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Abstract. The edit distance under the DCJ model can be computed in
linear time for genomes with equal content or with Indels. But it becomes
NP-Hard in the presence of duplications, a problem largely unsolved
especially when Indels are considered. In this paper, we compare two
mainstream methods to deal with duplications and associate them with
Indels: one by deletion, namely DCJ-Indel-Exemplar distance; versus
the other by gene matching, namely DCJ-Indel-Matching distance. We
design branch-and-bound algorithms with set of optimization methods
to compute exact distances for both. Furthermore, median problems are
discussed in alignment with both of these distance methods, which are to
find a median genome that minimizes distances between itself and three
given genomes. Lin-Kernighan (LK) heuristic is leveraged and powered
up by sub-graph decomposition and search space reduction technologies
to handle median computation. A wide range of experiments are con-
ducted on synthetic data sets and real data sets to show pros and cons
of these two distance metrics per se, as well as putting them in the me-
dian computation scenario.

Keywords: Genome Rearrangement, Double-cut and Join (DCJ), Lin-
Kernighan Heuristic.

1 Introduction

Over the last years, many distance metrics have been introduced to calculate the
dissimilarity between two genomes by genome rearrangement [2,3,5,30]. Among
them, DCJ distance is largely studied in recent years due to its capability to
model various forms of rearrangement events, with a cheap cost of linear time
computation. However, when consiering duplications, the distance computation
becomes NP-hard [10] and APX-hard [1,12] for various distance models. There
are two approaches to treat duplications, both are targeted at removing du-
plicated genes, so that existing linear algorithms can be utilized subsequently.
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The first approach identifies the so called exemplar genes [23] in order to retain
one copy gene in each duplicated gene family, while the other assigns one-to-
one matching to every duplicated genes in each gene family [24,25]. Situated in
the context of duplications, gene insertion and deletion (Indels) are also impor-
tant rearrangement events that results in unequal contents [8]. Pioneer works
were conducted to study the sorting and distance computation by reversals with
Indels [17]. Later on, the DCJ-Indel distance metric was introduced to take ad-
vantages of the DCJ model. Braga et al [7] proposed the first framework to
compute the DCJ-Indel distance; Compeau later simplified the problem with a
much more elegant distance formula [13]. In this paper, we adapt the previous
research results to design algorithms that procure the ability to handle both
duplications and Indels when computing DCJ distance.

As evolutionary analysis generally involves more than two species, it is necessary
to extend the above distances to deal with multiple genomes. Since three species
form the smallest evoliutionary tree, it is critical to study the median problem,
which is to construct a genome that minimizes the sum of distances from itself
to the three input genomes [6,18]. The median problem is NP-hard under most
distance metrics [4, 9, 21, 27]. Several exact algorithms have been implemented
to solve the DCJ median problems on both circular [27, 29] and linear chromo-
somes [26,28]. Some heuristics are brought forth to improve the speed of median
computation, such as linear programming (LP) [9], local search [16], evolution-
ary programming [14], or simply searching on one promising direction [22]. All
these algorithms are intended for solving median problems with equal content
genomes, which are highly unrealistic in practice. In this paper, we implement a
Lin-Kernighan heuristic leveraging the aforementioned two distance metrics to
compute DCJ median when duplications and Indels are considered.

2 Background

2.1 Genome Rearrangement Events and their Graph
Representations

Genome Rearrangement Events The ordering of a genome can be changed
through rearrangement events such as reversals and transpositions. Fig 1 shows
examples of different events of a single chromosome (1 -2 3 4 -5 6 7). In the exam-
ples, we use signed numbers to represent different genes and their orientations.
Genome rearrangement events involve with multiple combinatorial optimization
problems and graph representation is common to abstract these problems. In this
part, we will address the foundations of using the breakpoint graph to abstract
genome rearrangement events.

Breakpoint GraphGiven an alphabetA, two genomes Γ and Π are represented
by two strings of signed (+ or −) numbers (representing genes) from A. Each
gene a ∈ A is represented by a pair of vertices head ah and tail at; If a is positive
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Fig. 1. Example of different rearrangement events.

