
J. Parallel Distrib. Comput. 108 (2017) 95–105
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Designing and implementing a heuristic cross-architecture
combination for graph traversal
Yang You c, Haohuan Fu a,∗, David Bader d, Guangwen Yang b

a Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China
b Department of Computer Science and Technology, Tsinghua University, Beijing, China
c Computer Science Division, University of California at Berkeley, Berkeley, CA, USA
d College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

a r t i c l e i n f o

Article history:
Received 25 June 2015
Received in revised form
6 May 2016
Accepted 9 May 2016
Available online 25 May 2016

Keywords:
Graph algorithm
Data-intensive
Cross-architecture optimization
Knights corner MIC
Kepler K20x GPU
Combination
Regression analysis

a b s t r a c t

Breadth-First Search (BFS) is widely used in real-world applications including computational biology,
social networks, and electronic design automation. The most effective BFS approach has been shown to
be a combination of top-down and bottom-up approaches. Such hybrid techniques need to identify a
switching point which is conventionally found through expensive trial-and-error and exhaustive search
routines. We present an adaptive method based on regression analysis that enables dynamic switching
at runtime with little overhead. We improve the performance of our method by exploiting popular
heterogeneous platforms and efficiently design the approach for a given architecture. A 155× speedup is
achieved over the standard top-down approach on GPUs. Our approach is the first to combine top-down
and bottom-up across different architectures. Unlike combination on a single architecture, a mistuned
switching point may significantly decrease the performance of cross-architecture combination. Our
adaptive method can predict the switching point with high accuracy, leading to 7× speedup compared to
the switching point in average case (1000 switching points).

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Breadth-First Search (BFS) is widely used in real-world appli-
cations including social networks [25], protein interaction analy-
sis [24] and electronic design automation [12] (Fig. 1). Top-down
and bottom-up are two versions of BFS. Since both top-down
and bottom-up have unique advantages over each other, Beamer
et al. [3] proposed a combination approach that can switch be-
tween top-down and bottom-up in different situations. However,
previous naive combinations use trial-and-error and exhaustive
search to find the best switching point, which cannot be used
at runtime because they will significantly increase the execution
time. To solve this problem, we design a novel adaptive method
based on regression analysis [14]. Compared to the previous naive
combinationmethods, our on-line approach can find the switching
point at runtime with little overhead (less than 0.1% of the execu-
tion time). However, due to its irregularmemory access and lack of

∗ Corresponding author.
E-mail addresses: youyang@cs.berkeley.edu (Y. You),

haohuan@tsinghua.edu.cn (H. Fu), bader@cc.gatech.edu (D. Bader),
ygw@tsinghua.edu.cn (G. Yang).

http://dx.doi.org/10.1016/j.jpdc.2016.05.007
0743-7315/© 2016 Elsevier Inc. All rights reserved.
locality, BFS is often communication-intensive on the distributed-
memory clusters or memory-bound on shared-memory architec-
tures. In most cases, the performance enhancement of parallel BFS
is small compared with the well-optimized serial version [2].

Heterogeneous platforms are becoming more and more popu-
lar in recent years because the computing power of co-processors
(e.g. GPUs and Xeon Phi) are much stronger than CPUs. For
example, each node of the Tianhe-2 supercomputer, which is
ranked first on the 41st and 42st Top500 lists [13], contains
three Intel Xeon Phi co-processors. To make full use of the ex-
isting heterogeneous platforms and improve the performance of
the combination method, we propose an effective technique to
merge CPU and GPU using the most suitable approach for a
given architecture. The proposed approach achieves 8.5×, 2.6×,
and 2.2× average speedup over a MIC combination, a CPU combi-
nation, and a GPU combination respectively. Our approach is the
first to combine the top-down and bottom-up methods across dif-
ferent architectures. Unlike combination on a single architecture,
a mistuned switching point may significantly decrease the per-
formance of cross-architecture combination. Our adaptive method
can predict the switching point with high accuracy, leading to 7×
speedup compared to the switching point in average case (1000
switching points). Our contributions are:

http://dx.doi.org/10.1016/j.jpdc.2016.05.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.05.007&domain=pdf
mailto:youyang@cs.berkeley.edu
mailto:haohuan@tsinghua.edu.cn
mailto:bader@cc.gatech.edu
mailto:ygw@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.jpdc.2016.05.007

96 Y. You et al. / J. Parallel Distrib. Comput. 108 (2017) 95–105
Fig. 1. This figure illustrates how BFS travels the vertices level by level. For
example, the distance between the start vertex and the vertices marked by 3 is 3.
The vertices marked by 3 will not be visited until all the vertices marked by 2 have
been visited.

(1) an original adaptive method based on regression analysis,
which allows the combination technique to be used at runtime
and achieves 7× speedup compared to the switching point in
average case.

(2) the first cross-architecture combination for top-down and
bottom-up, which achieves 8.5×, 2.6×, and 2.2× average
speedup over MIC, CPU and GPU combinations respectively.

(3) a pairwise comparison between CPU, GPU and MIC, which can
hopefully help the readers select the best architectures for
similar applications.

We achieve 16–63× (average 29×) speedups over using the
Graph 500 benchmark. We also achieve 13× speedup over
the state-of-the-art implementation on MIC (Intel Xeon Phi Co-
processor).

2. Background

2.1. Two BFS approaches: top-down and bottom-up

We use G(V , E) to denote a graph where V is the set of vertices
and E is the set of edges. Given a vertex vs, BFS systematically
visits every vertex that is reachable from vs. For a vertex v that is
reachable from vs, v is in level n if the distance from vs to v is n.
The vertices in level n + 1 will not be visited until all the vertices
in level n have been visited. If BFS reaches vertex v via the edges
(u, v) from vertex u, we call u the parent or predecessor of v. The
general output of BFS is a predecessor map and a level map, which
record the parent and level of each vertex.

The pseudocode of the top-down BFS is shown in Algorithm 1.
Firstly, the top-down does the initialization (lines 1–4): putting the
source vertex vs in the current queue (CQ), setting the predecessor
of source vertex as itself, and setting the predecessors of all the
other vertices as NULL. We use the predecessor map (Pred) to
decide whether a given vertex has been visited (line 9). The top-
down then traverses graph until the CQ is empty (lines 5–13).
In each level of graph traversal, top-down first empties the next
queue (line 6), then visits all the vertices in the CQ (line 7). For a
given vertex u in the CQ, the top-down checks all the neighboring
vertices of u (line 8). If a neighboring vertex v has not been
visited (line 9), it will be added to the next queue (line 10) and
its predecessor will be set as u (line 11). After each level of graph
traversal, the CQ will be updated by the next queue (line 13).

Another BFS design is the bottom-up approach [3], described in
Algorithm 2. The major difference between these two methods is
that each vertex in the CQ tries to set all its unvisited neighboring
vertices as its children in the top-down approach (line 7–12 in
Algorithm 1) while each unvisited vertex searches for one vertex
from the CQ as its parent in the bottom-up approach (line 7–12 in
Algorithm 2). The top-down approach will always visit |E|cq (the
number of edges in CQ) edges while the bottom-up approach at
most visits |E|un (the number of edges that have not been visited)
edges.

