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Abstract—PageRank is a fundamental graph algorithm to
evaluate the importance of vertices in a graph. In this paper,
we present an efficient parallel PageRank design based on an
edge-centric scatter-gather model. To overcome the poor locality
of PageRank and optimize the memory performance, we develop
a fast and efficient partitioning technique. We first partition
all the vertices into non-overlapping vertex sets such that the
data of each vertex set can fit in the cache; then we sort
the outgoing edges of each vertex set based on the destination
vertices to minimize random memory writes. The partitioning
technique significantly reduces random accesses to main memory
and improves the sustained memory bandwidth by 3×. It also
enables efficient parallel execution on multicore platforms; we
use distinct cores to execute the computations of distinct vertex
sets in parallel to achieve speedup. We implement our design
on a 16-core Intel Xeon processor and use various large-scale
real-life and synthetic datasets for evaluation. Compared with
the PageRank Pipeline Benchmark, our design achieves 12× to
19× speedup for all the datasets.

I. INTRODUCTION

Graph analytics plays a critical role in many applications
such as genome analysis, cybersecurity, and social networks
[1]. However, it is challenging to achieve high-performance
large-scale graph analytics. This is mainly because the data
of emerging graph applications are massive [1], [2], [3] and
most graph problems exhibit poor spatial and temporal locality
of memory accesses [7]. As a result, the execution time is
dominated by external memory accesses. To improve mem-
ory performance, prior work [4], [10] examined improving
the graph layout or reordering the computation to increase
locality. These optimizations are often beneficial, but also
introduce significant pre-processing overhead. In addition,
there are some graphs (e.g., social network graphs) that are
less amenable to layout or reordering transformations.

The PageRank algorithm [5] was developed to determine
the popularity of webpages in order to assist web search
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algorithms. It is also an application of the widely used linear
algebra Sparse Matrix Multiplying Dense Vector (SpMV) ker-
nel [10]. In this paper, we present a parallel implementation of
the PageRank algorithm on multi-core platforms. We optimize
the data layout to improve cache and memory performance.
Our main contributions are:

• We develop a graph partitioning technique that improves
cache performance and enables efficient parallel execu-
tion on multi-core platforms (Section III-A).

• We propose an optimized data layout that consumes
little pre-processing overhead, but significantly reduces
random memory accesses and improves memory perfor-
mance (Section III-B).

• Compared with the PageRank Pipeline Benchmark [6],
our design consistently achieves 12× to 19× speedup
for various large graph datasets (Section IV).

The rest of the paper is organized as follows. Section II
covers background and related work. Section III introduces
our optimization techniques. Section IV reports experimental
results. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. PageRank

The PageRank algorithm [5] is a widely used algorithm for
ranking the importance of vertices in a graph. It computes the
PageRank value of each vertex which indicates the likelihood
that the vertex will be reached by. A higher PageRank value
corresponds to more importance. When the input graph is
static (i.e., does not change over time), the PageRank algorithm
traverses the entire graph iteratively. In each iteration, each
vertex v updates its PageRank value based on Equation (1),
in which d is a damping factor (usually set to 0.85); |V | is
the total number of vertices in the graph; vi represents the
neighbour of v such that v has an incoming edge from vi; Li

is the number of outgoing edges of vi.

PageRank(v) =
1− d

|V | + d×
∑ PageRank(vi)

Li
(1)

When the input graph is altered as in analyzing streaming
data, the PageRank algorithm does not traverse the entire graph
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[11]. In this paper, we focus on accelerating the PageRank
algorithm for static graphs.

B. Edge-Centric Scatter-Gather Model

Many graph problems can be processed based on the
edge-centric scatter-gather model [7], [8]. In this model, the
computation is iterative; each iteration consists of a scatter
phase followed by a gather phase. In the scatter phase, each
edge produces a message, which carries the data of the source
vertex of the edge and is used to update the destination
vertex of the edge. In the gather phase, all the messages
produced in the previous scatter phase are traversed to update
the corresponding destination vertices.