(a) Example of BPG (b) Example of DCJ

Fig. 2. Examples of BPG; and DCJ operations.

ah is putted in front of at, otherwise at is putted in front of ah. For a, b ∈ A, if
a, b ∈ Γ and are adjacent to each other, their adjacent vertices will be connected
by an edge. For a telomere genes, if it exists in a circular chromosome, two end
vertices will be connected by an edge; if it exists in a linear chromosome, two end
vertices will be connected to a special vertex called CAP vertex. If we use one
type of edges to represent adjacencies of gene order Γ and another type of edges
to represent adjacencies of gene order Π, the resulting graph with two types of
edges is called breakpoint graph (BPG). Fig 2(a) shows the BPG for gene order
Γ (1,-2,3,-6,5) (edge type: solid edges) which has one circular chromosome and
Π (1,2,3,7,4) (edge type: dashed edges) which has one linear chromosome.

DCJ operation Double-cut and join (DCJ ) operations are able to simulate
all rearrangement events. In a BPG, these operations cut two edges (within one
genome) and rejoin them using two possible combinations of end vertices (shown
in Fig 2(b)).

2.2 Distance computation

DCJ distance DCJ distance of genomes with the same content can be easily
calculated by enumerating the number of cycles/paths in the BPG [30], which
is of linear complexity.

DCJ-Indel distance When Indels are introduced in BPG, with two genomes
Γ and Π, the vertices and edges of a closed walk form a cycle. In Fig 2(a), the
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walk (1t, (1t; 2h), 2h, (2h; 3h), 3h, (3h; 2t), 2t, (2t; 1t), 1t) is a cycle. A vertex v is
π-open (γ-open) if v 6∈ Γ (v 6∈ Π). An unclosed walk in BPG is a path. Based
on different kinds of ends points of paths, we can classify paths into different
types. If the two ends of a path are CAP vertices, we simply denote this path
as p0. If a path is ended by one open vertex and one CAP, we denote it as pπ
(pγ). If a path is ended by two open vertices, we denote it by the types of its two
open vertices: for instance, pπ,γ represents a path that ends with a π-open vertex
and a γ-open vertex. In Fig 2(a), the walk (5t, (5t; 1h), 1h, (1h;CAP ), CAP ) is a
pγ path and the walk (6t, (6t; 3t), 3t, (3t; 7h), 7h) is a pγ,π path. A path is even
(odd), if it contains even (odd) number of edges. In [13], if |A|= N the DCJ
distance between two genomes with Indels but without duplications is calculated
by equation (1). We call this distance DCJ-Indel distance. From this equation,
we can easily get the DCJ-Indel distance between Γ and Π in Fig 2(a) as 4.

(1)dindel(Γ,Π) = N − [|c|+|pπ,π|+|pγ,γ |+bpπ,γc]

+ 1
2(|p0

even|+min(|pπodd|, |pπeven|) +min(|pγodd|, |p
γ
even|) + δ)

Where δ = 1 only if pπ,γ is odd and either |pπodd|> |pγeven|, |p
γ
odd|> |pγeven| or

|pπodd|< |pγeven|, |p
γ
odd|< |pγeven|; Otherwise, δ = 0.

DCJ-Exemplar(Matching) distance There are in general two approaches
to cope with duplicated genes. One is by removing all but keeping one copy in
a gene family to generate an exemplar pair [23] and the other is by relabeling
duplicated genes to ensure that every duplicated gene has unique number [24,
25]. Both of these two distances can be computed with BPG using branch-and-
bound methods. For both of the distance metrics, the upper bound can be easily
derived by assigning an arbitrary mapping to two genomes then computing their
mutual distance. In paper [23] regarding exemplar distance, it’s proved that
by removing all occurrences of unfixed duplicated gene families, the resulting
distance is monotony decreasing, hence the resulting distance can be served as
a lower bound. In paper [11] regarding matching distance, the authors proposed
a way for computing lower bounds by measuring the number of breakpoints
between two genomes, which might not directly imply the lower bound between
genomes with Indels. However, it is still possible to use this method to find a
‘relaxed’ lower bound.

