics,
preprocessing and branching. To our knowledge, the work of Koc et al. [36] are the
only effort to parallelize primal heuristics for general MIPs. In this work, the authors
present a parallelization of the Feasibility Pump [19]. Therefore, Parallel Alternating
Criteria Search is the first parallel algorithm to combine features from starting and
improvement heuristics, offering the possibility of generating starting solutions and
improving them with respect to the original objective.

LNSs are some of the most computationally expensive heuristics, since they are
based on the optimization of sub-MIPs. A strategy to leverage parallelism is to perform
a large number of LNS simultaneously over a diversified set of neighborhoods with
the objective of increasing the chances of finding better solutions. To some degree,
the parallelization of the branch-and-bound tree already provides this diversification
and improvement in performance, since the exploration of multiple nodes in parallel
includes the simultaneous execution of multiple heuristics with a diverse set of inputs.
Our heuristic builds upon a similar parallelization strategy, and expands it by adding
an additional algorithmic step that combines and consolidates the improvements found
in parallel.

Parallel Alternating Criteria Search combines parallelism and diversified large
neighborhood searches in order to deal with large instances. Our approach is suitable
for MIPs belonging to all kinds of applications, since it does not require knowledge
or assumptions regarding the underlying structure of the problem. Although most of
the algorithmic components present in Parallel Alternating Criteria Search have been
introduced in the literature before, we demonstrate their great effectiveness when put
together in a parallel algorithm. We find our approach to be competitive or better than
CPLEX at finding solutions for more than 90% of the instances in the MIPLIB2010
library [37]. The improvement of the proposed method becomes more pronounced
on harder instances. Additionally, we present a parallel scheme that combines the use
of Alternating Criteria Search in conjunction with an exact algorithm. Results show
that alternative parallelizations of the branch-and-bound process can be more efficient
than traditional methods, especially when large-scale instances are considered.

We introduce our primal heuristic in Sect. 2, where we present components that
define it and give further details on the parallel implementation. Section 3 presents

123

4 L.-M. Munguía et al.

computational experiments and results on standard instances from the literature. Sec-
tion 4 provides some concluding remarks.

2 Parallel alternating criteria search

We define a mixed-integer program (MIP) as:

min
{
ct x |Ax = b, l ≤ x ≤ u, xi ∈ Z,∀i ∈ I}

(MIP)

where c ∈ R
n , A ∈ R

m×n , b ∈ R
m , and I ⊆ {1, . . . , n} is the subset of integer

variable indices. The decision vector x is bounded by l ∈ R
n
and u ∈ R

n
, where R is

the extended set of real numbers R ∪ {−∞,∞}.
Our intent is to satisfy a twofold objective: to find a feasible starting solution and

to improve it with respect to the original objective. We introduce an LNS heuristic, in
which two auxiliary MIP subproblems are iteratively solved to attain both goals. The
process requires an initial vector, which is not required to be a feasible solution. As
seen in Fig. 1, this vector is improved by solving sub-MIPs, in which a subset of the
variables are fixed to its input values.

For linear programs, the feasibility problem is solved via the two-phase Simplex
method, in which an auxiliary optimization problem is developed in order to find a
feasible starting basis. This approach was introduced for the case of 0–1 MIPs in [21].
In a similar fashion, the following auxiliary MIP, denoted as FMIP, poses the problem
of finding a feasible starting solution as an optimization problem:

min
m∑

i=0

�+
i + �−

i

s.t.

Ax + Im�+ − Im�− = b

xi = x̂i ,∀i ∈ F
l ≤ x ≤ u

xi ∈ Z,∀i ∈ I
�+ ≥ 0,�− ≥ 0

(FMIP)

Initial
Vector/
Solution

Reduce
Infeasibility

Improved
Feasibility

Vector/Solution

Minimize
Objective

Improved Quality
Vector/Solution

Variable Fixing Variable Fixing

Infeasibility LNS Objective LNS

Fig. 1 High level depiction of the sequential heuristic

123

Parallel alternating criteria search 5

where Im is an m × m identity matrix and �+, �− are two vectors of continuous
variables of size m corresponding to the m constraints. procedure, auxiliary variables
are introduced as slack for each constraint and the sum of their value is minimized. A
decision vector is feasible to a MIP if and only if it can be extended to a solution of
value 0 to the associated FMIP. Instead of directly solving FMIP, neighborhoods are
restricted by fixing a given subset F of the integer variables to the values of an input
vector [x̂, �̂+, �̂−]. Due to the addition of slack variables, x̂ is not required to be a
feasible solution vector. However, it must be integer and within the variable bounds
in order to preserve the feasibility of the model: l ≤ x̂ ≤ u and x̂i ∈ Z,∀i ∈ I.

FMIP ensures that feasibility is preserved under any arbitrary variable fixing
scheme. This represents a departure frommost LNSheuristic improvement approaches
such as RINS, DINS, local branching, and proximity search, where the choice of vari-
able fixings is tied to the availability of a feasible solution. In the context of our heuris-
tic, variable fixings become a viable tool for reducing the complexity of the problem.

Using a similar approach,we introduce a second auxiliary problemaimed at improv-
ing a partially feasible vector [x̂, �̂+, �̂−] with respect to the original objective:

min ct x

s.t.

Ax + Im�+ − Im�− = b
m∑

i=0

�+
i + �−

i ≤
∑

i

�̂+
i + �̂−

i

xi = x̂i ,∀i ∈ F
l ≤ x ≤ u

xi ∈ Z,∀i ∈ I
�+ ≥ 0,�− ≥ 0

(OMIP)

OMIP is a transformation of the original MIP model, in which auxiliary slack
variables are introduced in each constraint. Achieving and preserving the feasibility
of the incumbent is our primary concern. In order to ensure that the optimal solution
to OMIP remains at most as infeasible as the input solution x̂ , an additional constraint
that limits the amount of slack is added, where the degree of infeasibility is bounded
by

∑
i �̂

+
i + �̂−

i .
By iteratively solving subproblems of both auxiliary MIPs, the heuristic will hope-

fully converge (although its convergence is not guaranteed) to a high quality feasible
solution. By construction, infeasibility decreases monotonically after each iteration.
On the other hand, the solution quality may fluctuate with respect to the original objec-
tive. Figure 2 depicts the expected behavior of the algorithm. A similar approach for
achieving feasibility via the FMIP model is presented in [21], although our work dif-
fers in several key aspects. The authors of the aforementioned work limit their scope to
0-1 problems and use local branching to explore FMIP. Our approach accepts general-
integer variables and uses variable fixings as a means of exploiting parallelism and
to reduce infeasibility. Another differentiating factor of our approach is the transition

123

6 L.-M. Munguía et al.

m

i=0

Δ+
i + Δ−

i

n

i=0

cixi

Infeasibility Reduction

Objective Minimization

Original objective

In
fe

as
ib

ili
ty

Fig. 2 Transition to a high quality feasible solution

and use of an auxiliary MIP model, OMIP, to provide improvements with respect to
the original objective.