Algorithm 1: top-down approach for BFS
Input: V is the set of vertices;

E is the set of edges;
vs is the source vertex;
CQ is the current queue for vertices;
NQ is the next queue for vertices.

Output: Pred is the predecessor map.
1 CQ ← vs
2 for vi ∈ V do
3 Pred[vi] ← −1
4 Pred[vs] ← vs
5 while CQ ≠ ∅ do
6 NQ ← ∅
7 for u ∈ CQ do
8 for v ∈ V and (u, v) ∈ E do
9 if Pred[v] = −1 then

10 NQ ← NQ ∪ v
11 Pred[v] ← u
12 continue

13 CQ ← NQ

Algorithm 2: bottom-up approach for BFS
Input: V is the set of vertices;

E is the set of edges;
vs is the source vertex;
CQ is the current queue for vertices;
NQ is the next queue for vertices.

Output: Pred is the predecessor map.
1 CQ ← vs
2 for vi ∈ V do
3 Pred[vi] ← −1
4 Pred[vs] ← vs
5 while CQ ≠ ∅ do
6 NQ ← ∅
7 for v ∈ V do
8 if Pred[v] = −1 then
9 for u ∈ CQ and (v, u) ∈ E do

10 NQ ← NQ ∪ v
11 Pred[u] ← v
12 break

13 CQ ← NQ

2.2. Combination of top-down and bottom-up

For most real-world graphs [3], the number of vertices and
edges in the CQ are often small at first, then increase and peak
in the middle, and finally become small again (Figs. 2 and 3).
The large number of vertices in CQ are a better candidate for the
bottom-up approach because each unvisited vertex will terminate

Y. You et al. / J. Parallel Distrib. Comput. 108 (2017) 95–105 97
Fig. 2. The number of vertices in CQ is small at first, then increases and peaks in
the middle. For each graph, the number of vertices is 2SCALE , the number of edges is
2SCALE+4 .

Fig. 3. The number of edges in CQ is small at first, then increases and peaks in
the middle. For each graph, the number of vertices is 2SCALE , the number of edges is
2SCALE+4 .

Fig. 4. In the beginning bottom-up takes more time than top-down. In the middle
bottom-up is faster than top-down. Finally bottom-up becomes slower than top-
down.

the traversal once its parent is found. With more vertices in CQ,
the unvisited vertex can find its parent easier. On the contrary, an
increasing number of vertices in the CQ has a negative effect on
the top-down approach since the number of edges to travel (|E|cq)
is increasing.

Fig. 4 shows that bottom-up is much slower than top-down at
first. This is because bottom-up has to travel a large number of
unvisited edges while the top-down only needs to visit a small
number of edges in the CQ. As the level increases, the number
of vertices in CQ become larger and peak in the middle. Thus,
bottom-up becomes faster than top-down. In the final levels, top-
down is slightly better than bottom-up because the number of
Fig. 5. This is the illustration of switching point. When the number of edges in
CQ (|Ecq|) is sufficiently large (≥ |E|/M) or the number of vertices in CQ (|Vcq|)
is sufficiently large (≥ |V |/N), the program switches to bottom-up. Otherwise, it
switches to top-down.

2

1

0 1 2 3 4 x

y

Fig. 6. This figure illustrates a simple case of regression analysis. Suppose the
training vector X only has one feature, i.e., X can be seen as a scalar. The red nodes
are training samples, which we use to generate a model. The model is represented
by the line in the figure. Once a new X (e.g. X = 3) is obtained, we can predict its
target value using the model. The blue triangle is an example of prediction, and the
black square is the true value. In practice, there is a difference between the predicted
and the true values. A well-trained regression model can minimize this difference.

vertices in CQ decreases significantly compared to themiddle part.
To improve performance, Beamer et al. [3] proposed a combination
technique that can switch between top-down and bottom-up. To
show the switching point between top-down and bottom-up, we
define two parameters, i.e.,M andN . When the number of edges in
CQ (i.e. |E|cq) is less than |E|/M and the number of vertices in CQ
(i.e. |V |cq) is less than |V |/N , BFS switches to top-down. Otherwise,
it switches to bottom-up (Fig. 5).

2.3. Regression analysis

Regression analysis [14] is a statistical technique used to
model the relationship between a scalar target variable y and a
vector sample X . A regression model is first generated based on
the training data. The training data contains two parts: Xi, i ∈
1, 2, . . . , n and yi, i ∈ 1, 2, . . . , n. Xi is a training sample (vector)
that contains many features. yi is the target value that corresponds
to one and only one training sample Xi. n denotes the number of the
training samples (or the target values). A regression model is the
relationship between y and X . For example, a functionwhose input
is a sample and output is a target value. In practice, the target value
of a new sample is often unknown. Thus, the regression model can
be used to predict the target value based on the information of
a new sample. Fig. 6 is a simple example of regression analysis.
Fig. 10 is the regression model used in this paper.

In this paper, we use Support Vector Machine (SVM) [11]
regression. The reason we select SVM over other regression
approaches is that SVM is a good candidate for parallel processing
on Many-Core architectures and distributed systems [6,30,28,27,
29]. SVM can also get good prediction accuracy even with small
number of training samples [11]. A practical open-source SVM and
a detailed tutorial can be found in [19].

98 Y. You et al. / J. Parallel Distrib. Comput. 108 (2017) 95–105
Table 1
Related terms used in Graph 500 [15].

Terms Descriptions

TEPS Traversed Edges Per Second, the performance metric
of BFS

SCALE The logarithm base two of the number of vertices
2SCALE The number of vertices
edgefactor Half the average degree of a vertex in the graph
2SCALE

× edgefactor The number of edges
A, B, C,D Statistical parameters used in graph construction

(Section 6)

2.4. Graph 500

In the last decade, we observe that data-intensive applications
are becoming more and more popular. However, the 3D-physics
simulations based applications may not be the most suitable
benchmark for them. Therefore, Graph 500 [15] was proposed to
be the first serious approach to augment the Top 500 with data-
intensive applications.

Graph 500 [15] is a benchmark for evaluating the supercom-
puter based on data-intensive application. It has two kernels: ker-
nel 1 constructs a Recursive MATrix (R-MAT) scale-free graph [7];
kernel 2 does the Breadth-First Search from a randomly chosen
source vertex in the graph. The ranking of Graph 500 is based on
the performance of the second kernel. The terms in Table 1 are used
to describe the evaluated graph and performance metric of Graph
500. We will use the same terms in this work.

2.5. Related terms and parameters

We use the Graph 500 benchmark [15] to describe the graph
information and performance metric, the related terms are in
Table 1. Our experiments are based on the popular Multi-Core
(8-core Intel Sandy Bridge CPU) and Many-Core (61-core Intel
Knights Corner MIC and 2496-core NVIDIA Kepler K20x GPUs)
architectures. The related parameters of these architectures are
listed in Table 2.