Distance Estimation Note that mathematically optimized distance might not
reflect the true number of biological events, thus several estimation methods such
as EDE or IEBP are used to rescale these computed distances [19] to better fit
true evolutionary history.

2.3 Median Computation

If there are three given genomes, the graph constructed by pre-defined BPG
rule is called a Multiple Breakpoint Graph (MBG). Figure 3(a) shows an ex-
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(a) MBG (b) 0-matching (c) Adequate subgraph
and edge shrinking

Fig. 3. (top) Examples of MBG with three input genomes: (1,2,3,4) (solid edges);
(1,2,-3,4) (dashed edges) and (2,3,1,-4) (dotted edges).; (middle) 0-matching operation;
(bottom) edge shrinking operations.

ample of MBG with three input genomes. When there are only equal content
genomes, the DCJ median problem can be briefly described by finding a max-
imum matching (which is called 0-matching) in MBG. Figure 3(b) shows an
example of 0-matching which is represented by gray edges. In [29], it is proven
that a type of sub-graph called adequate sub-graph (AS) could be used to decom-
pose the graph with edge shrinking operations, which are shown in Figure 3(c).
Unfortunately, there is no branch-and-bound based median algorithm that deals
with unequal content genomes. In the following section, we will show that it is
actually difficult to design such algorithm.

3 Approaches

3.1 Proposed Distance Metrics

We have discussed DCJ, DCJ-Indel and DCJ-Exemplar(Matching) distances,
here we formally define the DCJ-Indel-Exemplar(Matching) distances as follows:

Definition 1. An exemplar string is constructed by deleting all but one occur-
rence of each gene family. Among all possible exemplar strings, the minimum
distance that one exemplar string returns is the DCJ-Indel-Exemplar distance.

Definition 2. A matching string is constructed by assigning a one-to-one map-
ping to each occurrence of genes in a gene family and relabel them to distinct
markers. Among all possible matching strings, the minimum distance that one
matching string returns is the DCJ-Indel-Matching distance.
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Fig. 4. Examples of exemplar and matching distance in the form of BPG representa-
tion.

Figure 4 shows examples of BPG representation of exemplar mapping from
genome Γ (1, -2, 3, 2, -6, 5) and genome Π (1, 2, 3, 7, 2, 4) to Γ (1, 3, 2, -
6, 5) and genome Π (1, 3, 7, 2, 4), and a matching that mapping from genome
Γ (1, -2, 3, 2, -6, 5) and genome Π (1, 2, 3, 7, 2, 4) to Γ (1, -2, 3, 2’, -6, 5) and
genome Π (1, 2’, 3, 7, 2, 4).

We can use branch-and-bound methods which are applied in DCJ-Exemplar
(Matching) distances to solve these two distances.

3.2 Optimization Methods

Optimal Assignments Although branch-and-bound algorithms are based on
enumerating the number of cycles/path in BPG, it is not necessary to enumerate
every component in the graph, as both [11, 25] indicated that there are some
specific patterns in BPG which can be fixed before the distance computation.
In this paper, we will extend their result in our optimization methods for DCJ-
Indel-Exemplar(Matching) distances.

To begin with, we define some terms for future explanation. There are two cate-
gories of vertices in a BPG: one connects exactly one edge of each edge type (in
this paper edge types are expressed by such as dotted, dashed edges etc.), they
are called regular vertices; the other connects fewer or more than one edges of
each edge type, they are called irregular vertices. A subgraph in a BPG that only
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contains regular vertices is defined as regular subgraph, while one that contains
irregular vertices is defined as irregular subgraph. In BPG with two genomes Γ
and Π, vertices and edges of a closed walk form a cycle.

Theorem 1. In a BPG, an irregular subgraph which is a cycle of length 2 can
be fixed before computation without losing accuracy.

Proof. Without loss of generality, the proof is sound for bothDCJ-Indel-Exemplar
and DCJ-Indel-Matching distances. We prove the theorem under two cases:

1. for the subgraph in the component which only contains cycles, this is a case
that is exactly the same as mentioned in [25], proof.

