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Abstract—Many graph datasets originating from online social
network, financial or biological sources are too large to store
or analyze. The analysis of such networks may be made more
tractable if they are reduced to smaller subgraphs via sampling.
While most of the known graph sampling methods are designed
with static graphs in mind, many real datasets are massive
and rapidly growing, making streaming methods necessary. We
present two new techniques, Randomly Induced Edge Sampling
(RIES) and Weighted Edge Sampling (WES). Both methods
sample a stream of edges in a single pass, without the need
to know future properties of the stream. In contrast to previous
work that focused on limiting only the number of vertices, our
methods restrict the number of edges, thus truly limiting the
size of the sampled subgraph. We compare the performance of
RIES and WES against the previously known streaming Random
Edge (RE) method on eight social network datasets. Using four
structural graph properties, we find that both RIES and WES
produce subgraphs that are more structurally similar to the
original graph than are the subgraphs produced by streaming
RE. We also examine the sensitivity of the two algorithms with
respect to their parameters. The parameters of WES affect its
performance in a more predictable manner and are easier to set.
Both new algorithms represent an improvement in the available
streaming graph analysis toolkit.

I. INTRODUCTION

Graphs are widely used to represent relational datasets
from a variety of domains, such as online social networks,
financial transactions, and biological data. In recent years,
there has been increasing interest in the analysis of large,
real-world networks, especially from online activity. However,
many such online datasets are not only large, but constantly
growing as new data is rapidly generated.Both the size and
streaming nature of these graphs makes storing and analyzing
them difficult. Both the size and streaming nature of these
graphs make storing and analyzing them difficult. In order
for analysis performed on sampled subgraphs to be useful,
they should be as structurally similar to the full, unknown
graphs as possible. Moreover, because these large online
datasets are rapidly changing, static sampling approaches are
insufficient. Therefore, in this paper we focus on streaming
graph sampling: methods that can sample a subgraph with a
single pass over the data stream. The single pass requirement

is important in order to be able to tap into a stream of new data
as it is produced and in real time make a decision about what
to include and what to forget. Finally, our goal is to sample a
smaller subgraph because the full dataset is too large to store
or too large to run computationally intensive algorithms on.
Thus, the streaming sampling method must limit the size of
the sampled subgraph. This means that not only the number
of vertices, but the number of desired edges can be input to
the sampling algorithm.

A. Contributions

In this paper, we present two new algorithms for streaming
graph sampling, Weighted Edge Sampling (WES) and Ran-
domly Induced Edge Sampling (RIES). Both of these methods
can (1) sample a graph stream in a single pass, thus allowing
for true sampling of real data streams, and (2) limit the size
of sampled subgraph by restricting the number of edges. To
the best of our knowledge, the only existing algorithm that
satisfies both of these requirements is streaming Random Edge
Sampling (RE). Other approaches either require more than a
single pass over the data (or require random access to the
graph) or they only restrict the number of vertices in the
sampled subgraph and not the number of edges, which means
that the final size of the subgraph is not known. We test WES
and RIES on graphs from several social networks and show
that they produce subgraphs that are more structurally similar
to the original graph compared to RE.

II. BACKGROUND AND RELATED WORK

A. Sampling Goals

Graph sampling may be used to achieve four categories of
goals [1]. Firstly, it may be performed to estimate specific
graph parameters, such as the average degree or clustering
coefficient. For example, triangle counting has received much
attention in the literature [2][3]. Another goal may be to obtain
representative vertices in order to measure their attributes. This
may be useful, for example, in the social science setting where
vertices represent people in a network with features that need
to be estimated. In this case, it is most important to obtain
an unbiased sample of vertices. Third, it may be performed
to obtain a representative set of edges in order to analyze
their attributes. For example, in a network where vertices
have attributes, sampling edges can be used to measure the
homophily of such attributes: do vertices tend to connect to
similar vertices or not? Finally, sampling a graph can be used
to obtain a smaller, but structurally similar subgraph. In this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