3. Architectures overview

In this paper, we do performance scaling for BFS on three of the
currently most advanced Multi-core and Many-core architectures
including NVIDIA Kepler K20x GPU, Intel Sandy Bridge CPU and
Intel Knights Corner MIC or Xeon Phi co-processor. The related
parameters of these architectures are listed in Table 2.
Table 2
Architecture parameters.

Architecture CPU MIC GPU

Frequency (GHz) 2.00 1.09 0.73
DP peak performance (Gflops) 128 1010 1320
SP peak performance (Gflops) 256 2020 3950
L1 cache (kB) 32/core 32/core 64/SM
L2 cache (kB) 256/core 512/core 1536/card
L3 cache (MB) 20/socket 0 0
Coherent cache L3 L2 L2
Theoretical bandwidth (GB/s) 51.2 352 250
Measured bandwidth (GB/s) 34 159 188
SP RCMB (flops/B) 7.52 12.70 21.01
DP RCMB (flops/B) 3.76 6.35 7.02

3.1. Memory hierarchy

3.1.1. Xeon-family processors
The Sandy Bridge architecture used for scaling and analysis is

shown in Fig. 7. It is composed of one Xeon E5-2560 CPU socket
with eight x86 cores in total. Each core has a 64 kB private L1
cache (32 kB data cache + 32 kB instruction cache) and a 512 kB
private L2 cache. Additionally, each CPU socket is equippedwith an
extra 20 MB coherent L3 cache which is shared by all the 8 cores.
In addition to the limited high-speed three-level cache, each CPU
has four memory channels, which provides 51.2 GB/s theoretical
bandwidth for the whole system.

Similar to the Sandy Bridge architecture, our Intel Knights Cor-
ner MIC ((a) in Fig. 7) consists of many x86 cores, Quickpath Inter-
connect (5.5 GT/s) and several memory controllers. Nevertheless,
there are several distinct differences between these two architec-
tures: (1) the KNC MIC provides a significantly larger number of
cores than the Sandy Bridge CPU (61 versus 8); (2) the MIC core
is based on the Intel P54 (the first generation of Pentium) micro-
architecture, which is much simpler than the Sandy Bridge core;
(3) for memory bandwidth, KNC MIC provides 352 GB/s theoreti-
cal bandwidth (5.5 GTransfers/s× 16 channels× 4B/Transfer) and
159 GB/s practical bandwidth (STREAM benchmark), which are al-
most five times of that of Sandy Bridge; (4) MIC does not have L3
cache but has 31 MB coherent L2 cache (512 kB per core).

3.1.2. GPU
We introduce the Kepler architecture on the basis of Fermi

architecture, which is the predecessor of our evaluated architec-
ture. Each Fermi GPU card is equipped with 14 streaming multi-
processors (SM). In each SM (Fig. 8), there is a 64 kB high-speed
on-chip buffer that can be configured as either 48 kB shared mem-
ory + 16 kB L1 cache (default), or the other way round. Each SM
Fig. 7. (a) Knights Corner MIC Architecture. Each MIC consists of 61 cores and a 31 MB coherent L2 cache. Each core has a 32 kB L1 data cache and a 32 kB L1 instruction
cache. (b): Sandy Bridge architecture. Each CPU socket is composed of eight x86 cores and 20MB coherent L3 cache. Each core has a 32 kB L1 data cache, a 32 kB L1 instruction
cache and a 256 kB L2 cache. (c) NVIDIA Kepler Architecture. Each streaming multiprocessor (SM) contains 192 cores, 64 kB on-chip combination of L1 cache and shared
memory, and a 1536 kB unified L2 cache.

Y. You et al. / J. Parallel Distrib. Comput. 108 (2017) 95–105 99
Fig. 8. NVIDIA Fermi Architecture. Each streaming multiprocessor (SM) contains 32 CUDA cores, 64 kB on-chip L1 cache+ shared memory and a 768 kB unified L2 cache.
also has a 12 kB read-only texture cache. Additionally, there is a
unified 768 kB L2 cache that is shared among all the SMs, and a
6 GB on-board GDDR5 memory with a bandwidth of 192 GB/s.

There are some notable architectural improvements in terms
of memory from Kepler over Fermi (Fig. 7): (1) users have an
additional option to divide 64 kB on-chip buffer to 32 kB+ 32 kB;
(2) the size of read-only texture cache increases from 12 kB to
48 kB; (3) the size of L2 cache doubles; and (4) the bandwidth of
global memory grows up to 250 GB/s.

3.2. Processing power

All our experimental architectures employ two-level paral-
lelism: task and data parallelism. For Sandy Bridge and Xeon Phi,
the task parallelism is achieved by scheduling multiple or many
hardware threads. The data parallelism benefits from on-core VPU
(Vector Processing Unit) or SIMD. In each CPU core, the 256-bit in-
struction can process 4 double precision operations or 8 single pre-
cision operations at a time. In eachMIC core, the 512-bit instruction
doubles the data parallelism. For GPU, the task parallelism comes
from the independent warps that are executed by 14 SMs. In each
warp (consists of 32 threads), the data-parallelism is achieved by
the computations performed by the 192 CUDA coreswithin the SM.
In order to get satisfactory performances, fully utilizing the two-
level parallelism and improving the occupancy rate of the comput-
ing resources are crucial.

4. Adaptive combination

We illustrate the adaptive combination technique in this
section, and then present the cross-architecture optimization in
Section 5. In order to obtain the best switching point between top-
down and bottom-up, we need to get the best settings for M and
N . We will only illustrate how to get the bestM . The best N can be
obtained the same way.

4.1. Algorithm and parallelism comparison

The computational complexity of the conventional top-down
approach is Θ(V + E) [10] and for a sparse graph with E = Θ(V)
is Θ(V). Since the bottom-up approach may need to check all the
vertices at each level, the time could be Θ(DV) (D is the maximum
level). Together with the time spent on edge exploration,
the computational complexity of the bottom-up approach is
Θ(DV + E). Because we are focusing on real-world graphs,
Θ(D) is extremely small and E = Θ(V). Thus, the computational
complexity of the bottom-up approach is also Θ(V).

In each level, top-down only travels the vertices in CQ while
bottom-up has to travel all graph vertices. Since the average degree
of vertices in our graph is constant (e.g. 16), the work for visiting
the edges of each vertex (line 8–12 in Algorithm 1 and Algorithm
2) can be considered constant. Therefore, the parallelism of top-
down and bottom-up are decided by the loop controls (line 7 in
Algorithm 1 and Algorithm 2). If we use a greedy scheduler [4],
the work and span of the outer loop control in the bottom-up
approach (line 7 in Algorithm 2) is Θ(V) and Θ(lgV) respectively.
Therefore, the parallelism of bottom-up approach at each level is
Θ(V/lgV). Similarly, the parallelism of top-down approach at each
level is Θ(VCQ /lgVCQ) where VCQ is the number of vertices in the
Current Queue. Because V is larger than VCQ , bottom-up has higher
parallelism than top-down.
Table 3
The best switching points (M) of different graphs on CPUs.

