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Abstract—Sparse data computations are ubiquitous
in science and engineering. Unlike their dense data
counterparts, sparse data computations have less lo-
cality and more irregularity in their execution, mak-
ing them significantly more challenging to parallelize
and optimize. Many of the existing formats for sparse
data representations on parallel architectures are re-
stricted to static data problems, while those for dy-
namic data suffer from inefficiency both in terms of
performance and memory footprint. This work presents
Hornet, a novel data representation that targets dy-
namic data problems. Hornet is scalable with the input
size, and does not require any data re-allocation or
re-initialization during the data evolution. We show
a Hornet implementation for GPU architectures and
compare it to the most widely used static and dynamic
data structures.

Indexr Terms—Dynamic Graph Structures,
Computing, Graph Analytics

GPU

I. INTRODUCTION

Dynamic sparse data applications are now ubiquitous
and can be found in many domains. Dynamic refers to
the fact that the data is changing at very high rates. The
sparsity of the data has led to the development of several
data representations, which are common for both problem
formulations: Compressed Sparse Row (CSR), Coordinate
(C00), Compressed Sparse Column (CSC), and ELL
(Ellpack). Unlike a dense adjacency matrix, which may
be potentially filled with “0”-values, these formats avoid
storing these trivial values. As such, these data-structures
are cost-effective in terms of memory yet lack flexibility to
support growth.

In this context, even though some attempts have been
recently made to design a data structure that is scalable,
high-performing, and flexible enough to support rapid
updates [1]-[4], these are unable to meet all criteria.

This paper presents Hornet, a platform independent
data structure for efficient computation on dynamic sparse
graph and matrices. Hornet can grow to very large sizes
without requiring any data re-allocation or re-initialization
during the whole dynamic evolution of data.

Hornet outperforms dynamic graph data structures at
the state of the art on several fronts: Hornet provides bet-
ter memory utilization than AIM [4] and cuSTINGER |[2],
faster initialization (from 3.5z to 26z than cuSTINGER),
and faster update rates (over 200 million updates per sec-
ond); Hornet uses a small fraction of the memory that AIM
requires and about 5z-10x less memory than cuSTINGER.
Compared to the static data structures, Hornet requires
only 5% to 35% additional memory in contrast to CSR
and, in average, 30% less memory than COO.
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This paper presents a Hornet implementation for GPU
architectures, an experimental analysis, and its compari-
son with the state of the art dynamic approaches.

The paper is organized as follows. Section II presents
an analysis of the state of the art in terms of static
and dynamic sparse formats. Section III presents the
Hornet data structure and its implementation for GPUs.
Section IV presents the experimental setup and a detailed
empirical analysis. Section V is devoted to the concluding
remarks.

II. RELATED WORK

Many linear systems and graph problems arising from
the discretization of real-world problems show high spar-
sity. For many GPU applications, CSR is the de-facto
graph representation. Alternative static sparse formats in-
clude matrix representation for graphs, COO, and Ellpack.

While some static data solutions allow for dynamic
updating, they can only: 1) support a limited number
of updates, 2) have a large update time, or 3) have an
unacceptable overhead due to data structure re-allocation
and re-initialization.

In order to fully support dynamic graph algorithms,
more advanced and complex data structures have been
recently proposed. Their goal is to efficiently support
dynamic operations in graphs or matrices like edge/node
insertions, deletions, or value/weight updates.

The STINGER data structure [1] was first introduced as
a dynamic graph structure for both temporal and spatial
graphs with meta-data for multi-core architectures.

cuSTINGER [2] extends the STINGER data-structure
to the GPUs. While the STINGER and cuSTINGER
support many similar features, their data structures are
very different. STINGER relies on blocked linked lists,
whereas cuSTINGER uses arrays for the neighbor lists.

Graphln [6] and its extension for GPUs, Evograph [3],
allow for incremental graph processing on CPU-based ar-
chitectures by combining two static graph data structures:
CSR for the original input and a dynamic edge-lists (COO)
to store new edges. These frameworks are constrained to
a limited number of updates (pre-defined by the users).
COO can lead to scattered memory accesses in case of
large updates.