ASONAM ’17, July 31 - August 03, 2017, Sydney, Australia
c© 2017 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.
ACM ISBN 978-1-4503-4993-2/17/07. . . $15.00
http://dx.doi.org/10.1145/3110025.3110058

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

282

mailto:permissions@acm.org
http://dx.doi.org/10.1145/3110025.3110058


case, simply obtaining representative vertices or representative
edges is not sufficient. The goal is to obtain a representative
subgraph. This is useful when the entire dataset in question
is too large to either store or to analyze. Analysis may
then be performed on the smaller subgraph instead. Many
graphs available and used in the literature are in fact samples
themselves. In this paper, we address this fourth goal of
sampling: to obtain a smaller, but structurally similar subgraph.

B. Notation

We define a graph G = (V,E) as a set of vertices V and
edges (u, v) ∈ E. A sampling method produces a subgraph
GS = (VS , ES) where VS ⊆ V and ES ⊆ E. Typically,
VS ⊂ V and ES ⊂ E. In the streaming case, we have a
stream of edges S and the full graph G = (V,E) is creating
by including all edges from S in E and all endpoint vertices
of such edges in V . If the stream is never-ending, then the full
graph G may constantly grow.

C. Static Graph Sampling

Most previous work on graph sampling applies only to
static graphs. These methods assume that the entire dataset
is available beforehand and can be accessed as needed. Some
approaches assume random access ability, which may be
infeasible on very large datasets, while others are more suitable
to reading large, disk bound graphs. However, they all assume
both that the entire dataset already exists and is not growing
and that the whole graph can be stored and accessed. Static
graph sampling has been studied in [4] [5] [6]. Below we
describe some commonly used static sampling methods from
the literature.

1) Random Edge: Edges are chosen uniformly at random
from G to form the sampled graph GS . This strategy can
produce sparsely connected graphs with a larger diameter,
but can easily be extended to the fully streaming context, as
discussed later.

2) Random Node: In Random Node sampling, nodes are
chosen uniformly at random from G. The sampled graph
GS is then formed from all edges induced by the selected
vertices (edges with both endpoint vertices selected). Unlike in
Random Edge sampling, the method can only target a specific
number of vertices in the sample, | VS |, but the resulting
number of edges | ES | is not fixed and will not be known
ahead of time. Thus, the final size of the graph, in terms
of bytes, cannot be specified. Variations of Random Node
choose the vertices not uniformly, but with some bias. These
include Random Degree Node and Random PageRank Node,
where the vertices are chosen with probability proportional to
their PageRank score and degree, respectively. Because these
methods require information about the structure of the graph
prior to sampling, they are not useful for scenarios in which
the full dataset is too large to process.

3) Traversal Sampling Methods: A sampled subgraph can
also be obtained through graph traversal methods, which start
with some initial vertices and expand by accessing neighbors.
In Random Walk sampling, random walks are performed from

a starting node and GS is then formed from all the ver-
tices encountered and edges traversed [5]. Snowball sampling
performs a Bread First Search like traversal from an initial
seed vertex, but only a fixed number of neighbors is added
for each vertex. In Forest Fire sampling, the traversal is
executed by starting with a seed vertex, visiting or “burning”
a geometrically distributed random number of its neighbors,
and repeating this recursively [5] [7]. Each vertex can only be
“burned” or visited once.

4) Local Degree Sparsification: Lindner et al. [8] present
Local Degree Sparsification, in which for each node v, only
a fraction of neighbors with the highest degree are kept. This
approach aims to select edges that lead to high degree hubs
in the graph.

D. Streaming Graph Sampling

Streaming graph sampling creates and maintains a subgraph
GS by processing a stream of edges S. Each element of the
stream is an edge (u, v), possibly along with some attributes
such as a weight or timestamp. While the entire stream of
edges together forms the full graph G, the stream may be
never ending as new edge activity is generated. Imagine, for
example, tapping into a stream of Twitter activity such as re-
tweets or user follows. The full dataset is both extremely
large and new data is rapidly being generated. In such a
scenario, static methods cannot be applied because new data
is constantly produced, while a static approach assumes we
already have the entire dataset. To address this case, streaming
graph sampling must be able to process a stream of edges in
a single pass.

