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Abstract— List intersections are ubiquitous and can be found
in a wide range of applications, including triangle counting
and finding the maximal k-truss, both of which are part of
the HPEC Static Graph Challenge. For many graph based
problems it is necessary to find intersections for a very large
number of lists—these lists tend to vary greatly in size and
are difficult to efficiently load-balance. Numerous parallel
algorithms on list intersections for triangle counting have been
proposed, but load-balancing decisions are typically made at
a global level. In this paper we present an efficient and
adaptive approach to load-balancing at a finer granularity. Our
approach assigns a different number of threads for different
intersections in order to effectively utilize the resources of the
GPU. We show the applicability of our load-balancing method
to two different intersection methods, one search-based and
one merge-based. Our algorithm outperforms several recent
triangle counting algorithms, including recent HPEC Graph
Challenge Champions.

I. INTRODUCTION

List intersections is a widely used kernel for numerous
applications. These include triangle counting and enumer-
ation, community detection, missing link prediction, and
finding k-trusses. The latter application is one of the HPEC
GraphChallenge problems, and the authors’ prior participa-
tion experience [10] emphasized the necessity of a high-
performance triangle counting kernel that performs well
across a broad range of inputs. This can be challenging as
inputs vary significantly in scale, degree distribution, and
other graph characteristics. A high performing intersection
kernel that ensures good performance in light of these factors
is the primary focus and contribution of this work.

A list intersection is formulated as: given an edge (u, v)
find the set adj(u) ∩ adj(v), where adj(u) indicates adja-
cency list of vertex u. Triangle counting seeks to count all
such intersections for every edge in the graph.

The intersection of two sorted lists can be done in multiple
ways—the two basic ones addressed in this work are 1)
Sorted Set Intersection and 2) Binary Search. In sorted set
intersection, common elements are found by moving across
the two sorted adjacency arrays in a merge-like fashion. In
binary search, each element in the smaller array is looked up
in the larger of the two sorted arrays, with a match indicating
a triangle.

Naive parallelization of triangle counting on massively
multi-threaded systems, e.g. assigning single intersections
per thread, can result in poor performance and scalability.
Parallel processing in the context of non-uniform graphs (e.g.
power law graphs) can easily lead to underutilization due
to load imbalance. This is especially costly for GPUs with

thousands of cores and approximately ten times that number
of active threads.

Prior work in Green et. al. [17] introduced a method
of dividing a Sorted Set Intersection into independent sub-
intersections. In this paper we also propose a scheme for
dividing up a Binary Search based intersection. Altogether,
these sub-intersections can be computed in parallel. We refer
to these parallel versions as Intersect-Path and Par-Search
in order to distinguish from their respective sequential ver-
sions. Details of Intersect-Path and Par-Search are discussed
in later sections.

The above steps allow an arbitrary number of threads to
work on a single intersection, opening the door to better
load-balancing. However, the number of threads per inter-
section poses a tuning problem, and furthermore the opti-
mum is graph-dependent. The wide variety of GraphChal-
lenge datasets underscores the need for a generalized load-
balancing approach that is input-adaptive, cost-effective, and
fast.

Summary of contributions

• We extend Logarithmic Radix Binning [11], an
intersection-granularity approach for binning intersections of
similar estimated work, to triangle counting on the GPU.
• We present Logarithmic Threads Per Intersection, a new
approach for scaling the number of threads per intersection in
accordance with the Logarithmic Radix Binning ordering of
edges. The collective of Logarithmic Radix Binning and Log-
arithmic Threads Per Intersection constitutes a new scheme
that provides better load-balancing of list intersections on
GPU cores.
• We apply our new load-balancing approach to two differ-
ent list intersection methodologies, Intersect-Path and Par-
Search, and present their respective parallel triangle counting
implementations on the GPU.
• Finally, we compare our new algorithm against several high
performing triangle counting algorithms, including [22], [28],
[4], [11]. Several of these were the fastest triangle counting
algorithms in the 2017 HPEC Graph Challenge [23]. Our al-
gorithm is faster than all implementations compared against,
but for a small number of instances, across a wide range of
test graphs.