AIM [4] implements a block linked-list data structure
for GPUs by using a STINGER-like data structure. It
allocates a single array and, according to AIM [4], it
allocates the entire GPU memory for just the graph. By
using a single allocation, the initialization is fast and



TABLE 1
COMPARISON OF SPARSE GRAPH AND MATRIX REPRESENTATIONS. m. REPRESENTS THE TOTAL NUMBER OF AVAILABLE/EXTRA
EDGES IN THE GRAPH. INSERTIONS AND DELETIONS COMPLEXITY IS PRESENTED FOR SINGLE UPDATES.

Format Storage Duplicate Insertion Deletion Reset Memory  Fixed mem size Notes

checking frequency reclamation allocation

CSR n+m / / For every update No Yes
Enabled O(m) O(m) .

coo 2. (m + me) Dibied o otm) After me updates No Yes Poor locality

Evograph [3] ) After me updates or Reduced locality.

G GO0 n4m4 2 me Not supported o(1) Not supported cingle diiotion No Yes Complox ADL.

DCSR [5] 2K % n 4+ m + me Not supported O(1) + O(m)  Not supported a“egdgef““hes or No Yes Complex API

e s
whole available Whenever exceed

AIM [4] GPU memory Always enabled O(degmaz) O (degmaz) allocated memory No Yes

cuSTINGER [2] O(n +2m + me) Always enabled O (degyaz) O (degmaz) No No No

- " o R Enabled o)t o)t N v N

Qe (6 < D) Disabled o)t o)t ° es °

update rate is high. However, such an allocation strat-
egy strongly limits the implementation of any advanced
analytic computation as the memory is entirely utilized.

Dynamic CSR (DCSR) [5] is a CSR variant for support-
ing dynamic updates. When initialized, DCSR is nearly
equivalent to the CSR representation. Any update to
the graph requires a concatenation to the initial CSR
data structure. Concatenations involve significant memory
overhead, require knowing the number of updates a priori,
and require a reorganization after each update.

Table T summarizes and compares the characteristics
of the data structures at the state of the art. Section 4
presents the analysis of these data structures empirically.

III. THE Hornet DATA STRUCTURE

The Hornet data structure has been designed to fully
support both dynamic graphs and matrices !. Fig. 1 gives
an overview of Hornet, which consists of two tiers: The user
interface and the internal representation that is abstracted
from the user.

From the user’s perspective, each vertex is associated
with two main fields: The number of current neighbors
(i.e., Used in the figure) that represents the adjacency
list size, and a pointer to a dedicated adjacency list.
Instead of using standard memory allocation function
calls for each adjacency list, which would be extremely
inefficient. Hornet implements this operation by using
three components, which are managed by the internal data
manager: 1) block-arrays for storing multiple adjacency
lists, 2) a wvectorized bit tree for efficiently finding and
reclaiming empty memory blocks for the adjacency lists,
and 3) B'ttrees to manage the block-arrays.

A. Block-arrays

Hornet represents the graph through a hierarchical
data structure, which consists of adjacency lists, blocks,
and block-arrays. A block-array is an array of equally-
sized memory chunks, called blocks. Each block contains
a number of adjacency lists equal to a power of two (we
refer to this number as the bsize). Block sizes are 20%¥¢
edges. The bsize for each vertex, v, is determined as follows

bsize(v) = 2%92(‘1&9(”))] . As such, bsize(v) is the smallest
power of two that fully contains the block.

1Graph based and matrix based problems use different terminology
to describe identical concepts. For simplicity, we adopt the graph
terminology.
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Fig. 1(a) shows, as an example, the Hornet layout
of the initial graph, which consists of four block-arrays:
BAy 1 (bsize=1) has one adjacency list; BA;; and BA; o
(bsize=2) contain four and one adjacency list, respectively;
BAsy 1 (bsize=4) contains one adjacency list.

Fig. 1(b) shows the Hornet layout after the insertion of
the three new edges (the details of the insertion process is
discussed in Section III-E). The insertion of edge 1 — 7
requires increasing the size of the adjacency list for vertex
1 as it cannot store additional edges block in BA; ;. Con-
sequently, Hornet allocates a new block-array for blocks of
bsize = 4 (BAs2) and moves the whole block containing
the adjacency list in it.