Note that some static sampling algorithms work by per-
forming several passes over the edges of a graph. Although
these methods are often called streaming, they are different
from what we refer to as streaming sampling. In this work,
streaming sampling algorithms are those that can process a real
time stream of continuously generated data. The full dataset
may never be stored so sampling must be performed in a single
pass over the edge stream.

1) Reservoir Sampling: While reservoir sampling is not
a graph-specific method, some streaming graph sampling
algorithms in the literature use the concept of reservoir sam-
pling [9]. This method returns a fixed size sample from a
stream so that each element has an equal chance of being
returned in the sample, without needing to know the total
number of elements in the stream. To obtain a sample of size k,
the first k elements are added to the reservoir. Each subsequent
element is added with decreasing probability. The ith element
is added with probability k/i for i > k and if added, replaces
a random element of the reservoir.

In weighted reservoir sampling by Efraimidis and Spirakis,
each element of the stream is included in the returned sample
with probability proportional to its weight [10]. Each element
with weight w is assigned a random value u ∈ (0, 1) in
order to generate a key u

1
w . At the end of the stream, the

k elements with largest keys are returned in the sample. The
same approach can also be used for unweighted sampling.
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Data: stream S of edges, sample size k
Result: GS = (VS , ES)
i = 0;
while S has edge ei do

(u, v) = ei;
if i < k then

ES = ES ∪ {(u, v)};
else

p = k
i ;

draw r from Uniform(0, 1) if r < p then
select random edge (q, z) ∈ ES ;
ES = ES \ {(q, z)};
ES = ES ∪ {(u, v)};

i = i+ 1;

for edge (u, v) ∈ ES do
VS = VS ∪ {u, v};

Algorithm 1: Streaming Random Edge (RE)
Sampling

2) Random Edge Sampling: The simplest form of stream-
ing graph sampling is Random Edge sampling (referred to
throughout this paper as RE), which uses reservoir sampling
to select random edges from the stream and is shown in
Algorithm 1. This approach is used for structural compression
of a stream in [11]. Tabassum and Gama [12] apply both
RE and a streaming edge sampling technique called biased
random sampling on a phone call graph. The biased random
sampling method inserts each new edge into the sampled
graph, replacing an old edge if the sample has reached its
size limit. They find that biased random sampling yields
samples that are more connected, with higher edge weights and
higher average vertex degrees compared to RE. By comparing
RE to biased random sampling, [12] is analyzing the effect
of temporal ordering on sampling. In our work, we present
general methods for streaming sampling that do not assume a
certain order of the graph stream.

3) Streaming Time Node Sampling: In addition to RE,
which limits the number of edges in the sampled subgraph,
there exist two streaming sampling methods that limit the
number of vertices. The first is Streaming Time Node Sam-
pling by Ahmed et. al [13], in which the stream of edges is
divided into time intervals, such as a day or hour of activity.
Each interval is selected with a certain probability and all
vertices that appear within a chosen interval are added to the
sample. An edge from the stream is then inserted if both its
endpoint vertices are in the sampled subgraph. This is similar
to static node sampling with induced edges, except that in the
streaming case edges are only included if they appear after
both vertices are selected. Edges occurring earlier in the stream
are not included. By choosing vertices that appear together
within a given time interval, the authors state that the vertices
are more likely to be connected. The Streaming Time Node
Sampling method cannot be used to sample from a true, real-

time stream of edges because it requires knowledge of the
entire graph stream. In order to select a fraction φ of vertices
in the sample, the vertices present in each unit of time are
selected with probability m/T , where T is the total number
of timestamps and m is the average number of timestamps
needed to achieve the sampling fraction φ. This information
is likely not present in a real streaming sampling scenario, but
rather calculated once the data is collected.