2.1 Parallelization of alternating criteria search

We leverage parallelism by generating a diversified set of large neighborhood searches,
which are solved simultaneously. By exploring a large number of different search
neighborhoods in parallel, we hope to increase the chances of finding solution
improvements, hence speeding up the overall process. After this exploration phase,
improvements found in parallel are combined efficiently. For this purpose, an addi-
tional search subproblem is generated, in which the variables that have the same
value across the different solutions are fixed. A similar approach has been previously
described in the literature [9,42]. In this context, the solution recombination provides
the ability to merge the improvements found in parallel, providing a speedup in the
process. A pseudocode version is given in Algorithm 1. Each parallel processor itera-
tively generates a set of randomized variable fixings and solves the associated sub-MIP
of either FMIP or OMIP until the allowed time limit. Upon termination, all solutions
are exchanged and the set U containing the indices of the variables with identical
values across solutions is determined. The solution recombination MIP consists of a
subproblem, in which the variables present in U are fixed. The size of U is dependent
on the similarities between the solutions to be merged. If the set is too large and no

123

Parallel alternating criteria search 7

Algorithm 1 Parallel Feasibility Heuristic
Ensure: Feasible solution x̂ if found
ini tiali ze [x̂, �+,�−] as an integer solution
T := numThreads()
while time limit not reached do

if
∑

i �+
i + �−

i > 0 then
for all threads ti ∈ {0, T − 1} in parallel do

Fti := randomized variable index subset, Fti ⊆ I 	 Variable Fixings are diversified
[xti ,�+ti , �−ti] :=FMIP_LNS(Fti , x̂) 	 FMI P LNS are solved concurrently

end for
U := { j ∈ I|xtij = x

tk
j , 0 ≤ i < k < T }

[x̂, �+, �−] :=FMIP_LNS(U , xt0) 	 The recombination step differs in variable fixings
end if
�UB := ∑

i �+
i + �−

i
for all threads ti ∈ {0, T − 1} in parallel do

Fti := randomized variable index subset, Fti ⊆ I
[xti ,�+ti , �−ti] :=OMIP_LNS(Fti , x̂, �

UB)
end for
U := { j ∈ I|xtij = x

tk
j , 0 ≤ i < k < T }

[x̂, �+, �−] :=OMIP_LNS(U , xt0 , �UB)
end while
return [x̂, �+, �−]

function FMIP_LNS(F , x̂)
return min{∑i �+

i + �−
i |Ax + Im�+ − Im�− = b, x j = x̂ j ∀ j ∈ F , x j ∈ Z ∀ j ∈ I}

end function

function OMIP_LNS(F , x̂, �̂)
return min{ct x |Ax + Im�+ − Im�− = b,

∑
i �+

i + �−
i ≤ �̂, x j = x̂ j ∀ j ∈ F , x j ∈ Z ∀ j ∈ I}

end function

improvements can be found, the best solution used in the recombination is returned.
The best solution will be the most feasible or the most optimal, depending on whether
a recombination FMIP or OMIP is being optimized. Every solution used as input can
be also added as a MIP start, since they remain feasible under the set of variable
fixings. Figure 3 depicts an example for a simple 0–1 knapsack instance. Firstly, the
Feasibility MIP is derived from the original problem instance. Next, two subproblems
characterized by different fixings are solved in parallel. In a final step, the variables
with coinciding values are fixed and a feasible solution is found.

Distributed-memory parallelism is the main paradigm for large-scale parallel com-
puter architectures. One of the defining characteristics is the fact that memory is
partitioned among parallel processors. As a result, processor syncronization andmem-
ory communication must be done via a message passing interface, such as MPI [32].
Processor coordination and communication becomes a problematic element in the
algorithm design, inducing occasional overheads. Our approach requires the exchange
of solutions between processors before and after each solution recombination. The
arrangement is such that every processor communicates its best solution to every
other processor during an all-to-all synchronous exchange. Unlike point-to-point com-
munications, all-to-all collective communication primitives take advantage of the

123

8 L.-M. Munguía et al.

Fig. 3 Example depicting a feasibility improvement iteration for a 0–1 knapsack sample instance

underlying network structure to communicate synchronously among a large number
of processors in a more efficient manner [45].

2.2 Finding a starting point

Alternating Criteria Search only requires a starting vector that is integer feasible and
within variable bounds. However, given that feasibility is one of the primary objectives
of the heuristic, it is proposed to choose a starting point that is as feasible as possible
with respect to the objective function of FMIP. Many strategies can provide a start
for the algorithm. A common strategy solves the LP relaxation and rounds every
fractional variable to the nearest integer. Since LP relaxations can potentially be very
costly to solve, we propose a quick heuristic, Algorithm 2, that tries to minimize the
infeasibility of a starting point. Within each iteration, subsets of variables are fixed to
random integer values within bounds while the remaining ones are optimized towards
feasibility. The algorithm terminates once all integer variables are fixed.

Starting with a sorted list of variables by increasing bound range and an input
parameter θ , the algorithm proceeds to fix the top θ% of variables to a random integer
value within their bounds. It is possible that a variable may have an infinite bound, and

123

Parallel alternating criteria search 9

Algorithm 2 Starting vector heuristic
Require: Percentage of variables to fix θ , 0 < θ ≤ 100, Fixed bound constant cb
Ensure: Starting integer-feasible vector x̂
1: V :=list of integer variables sorted by increasing bound range u − l
2: F := ∅
3: while x̂ is not integer feasible and F �= I do
4: K:= top θ % of unfixed variables from V
5: for k ∈ K do
6: x̂k :=random integer value between [max(lk , −cb),min(uk , cb)]
7: end for
8: F := F ∪ K
9: [x,�+, �−] := min{∑i �+

i + �−
i |Ax + Im�+ − Im�− = b, x j = x̂ j ∀ j ∈ F}

10: Q:= index set of integer variables of x with integer value
11: x̂q = xq , ∀q ∈ Q
12: F := F ∪ Q
13: end while
14: return x̂

therefore, an infinite range. In this case, the infinite bound is replaced by a constant
input parameter cb. For our practical purposes, this was determined to be 106. With
sorting, the goal is to drive binary variables integer first, given that binary decisions
force integrality on other variables. Until all integer variables are fixed, the LP relax-
ation of FMIP is solved in order to optimize the unfixed variables towards feasibility.
Consecutively, the variables that become integer are fixed.Aminimumof θ%variables
are fixed at every iteration. Hence, the algorithm will require at most � 100

θ
 iterations

to converge to a starting solution. The θ parameter controls a tradeoff of difficulty of
the LP relaxations against the quality of the starting feasible solution.