II. RELATED WORK

The applications in which triangle counting and enumer-
ation are used is broad. It became an important metric to
data scientists with the introduction of clustering coefficients
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[27]. Other applications for triangle counting include find-
ing transitivity [16], spam detection in email networks [2],
finding tightly knit communities [20], finding k-trusses [7],
[25], [10], and evaluating the quality of different community
detection algorithms [15], [29]. Several triangle counting
applications are discussed in detail in [6]. Triangle counting
is also a key kernel for the HPEC Graph Challenge [21].

a) Computational Approaches: Given a graph G =
(V,E), there are several approaches for counting triangles:
enumerating over all node triplets O(|V |3), using linear alge-
bra operations O(|V |w) (where w < 2.376), and adjacency
list intersection. One of the first to differentiate between
and bound these approaches was Schank et. al. [24]. The
adjacency list intersection can be completed in multiple
ways: sorted set intersections, hash tables, binary searches,
and gather-apply-scatter.

b) Algorithmic Optimization: Numerous techniques
have be developed to reduce the time complexity for triangle
counting. For example, Green & Bader [8] present a combi-
natorial optimization that reduces the number of necessary
intersections, offering a better complexity bound. Shun &
Tangwongsan [22], Polak [19], and Pearce [18] show ways to
reduce the computational requirements by finding triangles in
the directed graph (rather than the undirected graph). Green
et al. [12] presents a scalable technique for load-balancing
triangle counting on shared-memory systems.

c) GPU Algorithms: Leist et al. [14] showed the first
GPU algorithm for triangle counting which used each thread
to execute a different intersection. This proves to be ineffi-
cient due to a mix of load-balancing related issues. Green et
al. [13] shows how to parallelize intersections by splitting
them into smaller sub-intersections. This work leaves the
number of threads for each intersection as a parameter to be
configured. This leads to ineffective utilization of the GPU
in terms of load-balancing as well as introducing overheads
(that in some cases dominate the execution). Our work uses
and extends the Intersect-Path algorithm such that a different
number of threads is used for each intersection based on the
workload characteristics of that intersection. By doing so, our
algorithm is in some cases over two orders of magnitude
(100×) faster than [13]. Wang et al. [26] show several
different strategies for implementing triangle counting on the
GPU, including matrix multiplication.

d) Graph Challenge: Wolf et. al. [28] uses an opti-
mized sparse matrix multiplication formulation, and was a
HPEC 2017 Graph Challenge champion. It was implemented
on several many-core systems. Bisson et. al. [4], [3], also an
HPEC Graph Challenge Champion submission, demonstrated
efficient triangle counting algorithms using hash maps on
the GPU. A more recent paper by Green et al. [11] uses
the branch avoiding model [9] and shows how to vectorize
triangle counting using Intel’s AVX-512 instruction set. This
paper also introduces a new method for load-balancing list
intersections based on work estimations.

𝑢1, 𝑣1,1 𝑢1, 𝑣1,2 𝑢1, 𝑣1,3 𝑢2, 𝑣2,1 𝑢2, 𝑣2,2 𝑢2, 𝑣2,3 𝑢2, 𝑣2,4 𝑢3, 𝑣3,1 𝑢2, 𝑣3,2 𝑢3, 𝑣3,4𝐸𝑑𝑔𝑒𝑠

𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚
𝑅𝑎𝑑𝑖𝑥
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Intersection

Fig. 1. Example of allocating threads per intersection according to work-
estimate bins obtained through Logarithmic Radix Binning. The second row
depicts edge list after binning. The third row shows threads per intersection
in powers of 2, matching the relative size of each intersection and its bin.