4) Partially Induced Edge Sampling: The second streaming
sampling method that limits the number of vertices chosen is
Partially Induced Edge Sampling (PIES) [14] [1]. The PIES
method is similar in principle to Streaming Time Node Sam-
pling, but eliminates the need to know beforehand information
about the entire graph stream, making it more suitable to real
sampling use cases. This approach uses reservoir sampling to
select a fixed number of vertices from the stream and builds
a subgraph from all edges whose endpoint vertices are in the
reservoir. Since edges are only included after their endpoint
vertices are selected, the edges are partially, not fully, induced.
Although the authors also consider an alternative in which
vertices are independently chosen, the PIES method samples
on edges and either rejects the edge or adds both endpoint
vertices of the edge to the sample. This approach biases the
sample towards higher degree vertices because they will appear
on more edges and thus have a higher probability of being
selected. While PIES performs well in terms of quality, it
samples a subgraph with a fixed number of vertices, not a
fixed number of edges. In Section III-A we discuss why this
is not desirable when space is limited and the goal is to sample
a fixed size subgraph.

5) Other Methods: In addition to methods that limit the
number of edges or the number of vertices in the sample, some
streaming graph sampling approaches do not limit the final size
of the graph. One such approach is used for the DOULION
algorithm for streaming triangle counting [15]. In order to
reduce the amount of required computation, DOULION first
samples a stream of edges before performing triangle counting.
The sampling approach used selects each edge with a uniform
probability. In a streaming environment in which new data
is being generated, the total number of edges in the stream
will not be known and this approach will therefore not restrict
the final number of edges in the sample. Another example
of a sampling method that does not limit the number of
vertices or edges in the sample is the one used in the Graph
Sample and Hold Framework [16]. There, each edge is selected
with varying probability depending on how it connects to the
current sample. Because edges are never removed, the size of
the sample increases continually.

III. NEW ALGORITHMS

A. Targeting a Vertex Versus Edge Size

Sampling methods typically create a subgraph GS with
either a specific number of vertices | VS |= k or a specific
number of edges | ES |= k. For example, in node based
sampling, as described in Section II-C, k vertices will be
randomly chosen and all edges induced by these k vertices are
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Fig. 1: The number of vertices and edges for subgraphs
sampled with random edge (RE) and PIES is shown. For
samples with the same number of vertices, the PIES method
results in many more edges compared to the RE method.

included in ES . The resulting number of edges | ES | in the
sample cannot be predicted and can be as low as k

2 or as high
as k∗(k−1)

2 . The same phenomenon applies to the PIES method
for streaming sampling described in Section II-D. Given the
fact that most social network type graphs are sparse, a bound
of O(k2) edges for k vertices is not relevant in practice. The
resulting number of edges is especially hard to determine in
streaming sampling because the dataset is not available ahead
of time. The downside to this is that if the number of edges
cannot be limited, then the resulting size of the subgraph GS

in bytes also cannot be limited. This is a problem when the
purpose of graph sampling is to obtain a smaller subgraph
because the full dataset is too large to be stored.

Therefore, when sampling with size restrictions, it is crucial
to choose a method that can directly limit the number of edges
and therefore the size of the graph. Note that | VS |≤ 2 |
ES | so that bounding the number of edges does bound the
entire size of the graph. In cases when sampling is performed
because computationally expensive analytics cannot be run on
the full dataset, it is also important to limit | ES | because the
running time of most algorithms will depend in part on | ES |.

To further motivate the need to consider the full size of
the sampled graph, we compare the number of vertices and
edges in subgraphs created with PIES and RE on test graphs
described in Section IV. This comparison is shown in Figure 1.
Because in PIES it is not possible to target a specific number
of edges, we repeatedly sample subgraphs with increasing
numbers of vertices and plot the resulting number of edges
against the number of vertices. Similarly, in streaming RE, it
is not possible to target a specific number of vertices, so we
repeatedly sample subgraphs with increasing numbers of edges
and plot the number of edges against the resulting number
of vertices. Figure 1 shows two important points. First, for
subgraphs with a given number of vertices, those subgraphs
created by PIES tend to have many more edges compared to

subgraphs created by RE. This is as expected because PIES
includes all induced edges going forward in time. Second, for
any target number of vertices, the number of resulting edges
will vary depending on the graph. Thus, it is impossible to
predict | ES | based on a selected | VS | without additional
knowledge about the dataset.