2.3 The variable fixing scheme

The variable fixing scheme determines the difficulty and the efficacy of each large
neighborhood search. A desirable quality of the fixings is that they must not be too
restrictive, as very few improvements will be found. At the same time, if not enough
variables are fixed, the search space might be too large to find any improvements in
a small amount of time. Neighborhood diversification is another key property, since
parallel efficiency depends on it. In order to generate a large number of diverse neigh-
borhoods early in the search, we use randomization instead of branch-and-bound
information.

Devising a general method for fixing variables may be challenging, since there are
many problem structures to consider. Problems range in structure, constraint matrix
shape, number, and kinds of variables. Given these requirements, we propose a simple,
yet intuitive variable fixing algorithm. It incorporates randomness, in order to satisfy
the need for diversity and it allows the fixing of an adjustable number of variables. As
shown in Algorithm 3, fixings are determined by selecting a random integer variable
x ′ and fixing a consecutive set of integer variables starting from x ′ up to a certain cap
determined by an input parameter ρ. If the end of I is reached before enough variables
are chosen, the algorithm continues the selection starting from the beginning of the
set in a circular way.

123

10 L.-M. Munguía et al.

Algorithm 3 Variable Fixing Selection Algorithm
Require: Fraction of variables to fix ρ, 0 < ρ < 1
Ensure: Set of integer indices F
1: function RandomFixings(ρ)
2: i := random element in I
3: F := first ρ · |I| consecutive integer variable indices starting from i in a circular fashion
4: return F
5: end function

For any MIP we consider, its formulation is usually structured, and its variables are
arranged consecutively depending on their type and their logical role. Consecutive sets
of variables often belong to cohesive substructures within a problem. This is the case in
network flow and routing problems where flow assignations for a particular entity are
formulated successively. Similar properties can be found in formulations for schedul-
ing problems. In our experience, our proposed variable selection often produces an
easier subMIP, in which the fixings affect a subset of contiguous substructures and the
remaining ones are left unfixed. Due to its simplicity, it is an efficient variable selec-
tion strategy. However, any permutation of rows and columns alters its effectiveness
as well as the solving process, as discussed in [17].

2.4 Framing alternating criteria search within an exact algorithm

In the current parallel branch-and-bound paradigm, threads are focused on solving
multiple subproblems in parallel, which has shown poor scalability [38]. We pro-
pose an alternative use of the parallel resources by decoupling the search for high
quality solutions from the lower bound improvement. Thus, a subset of the threads
are allocated to an instance of the branch-and-bound solver focused on improving
the lower bound, and our Alternating Criteria Search replaces the traditional primal
heuristics. In the process, our parallel heuristic searches for solutions to the entire
problem regardless of the variable fixings produced in the branch-and-bound tree, and
supplies them to the solver. Both algorithms proceed to run concurrently until a time
limit or optimality is reached. Communication between the parallel heuristic and the
branch-and-bound is performed via MPI collective communications and new feasible
solutions are added back via callbacks.

3 Experimental results

In this section, we evaluate the performance and behavior of Parallel Alternating
Criteria Search (PACS) in terms of solution quality, scalability, reproducibility and
parallel efficiency. The framework is implemented in C++, using CPLEX 12.6.1 as a
backbone solver. We compare our framework against different configurations of the
state-of-the-art general purpose MIP solver CPLEX 12.6.1. Out of the 361 instances
from the MIPLIB 2010 library [37], we select as a benchmark those 333 for which
feasibility has been proven as a benchmark. MIPLIB classifies such instances by
difficulty based on the time required to reach optimality. 206 easy instances are defined

123

Parallel alternating criteria search 11

as the subset in which optimality has been proven in less than 1 h by at least one of
the tested MIP solvers. 54 additional instances have also been solved, but not under
the previous conditions (hard instances). The remaining 73 unsolved instances are
classified as open. All of our computations are performed on an 8-node computing
cluster, each with two Intel Xeon X5650 6-core processors and 24 GB of memory.

3.1 Automating the choice of parameters

Three main parameters regulate the difficulty and the solution time of each LNS
within the heuristic, and their appropriate selection is crucial for performance. We
heuristically calibrate the settings for each instance automatically by executing a single
iteration of the algorithm under multiple independent sample configurations and with
the same initial solution. Each iteration run is performed in parallel and the best
performing one is selected for the full run. The parameter θ regulates the number
of variables to be fixed during the initial solution generation process. Depending on
the difficulty of the instance, θ is chosen from the set {1, 5, 10, 20, 50, 100%}. θ

aside, parameters [ρ, t] determine the percentage of variables to be fixed and the time
limit in each LNS. In this case, the configurator chooses a subset of the permutations
ρ ∈ {5, 10, 20, 50, 75, 95%} and t ∈ {5, 20, 50 s}. A total of 6 initial configurations
for θ are tested, in addition to a total of 16 permutations of [ρ, t]. The time required for
calibration is not counted in the final execution time. The chosen configuration is the
onewhich delivers the largest improvement per unit of time.On average, the calibration
process takes 126s due to the fact that the calibration is run in parallel. With the
intention of drawing a fair comparison, CPLEX is set to its parallel distributed-memory
setting using 96 cores and allowed instance-specific tuning for the same amount of
calibration timeprior to the search. In our experience, instance-specific tuning certainly
helps CPLEX improve its performance in most of the small instances. However, the
time allowed seems to be insufficient to correctly tune for a subset of larger instances.
In such cases, the parameters chosen result in inferior runs compared to the default
setting. We opt to combine all results, and select the best run of CPLEX: either default
or tuned. When comparing primal bounds, the default setting is on primal solutions
(the emphasis on hidden feasible solutions setting). Settings are default otherwise.