III. FINE-GRAIN LOAD-BALANCING ON THE GPU

In this section we show how we extend the Logarithmic
Radix Binning (LRB) load-balancing scheme, detailed in
Green et. al. [11] to the GPU. Our load balancing scheme
proceeds in two phases. In the first phase, the edges of the
graph are reordered according to an estimated work of their
adjacency intersections using LRB. In the second phase, the
number of threads assigned to each intersection is determined
according to the new edge ordering. We call this second
phase Logarithmic Threads Per Intersection (Log-TPI).

A. Work Estimation of List Intersections

In the first step we perform the LRB load-balancing
scheme. LRB starts off by reordering a list of edges based
on the integer ceiling of the logarithm of an edge’s estimated
work. For every edge (u, v) ∈ E, the expected work for the
intersection is given by either of

IntersectionWork(u, v) = du + dv (1)

BinaryWork(u, v) = du · log(dv). (2)

depending on the intersection method chosen. Green et.
al. [11] presents mixing both intersection methods, which is
outside the scope of this paper. These edges are then grouped
into bins based on log-stepped work estimates. The bins are
log-stepped in that edges are grouped by the nearest power
of 2 ceiling of their work estimate.

B. Thread Granularity Workload Partitioning

To ensure good load-balancing, our goal is to ensure that
the cores (SMs) and the threads (SPs) get a near equal
amount of work when processing intersections.

a) Logarithmic Threads Per Intersection: Let the es-
timated work for some intersection be given by W . Inter-
sections of the same bin are processed by T threads each,
i.e. each intersection results in T sub-intersections. T is
a bin-dependent parameter, and chosen such that work is
balanced across threads. Suppose Wb is the work ceiling of
intersections in bin b.

Then we choose T such that

Wb

T
= C, (3)

where C is the desired size of a sub-intersection. C is a
constant defined ahead of time, and is explained later.
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Since threads in the same bin have similar work estimates,
this implies that any thread processing an intersection in bin
b is assigned work ≈ C.

In this way, the number of threads assigned per in-
tersection is scaled with the the size of the intersection.
Intersections with larger estimated work will get a larger
number of threads than intersections with a smaller amount
of work. These concepts are illustrated in Fig. 1 where the
intersections for 3 different bins are given a different number
of threads—from one thread to four threads per intersection.

b) Log-TPI Implementation Details: Threads have been
referred to conceptually so far, but in reality there are CUDA
thread limits and hardware constraints. In practice we never
need to exceed the device thread limit, since the largest
threads-per-intersection is proportional to the maximum de-
gree of an input. If the number of edges times threads-
per-intersection is too large, then we simply iterate over
multiple grids of edges. Furthermore, in the case of Sorted
Set Intersection, we limit threads-per-intersection at block
size (256), beyond which there are diminishing returns.

A CUDA kernel is launched for each bin, with threads per
intersection specified by the Log-TPI scheme. Assuming the
largest logarithmic bin value is B = 32, then there are up to
32 kernel launches. A kernel does not launch if there are no
edges for that bin.

Finally, recall that C is the desired sub-intersection size.
We found that having Cintersect = 16 for Sorted Set
Intersection and Csearch = 8 for Binary Search works well
in practice. Note that these sub-intersection sizes roughly
match the size of a cache line, suggesting that some amount
of minimum work is needed to amortize memory access cost.
In the case of Sorted Set Intersection, Eq. 1 is used for the
intersection work estimation. Moreover, the Intersection-Path
[13] algorithm has a partitioning phase that introduces non-
trivial overheads; using too small of a Cintersect can reduce
performance as more time may be spent on partitioning an
intersection than on actually finding common neighbors. In
the case of Binary Search, we found it more effective to
use only the du term of BinaryWork(u, v) = du · log(dv).
log(dv) represents a worst-case upper bound and we believe
most searches are less than the upper bound in practice.

C. Parallel Processing of an Intersection

Here we describe how a single intersection gets divided
into sub-intersections and processed in parallel.