SCALE 21 21 21 22 22 22 23 23 23
edgefactor 8 16 32 8 16 32 8 16 32
BestM 60 114 73 275 258 54 258 97 56

4.2. Bottleneck analysis

4.2.1. Ratio of computation to memory access (RCMA)
BFS can be seen as a specific case of Sparse Matrix–Vector

multiplication (SpMV) [5]. Take y = Ax for example, y is a dense
vector that represents NQ , A is the adjacency matrix of the graph,
and x is a dense vector that represents CQ . x(u) = 1 means vertex
u is in the CQ and x(u) = 0 indicates the opposite. y(u) ≥ 1means
that vertex u is in the next queue and y(u) = 0 suggests the
opposite. As for the sparse matrix A, A[u][v] = 1 means that there
is an edge from vertex u to vertex v.

For an n×nmatrix, to complete amatrix–vectormultiplication,
the processors need to fetch (n× n+ n) elements from the
memory. To compute an element of the result vector (e.g. y(u)), the
processorsmust do nmultiply operations and n−1 add operations.
Therefore, the processor has to do n × (2n − 1) operations to
compute y. If an integer is 4 bytes, the RCMA is n×(2n−1)

4×(n×n+n) = 0.5
(computed by Eq. (1)).

RCMA =
num_of _flops_for_computation

num_of _bytes_for_memory_access
. (1)

4.2.2. Ratio of computation to memory bandwidth (RCMB)
Similar to RCMA (Eq. (1)), the RCMB of a specific architecture

is defined in Eq. (2). Compared to the RCMBs of the evaluated
architectures (Table 2), the algorithmic RCMA is much lower. For
example, the RCMB of Intel Knights Corner MIC is 12.7 while the
RCMA of our algorithm is about 0.5, which means the limited
memory bandwidth may not match the high processing power
required for BFS exploration.

RCMB =
theoretical_peak_performance
theoretical_memory_bandwidth

. (2)

4.3. Influencing factors of the best switching point

Previous research shows that different graphs have different
best switching points on the same platform [3]. After extending
the search range of the best switching point (from [1, 30]
to [1, 300]), we find that the best switching point changes
significantly among different graphs (Table 3). We also find that
the platforms have a significant impact on selecting the best
switching point. For the same graph, using the best switching point
of CPUs for GPUs can lead to 2×–3× performance decrease. This
is because bottom-up and top-down have different parallelism
(Section 4.1) and memory-access patterns. In general, the best
switching point of the combination method is closely related to
the graph information and the experimental platform information.
Specifically, in our experiment, the graph information includes the
number of vertices, the number of edges, and the four statistical
parameters used in graph construction (A, B, C , D in Table 1).
The architecture information includes the peak performance, the
memory bandwidth, and the L1 cache size (Fig. 10). Because

100 Y. You et al. / J. Parallel Distrib. Comput. 108 (2017) 95–105
Fig. 9. Each sample corresponds to the information of one BFS traversal (graph and architectures). For the off-line approach, we use exhaustive search to get the target value
(best M) for each sample. The regression model is then generated through the training based on these samples and their corresponding target values. For the on-line case
(at runtime), we use the regression model to predict the bestM for the BFS traversal based on the new graph and the new architecture information.
the graph and platform information consist of more than ten
parameters in our experiments, it is almost impossible to predict
the best switching point manually (e.g. develop a formula). Thus,
we use regression to predict the best switching point in real time.

4.4. Getting the switching point through regression analysis

To implement the regression method (Section 2.3), we need
to know what information to include in the training sample
X and target value y. As illustrated in Fig. 10, each training
sample Xi corresponds to the information of one graph traversal.
Specifically, each sample contains the graph information (Gi),
top-down architecture information (Arch − TDi), and bottom-up
architecture information (Arch − BUi). Arch − TDi and Arch −
BU i are the same if top-down and bottom-up are on the same
architecture. The target value yi of Xi is the best switching point for
exploring Gi on Arch − TDi and Arch − BU i. For example, suppose
the peak performance, L1 cache size, and the memory bandwidth
of Arch−TDi are 512 Gflops, 512 kB, and 100 GB/s respectively. For
Arch−BU i, they are 1024Gflops, 768 kB, and 128GB/s. The number
of vertices, number of edges, A, B, C , and D of Gi is 32 million, 256
million, 0.57, 0.19, 0.19, and 0.05, respectively. The best switching
point is 96. In this case, the training sample is (96: 32, 256, 0.57,
0.19, 0.19, 0.05, 512, 512, 100, 1024, 768, 128).

Illustrated in Fig. 9, the regression process can be divided into
two stages: off-line training and on-line prediction. We can get
the model from the training stage and use the model to make
predictions in the prediction phase. Although generating a model
can be time-consuming, it is a one-time cost. Once we have a
model, it can be used for different BFS traversals at runtime.

The training stage can be described by the following steps:

step (1) For a test graph Gi that is explored by top-down on
architecture A − TDi and bottom-up on architecture A −
BU i, we run the algorithm repeatedly using all possible
switching points (M1,M2 . . .Mn in Fig. 9). At the same
timeweuse an exhaustive search to get the best switching
point (M) resulting in maximum performance.

step (2) We use Gi, A− TDi, and A− BU i to build a training sample
Xi (Fig. 10).M is the target variable of Xi, which is referred
to as yi.

step (3) We can produce N training samples (N = 140 in our
experiment) and their target variables. The regression
model is generated through the training based on these
samples and target variables.

More information about this machine learning process can
be found in [19]. For on-line prediction at runtime (left part of
Fig. 9), the program can use the regression model to predict the
Fig. 10. Each training sample contains the graph and the architecture information.
V and E are the number of vertices and edges respectively. A, B, C , D are the
parameters used in graph construction (Table 1). P1, L1, and B1 are the peak
performance, L1 cache size, and memory bandwidth, respectively, of the platform
that top-downmethod runs on. P2, L2, B2 are those of the platform that bottom-up
method runs on.

best M based on the new sample information. The new sample
corresponds to the information of a new graph traversal. The
format of this new sample is identical to the format of the training
sample (Fig. 10), which includes the information of the new graph,
the new top-down and the new bottom-up architectures. The
program then usesM as the best switching point for the new graph
traversal (Algorithm 3).