3.2 Evaluation of primal solution quality

We evaluate the quality of primal solutions in terms of the metrics introduced in [10].
Given a solution x for a MIP with an optimal solution x̂ , the primal gap γ (x) ∈ [0, 1]
of x is defined as:

γ (x) =

⎧
⎪⎨

⎪⎩

0 if |cT x̂ | = |cT x | = 0

1 if cT x̂ · cT x < 0
|cT x̂−cT x |

max{|cT x̂ |,|cT x |} else.

(1)

123

12 L.-M. Munguía et al.

Given a time limit tmax , we define the primal gap function p : [0, tmax] �→ [0, 1]
as:

p(t) =
{
1 if no solution is found until point t

γ (x(t)) with x(t) being the incumbent solution at point t , else.
(2)

The primal gap function is monotonically decreasing and allows to depict the
progress of the optimization towards the optimal solution. The primal integral is
defined as:

P(t) =
∫ T

t=0
p(t)dt. (3)

The primal integral P(t) captures the notion of how early solutions are found. Both
p(t) and P(t) promise to be powerful metrics to evaluate the performance of finding
high quality primal solutions. To illustrate their use, we introduce three examples in
Fig. 4, in which the performance of both CPLEX and PACS are plotted with respect
to both metrics.

For rail03, PACS is able to find primal solutions of higher quality than those found
by CPLEX. This results in a lower primal gap profile, as well as a slower increasing
primal integral function. In the second problem, CPLEX finds a better solution at the
end of the optimization. Its primal integral function value, however, is higher than

0.0

0.2

0.4

0.6

0.8

1.0

Pr
im

al
 G

ap
 p

(t
)

0 500
1000

1500
2000

2500
3000

3500

Time(s)

PACS CPLEX

0.0

0.2

0.4

0.6

0.8

1.0

Pr
im

al
 G

ap
 p

(t
)

0 500
1000

1500
2000

2500
3000

3500

Time(s)

PACS CPLEX

0.0

0.2

0.4

0.6

0.8

1.0

Pr
im

al
 G

ap
 p

(t
)

0 500
1000

1500
2000

2500
3000

3500

Time(s)

PACS CPLEX

0

640

1280

1920

2560

3200

Pr
im

al
 I

nt
eg

ra
l P

(t
)

0 500
1000

1500
2000

2500
3000

3500

Time(s)

PACS CPLEX

0

280

560

840

1120

1400

Pr
im

al
 I

nt
eg

ra
l

P(
t)

0 500
1000

1500
2000

2500
3000

3500

Time(s)

PACS CPLEX

0

80

160

240

320

400

Pr
im

al
 I

nt
eg

ra
l P

(t
)

0 500
1000

1500
2000

2500
3000

3500

Time(s)

PACS CPLEX

(a) (b) (c)

(d) (e) (f)
Fig. 4 Primal gap function p(t) and primal integral P(t) of the solutions provided by CPLEX and PACS
for the a, d rail03, b, e shs1023 and c, f sing245 problems

123

Parallel alternating criteria search 13

the one for PACS because PACS is able to find relatively better solutions earlier in
the search. For sing245, both schemes find the optimal solution, as shown by the flat
profile of the primal integral. However, CPLEX does so earlier in the search, thus
resulting in a lower integral value.

The following set of results evaluate the quality of the provided solutions for the
proposed set of MIPLIB2010 instances. In Fig. 5, we show a performance profile
that illustrates the differences in primal gap output of both schemes. Let p(t)CPX and
p(t)PACS be the primal gap functions of CPLEX and our parallel heuristic respectively
after a time limit t . We report improvements in terms of the difference:

Improvement = (p(t)CPX − p(t)PACS) × 100.

Figure 5 displays the differences between the primal gap functions found by both
methods after different time limits. Specifically, each performance curve measures
the cumulative percentage of instances among the total that reach or surpass certain
amounts of difference in favor of PACS (Improvement) or CPLEX (Deterioration).
For example, PACS produced solutions with a primal gap that was at least 10% better
after 180 seconds for 13% of the problem instances. In contrast, only 4% of the
instances yield a worse primal gap of 10% or more in the same amount of time. Both
schemes tie or show differences between−0.1 and 0.1% for the remaining percentage
of instances.

Results show that our heuristic performs better for a substantial number of instances,
whereas worse solutions are found in a relatively smaller subset of cases. One of our
primary focuses is the ability to provide high quality solutions early in the search. After

0

10

20

30

40

50

60

70

%
 o

f
in

st
an

ce
s

0

10

20

30

40

50

60

70

10
-1 1 10

10
2

Primal Gap difference w.r.t. CPLEX

Improvement after 180s
Improvement after 600s
Improvement after 3600s
Deterioration after 180s
Deterioration after 600s
Deterioration after 3600s

Fig. 5 Improvement and deterioration of primal gap w.r.t. CPLEX for all instances

123

14 L.-M. Munguía et al.

0

10

20

30

40

50

60

70

%
 o

f
in

st
an

ce
s

0

10

20

30

40

50

60

70

10
-1 1 10

10
2

Primal Gap difference w.r.t. CPLEX

Improvement after 180s
Improvement after 600s
Improvement after 3600s
Deterioration after 180s
Deterioration after 600s
Deterioration after 3600s

Fig. 6 Improvement and deterioration of primal gap in hard and open instances w.r.t. CPLEX

3 min of execution, PACS provides solution improvements for 32% of the instances.
At the time limit of 1 h, this percentage decreases to 20% after CPLEX neutralizes the
advantage for some of the instances. In contrast, worse solutions are only obtained in
7% of the cases.

In Fig. 6, the comparison is restricted exclusively to hard and open instances. Results
show the scalability of our heuristic in hard MIPs, as more than 58% of the instances
yield improvements after 3 min of execution. A comparison between the 180 and
the 600 s profiles indicate that the competitive advantage of PACS is sustained and
increased throughout a large portion of the runtime.

Figure 7 depicts a comparison of the primal integral. Given a time t , we define
P(t)CPX and P(t)PACS as the primal integrals provided by CPLEX and PACS respec-
tively at time t . For improved readability, we compare the improvements in terms of
the scaled difference:

Improvement = P(t)CPX − P(t)PACS
t

× 100

The difference between primal integrals is scaled by t in order to be able to plot profiles
belonging to different time cutoffs.