By placing adjacency lists in block sizes that are powers
of two, we can place an upper bound on the amount of
space allocated for each adjacency list. This allows identi-
fying the worst case upper bound of memory allocated for
the entire graph evolution: 2-|E|. In practice, the average
memory allocated for the graph edges, as shown in Section
IV, is close to 1.4:|E|. The number of blocks in a block-array
is also a power of two (as explained in Section III-C).

B. Vectorized Bit Tree

Block-arrays may have empty blocks (white spaces in
Fig. 1(a), (b)). The vectorized bit tree data structure ( Vec-
Tree in the following) is used to efficiently find such empty
blocks for new allocations. The Vec-Tree fulfills three key
requirements: 1) to ensure that a new block-array is not
allocated until all block-arrays for a given block size are
fully utilized, 2) to have a small memory footprint that
does not add significant overhead, and &) to find and
reclaim empty blocks in an efficient manner.

Hornet satisfies the first requirement by associating
one Vec-Tree per block-array. Each Vec-Tree consists of
a tree of boolean values in which each tree node stores
the value of the logic OR of its two children. The leafs
of the tree represent the state of the blocks (1 if empty,
0 if used). Fig. 1 shows the Vec-Trees of all block-arrays
before and after the graph update. Fig. 2 shows in details
the representation and actual implementation of the Vec-
Tree of BA; 1 before and after the update.

In general, it is possible to see if a block-array has an
empty block by simply inspecting the root. Finding the ac-
tual free block can be done within O(log(|BA|)) steps. The
same time is spent for an empty block reclamation. Assum-
ing block 7 as the block of interest, the address of block i is
calculated as follows address(i) = address(BAy.,ia)+i-2F,
where 2 is the size of each block.
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Fig. 3. Block-array manager. Specifically, blocks of size 4 are empha-
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The simplicity of the lookup enables finding empty
blocks at high rates (in contrast to the cuSTINGER
implementation that requires a computationally intensive
search for finding empty blocks).

C. BT Trees of block-arrays

The Vec-Tree layer allows efficiently reclaiming empty
blocks for a specific block-array. We adopt a different data
structure, i.e., BT Tree, to find a block-array with empty
blocks or multiple block-arrays. Even though other data

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

structures, such as linked lists, could be adopted for such
a task, Hornet implements B+ Tree to ensure scalability
and efficiency.

Hornet allocates an array of BT Trees, where each
BT Tree (one per block size) manages all the block-arrays
of a given block size. Fig. 3 shows the B*Tree array for
the example of Fig. 1 (initial and after the update), which
consists of three BT Tree for blocks of size 1, 2, and 4.

Each node of a B*Tree is a tuple <data, key>. The
data field points to the block-array and the key stores the
number of free blocks within that block-array. Searching
for empty blocks in a B*Tree takes logarithmic time with
respect to the tree size. Considering that the size of the
block-array is generally big (see Section I1I-A), the number
of block-arrays (the number of nodes in a BT Tree) of a
given block size is relatively small. This means that the
lookup operations are extremely fast.

As a consequence, when a new block is needed, rather
than iterating through all the block-arrays and their corre-
sponding Vec-Trees, all that is needed is query the B* Tree.
Each block-array is managed by a single BT Tree. Several
highly optimized B*Trees implementations already exist
in literature (e.g., [7], [8]).

D. Data structure initialization

Hornet allows for graph initialization by starting from
an empty data structure and by adding edges and vertices
one at a time. It also supports the initialization by starting
from a CSR representation and by converting such a static
format into the dynamic-ready Hornet format.

The data structure initialization consists of three steps.
First, for all vertices in the graph, an empty block is
found based on the degree of each vertex. In the second
phase, for performance reasons, all the adjacency lists are
temporarily stored in block-arrays and maintained in the
host-side rather than being directly copied to the device
memory. After that, all block-arrays are copied to the
device. Copying the whole block-array instead of single
blocks greatly improves the initialization time, since it
avoids many small memory transfers while maximizing the
PCI-Express bandwidth. Lastly, in the third phase, the
vertex data (degree and adjacency list pointers) are copied
to the device.



Algorithm 1 Pseudo-code for updating the data-structure
after a batch of updates. The pseudo-code for deletions is
almost identical to the insertion code by replacing line 4-5.