C. Related Work

The performance of PageRank is bounded by the external
memory (i.e., DRAM) accesses [10]. Thus, many prior works
focus on optimizing the memory performance [4], [9], [10].
In [4], a graph reordering approach is proposed to improve
locality and reduce cache misses. The reordering approach
identifies the optimal permutation among all the vertices in
a given graph by keeping the vertices that will be frequently
accessed together. However, the pre-processing overhead of
[4] is non-trivial. In [9], an FPGA design to accelerate the
PageRank algorithm is developed. Similar as our partitioning
approach, the design in [9] also partitions all the vertices into
vertex sets such that the data of each vertex set can fit in the
on-chip BRAMs of FPGA. However, the FPGA accelerator
can only process one partition at a time, while our design can
process distinct partitions in parallel. In [10], Beamer et. al.
propose the propagation blocking approach, which first stores
propagations (i.e., messages) in cached bins and accumulates
them before writing into DRAM. This approach reduces the
number of memory accesses but results in additional memory
requirement. Moreover, the design in [10] does not optimize
the data layout; thus, random memory accesses still occur
when writing messages into the memory.

III. OPTIMIZATIONS

A. Graph Partitioning

Since cache and memory performance have significant
impact on the performance of PageRank implementation [9],
[10], we develop a fast graph partitioning approach to improve
cache performance and eliminate random memory accesses
to the DRAM. We assume that the input graph is stored in
COO format, which is widely used for graph representation
[7], [12], [13]. We divide all the vertices into vertex sets of
equal size. Assuming each vertex set has m vertices, the graph
is partitioned into

⌈ |V |
m

⌉
partitions; the i-th partition maintains

the vertex set that includes the vertices whose indices are from
i × m to (i + 1) × m − 1 (0 ≤ i <

⌈ |V |
m

⌉
). Each partition

also has an edge list and a message list. The edge list stores
all the edges whose source vertices are in the vertex set of
the partition; the message list stores all the messages whose
destination vertices are in the vertex set of the partition. The
edge list of each partition remains fixed during the entire

computation; the data of message list is recomputed in every
scatter phase; the data of vertex set is updated in every gather
phase. Figure 1 shows an example data layout after the graph
data are partitioned into three partitions. Note that the data
of each vertex is uniform in size and hence, the memory
requirement of each vertex set is identical. Edge lists and
message lists can be different in size; the memory requirement
of each edge list depends on the number of edges whose
source vertices are in the corresponding vertex set; the memory
requirement of each message list depends on the number of
edges whose destination vertices are in the corresponding
vertex set. Algorithm 1 illustrates the PageRank algorithm
based on graph partitioning.
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Figure 1: Graph partitioning

Algorithm 1 PageRank based on graph partitioning
Let m denote the number of vertices in each vertex set

1: while not done do
2: Scatter:
3: for each partition do
4: for each edge e in edge list do
5: Read the data of Vertex e.src
6: Let v = Vertex e.src
7: Produce a message msg
8: msg.value = v.PageRank

v.# of outgoing edges
9: msg.dest = e.dest

10: Write msg into message list of Partition
⌊
e.dest
m

⌋

11: end for
12: end for
13: Gather:
14: for each partition do
15: for each message msg in message list do
16: Update PageRank of Vertex msg.dest
17: end for
18: end for
19: end while

Partitioning the graph leads to two benefits. First, the scatter
and gather phases of distinct partitions can be performed in
parallel on multi-core platforms (Section III-C). Second, we
can choose the size of the vertex set of each partition based
on the on-chip memory resources (i.e., cache size), such that
vertex data can be cached for efficient data reuse.

