
A Dynamic Algorithm for Updating Katz Centrality
in Graphs

Eisha Nathan and David A. Bader
School of Computational Science and Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332

enathan3@gatech.edu, bader@cc.gatech.edu

Abstract—Many large datasets from a variety of fields of
research can be represented as graphs. A common query is
to identify the most important, or highly ranked, vertices in a
graph. Centrality metrics are used to obtain numerical scores for
each vertex in the graph. The scores can then be translated to
rankings identifying relative importance of vertices. In this work
we focus on Katz Centrality, a linear algebra based metric. In
many real applications, since data is constantly being produced
and changed, it is necessary to have a dynamic algorithm to
update centrality scores with minimal computation when the
graph changes. We present an algorithm for updating Katz
Centrality scores in a dynamic graph that incrementally updates
the centrality scores as the underlying graph changes. Our
proposed method exploits properties of iterative solvers to obtain
updated Katz scores in dynamic graphs. Our dynamic algorithm
improves performance and achieves speedups of over two orders
of magnitude compared to a standard static algorithm while
maintaining high quality of results.

I. INTRODUCTION

Graphs are a natural representation for modeling relation-
ships between entities, in web traffic, financial transactions,
computer networks, or society [1]. In real-world networks
today, new data is constantly being produced, leading to the
notion of dynamic graphs. Dynamic graph data can represent
the changing relationships in networks. For example, consider
a graph modeling relationships on Facebook, where vertices
are people and edges exist between two vertices if the corre-
sponding people are friends on Facebook. As new friendships
are formed and old ones deleted, the corresponding graph will
change over time to reflect these new relationships. The field of
dynamic graph analysis is a rapidly growing field. Specifically,
the identification of central vertices in an evolving network is a
fundamental problem in network analysis [2]. Development of
dynamic algorithms for updating centrality measures in graphs
is therefore an important research problem. In this work, we
present a new algorithm for updating Katz Centrality scores
in dynamic graphs.

Katz Centrality is a metric that measures the affinity be-
tween vertices as a weighted sum of the walks between
them and penalizes long walks in the network by a user-
chosen factor α [3]. The linear algebraic formulation of Katz
Centrality lends itself to a dynamic algorithm based in a
numerical linear algebra environment using iterative solvers.
We develop an algorithm that updates Katz scores as new
connections are made in the network.

A. Contributions

Previous algorithms for dynamic centrality measures have
focused on algorithmically updating the centrality metric by
using structural properties of the graph or by maintaining
additional data structures. However, there has been little work
in updating a centrality metric from a linear algebra standpoint.
We present a new method of incrementally computing Katz
Centrality scores in a dynamic graph that is faster than
recomputing centrality scores from scratch every time the
graph is updated. Furthermore, our algorithm returns high
quality results that are similar to results obtained with a simple
static recomputation method. To our knowledge, this is the first
work on dynamic Katz Centrality.

B. Related Work

Betweenness and closeness centrality are two popular graph
metrics in network analysis for identifying the most important
vertices in a graph using shortest-path calculations, with
specific applications in network stability, traffic predictions,
and social network analysis [4], [5]. A dynamic algorithm
to update both betweenness and closeness calculations si-
multaneously after receiving edge updates to the graph is
proposed in [6]. They use the calculations performed in pre-
vious timesteps to avoid performing unnecessary calculations
in the current timestep. In [7], an incremental algorithm for
closeness centrality is developed that exploits specific network
topological properties, such as shortest-distance distributions
and the existence of vertices with identical neighborhoods.
Finally, [8] proposes an incremental algorithm for updating
betweenness centrality values by maintaining additional data
structures to store previously computed values.

There has also been previous work in incrementally up-
dating linear algebra based centrality measures. In [9], the
eigenvalue formulation of PageRank is used to update the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASONAM ’17, July 31 - August 03, 2017, Sydney, Australia
c© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4993-2/17/07?/$15.00
http://dx.doi.org/10.1145/3110025.3110034

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

149

mailto:permissions@acm.org
http://dx.doi.org/10.1145/3110025.3110034

ranking vector using the power method. By using exact [10]
and approximate [11] aggregation techniques, the transition
matrix is efficiently updated after the graph is changed. How-
ever, this approach requires accessing the entire graph, which
can be very memory-inefficient. Incremental computation of
PageRank, personalized PageRank, and other random walk
based methods on large-scale dynamic networks is examined
in [12] using Monte Carlo methods by maintaining a small
number of short random walk segments starting at each node in
the graph. For the case of identifying the top k vertices, these
methods are able to provide highly accurate estimates of the
centrality values for the top vertices, but smaller values in the
personalized case are nearly identical and therefore impossible
to tell apart. In [13], an algorithm for updating PageRank
values in dynamic graphs by only using sparse updates to the
residual is presented. To the authors’ knowledge, there is no
prior work in developing a dynamic algorithm for updating
Katz scores in dynamic graphs.