4.5. Effects of the regression method

In previous naive combinations [16,3], for a new graph the
switching point has to be set manually. From a statistical perspec-
tive, regression prediction is more reliable than guessing. Naive
combination needs repeated trial-and-error experiments [3]. Al-
though trial-and-error could find a good switching point (90% of
the best performance in [3]), it cannot be used in practice because
the best switching point needs to be searchedmanually from thou-
sands of possible cases. Moreover, cross-architecture combination
requires more complicated switching points, which is extremely
hard to do via manual trial-and-error. Automatic trial-and-error is
exhaustive search (hybrid-oracle in [3]), which can get the best so-
lution through searching all the possible cases. However, it cannot
be used at runtime because it is extremely time-consuming. For
example, searching among 1000 possible points will at least take
1000× of BFS execution-time. Compared to exhaustive search, re-
gression prediction is much faster. The execution-time of regres-
sion prediction is less than 0.1% of BFS execution-time. The training
process is a one-time cost. We just need to train the SVM regres-
sionmodel once anduse save themodel file. At runtime,we can use
the SVM regression model thousands of times without re-training
the model. On the other hand, the training time of SVM regression
is much less than the large-scale graph traversal. For example, the
training of 1000 switching points by standard parallel SVM regres-
sion software on a 12-core Ivy Bridge socket takes less than 1 s (be-
cause the training dataset is just like a 1000-by-10 matrix).

To further evaluate our regression method, we select the
switching points from 1000 possible cases for each graph traversal
and summarize the results in Fig. 11. For each graph traversal, three
methods are used to select the best switching point: (1) random

Y. You et al. / J. Parallel Distrib. Comput. 108 (2017) 95–105 101
Fig. 11. For each graph, the switching points are selected from 1000 possible cases. Random shows the performance when picking the switching point randomly. Average
represents the average performance over 1000 switching points. Regression shows the performance when using the regression method to predict the switching point.
Exhaustive shows the performance when the switching point is obtained via exhaustive search, which is the theoretical best. The speedups on the vertical coordinate are
over the worst case. The value on top of each bar is the speedup over the Random case. The platform is Intel Sandy Bridge architecture, which has two sockets. Each socket
has eight cores.
Table 4
Step-by-step optimization, level time is measured in seconds, the evaluated graph has 8 million vertices and 128 million edges. TD: top-down, BU: bottom-up, CB:
combination of top-down and bottom-up.

Approach GPUTD GPUBU GPUCB CPUTD CPUBU CPUCB CPUTD+GPUBU CPUTD+GPUCB

Level 1 time 0.000230 0.438904 0.000230 TD 0.000779 0.053730 0.000728 TD 0.002151 CPUTD 0.002239 CPUTD
Level 2 time 0.157750 0.131876 0.021164 TD 0.001945 0.032186 0.001208 TD 0.002731 CPUTD 0.002608 CPUTD
Level 3 time 0.155881 0.010673 0.008493 BU 0.074355 0.015300 0.015643 BU 0.005293 GPUBU 0.005922 GPUBU
Level 4 time 0.261753 0.002783 0.002675 BU 0.072465 0.012448 0.011732 BU 0.002288 GPUBU 0.002424 GPUBU
Level 5 time 0.044015 0.001590 0.001600 BU 0.011941 0.006933 0.006914 BU 0.001653 GPUBU 0.001658 GPUBU
Level 6 time 0.000882 0.001474 0.001502 BU 0.000980 0.005121 0.005515 BU 0.001601 GPUBU 0.001596 GPUBU
Level 7 time 0.000233 0.001468 0.001498 BU 0.000705 0.004987 0.005406 BU 0.001602 GPUBU 0.000286 GPUTD
Level 8 time 0.000229 0.001466 0.000237 TD 0 0.004972 0.000716 TD 0.001599 GPUBU 0.000234 GPUTD
Level 9 time 0 0.001466 0.000230 TD 0 0 0 0 0.000230 GPUTD
Total time 0.620973 0.591701 0.037629 0.163170 0.135677 0.047862 0.018918 0.017196
Speedup 1.0× 1.1× 16.5× 3.8× 4.6× 13.0× 32.8× 36.1×
(Random); (2) regression prediction (Regression), which is based
on 140 training samples; (3) exhaustive search (Exhaustive). We
also calculate the average performance of these 1000 switching
points (Average). In our experiment, the average performance
of Regression is 95% of Exhaustive, which is the theoretical best
performance (Fig. 11). The prediction accuracy will be higher with
more training samples [4]. The average speedup of Regression
over Random is 6×. On the other hand, Regression has 695×
and 7× speedup over the worst switching point and Average
(Fig. 11), which means a mistuned switching point can have
a significant influence on the overall performance for cross-
architecture combination. Therefore, the regression technique can
get perfect performance with little runtime overhead.

5. Cross-architecture combination

We first do combination on a single architecture (CPUs, GPUs,
andMIC). The combination technique for graph traversal performs
better on GPUs compared to CPUs. Take a graph with 8 million
vertices and 128 million edges as an example (Table 4), the
combination technique (GPUCB) achieves speedups of 16.5×
and 15.7× over top-down (GPUTD) and bottom-up (GPUBU),
respectively. On the CPU, the speedup is 3.4× and 2.8× over top-
down (CPUTD) and bottom-up (CPUBU) respectively. There are two
main reasons behind this.

From Table 4, we find that 97% of GPUBU time is spent on
the first two levels, which is the main reason behind the lower
performance compared to CPUBU. In the first level, only the source
vertex is in CQ (line 1 in Algorithm 2). For a better bottom-
up implementation, we use the CSR (Compressed Sparse Row)
format [3] to store the graph and use bitmap [1] for the CQ.
In this case, each vertex has to visit almost all of its edges to
decide whether the source vertex is its neighbor or not. Therefore,
bottom-up has to fetch all the data (vertices and edges) from
memory in the first level (line 7–9 in Algorithm 2). As mentioned
in Section 4.2.2, the RCMA of BFS is much lower on the RCMB
of our architectures. Because of being memory-bound, higher
architectural RCMB will intensify the mismatch between the
application and architecture. Thus, GPUBU pays a severe penalty.

Table 4 shows that 99.7% of GPUTD time is spent on the middle
four levels (level 2–5). This is similar to CPUTD, which spends
98.5% of the time on the middle four two levels (level 2–5);
the reason is elaborated in (Section 2.2). For both GPUTD and
GPUBU, the time spent on each level is extremely imbalanced.
However, this characteristic also makes GPU a good candidate for
the combination technique.

In the following we further analyze the combination on GPU
(GPUCB) and the combination on CPU (CPUCB) (Table 4). In the
first two steps, both GPU and CPU use top-down, where the
CPU has 11× speedup over GPU. From level 3 to 7, both GPU
and CPU use bottom-up and the GPU achieves 3× speedup over
CPU. As mentioned in Section 4.1, this is because bottom-up
provides higher parallelism and thus is more suitable for the
massive lightweight threads on GPUs. Since 57% of GPUCB time
is spent on the first two levels, using CPUTD to replace GPUTD
in the first few levels is extremely necessary for performance
improvement. Thus, the two BFS approaches are combined across

102 Y. You et al. / J. Parallel Distrib. Comput. 108 (2017) 95–105
Fig. 12. This figure shows the performances for different graphs achieved by different versions of combinations. For each graph, the number of vertices is 2SCALE and the
number of edges is edgefactor × 2SCALE . The value on top of each bar is the speedup over the MIC combination.
Table 5
Speedups of CPUTD+GPUCB over GPUTD for certain graphs.

|V | 2M 2M 2M 4M 4M 4M 8M
|E| 32M 64M 128M 64M 128M 256M 128M
Speedup 44× 75× 155× 37× 35× 67× 36×

the architectures, which allows CPU to do top-down and GPU to
do bottom-up (CPUTD+GPUBU in Table 4). CPUTD+GPUBUachieves
32.8× speedup over GPUTD.