2. for the subgraph in the component which contains paths, since no type of
the paths has count more than one (which is the count of a cycle), following
the similar proof strategy in [25], we can get the same conclusion. �

Adopting Morph Graph Methods to Condense BPG If a gene family has
multiple copies of the gene, its corresponding two vertices (head and tail) in the
BPG will have degree of more than one. In contrary, vertex representations of
those singleton genes always have degree of one or zero. Once an ‘exemplar’ or
‘matching’ is fixed, only edges incident to vertices that have degree of more than
one have been changed. We can view the computation of exemplar or matching
distance as the process of morphing (or streaming) [32] the BPG in order to find
an ad hoc shape of the BPG that achieves optimality. Following this hint, we
can bridge out all vertices that are stable and just investigate these dynamically
changing vertices without lossing accuracy. Suppose there are V vertices in the
BPG, where Vs are stable and Vd are dynamic, the asymptotic speedup for this
morph BPG strategy will be O( VVd

).

Harness the Power of Divide-and-Conquer Approach to Reduce the
Problem Space In the paper by Nguyen et al [20], the authors proposed a
divide and conquer method to quickly calculate the exemplar distance. Inspired
by their idea, we propose the following divide-and-conquer method to compute
the above two distances based on the BPG. We have the follow observation:

Theorem 2. The DCJ-Indel-Exemplar (Matching) distance is optimal iff the
choices of exemplar edges (cycle decomposition) in each connected components
of BPG are optimal.

Proof. Since it’s obvious that for regular connected component of BPG, there
is only one choice of edges, the proof under this case is trivial. For irregular
connected component of BPG, we prove by contrary: suppose there is another
edge selection that can result in a better distance, based on the corresponding
BPG, there must be at least one connected component that has a better edge
selection, replacing it with a better edge selection will result in a better distance,
which violates the assumption. �
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Algorithm 1: DCJIndelExem(Matc)Distance
Input: G1 and G2
Output: Minimum distance d

1 optimization methods on G1, G2;
2 G

′

1, G
′

2 ←randomly init exemplar(matching) of all duplicated genes of G1, G2;
3 G∗

1, G
∗
2 ←remove all duplicated genes of G1, G2;

4 min_ub← DCJIndel(G′

1, G
′

2) ;
5 min_lb← DCJIndel(G∗

1, G
∗
2) ;

6 Init search list L of size min_ub−min_lb and insert G1, G2;
7 while min_ub > min_lb do
8 G+

1 , G
+
2 ← pop from L[min_lb];

9 for pair ∈ all mappings of next available duplicated gene do
10 G+

1 , G
+
2 ← G+

1 , G
+
2 fix the exemplar(matching) of pair ;

11 G+′

1 , G+′

2 ←randomly init exemplar(matching) of rest duplicated genes
G+

1 , G
+
2 ;

12 G+∗
1 , G+∗

2 ←remove rest duplicated genes G+
1 , G

+
2 ;

13 ub← DCJIndel(G+′

1 , G+′

2 ) ;
14 lb← DCJIndel(G+∗

1 , G+∗
2 ) ;

15 if lb > min_ub then
16 discard G+

1 , G
+
2

17 if ub < min_ub then
18 min_ub = ub;
19 else if ub = max_lb then
20 return d = ub ;
21 else
22 insert G+

1 , G
+
2 into L[lb]

23 return d = min_lb;

Combining three optimization methods in tandem with the branch-and-bound
framework, we can summarize our algorithm to compute DCJ-Indel-Exemplar
(Matching) distance as outlined in Algorithm 1.

3.3 Adapting Lin-Kernighan Heuristic to Find the Median Genome

Problem Statement Not surprisingly, finding the median genome that mini-
mizes the DCJ-Indel-Exemplar(Matching) distance is challenging. To begin with,
given three input genomes, there are multiple choices of possible gene content
selections for the median; however, since identifying gene content is simpler and
there exists very accurate and fast methods to fulfil the task [15], we are more
interested on a relaxed version of the median problem that assumes known gene
content on the median genome. Which is formally defined as:



9

Definition: Given the gene content of a median genome, and gene orders of
three input genomes. Find an adjacency of the genes of the median genome
that minimize the DCJ-Indel-Exemplar(Matching) distance between the median
genome and the three input genomes.