We present our algorithm for updating Katz Centrality in
dynamic graphs in Section II. Section III provides an analysis
of our method on both synthetic and real-world networks with
respect to performance and quality. In Section IV we conclude.

II. METHODOLOGY

Many data analysis problems are phrased as numerical
problems for a more tractable solution [14]. In this work we
use a linear algebra based method to compute Katz Centrality
to obtain updated centrality scores on the vertices of a dynamic
graph.

A. Definitions

Let G = (V,E) be a graph, where V is the set of n vertices
and E the set of m edges. Denote the n×n adjacency matrix
A of G as

A(i, j) =

{
1, if (i, j) ∈ E,
0, otherwise.

We use undirected, unweighted graphs so ∀i, j, A(i, j) =
A(j, i) and all edge weights are 1. A dynamic graph can
change over time due to edge insertions and deletions and
vertex additions and deletions. As a graph changes, we can
take snapshots of its current state. We denote the current
snapshot of the dynamic graph G and corresponding adjacency
matrix A at time t by Gt = (Vt, Et) and At respectively. In
this work, the vertex set is constant over time so ∀t, Vt = V ,
and we deal only with edge insertions, although our algorithm
is easily generalized to edge deletions. Given edge updates to
the graph, we write the new adjacency matrix at time t+ 1 as
At+1 = At + ∆A, where ∆A represents the new edges being
added into the graph.

Katz Centrality scores count the number of weighted walks
in a graph starting and ending at each vertex and penalize
longer walks with a user-chosen parameter α, where α ∈
(0, 1/‖A‖2). Formally, the Katz centrality of vertex i is given
by eT

i

∑∞
k=1 α

k−1Ak1, where α is the user-chosen parameter,
ei is the ith canonical basis vector, and 1 is the n × 1

vector of all ones. In practice the Neumann formula [15]
is employed to turn this series into a linear solve and we
compute the Katz Centrality of all vertices in the graph as
the n× 1 vector c =

∑∞
k=1 α

k−1Ak1 = A(I − αA)−11. We
set α = 0.85/‖A‖2 as in [16].

B. Iterative Methods

Directly solving for the exact Katz Centrality scores c is on
the order of O(n3) and quickly becomes very expensive as n
grows large. In practice, we use iterative methods to obtain
an approximation which costs O(m) provided the number
of iterations is not very large. Many real-world graphs are
sparse and m � n2 [17]. Iterative methods approximate
the solution x to a linear system Mx = b, given M and
b by starting with an initial guess x(0) and improving the
current guess with each iteration until some stopping criterion
is reached. This stopping criterion can be a predetermined
number of iterations, a desired level of accuracy, or some
application-specific terminating criterion. At each iteration k
of the iterative solver we obtain a new approximation x(k). It
is fairly common to assume a starting vector x(0) as the all
zeros vector, although in practice, any starting vector can be
chosen. In this work, we terminate the solver when the residual
reaches a preset tolerance of 10−4, which is sufficient to obtain
convergence of scores [13]. The residual at the kth iteration is
defined as r(k) = b−Mx(k) and is a measure of how close
the current solution x(k) is to solving the system Mx = b. We
let M = I − αA, so we solve the linear system Mx = 1 for
x using an iterative method and then obtain the Katz scores
using a matrix-vector multiplication in O(m) as c = Ax.
The residual at iteration k is defined as r(k) = 1 −Mx(k).
The iterative method we use here is the Jacobi algorithm [18]
outlined in Algorithm 1. Here, D is the matrix consisting of
the diagonal entries from M and R is the matrix of all off-
diagonal entries of M .

Algorithm 1 Solve Mx = b to tolerance tol using Jacobi
algorithm.

1: procedure JACOBI(M,b, tol)
2: k = 0
3: x(0) = 0
4: r(0) = b−Mx(0)

5: D = diag(M)
6: R = M −D
7: while ‖r(k)‖2 > tol do
8: x(k+1) = D−1(Rx(k) + b) . Update vector
9: r(k+1) = b−Mx(k+1) . Next residual

10: k+ = 1
return x(k+1)

Our dynamic algorithm is also motivated by principles
of iterative refinement, another iterative method that adds a
correction to the current guess to obtain a more accurate
approximation [19]. To compute the solution x to the linear
system Mx = b, iterative refinement repeatedly performs the
following steps at each iteration k.

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

150

1) Compute residual r(k) = b−Mx(k)

2) Solve system Md(k) = r(k) for correction d(k)

3) Add correction to obtain new solution x(k+1) = x(k) +
d(k)

Note that we can use any other iterative method to solve the
system in Step 2 above.

C. Static Algorithm

Given edge updates to the graph, the static algorithm to
recompute the Katz Centrality scores in the updated graph first
calculates x from scratch using an iterative method and then c
using a single matrix-vector multiplication. This procedure is
given in Algorithm 2 to obtain the new solution ct+1 at time
t + 1 given edge updates ∆A to the graph. After a batch of
edges has been inserted into the network, the adjacency matrix
is updated to At+1 and the vector xt+1 is recomputed using
the Jacobi method from Algorithm 1.