At levels 8 and 9 of GPUCB and CPUCB, both GPU and CPU
switch back to top-down. However, GPU becomes faster than CPU.
We believe this is because of the low number of vertices and
edges in the CQ since processors do not have to fetch a large
amount of data from memory. In the compute-intensive scenario,
with stronger processing power and memory bandwidth, GPU
has certain advantages over CPU. Therefore, it is meaningless for
the CPU+GPU solution to switch back to CPU in the last levels.
For better performance, the CPU+GPU solution switches from
GPUBU to GPUTD in the last few levels since GPUTD is faster
than GPUBU when the number of vertices and edges is small
(Table 4). Our best solution is CPUTD+GPUCB, which achieves
from 35× to 155× (average is 64×) speedup over GPUTD for a
series of test graphs (Table 5). The CPU–GPU cross-architecture
combination achieves 8.5×, 2.6×, and 2.2× average speedup
over the MIC, CPU, and GPU combination respectively (Fig. 12).
This proves that the cross-architecture combination is necessary
for performance improvement. The CPUTD+GPUCB solution is
described in Algorithm 3.

6. Experimental results and analysis

6.1. Implementation details

We use the CSR (Compressed Sparse Row) format to store the
graph and bit-map or bool-map to store the queue vector. The
compilers are CUDA 5.5 and icc 14.0.2. Multi-threading on CPUs
andMIC are based onOpenMP. The implementations are evaluated
based on the R-MAT graph used in the Graph 500 benchmark [15].
The R-MAT graph is a scale-free graph generated by the Kronecker
generator. The graph is divided into four partitions. The initial
graph is empty, and edges are added to the graph one by one.
Each edge selects one of the four partitions with probabilities A,
B, C and D. To generate a specific kind of graph, the users need
to set the parameters A, B, C , and D. In our experiment, we set
A = 0.57, B = 0.19, C = 0.19, and D = 0.05 respectively. The
random numbers used in Fig. 11 are based on the rand() function
of C stdlib.h library.
Algorithm 3: CPU + GPU Combination
Input: Graph Information (GI)

CPU Information (CPUI)
GPU Information (GPUI)

1 (M1,N1)← RegressionModel(GI, CPUI, GPUI)
2 (M2,N2)← RegressionModel(GI, GPUI, GPUI)
3 BFS Initialization
4 while ture do
5 if CQ = ∅ then
6 break
7 else
8 calculate |E|cq and |V |cq
9 if |E|cq < |E|/M1 and |V |cq < |V |/N1 then

10 do the top-down on CPU
11 else
12 while ture do
13 if |E|cq < |E|/M2 and |V |cq < |V |/N2 then
14 do the top-down on GPU
15 else
16 do the bottom-up on GPU
17 if CQ = ∅ then
18 break
19 else
20 calculate |E|cq and |V |cq

6.2. Strong and weak scaling

The strong scaling results (Fig. 13(a)) show that performance
grows with increasing number of cores. Since the larger graphs in
the weak scaling test generally increase the usage of computation
units (from one core to multiple cores), it is beneficial to reduce
the memory-bound overhead. Thus, our implementation obtains a
good weak scaling (Fig. 13(b)).

6.3. MIC performance

In our experiments, the 8-core single socket CPU has an average
3.3× speedup over the 60-coreMIC. Since both CPU andMIC show
good strong scaling (Fig. 13(a)), we believe the reason behind the
performance gap between CPU and MIC is the difference between
their serial versions, which is decided by the single core capacities.

Y. You et al. / J. Parallel Distrib. Comput. 108 (2017) 95–105 103
(a) Strong scaling. (b) Weak scaling.

Fig. 13. (a) The results in this figure are based on the graph with 4 million vertices (SCALE= 22) and varied edges (4× edgefactor million). (b) Each CPU core loads 1 million
vertices and edgefactor million edges. Each MIC core loads 0.25 million vertices and 0.25× edgefactor edges. As the number of cores increases, the total workload increases
while the workload of each core remains the same.
Table 6
Average performances for different data size on different architectures (GTEPS).

Architectures 2M vertices 4M vertices 8M vertices

CPU/GPU/MIC 3.06/6.32/1.64 6.14/6.23/1.55 5.66/5.00/1.33

A MIC core is much simpler compared to a Sandy Bridge core
because it is based on the Intel P54 (the first generation of Pentium)
micro-architecture. Take the graph with 4 million vertices as an
example, the serial version on CPU has a 20.6× average speedup
over MIC for a variety of edgefactors (16, 32, 64). We think that
the significant difference comes from three major factors: the first
is the 2× clock rate difference between the CPU and the MIC; the
second is that the MIC core cannot execute two instructions from
the same thread in consecutive cycles, which would add another
factor of 2; the third reason is the absence of an L3 cache and the
lack of support for out-of-order execution in the MIC core, which
accounts for another factor of 5. One the other hand, we use the
same source code for CPU and MIC without specific optimizations
for MIC. SIMD does lead to performance enhancement in our
approach because it greatly increases the number of edges to
travel. Thus, we abandon the SIMD optimization for the major
computation part. This, however, may have the most impact on
MIC becauseMIC is 512-bit SIMD,whichwould have been a unique
advantage. This maybe another reason why the performance of
MIC is much lower than CPU and GPU (see Table 6).

6.4. Comparison against other implementations

The highest published performance on CPUs and GPUs is
achieved by Beamer et al. [3]. Our approach achieves an average
1.12× speedup over theirs on similar architectures (16-core
Sandy Bridge CPUs) for R-MAT graphs. However, this is not
our major contribution, we only want to justify that our CPU
implementation is state-of-art. Beamer’s switching points are
obtained through trial-and-error and exhaustive search, which
cannot be used in practice. The highest published performance on
MIC is reported by Gao et al. [23]. Their best reported performance
is 0.14 GigaTEPS for a graph with 64 million vertices and 1024
million edges. We achieve a 13× speedup for the same graph and
on the same platform. The Graph 500 benchmark also provides
parallel implementation source codes, we run them on an 8-
core CPU platform to provide a point-to-point comparison. Our
CPU implementation achieves 4.96 − 21.0× (average is 11.0×)
speedups over theirs.

These comparisons justify that our regression-analysis ap-
proach is effective on different architectures. The additional
speedups achieved by adding the cross-architecture technique jus-
tify the added optimizations are highly efficient. For example, our
cross-architecture combination achieves 16.4− 63.2× (average is
29.3×) speedups over the Graph 500 implementations.