Alg. 1 shows the algorithm Intersect-Path for processing
a single intersection using T threads. The key step is a
parallel partitioning procedure that breaks a pair of sorted
lists into pairs of sublists, such that each sublist pair can be
independently intersected in a merge-like fashion. We omit
the details of the partitioning procedure and refer the reader
to [17] and [13].

Alg. 2 shows the algorithm for Par-Search on a single
intersection. The partitioning here is rather straightforward—
we divide up the smaller of the two adjacencies evenly. Each
thread has its sublist, and searches into the larger list to look
for matches.

Algorithm 1: Sorted Set Intersection based list in-
tersections. Given two sorted adjacency arrays, assign
sub-intersections to each thread. Compare elements of
resulting sub-arrays in merge-like fashion and check for
equal values.

for threadIdx ∈ threads do in parallel
index = b threadIdx

T
c // T is threads per intersection

u, v ← E[index]
uadj ,vadj ← adj(u,G), adj(v,G)
ui, uj, vi, vj ← findSplit(uadj ,vadj , threadIdx)
usub,vsub ← uadj [ui : uj],vadj [vi : vj]
k ← 0, l← 0, equalCount← 0
while True do

if k ≥ size(usub) or l ≥ size(vsub) then
return equalCount

if usub[k] < vsub[l] then
k ← k + 1

else if usub[k] > vsub[l] then
l← l + 1

else
k ← k + 1, l← l + 1
equalCount← equalCount+ 1

Algorithm 2: Binary Search based intersections. Given
two sorted adjacency arrays, adj(v) and adj(u), each
thread is assigned a portion of the searches from the
smaller list into the larger list.

for threadIdx ∈ threads do in parallel
index = b threadIdx

T
c // T is threads per intersection

u, v ← E[index]
uadj ,vadj ← adj(u,G), adj(v,G)
ui, uj ← findSplit(uadj .threadIdx)
usub,vadj ← uadj [ui : uj],vadj

equalCount← 0
for key ∈ usub do

low ← 0, high← len(vadj)− 1
while high ≥ low do

middle← (low + high)/2;
if vadj [middle] = key then

equalCount← equalCount+ 1
break

else if vadj [middle] < key then
low ← middle+ 1

else
high← middle− 1

D. Optimizations

a) Virtual Bins: Instead of maintaining separate arrays
for each bin, all bins are processed in the context of a single
array of edges in memory. A CUDA kernel is launched for
each bin, with threads per intersection calibrated accordingly.

b) Directed Graph: In order to count the number of
unique triangles in a graph and cut out extraneous work,
we convert the undirected graph into a directed graph as
a preprocessing step. Numerous approaches and heuristics
exist in the literature (see Section II). We use the degree-
ordered-directed (referred to as DOD) approach from Pearce
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[18].

E. Overheads Complexity Analysis

a) Logarithmic Radix Binning: The total time complex-
ity is O(|E|+B2), where B is a value chosen to contain the
log of the largest degree in the graph. Typically B ∈ 32, 64
and B2 is much smaller than number of edges in the graph,
see [11] for details.

b) Parallelizing Intersections: Parallelizing Sorted Set
Intersection across intersections, namely the findSplit op-
eration in Alg. 1, incurs an O(log(maxv |adj(v)|)) overhead,
corresponding to the log of the size of the largest adjacency
(see [17] for details). This overhead is the worst case
overhead and in practice is smaller when using vertices with
smaller adjacency arrays. Parallelizing Binary Search incurs
constant time overhead, as its findSplit operation requires
a simple division over the smaller adjacency.

c) Storage Complexity Analysis: We use CSR (com-
pressed sparse row) to represent the original graph. For
triangle counting, CSR requires two arrays, one for the
offsets of size O(|V |) and one for the indices (edges) which
is of size O(|E|). The binning technique used by LRB stores
the edges in a different order, which requires an additional
array of size O(|E|).