The performance profiles indicate that PACS finds solutions earlier in the search,
resulting in significantly lower primal integral profiles for a majority of the instances.
After 600 s, the primal integral values show an improvement for 61% of the instances.
The performance profiles shift to the left as time advances, indicating that the
advantage of PACS is reduced. When only hard or open instances are considered,
performance profiles are clustered together and further to the right, indicating that

123

Parallel alternating criteria search 15

0

10

20

30

40

50

60

70

%
 o

f
in

st
an

ce
s

0

10

20

30

40

50

60

70

10
-1 1 10

10
2

Primal Integral difference w.r.t. CPLEX

0

10

20

30

40

50

60

70

%
 o

f
in

st
an

ce
s

0

10

20

30

40

50

60

70

10
-1 1 10

10
2

Primal Integral difference w.r.t. CPLEX

Improvemen er 180s
Improvemen er 600s
Improvemen

t aft
t aft
t after 3600s

Deterioration after 180s
Deterioration after 600s
Deterioration after 3600s

(a) (b)

Fig. 7 Improvement and Deterioration in primal integral w.r.t. CPLEX for a all and b hard and open
instances

the advantage of PACS is sustained through time. After 1 h, PACS showed bet-
ter primal integrals for more than 54% of the instances. The plots suggest that,
not only does PACS find better solutions for most of the instances, but it does so
faster.

3.3 Framing alternating criteria search within an exact algorithm

We test the performance of our heuristicwhen run in combinationwith an exact branch-
and-bound algorithm. In this hybrid scheme, a fraction of the cores are dedicated to
improving the primal incumbent and the rest are commited to computing the lower
bound in the tree search.

We give a direct performance comparison between parallel memory-distributed
CPLEXusing 96 threads, and our combined scheme. In the latter, 84 cores are allocated
to the parallel heuristic while the remaining 12 threads are allocated to CPLEX in
shared-memory parallel mode. The comparison is in terms of the difference between
the optimality gap provided by both algorithms: GapCPX − GapPACS. For any of the
two algorithms X , its optimality gap may be defined in terms of its best found upper
and lower bound, UBX and LBX :

GapX = UBX − LBX

U BX
× 100.

Figure 8 shows multiple performance profiles for different time cutoffs. Both
approaches outperform each other for different instance subsets, but our combined
scheme performs better in more instances. After 10 min, our algorithm provides a
better gap for over 30% of the instances, while the opposite is true for 18% of the
instances. We observe a similar shift in performance when only the hard and open

123

16 L.-M. Munguía et al.

0

10

20

30

40

50

60

70

%
 o

f
in

st
an

ce
s

0

10

20

30

40

50

60

70

10
-1 1 10

10
2

Optimality Gap difference w.r.t. CPLEX

0

10

20

30

40

50

60

70

%
 o

f
in

st
an

ce
s

0

10

20

30

40

50

60

70

10
-1 1 10

10
2

Optimality Gap difference w.r.t. CPLEX

Improvemen e 80s
Improvemen er 600s
Improvemen

t aft
t aft
t afte

r 1

r 3600s

Deterioration afte 80s
Deterioration after 600s
Deterioration afte

r 1

r 3600s

(a) (b)

Fig. 8 Improvement and deterioration of optimality gap w.r.t. CPLEX for a all and b hard and open
instances

instances are considered. In this case, our ability to produce solutions of high quality
early in the search allows us to achieve a smaller optimality gap for over 55% of the
instances after 10 min. At termination, over 14% of the instances show a competitive
advantage of over 10% of the gap. In contrast, CPLEX shows better performance for
at most 5% of the instances.

The two tables shown below give an overview of the performance of all tested
methods. Table 1 highlights the number of instances where the best solution was
found, and the subset of instances for which the best solution was also optimal. PACS
is able to find the optimal solution in more instances, and delivers the best solution for
a larger number of instances. This advantage also translates to hard and open instances.

Table 2 compares performance from the perspective of optimality. CPLEX is able
to prove optimality for a larger number of instances, given that it has more processors
dedicated to the branch-and-bound. Because better primal solutions are found by the
combined scheme, however, smaller gaps are obtained for more instances in which
optimality can’t be proven.

Table 1 Primal solution performance comparison

Computing method All problems Hard and open problems

Optimal solutions Best solutions Optimal solutions Best solutions

PACS 219 260 28 69

Combined scheme 194 224 25 55

CPLEX (emph. on hidden sols) 183 193 16 26

CPLEX (balanced emphasis) 183 194 17 32

123

Parallel alternating criteria search 17

Table 2 Optimality performance comparison

Time cutoff (s) Combined scheme CPLEX (balanced emphasis)

180 600 3600 180 600 3600

Avg. gap (%) (all inst.) 22.74 16.58 12.87 25.59 21.44 14.67

Avg. gap (%) (hard and open inst.) 42.16 33.49 28.32 50.34 45.34 33.76

Instances solved (all inst.) 79 93 103 107 114 124

Avg. time to opt. (s) (all inst.) 242 143

3.4 The impact of nondeterminism

Our approach is nondeterministic by nature due to the different time limits and the par-
allel synchronization required for the solution recombination. We have demonstrated
its performance in comparison to CPLEX, which is deterministic in its default setting.
When in deterministic mode, most parallel MIP solvers must sacrifice a fraction of the
performance in order to ensure a proper repeatibility of the results. In order to assess
the impact of nondeterminism, we compare the performance of our approach with
CPLEX running in Opportunitistic mode, which is non-deterministic. In the experi-
ments shown below, we evaluate the consistency of 5 runs for each feasible instance

0

10

20

30

40

50

60

70

80

%
 o

f
in

st
an

ce
s

10
-1 1 10

10
2

Primal Gap diff. w.r.t. CPLEX

0

10

20

30

40

50

60

70

80

%
 o

f
in

st
an

ce
s

10
-1 1 10

10
2

Primal Gap diff. w.r.t. CPLEX

0

10

20

30

40

50

60

70

80

%
 o

f
in

st
an

ce
s

10
-1 1 10

10
2

Primal Gap diff. w.r.t. CPLEX

0

10

20

30

40

50

60

70

80

%
 o

f
in

st
an

ce
s

10
-1 1 10

10
2

Primal Integral diff. w.r.t. CPLEX

0

10

20

30

40

50

60

70

80

%
 o

f
in

st
an

ce
s

10
-1 1 10

10
2

Primal Integral diff. w.r.t. CPLEX

0

10

20

30

40

50

60

70

80

%
 o

f
in

st
an

ce
s

10
-1 1 10

10
2

Primal Integral diff. w.r.t. CPLEX

Improvement: Minimum
Improvement: Median
Improvement: Maximum

Deterioration: Minimum
Deterioration: Median
Deterioration: Maximum

(a) (b) (c)