B. Data Layout Optimization

We define sequential memory access sequence as a sequence
of accesses to contiguous memory locations. Every memory
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access sequence can be partitioned into a set of sequential
memory access sequences; we define the number of such
sequential memory access sequences in a given memory access
sequence as the number of random accesses in the sequence.
In Algorithm 1, the memory accesses to read edges (Line
4) are sequential and the vertex data are read from cache
(Line 5); however, writing messages into DRAM (Line 10)
incurs random memory accesses. This is because the produced
messages are written into DRAM based on their destination
vertices, which can belong to any message list. In the worst
case, writing messages into DRAM results in O(|E|) random
memory accesses in the scatter phase. Figure 2 shows an
example in which writing each message into DRAM results
in a random memory access.
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Figure 2: Random memory accesses due to writing messages
into DRAM

In order to minimize the number of random memory ac-
cesses due to writing messages, we propose an optimized data
layout which sorts the edge list of each partition based on the
destination vertices.

Theorem III.1. In the scatter phase, based on our optimized
data layout, the number of random memory accesses due to
writing messages into DRAM is O(k2), where k is the number
of partitions.

Proof: The destination vertices of messages are the same as the
destination vertices of the traversed edges. Since each edge list
has been sorted based on the destination vertices, the messages
based on each edge list are also produced in a sorted order.
Thus, the messages whose destination vertices belong to the
same partition are produced consecutively and written into the
same message list in DRAM. Random memory accesses only
occur when a message belonging to a different partition (i.e.
other than the partition that the previous message belongs
to) is produced. Therefore, writing the messages produced
by traversing one edge list results in O(k) random memory
accesses. Since scatter phase traverses k edge lists, the total
number of random memory accesses is O(k2), which is far
less than O(|E|) when k is a small number. In Figure 3, we
show the optimized data layout for the example in Figure 2.

C. Parallel Implementation

Further, we parallelize the execution of Algorithm 1 on
multi-core platforms. As shown in Algorithm 2, assuming the
multi-core platform has p cores, we divide all the computations
of k partitions into p chunks and use the dynamic scheduling
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Figure 3: Optimized data layout for the example in Figure 2

in OpenMP [14] to execute each chunk on one of the p cores.
All the cores execute the computations of distinct partitions in
parallel.

Algorithm 2 Parallel PageRank on multi-core platform
Let k denote the number of partitions
Let p denote the number of cores

1: while not done do
2: for i from 0 to k − 1 pardo [schedule(dynamic, k

p )]
3: llll Execute scatter phase of Partition i
4: end for
5: barrier
6: for i from 0 to k − 1 pardo [schedule(dynamic, k

p )]
7: llll Execute gather phase of Partition i
8: end for
9: barrier

10: end while

During the scatter and gather phases of processing a parti-
tion, the data of the vertex set of the partition are repeatedly
accessed. Thus, it is desirable to store the data of vertex set in
the cache. We propose to choose the number of vertices in each
vertex set (i.e., m) based on the size of private cache of each
core (i.e., L2 cache), such that the data of each vertex set can
fit in the private cache of each core. As a result, when a core is
executing the scatter phase or gather phase of a partition, the
core can access the vertex data from its private cache, rather
than from the memory or the private caches of the other cores.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We conducted experiments on a linux server equipped with
Intel Xeon E5-2650 CPU@2.6GHz running Ubuntu 14.04
operating system. The per core L1 and L2 cache sizes for
this CPU are 64 KB and 256 KB respectively, and the shared
L3 cache size is 20 MB. All code is written in C++ and
compiled using G++ 4.7.1 with the highest optimization -O3
flag. The cache and memory statistics are collected using the
PCM tool [18].

B. Performance Metric and Baselines

We analyze the performance using total execution time as
the metric. The total execution time is measured by running
the PageRank algorithm for 20 iterations.
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We compare the performance of our optimized algorithm
against two baselines. The PageRank Pipeline Benchmark
(Base Sequential) [6] serves as initial baseline consisting
of a sequential single threaded pagerank implementation. The
multithreaded version of the Graph Challenge benchmark
serves as the second baseline (Base Multithreaded). We
denote the optimized algorithm as Opt Multithreaded. The
multithreaded implementations are run using 16 threads since
our target platform has 16 cores.