IV. PERFORMANCE ANALYSIS

A. Experimental Setup

a) System: The experiments presented in this paper
were carried out on a NVIDIA V100 GPU. The V100 is
a Volta based GPU with 80 SMs and 16GB HBM2 memory.
We independently execute two different triangle counting
methods: 1) Intersect-Path and 2) Par-Search. Where appli-
cable, these are denoted as “IP” and “BSearch” in the plots.
Our CUDA code is compiled with the NVIDIA Compiler
(nvcc) using CUDA version 9.1. The host compiler is gcc,
version 6.4.0.

b) Software and Libraries: The algorithms presented
were implemented using Hornet [5] as the underlying graph
data structure. Hornet was configured to maintain sorted
adjacency lists and this preprocessing time is not included
in our results.

c) Inputs: The algorithms are tested using real world
graphs and networks taken from the HPEC Graph Challenge
[23] (see Table I). By default, all graphs are treated as
undirected, and duplicate edges removed. As mentioned
earlier, we utilize the optimization of finding triangles in the
directed graph (where only half the edges exist) [18].

B. Performance of Adaptive Approach

In this section we detail experiments and results that
highlight different aspects and contributions of our im-
plementations. In the interest of space, the figures shown
include only a subset of the graphs we used from the Graph
Challenge. Table II reports a full set of our results, including
raw times and triangle counts.

C. Comparison with State of the Art
For consistency, we refer to our Par-Search version of

triangle counting (unless noted otherwise), as it was faster
than our Intersect-Path implementation in most cases. We
compare the performance of our new algorithm with several
of the fastest algorithms and implementations from last year’s
HPEC Graph Challenge. Two of these, KokkosKernels [28]
and Bisson et. al. [4], were designated as competition cham-
pions and we compare against times reported in those papers.
We also compare with [11], a 2018 Graph Challenge paper.
This approach combines Logarithmic Radix Binning load-
balancing with vectorization on the Intel Knight’s Landing.
Finally, we include [22] as reference to a high-performing
implementation prior to the Graph Challenge. For all but
a small number of cases, our algorithm is faster than best
results from last year’s Graph Challenge. On the larger
graphs, our speedup is in the 5 – 10× range, and up to
20 – 30×. Our performance is comparable with that of
[11], and is faster in some instances while slightly slower
in others. Fig. 2 depicts the speedup of our algorithm over
these aforementioned algorithms and shows the systems they
ran on.

a) Edges Per Second: Fig. 3 depicts the number of
edges processed per second for Sorted Set Intersection and
Binary Search methods with Logarithmic Radix Binning.
This metric serves to normalize our performance based on
graph size. Edges per second is measured as the number
of edges in the input graph divided by the total execution
time, load-balancing overhead included. For most graphs we
are able to process over 100 million edges per second, and
in some cases as high as billions of edges per second. The
lowest rates come from graphs smaller than 1 million edges.

b) Adaptive Threads Per Intersection: Fig. 4 compares
the performance of our adaptive Logarithmic Threads Per
Intersection approach, which allocates threads based on the
expected amount of work, over static threads-per-intersection
configurations which uses a constant number of threads (1,
32, and 256) for Par-Search. These correspond to processing
single intersections with a thread, warp, or thread block.

For all the configurations, we use the LRB reordered
lists for consistency. We do not consider these times in our
analysis, as our focus is on the processing time of load-
balanced list-intersections. In all instances except one (email-
EuAll), Log-TPI performs at least as well (and often much
better) than any of the static configurations. In some cases
the adaptive Logarithmic Threads Per Intersection is over
20× faster. Furthermore, the best-performing static thread
count varies by graph and is not known ahead of time. This
underscores the benefits of an adaptive approach that is able
to optimize load-balancing at the intersection level.

c) LRB overhead: Fig. 5 shows ratio of Logarith-
mic Radix Binning-related overhead vs. triangle counting
computation. LRB overhead is relatively high for many of
the smaller graphs. Overhead is also relatively high for
graphs with very low average degree. This is not surprising,
since tiny graphs and/or low-degree graphs already have
inherent load-balance. Such graphs could also be much more
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TABLE I
NETWORKS USED IN OUR EXPERIMENTS. |E| REFERS TO NUMBER OF DIRECTED EDGES FROM SOURCE, PRIOR TO ANY PREPROCESSING.