(d) (e) (f)

Fig. 9 Performance profiles for all instances in the Reoptimize set. In each of the charts multiple lines are
drawn for the best, mean, and worst executions. Charts show the performance for different cutoffs: a, d
180 s, b, e 600 s, and c, f 3600 s

123

18 L.-M. Munguía et al.

Table 3 Performance comparison of non-deterministic approaches

Time cutoff (s) Parallel alternating criteria search CPLEX (opportunistic mode)

180 600 3600 180 600 3600

Avg. P. gap (%) All inst. 24.86 17.01 11.47 35.97 22.95 10.58

H&O inst. 31.77 21.50 12.39 45.73 35.35 16.06

P. integral All inst. 77.20 162.60 528.50 91.11 210.18 648.57

H&O inst. 88.75 99.29 602.31 103.99 277.88 954.45

SD P. gap(%) All inst. 3.16 2.73 1.32 3.23 0.71 1.74

H&O inst. 3.48 3.78 1.10 0.89 0.95 1.53

P. integral All inst. 5.64 17.35 58.85 3.26 9.10 45.99

H&O inst. 5.26 20.00 57.00 1.59 4.96 38.28

Min. P. gap (%) All inst. 22.14 14.56 10.50 32.80 21.92 8.86

H&O inst. 28.33 17.51 11.21 44.77 33.86 14.19

P. integral All inst. 70.98 146.27 479.46 87.54 200.55 591.79

H&O inst. 83.02 179.23 539.64 101.74 271.08 904.34

Med. P. gap(%) All inst. 24.03 16.59 11.06 35.65 23.13 9.95

H&O inst. 30.94 21.31 12.22 45.77 35.49 16.02

P. integral All inst. 76.84 160.06 516.95 91.42 208.43 651.69

H&O inst. 88.67 197.20 600.70 104.18 278.34 957.46

Max. P. gap (%) All inst. 29.25 20.67 13.49 39.69 23.68 12.48

H&O inst. 36.05 25.96 13.75 46.65 36.36 17.79

P. integral All inst. 84.23 187.19 617.50 95.02 222.05 699.69

H&O inst. 95.17 227.01 678.11 105.73 283.32 998.57

in the Reoptimize set, which is a subset of 63 easy, hard, and open instances from the
MIPLIB2010 library.

Figure 9 depicts a comparison of the primal gap and primal integral obtained with
both methods. For each of the charts shown, multiple lines are depicted, showing
the performance when the the best, the mean, and the worst run is selected. When
all instances in the Reoptimize set are considered, PACS shows better performance
earlier in the search, as reflected in the primal integral. After 1 h, PACS shows a better
primal integral for 62% of the instances, in the worst execution. CPLEX is competitive
in finding solutions at the end of the execution, as reflected by chart 1(c), as it finds
better or equal solutions for 75% of the instances, where PACS does so for 80% of
them.

Table 3 reports the statistical results in terms of the average, standard deviation,
and median of the primal gap and primal integral for different time cutoffs.

3.5 Additional performance tests: scalability and parallel efficiency

We examine the performance of Alternating Criteria Search from the perspective of
scalability and parallel efficiency. Due to the large amount of experiments required to

123

Parallel alternating criteria search 19

Table 4 Selected instances for
scaling experiments

Easy instances Hard instances Open instances

a1c1s1 atm20-100 momentum3

bab5 germanrr nsr8k

csched007 n3-3 pb-simp-nonunif

danoint rmatr200-p5 t1717

map14 set3-20 ramos3

evaluate this set of metrics, we reduce the test bed to a representative subset of the
instances chosen randomly. The 15 instances shown in Table 4 are selected from all
three difficulty categories.

3.5.1 Parallel scalability

Strong scalability is the ability to increase the algorithm’s performance proportionally
when parallel resources are incremented while the problem size remains fixed, and a
particularly relevant metric is the speedup to cut off: a comparison of the time required
by different processor configurations to reach certain solution quality. Let T p

c be the
time required for the algorithm to reach a cut-off c when p processing nodes are used.
We define the parallel speedup to cut off SSC with respect to a baseline configuration

B as SSC = T B
c
T p
c
. In Fig. 10, we show the speedup demonstrated by the heuristic for

several processor configurations ranging from a baseline of 12 cores to a total of 96.
Among the runs for different processor configurations, the cutoff was determined to
be the objective value of the best solution achieved by the worst performing run.

In terms of scaling, our heuristic shows a variable performance dependent on the
characteristics of each individual instance. This behavior is expected since increas-
ing the number of simultaneous searches does not guarantee a translation to faster
improvements. In general, however, speedups are achieved more consistently as the
difficulty of the problem increases. The addition of more cores sometimes exhibits a

0

1

2

3

4

5

6

7

8

9

10

11

Sp
ee

du
p

a1c1s1
bab5

csched007
danoint

map14

atm20-100

germanrr
n3-3

rmatr200-p5

set-3-20

momentum3
nsr8

k

pb-sim
p-nonunif

t1717
ramos3

12 cores
24 cores
48 cores
96 cores

Fig. 10 Parallel strong-scaling results

123

20 L.-M. Munguía et al.

multiplicative effect. In most small instances, optimality is achieved quickly for all
processor configurations, thus resulting in small speedup values.

3.5.2 Parallel load balancing

Load balancing is the property that measures the degree of uniformity of the work
distribution among processors. Given the synchronous nature of our approach, an even
difficulty of the subproblems is essential in order to ensure all processors optimize
for an equivalent amount of time. In the case of the parallel heuristic, the size of each
subproblem is regulated by the number of fixed variables and the imposed search time
limit. Hence, a proper calibration of these parameters must ensure an even distribution
of the workload.

The load balance of a parallel application can be evaluated as follows: Let the total
execution time of a processor Pi be defined as the sum of the time spent performing
useful computations (TUPi), communications (TCPi) and the synchronization time
T SPi spent waiting for other processors to complete their computations. Then, we
characterize the utilization of a processor UPi as the ratio of useful computation time
over the total execution time:

UPi = TUPi

TUPi + T SPi + TCPi
.