1: Q < empty queue > Q@ : (old_ptr, new_ ptr, size)

2: B « CSR representation of B > require sorting: O(B - log(V))*
3: parallel for v € B do > O(B)
4: new__degree — hgraph[v].used + degcsp(v)

5: if (new_degree > BsizE(hgraph[v].used) then

6: new_ ptr < MemManager. GETEMPTYBLOCK (new_ degree)

7 ENQUEUE ({ hgraph[v].pointer, new _ptr, hgraph.used[v] ) , Q)
8: hgraph.used[v] < new_ degree

9: hgraph.pointer[v] < new_ ptr

10:

> Load-balancing is required for efficient copies?.
11: parallel for q € Q do > CoPYADJCENCYLIST(SRC, DEST, SIZE)

12: CoPYADJCENCYLIST(q.0ld_ptr, g.new_ ptr, q.size)

13: for q € Q do > O(B)
14: MemManager. RECLAIMOLDBLOCK(g.0ld _ptr)

15: parallel for v € B do > Only for batch insertion > O(B)

16: CoPYADJCENCYLIST(v.ptr, hgraph[v].pointer, degcsr(v))

*radix-sort

Deletion:
4: new _degree « hgraph[v].used - v.degree
5: if (new_degree < BsizE(hgraph[v].used) / 2 then

E. Dynamic Updates

Hornet supports different graph updates: (a) insertion
and deletion of vertices, (b) insertion and deletion of edges,
and (c) update of values of existing vertices and edges. The
first two types (a, b) change the graph topology, while
the later changes the data values of the network. Vertex
insertions and deletions are implemented through series of
edge insertions and deletions, respectively.

Hornet supports graph updates through batches [1]-[6],
by which different updates are grouped together to maxi-
mize system throughput and to avoid sequential latencies.

Algorithm 1 shows the pseudo-code for completing an
edge insertions. The insertion of new elements in the struc-
ture consists of several important yet parallel phases. First,
the batch is sorted (by source vertex) to improve locality
during the update and counts the number of appearances
for each row/source (the batch update is converted to
a CSR data structure). Then, the vertices requiring ad-
ditional storage (e.g., vertices 1 and 4 in Fig. 1(b)) are
enumerated and queued. A new block is allocated for each
of the queued element (BAj3 1, BAs 2), the contents of the
old blocks are copied into the corresponding new blocks
in parallel, the old block pointers are reclaimed, and the
pointers are updated.

The process for edge deletions is similar, and can be
obtained by replacing lines 4 and 5 in Algorithm 1 with
the lines placed at the bottom of the pseudo code.

Like other approaches in literature (cuSTINGER, and
AIM), Hornet supports cross duplicate removal between a
batch update and the target graph. The goal is to ensure
that the final graph, after the update process, does not
contain duplicate edges, which may lead to wrong results
in the computation of important analytics (e.g. triangle
counting or betweenness centrality).

Hornet support also cross duplicate removal (i.e., edge
duplicates between the graph and the batch). Given a
single edge, the basic idea is to span a set of threads
equal to the degree of the edge source. Each thread maps

2The Hornet implementation is based on the binary-search load
balancing algorithm [9].
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TABLE II

GRAPHS AND MATRICES USED IN THE EXPERIMENTAL RESULTS.

Matrix/Graph Context (Matrix/Graph) Symm. Rows, NNZ, Avg.
Vertices (M)  Edges (M) nnz/row

dblp-2010 Collaboration (G) Y 0.03 1.6 5.0
Cantilever FEM (M) Y 0.06 4.1 65.2
Protein Protein (M) Y 0.03 43 120.3
Spheres FEM (M) Y 0.08 6.1 73.1
Ship FEM (M) v 0.14 7.6 56.5
Wind Wind tunnel (M) Y 0.21 11.6 54.4
in-2004 Web crawl (G) N 1.38 16.7 12.2
soc-LiveJournall Social Network (G) N 4.85 69.0 14.2
cagel5 DNA (G) N 5.15 992 19.2
europe_osm Road (G) Y 50.91 108.1 2.1
kron_g500-logn21  Synthetic (G) Y 2.1 182.1 86.8
indochina-2004 Web crawl (G) N 7.41 194.1 26.2
uk-2002 Web crawl (G) N 18.5 298.1 16.1
com-livejournal Ground-truth comm. (G) Y 4.00 69.3 17.3
com-orkut Ground-truth comm. (G) Y 3.07 234.3 76.2
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Fig. 4. Top: block-level fragmentation analysis. Middle: Fragmenta-
tion analysis at block-array level. Bottom: Overall memory utiliza-
tion efficiency.

to a different element in the adjacency list of the source
vertex and checks if an edge already exists Hornet also
implements the removal of intra-batch duplicates (i.e.,
edge duplicates within a batch) by sorting the edges
within a batch. The sorting operation is already applied
in Algorithm 1 (1ine 2) and both procedures expose high
parallelism and efficiency.