Name |V | |E|

amazon0312 400,727 3,200,440
amazon0505 410,236 3,356,440
amazon0601 403,394 3,387,388
ca-HepPh 12008 118489
ca-HepTh 9877 25973
cit-HepPh 34546 420877
cit-HepTh 27770 352285

Name |V | |E|

soc-Slashdot0811 77360 469180
soc-Slashdot0902 82168 504230
cit-Patents 3774768 16518947
email-EuAll 265214 364481
g500-s21-ef16 1243072 31731650
g500-s22-ef16 2393285 64097004
g500-s23-ef16 4606314 129250705

Name |V | |E|

g500-s24-ef16 8860450 260261843
g500-s25-ef16 17043780 523467448
roadNet-CA 1965206 2766607
roadNet-PA 1088092 1541898
roadNet-TX 1379917 1921660
soc-Epinions1 75879 405740
soc-LiveJournal1 4847571 68993773

Name |V | |E|

Theory-5-9-16-25-B1k 26520 351745
Theory-9-16-25-81-B1k 362440 5212249
Theory-25-81-256-B1k 547924 4264567
Theory-3-4-5-9-16-25-B2k 530400 22160059
Theory-5-9-16-25-81-B1k 2174640 57334759
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Fig. 2. Speedup of our load-balanced Par-Search algorithm over past implementations. Graphs are sorted in increasing order of edges. There are several
missing bars for graphs where time was not reported for an implementation. Black line indicates speedup of 1.
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Fig. 3. Number of edges processed per second vs. graph size in number of edges, for load-balanced Intersect-Path and Par-Search algorithms.
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Fig. 4. Speedup (log-scale) of Log-TPI approach over three static threads-per-intersection configurations. Comparison is for the Binary Search-based
approach. Speedups are based on processing times of intersections, and does not include LRB overhead. Graphs are sorted in increasing order of edges.

memory-bound than compute-bound. However, the overhead
gap closes for larger graphs with higher average degree. On

graphs with many millions of edges, the binning overhead is
negligible and the processing of list intersections dominates.
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TABLE II
GRAPHS USED IN OUR EXPERIMENTS, WITH REPORTED TIMES (IN

SECONDS) AND TRIANGLE COUNTS FOR BOTH SORTED SET

INTERSECTION AND SEARCH-BASED IMPLEMENTATIONS. PROCESSING

REFERS STRICTLY TO THE KERNELS LAUNCHED FOR TRIANGLE

COUNTING, WHILE TOTAL INCLUDES ALL OVERHEAD ASSOCIATED

WITH OUR APPROACH. GRAPH LOADING, HOST-TO-DEVICE TRANSFER,
AND GRAPH PREPROCESSING TIMES ARE NOT INCLUDED.

Name Intersect-Path Intersect-Path Par-Search Par-Search Triangles
Processing Total Processing Total

amazon0312 0.0009 0.0065 0.0009 0.0065 3,686,467
amazon0505 0.0168 0.0280 0.0010 0.0062 3,951,063
amazon0601 0.0168 0.0280 0.0010 0.0067 3,986,507

cit-HepPh 0.0004 0.0047 0.0003 0.0028 1,276,868
cit-HepTh 0.0004 0.0033 0.0003 0.0028 1,478,735
ca-HepPh 0.0004 0.0022 0.0004 0.0023 3,358,499
ca-HepTh 0.0002 0.0017 0.0002 0.0019 28,339
cit-Patents 0.0200 0.0370 0.0167 0.0377 7,515,023