C. Graph Representation

The baseline algorithm uses CSR format of graph represen-
tation [13]. There are two arrays in the graph: vertex array of
size equal to number of vertices and edge array of size equal
to number of edges. Element in vertex array is an offset into
edge array, representing location of first edge to the vertex.
Edge array contains source indices of all edges, sorted by
the destination. Additional arrays such as attribute and weight
can be used to store attributes of graph vertices and the edge
weights, respectively.

In the optimized algorithm, the graph is stored as list
of vertices and edges (i.e., COO format [13]). Each vertex
consists of vertex ID and application specific attribute (i.e.,
PageRank value). Each edge is specified by the source, desti-
nation and weight of the edge. The messages are denoted by
the destination vertex and the update to the attribute of the
vertex.

D. Datasets

We use a mixture of real world and synthetic graph datasets
to evaluate the performance of Baseline and Optimized algo-
rithms. The graph sizes vary from 16 million nodes to 94
million nodes and 536 million edges to 1963 million edges
with average degree ranging from 15 to 37. The key properties
of the graph datasets are summarized in Table I.

Table I: Graph datasets

Dataset # Vertices # Edges Average degree
Kron24 [19] 16.7 M 536 M 16.1
Google+ [15] 28.9 M 463 M 15.2
Kron25 [19] 33.5 M 1073 M 16.0

Pld [16] 43.0 M 623 M 14.5
Twitter [17] 52.5 M 1963 M 37.4

Sd1 [16] 94.9 M 1937 M 20.4

Kron24 and Kron25 are synthetic graphs generated by the
Graph Challenge benchmarks [19] with scales of 24 and
25 respectively. Google+ and Twitter are real world social
networks. Pld and Sd1 are hyperlink graphs.

E. Results

We present the results of our experiments in terms of
execution time and other metrics such as cache misses and
memory accesses.

Figure 4: Execution time comparison

1) Execution Time: Figure 4 illustrates the performance
comparison of the baseline and the optimized algorithms.
The optimized algorithm consistently outperforms both the
baseline algorithms. Our Optimized algorithm improves the
execution time by 12× to 19× compared with the se-
quential Graph Challenge benchmark. With respect to the
multithreaded Graph Challenge benchmark, we observe an
improvement of 1.4× to 2× in the execution time. The
improvement in execution time is due to the following reasons:
(1) partitions are accessed in a regular manner with accesses
to the vertices and edge in each partition sequential in nature
and (2) our data layout optimization reduces the number of
random accesses while writing the messages into memory
during the scatter phase. Therefore, in comparison with the
baseline, our optimized algorithm significantly reduces random
accesses leading to higher sustained memory bandwidth and
lower execution time.

2) Cache Miss Ratio: In this section, we compare the
cache access statistics of baseline and optimized algorithms.
High number of cache misses translate to high number of
memory accesses leading to high execution time. As depicted
in Figure 5, the optimized algorithm reduces the total number
of L3 misses by 9× to 19× in comparison with both the
sequential and multithreaded PageRank Pipeline Benchmarks.
The performance of multithreaded version of the graph chal-
lenge benchmark is similar in terms of number of cache misses
although multithreaded implementation may cause more cache
misses due to multiple threads sharing the available cache.
The high number of cache misses can be attributed to the ran-
dom access nature of the baseline PageRank implementation.
Furthermore, due to the nature of prefetching in the memory
controller, the random accesses can lead to higher number of
cache lines being fetched with only a small portion of the
cache line being useful. On the other hand, in our optimized
algorithm, the edges are streamed from the memory and the
updates are written to the memory in a streaming fashion.
While processing a partition, the random accesses are limited
to the vertex data which are stored in cache of the processor.
These optimizations reduce the number of cache misses and
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Figure 5: Number of L3 misses

cache pollution in comparison with the baselines.
Similar analysis applies to the total number of misses in the

L2 cache. As illustrated in Figure 6, the optimized algorithm
achieves significant reduction in the number of L2 misses
compared with the baselines. The multithreaded PageRank
Pipeline Benchmark implementation has similar number of
cache misses as that of the sequential PageRank Pipeline
Benchmark as each core has a private L2 cache.