IV. EXPERIMENTAL RESULTS

Table II reports the set of sparse graphs and matrices
used in the experiments and their main characteristics.
They have been taken from the University of Florida
Sparse Matrix Collection [10].

We conducted the efficiency analysis and the comparison
with the corresponding state-of-the-art data structures for
GPUs. We consider two key factors for the evaluation,
which include memory utilization and update rates.

The experimental analysis has been conducted on
a NVIDIA Tesla (PCI-E) P100 device (Pascal micro-
architecture) with Xeon E5-2650 v4 host processor. The
P100 consists of 56 SMs with a total of 3,840 CUDA cores
and 16GB DRAM memory.

A. Memory utilization efficiency

The Hornet memory utilization is evaluated and com-
pared with static data structures (CSR and COOQO) and



dynamic data structures (cuSTINGER, AIM).

We first analyze the block-level fragmentation, that is,
the unused edges within the blocks due to the power-of-
two block sizing. Fig. 4 (upper subplot) reports the results,
in which 100% represents no fragmentation (i.e., the entire
power of two block is utilized). The bar value represents
the average memory utilization in the allocated blocks
(e.g., 78% for dblp-2010), while the difference (22% for
dblp-2010) represents the over-allocated memory.

We then analyze the fragmentation at the block-array
level, that is, the unused and over-allocated memory within
block-arrays due to empty blocks (see Section ITI-B). Fig. 4
(middle subplot) reports the results, by considering differ-
ent block-array sizes: 216,219 and 222 edges. As expected,
as the block-array size increases so does fragmentation
(i.e., the storage utilization decreases). This is especially
evident for smaller graphs. On the other hand, as will be
shown in Section IV-B, larger block-array sizes also have
a higher update rate.

Finally, Fig. 4 (bottom subplots) shows the comparison
between Hornet and the other data structures in terms
of overall memory utilization efficiency. CSR is chosen
as reference point, since it is the most compact state
of the art data structure. CSR is represented by 100%
utilization in the figure. The overall comparison of Fig. 4
underlines that Hornet strongly improves (almost twice)
the memory utilization efficiency with respect to the best
dynamic counterpart at the state of the art (cuSTINGER).
It also shows that, if properly configured, Hornet provides
better memory efficiency then the static COOThe memory
utilization of AIM is extremely low due to to the fact that
AIM always allocates the entire GPU memory.

B. Update rates

We evaluate the update rates (expressed as updates per
second) the dynamic data structure can handle for batches
from 1 to 107 updates per batch. Similar to cuSTINGER,
STINGER, and AIM, Hornet verifies that all new edges do
not exist in the graph prior to insertion. Other data struc-
tures, including EvoGraph and Graphln, do not perform
this in their update phase. As such their update phase is
potentially shorter. AIM, Evograph, and Graphln which
use static allocation which do not use memory allocations
in their update process. However, these other libraries also
need to be re-initialized whenever they need more memory
than was originally allocated.

Fig. 5 shows the insertion update rate for four differ-
ent graphs for both cuSTINGER (a) and Hornet data
structure (b). Fig. 5 (¢) summarizes the speedup of the
new data structure compared to the cuSTINGER im-
plementation. For small batches, 10* edges and smaller,
cuSTINGER outperforms Hornet. However, for larger
batches cuSTINGER has a performance dip due to com-
munication overhead - Hornet does not.

To perform a fair comparison of Hornet with AIM, we
configured Hornet to use a minimal block size similar to
the one found in AIM. In many cases Hornet is faster
than AIM. Fig. 6 depicts the update rate of AIM (a)
and Hornet (b), and the speedup of Hornet compared to
AIM (c). Also in this case, Hornet shows lower update
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rates than AIM for small batches, and in particular for
graphs with regular degree distribution (cage15). On the
other hand, Hornet outperforms AIM for larger batches
up to 82z (see Sec. III-E). For the kron_ ¢500-logn21
graph, Hornet is especially faster than AIM as it stores
the entire adjacency array in a single block rather than
the multiple blocks used by AIM to improve locality. Note
that Hornet outperforms AIM even though AIM does not
require memory allocations as part of its update process.