7. Related work

We [2] previously proposed a level synchronized parallel algo-
rithm based on Cray MTA-2, which makes full use of the massive
fine-grained threads and low overhead synchronization provided
by the system. Merrill et al. [21] achieved a fine-grained par-
allelization through efficient prefix sum on GPUs. Leiserson and
Schardl [17] designed an original multi-set data structure, called
bag, to replace the conventional FIFO queue. Agarwal et al. [1] de-
veloped an efficient multi-socket algorithm with optimizations on
the memory locality and cache utilization. Chhugani et al. [9] did
a series of architectural optimizations (e.g. lock-free, atomic-free,
vertices rearrangement) tomaximize the single-node efficiency on
a dual-socket CPUs platform. Li et al. [18] proposed a runtime sys-
tem able to dynamically transition between different implemen-
tations on GPUs. Nasre et al. [22] designed a hybrid approach of
data-driven and topology-driven for graph algorithms on GPUs.

Beamer et al. [3] and Hong et al. [16] are the closest work
to ours. In [3] the authors apply a combination of top-down and
bottom-up approaches only on CPU. In [16] the authors apply the
combination of purely top-downmethods on CPU and also use the
same combination strategy on GPU. In our approach, the hybrid
method applies the top-down method on CPU and the bottom-
up/top-downmixed method on GPU. To our knowledge, this is the
first attempt to use different architectures for combining the top-
down and bottom-up. Compared to trail-and-error or exhaustive
search based heuristics (e.g. hybrid-oracle method in [3]) in their
work, more importantly, we propose a fast and accurate switching
strategy based on regression. The regression technique is able to
put the combination method into practice since it ensures perfect
performance (at least 95% of best performance with 140 training
samples) and brings little runtime overhead (less than 0.1% of
BFS execution-time). Lin et al. [20] designed and implemented
an adaptive system to get the optimal approach for the suitable
devices (e.g. GPUs and CPUs). Their approach can get 1.6X speedup
comparedwith the state-of-the-art implementation if we consider
the energy consumption (Traversed Edges Per Second everyWatt).
This paper does not conduct research on energy consumption, thus
we did notmake comparisonwith [20]. There are also some related
works on accelerating graph applications on multicore/many-core
architectures [8,26].

8. Future work

We plan to extend our research on the following three aspects:
(1) design and implement energy-efficient algorithm and make a

104 Y. You et al. / J. Parallel Distrib. Comput. 108 (2017) 95–105
comparison with [20]. (2) furthermore exploit the computation
power of SIMD for both MIC and CPU architecture. (3) study the
fundamental effect of Intel MIC’s architecture (e.g. absence of L3
cache, pipelined execution and out-of-order execution).

9. Conclusion

In order to get the best switching point automatically in real
time, we propose a combination technique based on regression
analysis, which is much more convenient and time-efficient
compared to previous trail-and-error or exhaustive search based
approaches. Our approach can achieve 7× speedup over the
switching point in average case (1000 switching points) and
only increases less than 0.1% of the execution time while the
exhaustive search may increase the execution time a thousand
times. Furthermore, our cross-architecture combination efficiently
uses the popular heterogeneous platforms and greatly improves
the performance of BFS, and the average additional speedup is
3× behind different architectures.

Although the flops peak performance of GPUs is much better
than that of CPU, CPUs achieves better performance for graphs
with large data sizes. This is because CPU is equipped with a more
matchable memory bandwidth than the computation-intensive
GPUs. For MIC, the lower clock rate, constrained instruction-
execution scheme, and reduced cache size make the performance
of the serial version much worse than that of CPU, which is one of
the major reasons for the low overall performance.

Acknowledgments

The authorswould like to thank the reviewers for their valuable
comments that lead to the improved quality of the article. The
financial support from National Natural Science Foundation of
China (GrantsNo. 61303003 andNo. 41374113) andNationalHigh-
techR&D (863) Programof China (GrantNo. 2013AA01A208) is also
gratefully acknowledged. Dr. David A. Bader is partially supported
by the NSF Grant ACI-1339745 (XScala) and the Defense Advanced
Research Projects Agency (DARPA) under agreement #HR0011-13-
2-0001. The content, views and conclusions presented in this paper
do not necessarily reflect the position or the policy of DARPA or
the US Government, no official endorsement should be inferred.
Distribution Statement: Approved for public release; distribution
is unlimited.

References

[1] V. Agarwal, F. Petrini, D. Pasetto, D.A. Bader, Scalable graph exploration on
multicore processors, in: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, IEEE Computer Society, 2010, pp. 1–11.

[2] D.A. Bader, K. Madduri, Designing multithreaded algorithms for breadth-first
search and st-connectivity on the CrayMTA-2, in: International Conference on
Parallel Processing, ICPP 2006, IEEE, 2006, pp. 523–530.

[3] S. Beamer, K. Asanovic, D. Patterson, Direction-optimizing breadth-first
search, in: 2012 International Conference for High Performance Computing,
Networking, Storage and Analysis, (SC), IEEE, 2012, pp. 1–10.

[4] R.D. Blumofe, C.E. Leiserson, Scheduling multithreaded computations by work
stealing, J. ACM 46 (5) (1999) 720–748.

[5] U.V. Catalyurek, C. Aykanat, A hypergraph-partitioning approach for coarse-
grain decomposition, in: ACM/IEEE 2001Conference on Supercomputing, IEEE,
2001, p. 42.

[6] B. Catanzaro, N. Sundaram, K. Keutzer, Fast support vector machine training
and classification on graphics processors, in: Proceedings of the 25th
International Conference on Machine Learning, ACM, 2008, pp. 104–111.

[7] D. Chakrabarti, Y. Zhan, C. Faloutsos, R-Mat: A Recursive Model for Graph
Mining, Computer Science Department, 2004, p. 541.

[8] L. Chen, X. Huo, B. Ren, S. Jain, G. Agrawal, Efficient and simplified parallel
graph processing over cpu and mic, in: 2015 IEEE International Parallel and
Distributed Processing Symposium, (IPDPS), IEEE, 2015, pp. 819–828.
[9] J. Chhugani, N. Satish, C. Kim, J. Sewall, P. Dubey, Fast and efficient graph
traversal algorithm for CPUs:Maximizing single-node efficiency, in: 2012 IEEE
26th International Parallel & Distributed Processing Symposium, (IPDPS), IEEE,
2012, pp. 378–389.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
3rd ed., The MIT Press, 2009.

[11] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995)
273–297.

[12] Y. Deng, B.D. Wang, S. Mu, Taming irregular EDA applications on GPUs,
in: IEEE/ACM International Conference on Computer-Aided Design, 2009,
ICCAD 2009, IEEE, 2009, pp. 539–546.