email-EuAll 0.0003 0.0031 0.0003 0.0029 267,313
soc-Epinions1 0.0253 0.0348 0.0005 0.0036 162,4481

soc-LiveJournal1 0.1214 0.2087 0.0414 0.0810 285,730,264
soc-Slashdot0811 0.0253 0.0313 0.0004 0.0030 551,724
soc-Slashdot0902 0.0253 0.0349 0.0005 0.0036 602,592

roadNet-CA 0.35225 7.00006 0.0005 0.0069 120,676
roadNet-PA 0.24985 5.38931 0.0003 0.0039 67,150
roadNet-TX 0.28262 5.58182 0.0004 0.0043 82,869

g500-s21-ef16 0.1621 0.1922 0.1528 0.1726 935,100,883
g500-s22-ef16 0.3769 0.4498 0.3978 0.4395 2,067,392,370
g500-s23-ef16 0.9986 1.121 1.085 1.158 4,549,133,002
g500-s24-ef16 2.323 2.543 2.734 2.896 9,936,161,560
g500-s25-ef16 5.775 6.200 7.050 7.382 21,575,375,802
Theory-5-9-16 0.0008 0.0039 0.0005 0.0036 264,799

-25-B1k
Theory-9-16-25 0.0094 0.0152 0.0067 0.0125 4,059,175

-81-B1k
Theory-25-81 0.0136 0.0189 0.0072 0.0135 2,102,761

-256-B1k
Theory-3-4-5-9 0.0258 0.0439 0.0132 0.0296 350

-16-25-B2k
Theory-5-9-16 0.1900 0.2174 0.1471 0.1743 66,758,995

-25-81-B1k

These results show that Logarithmic Radix Binning is a small
penalty to pay for more efficient triangle counting over larger
graphs, but there is room for improvement on smaller graphs.

V. CONCLUSIONS

Triangle counting is known to present load-balancing is-
sues for massively multi-threaded systems. These challenges
are amplified on modern GPU systems, which requires tens
of thousands of threads for full system utilization. In this
paper we introduce an adaptive load-balancing approach
ensuring that runtime threads are effectively utilized for
list intersections. We combine Logarithmic Radix Binning,
a load-balancing approach that bins edges based on their

intersection work estimation, with Logarithmic Threads Per
Intersection for dynamically assigning work to threads on the
GPU. Log-TPI scales the allocation of threads to intersec-
tions based on work-estimations, and enables faster process-
ing of list intersections than in any static configuration. We
successfully applied our adaptive approach on two different
list intersection schemes, to produce two high-performing
parallel triangle solutions based on Sorted Set Intersection
and Binary Search, respectively.

In the context of the GraphChallenge, our new algorithms
outperformed several state-of-the-art high performing and
optimized triangle counting algorithms, including HPEC
Graph Challenge champions. We believe this approach is
extensible as a new kernel for list intersection applications
at large. In particular, for the k-truss problem, we believe
these new results would greatly improve the performance of
the authors’ previous work [10].

ACKNOWLEDGMENTS

Funding was provided in part by the Defense Advanced
Research Projects Agency (DARPA) under Contract Number
FA8750-17-C-0086. This work was partially funded by the
Doctoral Studies Program at Sandia National Laboratories
for the U.S. Department of Energy’s NNSA under con-
tract DE-NA0003525. The content of the information in
this document does not necessarily reflect the position or
the policy of the Government, and no official endorsement
should be inferred. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on. The authors
also acknowledge the FutureSystems Center [1] at Indiana
University for providing HPC resources that have contributed
to the research results reported within this paper.

REFERENCES

[1] “Futuresystems: Digital science center, school of informatics and
computing, indiana university.” https://portal.futuresystems.org/.