The DCJ-Indel-Exemplar(Matching) median problem is not even in the class
of NP because there is no polynomial time algorithm to verify the results.
It is hard to design an exact branch-and-bound algorithm for the DCJ-Indel-
Exemplar(Matching) median problem mainly because the DCJ-Indel distance
violates the property of triangular inqueality which is required for a distance
metrics [31]. Furthermore, when there are duplicated genes in a genome, it is
possible that there are multiple edges of the same type connecting to the same
vertex of a 0-matching, which leads to ambiguity in the edge shrinking step and
makes the followed branch-and-bound search process very complicated and ex-
tremely hard to implement. To overcome these problems, we provide an adaption
of Lin-Kernighan (LK ) heuristic to help solving this challenging problem.

Design of the Lin-Kernighan Heuristic The LK heuristic can generally be
divided into two steps: initialize the 0-matching for the median genome, and LK
search to get the result.

The initialization problem can be described as: given the gene contents of three
input genomes, find the gene content of the median genome that minimizes the
sum of the number of Indels and duplications operations required to transfer the
median gene content to the gene contents of the other three genomes. In this
paper, we design a very simple rule to initialize the median gene content: given
the counts of each gene family occurred in the three genomes, if two or three
counts are the same, we simply select this count as the number of occurrence of
the gene family in the median genome; if all three counts are different, we select
the median count as the number of occurrence of the gene family in the median
genome.

After fixing the gene content for the median genome, we randomly set up the
0-matching in the MBG. The followed LK heuristic selects two 0-matching edges
on theMBG of a given search node and performs a DCJ operation, obtaining the
MBG of a neighboring search node. We expand the search frontier by keeping all
neighboring search nodes to up until the search level L1. Then we only examine
and add the most promising neighbors to the search list until level L2. The
search is continued when there is a neighbor solution yielding a better median
score. This solution is then accepted and a new search is initialized from the
scratch. The search will be terminated if there are no improvement on the result
as the search level limits have been reached and all possible neighbors have been
enumerated. If L1 = L2 = K, the algorithm is called K-OPT algorithm.

Adopting Adequate Sub-graphs to Simplify Problem Space By using
the adequate subgraphs [26, 29], we can prove that they are still applicable for
decomposing the graph in the DCJ-Indel-Exemplar(Matching) median problem.
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Algorithm 2: DCJIndelExem(Matc)Median
Input: MBG G, Search Level L1 and L2
Output: 0-matching of G

1 Init search list L of size L1;
2 Init 0-matching of G;
3 currentLevel← 0 and Improved← true;
4 while Improved = true do
5 currentLevel← 0 and Improved← false;
6 Insert G into L[0];
7 while currentLevel < L2 do
8 G′ ← pop from list L[currentLevel];
9 if G′ improves the median score then

10 G← G′;
11 Improved← true and break ;
12 if currentLevel < L1 then
13 for x ∈ ∀ 0-matching pairs of G do
14 G′ ← perform DCJ on G′ using x;
15 if num_pair(x) > δ then Insert G′ into L[currentLevel + 1] ;

16 else
17 G′ ← perform DCJ on G′ using x = argmax

x

num_pair(x) ;

18 if num_pair(x) > δ then Insert G′ into L[currentLevel + 1] ;
19 currentLevel← currentLevel + 1 ;

20 return 0-matching of G;

Lemma 1. As long as the irregular vertices do not involve, regular subgraphs
are applicable to decompose MBG.

Proof. If there are d number of vertices that contain duplicated edges in MBG,
we can disambiguate the MBG by generating different subgraphs that contain
only one of the duplicate edge. We call these subgraphs disambiguate MBG, (d-
MBG), and there are O(

∏
i<d deg(i)) number of d-MBGs. If a regular adequate

subgraph exists in the MBG, it must also exists in every d-MBG. Based on the
0-matching solution, we can transform every d-MBG into completed d-MBG (cd-
MBG) by constructing the optimal completion [13] between 0-matching and all
the other three types of edges. After this step, the adequate subgraphs in every
d-MBG still exist in every cd-MBG, thus we can use these adequate subgraphs
to decompose cd-MBG for each median problem without losing accuracy. �

Search Space Reduction Methods The performance bottleneck with the me-
dian computation is in the exhaustive search step, because for each search level
we need to consider O(|E|2) possible number of edge pairs, which is O(|E|2L1)
in total. Unlike the well-studied traveling salesman problem (TSP) where it
is cheap to find the best neighbor, here we need to compute the DCJ-Indel-
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Exemplar(Matching) problem,NP-hard distance, which makes this step extremely
expensive to conclude. Noticing that if we search neighbors on edges that are
on the same 0-i color altered connected component (0-i-comp), the DCJ-Indel-
Exemplar(Matching) distance for genome 0 and genome i is more likely to re-
duce [32], thus we can sort each edge pair by how many 0-i-comp they share.
Suppose the number of 0-i-comp that an edge pair x share is num_pair(x),
when the algorithm is in the exhaustive search step (currentLevel < L1), we set
a threshold δ and select the edge pairs that satisfy num_pair(x) > δ to add into
the search list. When it comes to the recursive deepening step, we select the edge
pair that satisfy argmax

x
num_pair(x) to add into the search list. This strategy

has two merits: 1) some of the non-promising neighbor solution is eliminated to
reduce the search space; 2) the expensive evaluation step which make a function
call to DCJ-Indel-Exemplar(Matching) distance is postponed to the time when
a solution is retrieved from the search list.

The LK based median computation algorithm is as Algorithm 2 shows.

4 Experimental Results

We implement our code with python and C++: the python code realized the
optimization methods while the C++ code is implemented on a parallel branch-
and-bound framework OPTKit. We conduct extensive experiments to evaluate
the accuracy and speed of our distance and median algorithms using both sim-
ulated and real biological data. Experimental tests ran on a machine with linux
operating system configured with 16 Gb of memory and an Intel(R) Xeon(R)
CPU E5530 16 core processor, each core has 2.4GHz of speed. All of the exper-
iments ran with a single thread. We choose to use g++-4.8.1 as our compiler.

4.1 Distance Computation

To the best of our knowlege, there is no software package that can handle both
duplications and Indels. We compare our DCJ-Indel-Exemplar (Matching) dis-
tances with GREDO [25], a software package based on linear programming that
can handle duplications.

Simulated Data The simulated data sets are generated with genomes contain-
ing 1000 genes. The Indels rate is set (γ) as 5%, inline with the duplication
rate (φ) as 10%. Considering GREDO can not process Indel data, all Indels for
GREDO are removed. We compare the change of distance estimation with the
variation of mutation rate (θ, which grows from 10% to 100%. The experimental
results for simulated data are displayed in Figure 5.

1. For computational time, since the results of time spans over a range of thou-
sands of seconds, we display the time with log scale to construe results clearly.
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(a) Time result for simulated data. (b) Distance result for simulated data.

Fig. 5. Experimental results for distance computation using simulated data.

(a) γ = φ = 0% and θ varies from 10% to 100%. (b) γ = φ = 5% and θ varies from 10% to 60%.

Fig. 6. Experimental results for median computation applying DCJ-Indel-Exemplar
distance.

When the mutation rate is less than 50%, all three methods perform simi-
larly, with the fact that GREDO is faster than both of our branch-and-bound
methods. However, GREDO slows down dramatically when the mutation
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Distance Results Time Results

Data GREDO Exem Matc GREDO Exem Matc

brownrat_chicken 1678 24546 24704 3604.28 172.73 7.45

brownrat_gorilla 1274 17922 17966 5707.13 12.64 12.10

brownrat_human 1083 17858 17900 3725.76 12.14 12.19

brownrat_mouse 790 15433 15445 3725.66 14.51 15.06

chicken_gorilla 1491 16379 16421 3725.62 7.54 7.57

chicken_human 1521 16231 16276 3725.65 7.74 7.47

chicken_mouse 1528 15712 15745 3726.03 9.82 8.16

gorilla_human 486 17798 17798 3607.63 13.94 13.81

gorilla_mouse 860 18914 18935 4816.31 12.60 12.13

human_mouse 749 18126 18144 94.64 12.45 12.61

Table 1. Experimental results for disntance computation with real data set.