The reduced performance of Hornet for small batches
is in part due to the preprocessing phase that converts
the batch update to CSR. This conversion (applied to all
batch sizes) is relatively costly for small batches where
there is little work to update the graph. However, it greatly
improves the performance for large batches.

Using the AIM configuration, Hornet can process up
to 800 millions updates per second (Fig. 6(b)). This can
be further increased to 1 billion updates per second if the
duplicate testing is disable as was done in Graphln and
Evograph.

C. Breadth-first search and SpMV

BFS is a fundamental graph operation and building
block for most graph algorithms. We compare the perfor-
mance of Hornet and CSR data structures for the BFS
graph traversal. In addition, we evaluate our solution
with the state-of-the-art CSR implementation provided
by the Gunrock library [11]. Fig. 7 shows the speedup
and the performance (millions traversed edges per sec-
onds, MTEPS) of our BFS algorithm using CSR and
Hornet in comparison to the Gunrock implementation?.
Our implementations were typically faster than Gunrock,
in some cases as much as 5.5z faster. Hornet shows slightly
better performance than CSR. (up to 10%) thanks to better
locality of vertices with the similar degree vertices within
the same block-array.

Sparse matrix-vector multiplication (SpMV) is a core
primitive in linear algebra and widely used in numerous
real-world applications. We evaluate the performance of
Hornet for SpMV in contrast to CSR and DCSR [5]
implementations. Fig. 8 compares the performance of
SpMV for these three data representations. For DCSR,
we used the implementation provided in [5]. The CSR and
Hornet SpMV implementations are based on the merge-
path algorithm [12], [13].

Fig. 8 depicts the speedup of the CSR and Hornet in
comparison to DCSR which has a custom SpMV imple-
mentation. We note that Hornet is at least 10z faster than
DCSR and in some cases as much as 100z faster.

D. K-Truss

We evaluate the performance of Hornet when used to
implement a dynamic graph algorithm. We implemented
the algorithm for finding the maximal k-truss in a graph
presented in [14]. The process of finding k-truss is well
known [15] and involves pruning (deleting) edges out of the
graph that do not meet an iterative requirement, namely

3To perform a fair comparison, we evaluate all implementations by
forcing traversing exactly the same number of edges (atomicCAS and
without the idempotent status lookup).



10000

T T
5 100 2 5 100 —] cuSTINGER Hornet
g g — 1000
b = == k] = Speedup over cuSTINGER
o ~ a % @ 100 (Kron_g500-logn21) dois
g x g - £
2 it = & =z 150
2 3 1w s 10
] = a % =
g 100 X g 100 g 1
o @ & =
& 10 < § 100 01
2 ~ S ) ~ ) S & S -
2 S 2 S $
z $ 0 F 0 FFFFE $ 8 FFFSF Sy
¥ ~ S M ~ 3 v
| —0—in-2004 —e-soc-Livelournall —%-—cagel5 -a—kron_g500-logn21 | | —e—in-2004 —o-soc-Livelournall —%—cagel5 -—a—kron_g500-logn21 | Oin-2004 Msoc-livelounall Mcagel5 Okron_g500-logn21 |
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Fig. 5. Analysis of update rate of Hornet against cuSTINGER. Hornet is configured in an equivalent manner to cuSTINGER (minimum

edges per block = 8, and block-array size = 221).
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Fig. 6. Analysis of update rate of Hornet against AIM. Hornet is configured in an equivalent manner to AIM to ensure the same interaction
with the memory manager and avoid new memory allocations (minimum edges per block = 256, and block-array size = 222).
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Fig. 7. Performance comparison of BFS between CSR, Hornet, and
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Fig. 8. Performance comparison of SpMV between CSR, DCSR, and
Hornet. The figure depicts the normalized speedup over DCSR.

the number of triangles per edge. The exact way that the
edges were selected goes beyond the scope of this work.

Fig. 9 depicts the results in terms of update rate per
second during the whole algorithm, where each update
includes the time spent for a step of edge deletion and the
time required for running the dynamic triangle counting.