[2] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient Semi-
streaming Algorithms for Local Triangle Counting in Massive
Graphs,” in 14th ACM SIGKDD Int’l Conf. on Knowledge Discovery
and Data Mining, 2008, pp. 16–24.

6978-1-5386-5989-2/18/$31.00 ©2018 IEEE



[3] M. Bisson and M. Fatica, “High performance exact triangle counting
on gpus,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 12, pp. 3501–3510, 2017.

[4] M. Bisson and M. Fatica, “Static graph challenge on gpu,” in High
Performance Extreme Computing Conference (HPEC), 2017 IEEE.
IEEE, 2017, pp. 1–8.

[5] F. Busato, O. Green, N. Bombieri, and D. Bader, “Hornet: An Efficient
Data Structure for Dynamic Sparse Graphs and Matrices on GPUs,” in
IEEE Proc. High Performance Extreme Computing (HPEC), Waltham,
MA, 2018.

[6] S. Chu and J. Cheng, “Triangle listing in massive networks and its
applications,” in Proceedings of the 17th ACM SIGKDD Int’l Conf.
on Knowledge Discovery and Data Mining, 2011, pp. 672–680.

[7] J. Cohen, “Trusses: Cohesive Subgraphs for Social Network Analysis,”
National Security Agency Technical Report, p. 16, 2008.

[8] O. Green and D. Bader, “Faster Clustering Coefficients Using Vertex
Covers,” in 5th ASE/IEEE International Conference on Social Com-
puting, ser. SocialCom, 2013.

[9] O. Green, M. Dukhan, and R. Vuduc, “Branch-Avoiding Graph Al-
gorithms,” in 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, 2015, pp. 212–223.

[10] O. Green, J. Fox, E. Kim, F. Busato, N. Bombieri, K. Lakhotia,
S. Zhou, S. Singapura, H. Zeng, R. Kannan, V. Prasanna, and D. Bader,
“Quickly Finding a Truss in a Haystack,” in IEEE Proc. High
Performance Extreme Computing (HPEC), Waltham, MA, 2017.

[11] O. Green, J. Fox, A. Tripathy, K. Gabert, E. Kim, X. An, K. Aatish,
and D. Bader, “Logarithmic Radix Binning and Vectorized Triangle
Counting,” in IEEE Proc. High Performance Extreme Computing
(HPEC), Waltham, MA, 2018.

[12] O. Green, L. Munguia, and D. Bader, “Load Balanced Clustering Co-
efficients,” in ACM Workshop on Parallel Programming for Analytics
Applications (PPAA), Feb. 2014.

[13] O. Green, P. Yalamanchili, and L. Munguı́a, “Fast Triangle Counting
on the GPU,” in IEEE Fourth Workshop on Irregular Applications:
Architectures and Algorithms, 2014, pp. 1–8.

[14] A. Leist, K. Hawick, D. Playne, and N. S. Albany, “GPGPU and Multi-
Core Architectures for Computing Clustering Coefficients of Irregular
Graphs,” in Int’l Conf. on Scientific Computing (CSC’11), 2011.

[15] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of
algorithms for network community detection,” in Proceedings of the
19th Int’l Conf. on World Wide Web. ACM, 2010, pp. 631–640.

[16] M. E. Newman, D. J. Watts, and S. H. Strogatz, “Random Graph
Models of Social Networks,” Proceedings of the National Academy of
Sciences, vol. 99, no. suppl 1, pp. 2566–2572, 2002.

[17] S. Odeh, O. Green, Z. Mwassi, O. Shmueli, and Y. Birk, “Merge path
- parallel merging made simple,” in IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), may 2012.

[18] R. Pearce, “Triangle counting for scale-free graphs at scale in dis-
tributed memory,” in High Performance Extreme Computing Confer-
ence (HPEC), 2017 IEEE. IEEE, 2017, pp. 1–4.

[19] A. Polak, “Counting triangles in large graphs on GPU,” arXiv preprint
arXiv:1503.00576, 2015.
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