In this work we are concerned with streaming graph sam-
pling. The two previous streaming methods from the literature
are RE and PIES, both described in Section II-D. Because
PIES limits the number of vertices, but not the number of
edges, in the sampled subgraph, it does not address our use
case. RE targets a specific number of edges so we use this
existing method as our performance baseline. In Sections III-B
and III-C, we present two new streaming sampling techniques
that target a specified number of edges. In Section IV we
compare these and RE on datasets from real social networks.

B. Weighted Edge Sampling (WES)

Our first streaming graph algorithm, Weighted Edge Sam-
pling (WES), is a method that randomly samples ke edges
from a graph stream S to create a subgraph GS = (VS , ES).
S may have any number of elements or be never ending,
with edges constantly being generated. The subgraph GS =
(VS , ES) is created by setting ES to be all edges in the sample
and VS to be all endpoint vertices of such edges. WES uses the
concept of weighted reservoir sampling to give more bias to
edges in S that share vertices with the current sample GS at the
the time the edge is processed. By biasing towards such edges,
WES creates a subgraph that is more connected compared to
RE. Specifically, WES has two parameters, w1 and w2. When
a new edge is processed in the stream, it is given a weight that
indicates how likely it is to be included in the final sample.
Edges that have no endpoint vertices in ES when they are
processed are given a weight of 1, those that have one endpoint
in the sample are given a weight of w1, and those for which
both vertices are already in ES are given a weight of w2. A
random number r is drawn from Uniform(0, 1) and the key
for the edge is set as r1/weight. The ke edges with largest keys
seen so far form the sampled graph at any point in time. By
setting 1 ≤ w1 ≤ w2, WES biases towards edges that will
connect to the current sampled subgraph. Full details of WES
are given in Algorithm 2. In graphs with repeated edges, we
sample and store each instance separately.

C. Randomly Induced Edge Sampling (RIES) Method

Our Randomly Induced Edge Sampling (RIES) is a stream-
ing graph sampling algorithm which creates a subgraph with
no more than kv vertices and no more than ke edges from a
stream of edges S. RIES is a modification of the streaming
algorithm PIES described in Section II-D. Recall that PIES
randomly selects k vertices in pairs by sampling on edges and
either accepting an edge and adding both its endpoint vertices
to the sample or rejecting the edge. In addition, all edges in
the stream whose two endpoint vertices are in the sample VS
at the time the edge arrives are added to ES . RIES, on the
other hand, includes two levels of stream sampling. On the
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Data: stream S of edges, edge limit ke, parameters
w1, w2

Result: GS = (VS , ES)
VS = ∅, ES = ∅, i = 0;
while S has edge ei do

(u, v) = ei;
if u ∈ VS and v ∈ VS then

weight = w2;
else if u ∈ VS or v ∈ VS then

weight = w1;
else

weight = 1;

draw r from Uniform(0, 1);
keyi = r1/weight;
if | ES |< ke then

ES = ES ∪ {(u, v)};
key[(u, v)] = keyi;
VS = VS ∪ {u, v};

else if keyi > smallest key in ES then
Remove edge (q, z) with smallest key from ES ;
ES = ES ∪ {(u, v)};
key[(u, v)] = keyi;
VS = VS ∪ {u, v};
if q has no more edges in ES then

VS = VS \ q;

if z has no more edges in ES then
VS = VS \ z;

i = i+ 1;

Algorithm 2: Streaming Weighted Edge
Sampling (WES)

first level, kv vertices are sampled from the stream in pairs
as in PIES. On the second level, sampling is performed on
all edges in the stream whose two endpoint vertices are in
the sample at the time that the edge arrives. Thus, instead of
including all future induced edges, only ke such induced edges
are sampled among all those encountered in the stream. This
process is shown in Algorithm 3.