(a) γ = φ = 5% and θ varies from 10% to 100%. (b) γ = φ = 10% and θ varies from 10% to 100%.

Fig. 7. Experimental results for median computation applying DCJ-Indel-Matching
distance.

rate is increased, while our branch-and-bound based method takes less in-
creased time to finish.
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2. For computational accuracy, we show the distance results corrected by EDE
approach which is one of the best true distance estimator. As for simulated
data, we can see that when the mutation rate is small (< 50%) GREDO un-
der estimate the distance as opposed to our two branch-and-bound methods;
but it will over estimate the distance with the growth of mutation rate.

Real data We prepare the real data sets using genomes downloaded from En-
senble and processed them following the instructions in [25]. The real data set
contains 5 species: brown-rat, chicken, human, mouse and gorilla. For DCJ-Indel-
Exemplar (Matching) distance, we only convert the Ensenmble format to adapt
the data to our program. Meanwhile, just as the simulated data, all Indels in
real data set for GREDO are removed. The results for real data are shown in
Table 1.

1. For computational time, the branch-and-bound method shows orders of mag-
nitudes of speed up compared with GREDO. We analyze the data, the reason
can be construed as the existance of multiple connected comonent in BPG.
So that our method can divide the graph into much smaller size, versus
GREDO which doesn’t have this mechanism.

2. For computational accuracy, the distance results of the real data gives us a
taste of how frequently Indels happend in the genome evolution. We can see
orders of magnitude of difference between our distance results and GREDO,
which is mainly due to the large amount of Indels in the real data set.
Note that we did not change the way GREDO compute its distance as in
paper [25], in the real distance computation, we should consider Indels in
alignment with duplications.

4.2 Median Computation

Median Computation We simulate the median data of three genomes using
the same strategy as in the distance simulation. In our experiments, each genome
is “evolved” from a seed genome, which is identity, and they all evolve with the
same evolution rate (θ, γ and φ). The sequence length in the median experiments
are reduced to 50, due to performance issues.

DCJ-Indel-Exemplar median We analyze the result of using LK algorithm
with L1 = 2 and L2 = 3, and the K-OPT algorithm of K = 2. Search space
reduction methods are used, with δ = 2 and δ = 3 respectively.

1. To begin with, we compare our result along with equal content data, since
there are already benchmark programs to help us performing analysis. We
run the exact DCJ median solver (we use the one in [32]) to compare our
heuristic with the exact median results. In Fig 6(a), it shows the accuracy
of our heuristic versus the exact result. It is shown that when θ ≤ 60%, all
results of the LK and K-OPT methods are quite close to the exact solver.
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For parameter of δ = 2, both LK and K-OPT methods can generate exactly
the same results for most of the cases.

2. As for the median results for unequal contents, we set both γ and φ to 5%
and increase the mutation (inversion) rate θ from 10% to 60%. We compare
our results with the accumulated distance of the three genomes to their
simulation seed. Although it can not show the accuracy of our method (since
we do not have an exact solver), it can be used as an indicator of how
close that our method is to the real evolution. Fig 6(b) shows that when
δ = 3, both the LK and K-OPT algorithms get results quite close to the
real evolutionary distance.

DCJ-Indel-Matching median Since DCJ-Indel-Exemplar median has already
given us the result of how LK performs against exact solver, and how different
parameters of LK performs. With these things in mind, we choose to use LK
with L1 = 2 and L2 = 3 having δ = 2 as the configuration for our DCJ-Indel-
Matching median solver. We use the same data as in the previous experiments,
and the experimental results are shown in Figure 7(a) and Figure 7(b). We can
see that in general, the new implementation is quite close to the real result when
γ = 5% and φ = 5% and slightly worse than real result when γ = 10% and
φ = 10%.

5 Conclusion

In this paper, we proposed a new way to compute the distance and median
between genomes with unequal contents (with Indels and duplications). Our
distance method can handle Indels which is ubiquitous in the real data set,
and is proved to be more efficient as opposed to GREDO. We designed a Lin-
Kernighan based method to compute median, which can get close to optimal
results in alignment with the exact median solver, and our methods can handle
duplications and Indels as well.
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