Webelieve hard instances represent theworst-case scenario, since these are the ones
that require themost computational effort and prolonged optimization times. Figure 11
shows the average core utilization for the hard instance momentum3. Performance
results are displayed for different processor configurations as well as different time
limit parameters. Time limit configurations are denoted as CTLNS−TR , where TLNS

is the time allowed for each search and TR is the time allowed to the recombination
step. Results show that processors sustain high utilizations (above 95%) throughout
the execution, even when large processor configurations are used. The setting with the
shortest solution times remains the most efficient because smaller time penalties are
paid due to early terminations.

90

92

94

96

98

100

A
ve

ra
ge

 P
ro

ce
ss

or
 U

til
iz

at
io

n
(%

)

1 (12 cores) 2 (24 cores) 4 (48 cores) 8 (96 cores)

Number of Computing Nodes

C5-10 C10-20 C25-50 C50-100

Fig. 11 Parallel synchronization overhead in terms of average processor utilization for different parameter
configurations

123

Parallel alternating criteria search 21

3.5.3 The impact of the starting heuristic

In Sect. 2.2, we described a quick heuristic for finding a starting solution suit-
able for Alternating Criteria Search. The objective of this strategy is to provide a
starting point for the algorithm that is as feasible as possible with respect to the
objective function of FMIP. An iterative algorithm is proposed, in which successive
restricted LP relaxations are solved, the difficulty of which depend on a variable fixing
parameter ρ.

Figure 12 illustrates the behavior of the starting heuristic for four problem instances,
as the variable fixing parameter ρ varies. For the instances shown, the infeasi-
bility of the provided starting solution increases as more variables are randomly
fixed per iteration. However, the algorithm also becomes faster, as a direct conse-
quence of reducing the difficulty of the LP relaxations. For the evaluated test set,
a good compromise can usually be found, in which better solutions than the ones
provided by random fixings (ρ = 1) are found, at the expense of slightly longer
runtimes.

0.0

0.00005

0.0001

0.00015

0.0002

0.00025

V
io

la
te

d
C

on
st

ra
in

ts
 (

%
)

0

20

40

60

80

100

120

140

T
im

e
(s

)

Variable Fixing fraction (%)

Violations Time

0
5

10
15
20
25
30
35
40
45
50

V
io

la
te

d
C

on
st

ra
in

ts
 (

%
)

0
10
20
30
40
50
60
70
80
90
100

T
im

e
(s

)

1 5 10 20 50 100 1 5 10 20 50 100

Variable Fixing fraction (%)

Violations Time

0
10
20
30
40
50
60
70
80
90

100

V
io

la
te

d
C

on
st

ra
in

ts
 (

%
)

0

5

10

15

20

25

30

T
im

e
(s

)

Variable Fixing fraction (%)

Violations Time

0

5

10

15

20

25

V
io

la
te

d
C

on
st

ra
in

ts
(%

)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

T
im

e
(s

)

1 5 10 20 50 100 1 5 10 20 50 100

Variable Fixing fraction (%)

Violations Time

(a) (b)

(c) (d)

Fig. 12 Performance tradeoffs shown by the starting heuristic, in which the time to reach the initial solution
is contraposed to its quality as a function of the variable fixing parameter ρ for the a in, b rail03, c shs1023
and d sing245 problems

123

22 L.-M. Munguía et al.

4 Conclusions

The combination of parallelism and simple large neighborhood search schemes can
provide a powerful tool for generating high quality solutions. The heuristic becomes
especially useful in the context of large instances and time-sensitive optimization
problems, where traditional branch-and-bound methods may not be able to provide
competitive upper bounds and attaining feasibilitymay be challenging.Ourmethod is a
highly versatile tool, as it can be applied to any general MIP as a standalone heuristic
or in the context of an exact algorithm. Many algorithmic ideas contribute to the
competitiveness of our approach, such as the use of two auxiliaryMIP transformations
and fixing diversifications as the main source of parallelism. The proposed algorithm
could benefit from further improvements. Besides the parallelization, we introduced
general strategies for addressing the choice of starting solutions and variable fixings in
the context of generalMIPs. However, their specification is independent of the parallel
framework.Thus, it could bepossible to substitute them formore effectivefixingswhen
considering specific classes of problems with defined structures, such as capacitated
network design [35,40], lot sizing [39] or Maritime Inventory Routing Problems [31,
43]. We hope this work sparks interest and motivation to investigate whether better
parallelizations are possible in order to speed up the optimization process. In the future,
we plan to evaluate other components of the branch-and-bound search that may profit
from parallelism.

Acknowledgements We wish to thank the referees, whose comments led to an improved version of the
paper.

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis (2007)
2. Achterberg, T., Berthold, T.: Improving the feasibility pump. Discrete Optim. 4(1), 77–86 (2007)
3. Achterberg, T., Berthold, T., Hendel, G.: Rounding and propagation heuristics for mixed integer pro-

gramming. In: Operations Research Proceedings, 2011, pp. 71–76. Springer (2012)
4. Bader, D.A., Hart, W.E., Phillips, C.A.: Parallel algorithm design for branch and bound. In: Tutorials

on Emerging Methodologies and Applications in Operations Research, Chap. 5. Springer (2005)
5. Baena, D., Castro, J.: Using the analytic center in the feasibility pump. Oper. Res. Lett. 39(5), 310–317

(2011)
6. Balas, E., Ceria, S., Dawande,M.,Margot, F., Pataki, G.: Octane: a newheuristic for pure 0–1 programs.

Oper. Res. 49(2), 207–225 (2001)
7. Balas, E., Schmieta, S., Wallace, C.: Pivot and shift-a mixed integer programming heuristic. Discrete

Optim. 1(1), 3–12 (2004)
8. Bertacco, L., Fischetti, M., Lodi, A.: A feasibility pump heuristic for general mixed-integer problems.