Using RIES requires choosing both a maximum number
of vertices kv and maximum number of edges ke and this
choice implies an average degree d = ke

kv
of the resulting

subgraph. This choice of d can be difficult to make because in
the streaming context, the full dataset is never available and
information about the degree distribution cannot be obtained.
Choosing a low value of d will cause many of the induced
edges that would have been included with PIES to be excluded.
On the other hand, choosing too high a value of d will mean
that the number of vertices kv is too small to collect ke
edges and therefore the sampled graph will be smaller than
it could have been. For experiments presented in Section IV,
we choose d based on values of average degree typically seen
when running PIES.

Data: stream S of edges, vertex limit kv , edge limit ke
Result: GS = (VS , ES)
VS = ∅, ES = ∅, i = 0,m = 0, j = 0;
while S has edge ei do

(u, v) = ei;
if | VS |< kv then

VS = VS ∪ {u, v};
m = m+ 1;

else
p = m

i ;
draw r from Uniform(0, 1);
if r < p then

if u 6∈ VS then
remove random vertex q from GS with all
incident edges;
VS = VS ∪ u;

if v 6∈ VS then
remove random vertex z from GS with
all incident edges;
VS = VS ∪ v;

if v ∈ VS and u ∈ VS then
j = j + 1;
if | ES |< ke then

ES = ES ∪ {(u, v)};
else

p = ke

j ;
draw r from Uniform(0, 1);
if r < p then

remove random edge (q, z) from ES ;
ES = ES ∪ {(u, v)};

i = i+ 1;

Algorithm 3: Randomly Induced Edge
Sampling (RIES)

TABLE I: Datasets used

Dataset | V | | E |
com-dblp 317,080 1,049,866
ca-AstroPh 18,771 198,050
dblp-cite 12,591 49,743
cit-HepTh 27,770 352,807
cit-HepPh 34,546 421,578
digg-reply 30,398 87,627
facebook-wall 46,952 876,993
twitter 465,017 834,797

IV. RESULTS

A. Experimental Setup

In our problem setup, we are given a stream of edges
S, which together form a graph G = (V,E). Our goal in
streaming graph sampling is to obtain, in a single pass over S,
a subgraph GS = (VS , ES) that is structurally similar to G and
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for which | ES |≤ ke. Of course, in a real streaming scenario
new data may be constantly generated so that we never have
a final full graph G. In our experiments, however, we use
existing test datasets and simulate streaming so we have a full
graph G to which we can compare GS . The test graphs used
are publicly available social networks from KONECT [17] and
are listed in Table I.

To evaluate the quality of subgraphs created by RE, RIES,
and WES, we compare how structurally similar the subgraphs
created by each method are to the full graph. Specifically, we
focus on the following structural properties: vertex degrees,
lengths of shortest paths, clustering coefficients, and weakly
connected components. To compare vertex degrees, shortest
path lengths, and local clustering coefficients, we compare the
distribution of these values in the full graph to that in the
sampled graph. We use the two sample Kolmogorov-Smirnov
(K-S) statistic to compare a distribution from G to that of GS .
The statistic is defined as D = maxx{| F1(x) − F2(x) |},
where F1 and F2 are two empirical cumulative distribution
functions (CDFs). This is a standard way of comparing how
structurally similar a sampled graph is to the full graph and
has been used in previous work [5] [14] [1]. To compare the
weakly connected components, we do not use the distribution
of the sizes of connected components because many of the test
graphs are close to fully connected and have few components.
We cannot form a distribution from a single element and
could not compare properly unless the number of connected
components were large. Therefore, we evaluate connected
components by computing the percentage of vertices in the
largest connected component.