The results show that, by adopting Hornet, the dynamic
algorithm is able, at peak rates, to update the graph and
run analytics at a rate of roughly 48M updates per second.
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Fig. 9. Update rate per second for finding the maximal k-truss in a
graph with Hornet.

V. CONCLUSIONS

In this work, we presented Hornet, a new GPU data
structure for representing dynamic sparse graphs and
matrices. Hornet supports both insertions, deletions, and
value updates. Unlike past attempts at designing dynamic
graph data structures, the proposed solution does not
require restarting due to a large number of edge updates.
We showed that Hornet outperforms state-of-art dynamic
graph formats in terms of both performance and memory
footprint.

ACKNOWLEDGMENT

This work is supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Contract Number
FA8750-17-C-0086. The content of the information in this
document does not necessarily reflect the position or the policy
of the Government, and no official endorsement should be
inferred. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation here on.



(1]

(3]

(4]

(10]

(11]

(12]

(13]

(14]

(15]

REFERENCES

D. Ediger, R. McColl, J. Riedy, and D. Bader, “STINGER: High
Performance Data Structure for Streaming Graphs,” in IEEE
High Performance Embedded Computing Workshop (HPEC
2012), Waltham, MA, 2012, pp. 1-5.

O. Green and D. Bader, “cuSTINGER: Supporting Dynamic
Graph Algorithms for GPUS,” in IEEE Proc. High Performance
Extreme Computing (HPEC), Waltham, MA, 2016.

D. Sengupta and S. L. Song, “EvoGraph: On-the-Fly Efficient
Mining of Evolving Graphs on GPU,” in International Super-
computing Conference. Springer, 2017, pp. 97-119.

M. Winter, R. Zayer, and M. Steinberger, “Autonomous, In-
dependent Management of Dynamic Graphs on GPUs,” in In-
ternational Supercomputing Conference.  Springer, 2017, pp.
97-119.

J. King, T. Gilray, R. M. Kirby, and M. Might, “Dynamic
Sparse-Matrix Allocation on GPUs,” in International Confer-
ence on High Performance Computing.  Springer, 2016, pp.
61-80.

D. Sengupta, N. Sundaram, X. Zhu, T. L. Willke, J. Young,
M. Wolf, and K. Schwan, “GraphIn: An Online High Perfor-
mance Incremental Graph Processing Framework,” in European
Conference on Parallel Processing.  Springer, 2016, pp. 319—
333.

T. Bingmann, “STX B+ Tree C++ Template Classes.”

J. Jannink, “Implementing deletion in B+-trees,” ACM Sigmod
Record, vol. 24, no. 1, pp. 33-38, 1995.

F. Busato and N. Bombieri, “A dynamic approach for workload
partitioning on GPU architectures,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 6, pp. 1535-1549,
2017.

T. A. Davis and Y. Hu, “The University of Florida sparse ma-
trix collection,” ACM Transactions on Mathematical Software
(TOMS), vol. 38, no. 1, p. 1, 2011.

Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D.
Owens, “Gunrock: A high-performance graph processing library
on the GPU,” in ACM SIGPLAN Notices, vol. 50, no. 8. ACM,
2015, pp. 265-266.

D. Merrill and M. Garland, “Merge-based parallel sparse matrix-
vector multiplication,” in High Performance Computing, Net-
working, Storage and Analysis, SC16: International Conference
for. 1EEE, 2016, pp. 678-689.

S. Dalton, S. Baxter, D. Merrill, L. Olson, and M. Gar-
land, “Optimizing Sparse Matrix Operations on GPUs Using
Merge Path,” in Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International. IEEE, 2015, pp. 407-416.
O. Green, J. Fox, E. Kim, F. Busato, N. Bombieri, K. Lakhotia,
S. Zhou, S. Singapura, H. Zeng, R. Kannan, V. Prasanna,
and D. Bader, “Quickly Finding a Truss in a Haystack,” in
IEEE Proc. High Performance Extreme Computing (HPEC),
Waltham, MA, 2017.

J. Cohen, “Trusses: Cohesive Subgraphs for Social Network
Analysis,” National Security Agency Technical Report, p. 16,
2008.

978-1-5386-5989-2/18/$31.00 ©2018 IEEE