Discrete Optim. 4(1), 63–76 (2007)
9. Berthold, T.: Primal heuristics for mixed integer programs. Diploma Thesis, Technische Universitat

Berlin (2006)
10. Berthold, T.: Measuring the impact of primal heuristics. Oper. Res. Lett. 41(6), 611–614 (2013)
11. Berthold, T.: Rens. Math. Program. Comput. 6(1), 33–54 (2014)
12. Berthold, T., Hendel, G.: Shift-and-propagate. J. Heuristics 21(1), 73–106 (2015)
13. Bixby, R., Gu, Z., Rothberg, E.: Gurobi optimization (2010). http://www.gurobi.com/
14. Boland, N.L., Eberhard, A.C., Engineer, F.G., Fischetti, M., Savelsbergh, M.W.P., Tsoukalas, A.:

Boosting the feasibility pump. Math. Program. Comput. 6(3), 255–279 (2014). doi:10.1007/s12532-
014-0068-9

123

http://www.gurobi.com/
http://dx.doi.org/10.1007/s12532-014-0068-9
http://dx.doi.org/10.1007/s12532-014-0068-9

Parallel alternating criteria search 23

15. Carvajal, R., Ahmed, S., Nemhauser, G., Furman, K., Goel, V., Shao, Y.: Using diversification, com-
munication and parallelism to solve mixed-integer linear programs. Oper. Res. Lett. 42(2), 186–189
(2014)

16. Corporation, I.B.M.: Ibm cplex optimizer (2015). http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/

17. Danna, E.: Performance variability in mixed integer programming. In: Presentation at Workshop on
Mixed Integer Programming. http://coral.ie.lehigh.edu/mip-2008/talks/danna.pdf (2008)

18. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to improve mip
solutions. Math. Program. 102(1), 71–90 (2005)

19. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005)
20. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)
21. Fischetti, M., Lodi, A.: Repairing mip infeasibility through local branching. Comput. Oper. Res. 35(5),

1436–1445 (2008). (Part Special Issue: Algorithms and Computational Methods in Feasibility and
Infeasibility)

22. Fischetti, M., Lodi, A.: Heuristics in Mixed Integer Programming. Wiley, London (2010)
23. Fischetti, M., Lodi, A., Monaci, M., Salvagnin, D., Tramontani, A.: Improving branch-and-cut perfor-

mance by random sampling. Math. Program. Comput. 8(1), 113–132 (2016)
24. Fischetti, M., Monaci, M.: Proximity search for 0–1 mixed-integer convex programming. J. Heuristics

20(6), 709–731 (2014)
25. Fischetti, M., Salvagnin, D.: Feasibility pump 2.0. Math. Program. Comput. 1(2–3), 201–222 (2009)
26. Gamrath, G., Berthold, T., Heinz, S., Winkler, M.: Structure-based primal heuristics for mixed integer

programming, pp. 37–53. Springer, Japan, Tokyo (2016)
27. Ghosh, S.: Dins, a mip improvement heuristic. Integer Programming and Combinatorial Optimization.

Lecture Notes in Computer Science, vol. 4513, pp. 310–323. Springer, Berlin, Heidelberg (2007)
28. Glover, F., Laguna, M.: General purpose heuristics for integer programming–part i. J. Heuristics 2(4),

343–358 (1997)
29. Glover, F., Laguna, M.: General purpose heuristics for integer programming–part ii. J. Heuristics 3(2),

161–179 (1997)
30. Glover, F., LøKketangen, A., Woodruff, D.L.: Scatter Search to Generate Diverse MIP Solutions, pp.

299–317. Springer, Boston (2000)
31. Goel, V., Furman, K.C., Song, J.H., El-Bakry, A.S.: Large neighborhood search for lng inventory

routing. J. Heuristics 18(6), 821–848 (2012)
32. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable implementation of the MPI

message passing interface standard. Parallel Comput. 22(6), 789–828 (1996)
33. Hansen, P., Mladenović, N., Urošević, D.: Variable neighborhood search and local branching. Comput.

Oper. Rese. 33(10), 3034–3045 (2006). (Part Special Issue: Constraint Programming)
34. Hendel, G.: New rounding and propagation heuristics for mixed integer programming. Bachelor’s

thesis, TU Berlin (2011)
35. Hewitt, M., Nemhauser, G.L., Savelsbergh, M.W.P.: Combining exact and heuristic approaches for the

capacitated fixed-charge network flow problem. INFORMS J. Comput. 22(2), 314–325 (2010)
36. Koc, U., Mehrotra, S.: Generation of feasible integer solutions on a massively parallel computer

(submitted)
37. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G.,

Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter,
K.: MIPLIB 2010. Mathematical Programming Computation 3(2), 103–163 (2011)

38. Koch, T., Ralphs, T., Shinano, Y.: Could we use a million cores to solve an integer program? Math.
Methods Oper. Res. 76(1), 67–93 (2012)

39. Mercé, C., Fontan, G.: Mip-based heuristics for capacitated lotsizing problems. Int. J. Prod. Econ.
85(1), 97–111 (2003). (Planning and Control of Productive Systems)

40. Munguía, L.M., Ahmed, S., Bader, D.A., Nemhauser, G.L., Goel, V., Shao, Y.: A parallel local search
framework for the fixed-charge multicommodity network flow problem. Comput. Oper. Res. 77, 44–57
(2017)

41. Naoum-Sawaya, J.: Recursive central rounding for mixed integer programs. Comput. Oper. Res. 43,
191–200 (2014)

42. Rothberg, E.: An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS J. Comput. 19(4), 534–541 (2007)

123

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://coral.ie.lehigh.edu/mip-2008/talks/danna.pdf

24 L.-M. Munguía et al.

43. Shao,Y., Furman,K.C.,Goel,V.,Hoda, S.:Ahybrid heuristic strategy for liquefiednatural gas inventory
routing. Transp. Res. C: Emerg. Technol. 53, 151–171 (2015)

44. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: Parascip: a parallel extension of scip.
In: Competence in High Performance Computing, 2010, pp. 135–148. Springer (2012)

45. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communication operations in
mpich. Int. J. High Perform. Comput. Appl. 19(1), 49–66 (2005)

46. Wallace, C.: Zi round, a mip rounding heuristic. J. Heuristics 16(5), 715–722 (2010)

123

	Alternating criteria search: a parallel large neighborhood search algorithm for mixed integer programs
	Abstract
	1 Introduction
	1.1 Parallel computing applied to integer optimization

	2 Parallel alternating criteria search
	2.1 Parallelization of alternating criteria search
	2.2 Finding a starting point
	2.3 The variable fixing scheme
	2.4 Framing alternating criteria search within an exact algorithm

	3 Experimental results
	3.1 Automating the choice of parameters
	3.2 Evaluation of primal solution quality
	3.3 Framing alternating criteria search within an exact algorithm
	3.4 The impact of nondeterminism
	3.5 Additional performance tests: scalability and parallel efficiency
	3.5.1 Parallel scalability
	3.5.2 Parallel load balancing
	3.5.3 The impact of the starting heuristic

	4 Conclusions
	Acknowledgements
	References