For results shown in Figures 2-6, we vary ke between 0.5%
and 20% of the original graph size. While results are shown
in terms of the percent of edges sampled, it is important to
note that WES and RIES take as input not a percentage, but
a fixed number of edges ke to include in the sample. For
RIES, we use the average degree d = 4 and set kv = ke

d
accordingly. For WES, we use a w1 = 1 and w2 = 100. We
found that biasing heavily towards edges with two endpoint
vertices already in the sample created the best results. For
each value of ke, we perform 10 runs, each time randomly
permuting the order of the edge stream. In Section IV-C we
discuss the effect of different parameter settings of both WES
and RIES.

B. Results

Figures 2, 3, and 4 show the average K-S statistic for
shortest path length distributions, degree distributions, and
clustering coefficient distributions plotted against sampling
percentages for all test graphs. Values near zero indicate
that the sampling method produces distributions that are very
similar to that of the full graph, while values near one indicate
dissimilar structure. For each sampling percentage shown on
the y-axis, ke is set to that percent of the total number of
edges in the full graph. We plot K-S values against edge
percentages instead of the actual number of edges ke in order
to make comparisons between datasets easier and to show what

proportion of edges is needed for good results. However, WES,
RIES, and RE all take as input a fixed number of edges to
include in the sample, not a percentage.

From Figure 2, we can see that both WES and RIES produce
much better results in terms of shortest path lengths compared
to RE. Overall WES and RIES perform similarly, with WES
performing better on some datasets and RIES on others. To
understand the cause of these K-S values, we can examine the
left panel of Figure 6, which shows, for the com-dblp graph,
the distribution of shortest path lengths for the full graph
and for samples of 10% edges using RE, WES, and RIES.
At this sampling percentage, RE performs poorly because it
creates a subgraph with longer shortest paths. That is, pairs of
vertices tend to be at a greater distance compared to the full
graph. WES and RIES, on the other hand, are able to create
a subgraph with path lengths closer to those of the original
graph.

For most datasets, there is a dip in the path length K-S
values for RE (and sometimes RIES) at a sampling percentage
of 1% or 2.5%. We will use the com-dblp graph as an example
to explain this behavior. At sampling percentages of 0.5% and
1%, the subgraphs created by RE are very disconnected and
thus have path lengths that are much lower than in the full
graph, resulting in high K-S values. At 5%, however, the path
lengths are typically higher in the sampled subgraph than in
the full graph, which also results in a high K-S value. As the
sampling rate increases and the path lengths change from being
too short to being too long, the crossover point occurs around
2.5%. The dip in K-S values corresponds to this crossover
point. Then, for all sampling rates between 5% and 20%,
the subgraphs of com-dblp created by RE have shortest path
lengths that are longer than those in the original graph.

Figure 3 and the middle panel of Figure 6 show results
for vertex degree distributions. Again, WES and RIES tend to
sample subgraphs with more similar structure to that of the full
graph. This is due to the fact that both methods obtain higher
vertex degrees compared to RE. WES achieves this by biasing
to edges that already have endpoint vertices in the sample (thus
targeting vertices with multiple edges), while RIES does so by
including only edges that connect a small set of vertices.

Clustering coefficient similarity is shown in Figure 4 and
the right panel of Figure 6. For most graphs, especially those
with many triangles, all methods underestimate the number
of triangles and therefore the local clustering coefficients.
However, both RIES and WES perform better than RE, with
RIES producing the best clustering results.

Finally, connected component results are plotted in Figure 5,
which shows the percentage of vertices that are in the largest
connected component both for the full graph and for each
sampling method. Note that unlike in Figures 2, 3, and 4, the
y-axis in Figure 5 does not plot either a distance or similarity
metric. Good results are instead indicated by values that are
close to those of the full graph. Because the test graphs we
used are highly connected, the majority of vertices in the
full graph are in the largest connected component. Therefore,
higher values indicate better results. WES creates the most
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Fig. 2: For each method, the K-S statistic is used to compare
the similarity of the shortest path length distribution in the
sampled subgraph to that of the full, original graph. Average
K-S values are shown for all percentages of edges sampled.
Lower values indicate better results.
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Fig. 3: For each method, the K-S statistic is used to compare
the similarity of the degree distribution in the sampled sub-
graph to that of the full, original graph. Average K-S values
are shown for all percentages of edges sampled. Lower values
indicate better results.
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Fig. 4: For each method, the K-S statistic is used to compare
the similarity of the local clustering coefficient distribution
in the sampled subgraph to that of the full, original graph.
Average K-S values are shown for all percentages of edges
sampled. Lower values indicate better results.
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Fig. 5: The percentage of vertices in the largest connected
component is plotted for both the full graph and for each
sampling method for all sampling percentages. Because the
test graphs used are highly connected, higher values are better.