[13] J. Dongarra, Top500 list, June2013.URLhttp://www.top500.org/lists/2013/06/.
[14] N.R. Draper, H. Smith, E. Pownell, Applied Regression Analysis, Vol. 3, Wiley,

New York, 1966.
[15] Graph500, Graph500, 2013. URL http://www.graph500.org/.
[16] S. Hong, T. Oguntebi, K. Olukotun, Efficient parallel graph exploration onmulti-

core CPU and GPU, in: 2011 International Conference on Parallel Architectures
and Compilation Techniques, (PACT), IEEE, 2011, pp. 78–88.

[17] C.E. Leiserson, T.B. Schardl, A work-efficient parallel breadth-first search algo-
rithm (or how to cope with the nondeterminism of reducers), in: Proceedings
of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures,
ACM, 2010, pp. 303–314.

[18] D. Li, M. Becchi, Deploying graph algorithms on GPUs: An adaptive solution,
in: 2013 IEEE 27th International Symposium on Parallel & Distributed
Processing, (IPDPS), IEEE, 2013, pp. 1013–1024.

[19] C. Lin, Libsvm—a library for support vector machines, 2014. URL http://www.
csie.ntu.edu.tw/∼cjlin/libsvm/.

[20] H. Lin, J. Zhai, W. Chen, Energy-efficient graph traversal on integrated cpu-gpu
architectures.

[21] D. Merrill, M. Garland, A. Grimshaw, Scalable GPU graph traversal, in: ACM
SIGPLAN Notices, Vol. 47, ACM, 2012, pp. 117–128.

[22] R. Nasre,M. Burtscher, K. Pingali, Data-driven versus topology-driven irregular
computations on GPUs, in: 2013 IEEE 27th International Symposium on
Parallel & Distributed Processing, (IPDPS), IEEE, 2013, pp. 463–474.

[23] G. Tao, L. Yutong, S. Guang, Using MIC to accelerate a typical data-intensive
application: the breadth-first search, in: 2013 IEEE 27th International Parallel
and Distributed Processing SymposiumWorkshops & Ph.D. Forum, (IPDPSW),
IEEE, 2013, pp. 1117–1125.

[24] A. Vazquez, A. Flammini, A. Maritan, A. Vespignani, Global protein function
prediction from protein–protein interaction networks, Nature Biotechnol. 21
(6) (2003) 697–700.

[25] C.Wilson, B. Boe, A. Sala, K.P. Puttaswamy, B.Y. Zhao, User interactions in social
networks and their implications, in: Proceedings of the 4th ACM European
Conference on Computer Systems, ACM, 2009, pp. 205–218.

[26] Y. You, D. Bader, M.M. Dehnavi, Designing a heuristic cross-architecture
combination for breadth-first search, in: 2014 43rd International Conference
on Parallel Processing, (ICPP), IEEE, 2014, pp. 70–79.

[27] Y. You, J. Demmel, K. Czechowski, L. Song, R. Vuduc, Ca-svm: Communication-
avoiding parallel support vector machines on distributed systems.

[28] Y. You, J. Demmel, K. Czechowski, L. Song, R. Vuduc, Ca-svm: Communication-
avoiding support vector machines on distributed systems, in: 2015 IEEE
International Parallel and Distributed Processing Symposium, (IPDPS), IEEE,
2015, pp. 847–859.

[29] Y. You, H. Fu, S.L. Song, A. Randles, D. Kerbyson, A. Marquez, G. Yang, A. Hoisie,
Scaling support vector machines on modern hpc platforms, J. Parallel Distrib.
Comput. 76 (2015) 16–31.

[30] Y. You, S. Song, H. Fu, MIC-SVM: Designing a highly efficient support vector
machine for advanced modern multi-core and many-core architectures,
in: 2014 IEEE 28th International Symposium on Parallel & Distributed
Processing, (IPDPS), IEEE, 2014, pp. 809–818.

Yang You is a Siebel Scholar, and a master’s student at
Tsinghua University. He will be a Ph.D. student of UC
Berkeley working under Prof. James Demmel from Aug,
2015. His research includes Parallel Computing, Matrix
Computation, and Machine Learning. He is a winner of
IPDPS 2015 Best Paper award.

Haohuan Fu is an Associate Professor in the Ministry
of Education Key Laboratory for Earth SystemModeling,
and the Center of Earth System Science, at Tsinghua
University. His research interests mainly focus on the
high-performance computing applications in Earth and
Environmental sciences. Dr. Fu has a Ph.D. in computing
from Imperial College London. He is a member of IEEE.

http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref1
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref2
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref3
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref4
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref5
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref6
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref7
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref8
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref9
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref10
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref11
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref12
http://www.top500.org/lists/2013/06/
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref14
http://www.graph500.org/
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref16
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref17
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref18
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref21
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref22
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref23
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref24
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref25
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref26
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref28
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref29
http://refhub.elsevier.com/S0743-7315(16)30037-5/sbref30

Y. You et al. / J. Parallel Distrib. Comput. 108 (2017) 95–105 105
David A. Bader is a Full Professor and Chair of the
School of Computational Science and Engineering, College
of Computing, at Georgia Institute of Technology, and
Executive Director of High Performance Computing. He
received his Ph.D. in 1996 from The University of
Maryland, and his research is supported through highly-
competitive research awards, primarily from NSF, NIH,
DARPA, and DOE. Dr. Bader serves as a board member
of the Computing Research Association (CRA), on the
NSF Advisory Committee on Cyberinfrastructure, on the
Council on Competitiveness High Performance Computing

Advisory Committee, on the IEEE Computer Society Board of Governors, and on the
Steering Committees of the IPDPS and HiPC conferences. He is the editor-in-chief of
IEEE Transactions on Parallel and Distributed Systems (TPDS) and Program Chair
for IPDPS 2014. Bader also serves as an associate editor for several high impact
publications including IEEE Transactions on Computers (TC), ACM Transactions on
Parallel Computing (TOPC), and ACM Journal of Experimental Algorithmics (JEA).

Guangwen Yang is Professor of Computer Science and
Technology, Tsinghua University, Beijing, China. He re-
ceived the Ph.D. degree of the Department of Computer
Science, Harbin Institute of Technology University, China
in 1996. He is mainly engaged in the research of grid com-
puting and parallel and distributed computing.

	Designing and implementing a heuristic cross-architecture combination for graph traversal
	Introduction
	Background
	Two BFS approaches: top-down and bottom-up
	Combination of top-down and bottom-up
	Regression analysis
	Graph 500
	Related terms and parameters

	Architectures overview
	Memory hierarchy
	Xeon-family processors
	GPU

	Processing power

	Adaptive combination
	Algorithm and parallelism comparison
	Bottleneck analysis
	Ratio of computation to memory access (RCMA)
	Ratio of computation to memory bandwidth (RCMB)

	Influencing factors of the best switching point
	Getting the switching point through regression analysis
	Effects of the regression method

	Cross-architecture combination
	Experimental results and analysis
	Implementation details
	Strong and weak scaling
	MIC performance
	Comparison against other implementations

	Related work
	Future work
	Conclusion
	Acknowledgments
	References