Figure 6: Number of L2 misses

3) Memory Accesses: The total number of memory ac-
cesses has a significant impact on the total execution time.
Figure 7 compares the total number of memory accesses of
baseline and optimized algorithms. It can be observed that
the optimized algorithm reduces the total number of memory
accesses by 1.5× in comparison with both the baseline al-
gorithms. We believe that this is the most important factor
in determining execution time for graph applications since
computation time is much smaller in comparison with the
memory access time. Further, the baseline algorithms have
larger number of random accesses, resulting in much higher
execution time in comparison with the optimized algorithm.
Our optimized algorithm in addition to reducing the number
of memory accesses, reduces the random accesses to memory
thereby achieving higher sustained memory bandwidth and
lower execution time.

Figure 7: Total number of memory accesses

Figure 8 compares the total number of memory reads. It
can be observed that the optimized algorithm reduces the
number of memory reads by up to 2×. This is due to the
fact that the there are a large number of random reads in
the baseline algorithms, which result in a low cache line
utilization. However, in the optimized algorithm, the cache
line is completely used as we perform streaming accesses to
the memory. The write statistics is illustrated in Figure 9.
The total number of writes to the memory in the optimized
algorithm is 5× higher than that of baseline algorithm. This
can be attributed to the nature of the algorithms. In the baseline
algorithm, the total number of writes is O(|V |) as each vertex
is updated once in each iteration. In the optimized algorithm,
the updates are written for each edge and gathered later into a
vertex, i.e., there are O(|E|) writes to the memory. However,
as the total number of reads are much higher than the number
of writes, by reducing the number of reads to the memory,
the optimized algorithm reduces the total number of memory
accesses.

Figure 8: Number of reads from the memory

4) Effect of Partition Size: In our optimized algorithm, we
divide the graph into multiple partitions. Each partition has
a vertex set whose size is determined by the amount of on-
chip memory or cache of processors. Smaller the size of the
vertex set, higher the number of partitions in the graph. In this
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Figure 9: Number of writes to the memory

section, we evaluate the effect of varying the size of vertex set.
Figure 10 illustrates the effect of varying the size of the

vertex set on total execution time of the optimized algorithm.
We vary the number of vertices in the vertex set from 64K to
256K. We choose the size of the vertex set to be multiples of 2
so that the affiliation of a vertex to a vertex set can be obtained
by a simple right rotate operation. We observe that the total
execution time reduces with the size of vertex set until 128K
and then increases with the size of vertex set. As we increase
the size of vertex set, the number of partitions reduces and
thereby the random accesses during the scatter phase reduce.
However, if the size of vertex set is made very large, the
amount of work done by a core during the gather phase is
very high and it is challenging to balance the amount of work
among various cores of the processor. Another problem might
be the fact that the vertices in a vertex set simply do not fit
in the L1/L2 cache and hence, gather phase will have more
random accesses to the main memory. In this paper, we have
empirically chosen vertex set to consist of 128K vertices based
on our experimental results. We leave the optimal selection of
size of vertex set for future work.

Figure 10: Impact of vertex set size on optimized algorithm
performance

V. CONCLUSION

In this paper, we presented an efficient parallel PageRank
implementation on multi-core platforms. We partitioned the
input graph and used distinct cores to execute the compu-
tations for distinct partitions in parallel. Experimental results
showed that our implementation achieved 12× to 19× speedup
compared with the PageRank Pipeline Benchmark for 6 large
graph datasets. The proposed optimization techniques in this
paper can be easily extended to any SpMV-based applications.

In the future, we will develop more sophisticated graph
partitioning technique to partition the graph such that the
computations of distinct partitions are balanced. We also plan
to extend our optimization techniques to emerging parallel
architectures such as the proposed HIVE architectures [20].
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