connected samples and thus performs best, while RE creates
the most disconnected graphs. The reason why WES creates
more connected subgraphs than RIES is because the method
automatically biases towards including edges that connect the
rest of the sample. In RIES, the connectivity will depend on
whether the randomly chosen vertices will tend to connect or
not, so this may vary quite a bit.

C. Effect of Method Parameters

The previously discussed results for WES and RIES were
obtained using a single parameter setting for each. In Fig-
ure 7, we plot shortest path length results for several differ-
ent parameter settings for both WES and RIES in order to

examine the effect of varying the parameters. The top plots
in Figure 7 show K-S statistic values on three graphs for
w2 = 10, 25, 50, 100, 200, with w1 = 1. Increasing the value
of w2 creates predictable results: the distribution of shortest
path lengths becomes more similar to that of the full graph
and the K-S statistic decreases. Similar patterns occurred for
other graph measures. A higher value of w2 created a more
connected graph with higher average degrees, higher clustering
coefficient, and shorter distance between pairs of vertices.
Generally, this meant that a higher w2 parameter resulted in
samples more similar to the full graph. However, this need
not always be the case. For example, if a graph has very
low clustering coefficients or is very disconnected, a high w2
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Fig. 6: This plot shows the CDFs of shortest path lengths between pairs of vertices, vertex degrees, and local clustering
coefficients for the com-dblp graph. CDFs are shown for the full graph, and samples of 10% of edges using the RE, WES,
and RIES methods.
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Fig. 7: The effect of varying method parameters is shown. In the top plot, the K-S statistic for shortest path length distributions
is shown using three datasets and five different parameter settings of WES (w1 = 1 for all and w2 = 10, 25, 50, 100, 200). In
the bottom plot, results are shown for four different parameter settings of RIES (d = 1, 2, 4, 10). The effect of a parameter
change for RIES is not consistent, while for WES increasing w2 has a predictable effect.
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might create a subgraph with too many triangles and too few
components. We found that the parameter w1 had much less
effect on the sample than w2 did. The fact that the effect of
increasing or decreasing the parameters of WES is predictable
is important for the method to be useful in practice.

The bottom plots of Figure 7 show results for RIES with
d = 1, 2, 4, 10. As ke varies between 0.5% and 20% of total
edges, we set kv = ke

d . Unlike with WES, the effect of
parameter d is not predictable as it varies both across datasets
and for different sampling percentages. In the streaming con-
text, information about degree distribution will likely not be
available, making it more difficult to choose a value for d.
While both RIES and WES perform better than RE, the main
advantage of WES over RIES is that the parameters can be
set more easily and their effect is more predictable.

V. CONCLUSION

In this paper, we have presented two new methods for
streaming graph sampling, WES and RIES. These methods
sample a subgraph from an edge stream in a single pass
without assuming any order of the edges and without requiring
any information about the full graph. Because our goal in
sampling is to obtain a smaller subgraph, our methods restrict
the number of edges and not only the number of vertices. The
other streaming approach from the literature that meets this
requirement is RE. Through experiments on several graphs
from social networks, we show that WES and RIES create
sampled subgraphs that are more structurally similar to the full
graph than does RE. While both methods perform well, the
advantage of WES over RIES is that there is no need to set the
average degree of the subgraph and the effect of the parameter
setting is more predictable. The methods presented in this
work process a single edge at a time and are therefore fully
streaming. Future work will consider whether improved results
may be obtained by using a buffer to accumulate multiple new
edges before processing them.
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