Algorithm 2 Solve for ct+1 at time t + 1 given new edge
updates ∆A.

1: procedure STATIC KATZ(At,∆A)
2: At+1 = At + ∆A . Updated adjacency matrix
3: Mt+1 = I − αAt+1 . New linear system
4: xt+1 = JACOBI(Mt+1,1, 10−4) . Recomputed vector
5: ct+1 = At+1xt+1 . New Katz scores
6: return ct+1

Since calculating ct given xt at any timepoint t is one
matrix-vector multiplication and can be done in O(m), this
is not the bottleneck of the static algorithm. As more data
is added to the graph, the number of iterations taken to
update xt+1 increases. Therefore, pure recomputation becomes
increasingly expensive as the graph size increases. We thus
focus the development of our dynamic algorithm on limiting
the number of iterations taken to obtain the updated vector
xt+1. Calculating c is the same in the static and dynamic
algorithm and so for the rest of the paper we focus our
discussions on the vector x.

D. Dynamic Algorithm

In many low-latency applications, the number of edge up-
dates, or equivalently, the size of ∆A, is significantly smaller
than the size of the entire graph A. If the change ∆A is small
relative to the size of the graph, the new graph will be similar
to the old graph. It follows that the new solution xt+1 at
time t + 1 might be similar to the old solution xt at time
t. This is the intuition behind our dynamic algorithm. Figure
1 plots the differences between subsequent solutions each time
the graph changes. The x-axis simulates time as more edges
are being added into the graph. We insert 1000 edges into
the FACEBOOK graph at each time step. The y-axis is the 2-
norm difference between solutions at consecutive timepoints,
‖xt+1 − xt‖2. Since the Katz scores themselves can be as
high as 104, a difference of 10−1 across insertions of edges
over time is relatively small. This indicates that the solutions
themselves are not very different, suggesting that the static

0 50 100 150 200 250
Time steps

10-2

10-1

100

||x
t
+

1−
x
t||

2

Fig. 1: Difference in consecutive solutions over time. Small
changes in solutions suggest a dynamic algorithm could work
by applying incremental updates to previous solutions.

algorithm of recomputing the centrality metric from scratch
is doing a lot of unnecessary work. Our dynamic algorithm
therefore only targets places in the vector that are affected by
updates to the graph.

Suppose we have the solution xt for the adjacency matrix At

at a specific timepoint t. We solve for the new solution at time
t+ 1 as xt+1 = xt + ∆x. Our dynamic algorithm computes
the correction ∆x, the difference in the solutions at timepoints
t and t + 1, using principles of iterative refinement. The full
dynamic algorithm is given in Algorithm 4 and calculates the
updated vector xt+1 given the old solution xt and the edge
updates ∆A.

Algorithm 3 Solve for xt+1 at time t + 1 given previous
solution xt at time t and new edge updates ∆A.

1: procedure DYNAMIC KATZ(At,xt,∆A)
2: rt = 1− (I − αAt)xt = 1− xt + αAt

3: At+1 = At + ∆A
4: r̃t+1 = rt + α∆Axt

5: ∆x = JACOBI(I − αAt+1, r̃t+1, 10−4)
6: xt+1 = xt + ∆x
7: ∆r = α∆Axt − (I − αAt+1)∆x
8: rt+1 = rt + ∆r
9: return xt+1

First in line 2 we calculate the current residual rt, which is
easily obtained given the current snapshot of the graph At and
solution xt at time t. In line 3, we form the new snapshot of
the graph At+1 using the new batches of edges that are being
inserted into the graph. Since we use the old solution as a
starting point for the new solution, we first measure how close
the old solution is to solving the system for the new graph. We
do so by introducing the concept of an “approximate residual”
denoted as r̃t+1. This can be written in terms of the current
residual at time t, rt = 1−Mtxt, edge updates ∆A, and the
old solution xt. This is calculated in line 4. We derive r̃t+1

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

151

in Equation 1.

r̃t+1 = 1−Mt+1xt

= 1− (I − αAt+1)xt

= 1− xt + αAt+1xt

= 1− xt + αAtxt − αAtxt + αAt+1xt

= rt + α(At+1 −At)xt

= rt + α∆Axt (1)

We then use the approximate residual r̃t+1 to solve a linear
system for the correction ∆x. Solved exactly, this linear
system will give the same scores as static recomputation but
solved to the same tolerance as used earlier (10−4), it will
provide a good quality approximation of the updated centrality
scores. This is calculated in line 5. Since the approximation
residual r̃t+1 measures how close the current solution is to the
solution of the updated system, we use r̃t+1 to solve for the
correction ∆x using principles of iterative refinement:

(I − αAt+1)∆x = r̃t+1 = rt + α∆Axt

∆x− αAt+1∆x = rt + α∆Axt

We can turn this into an iterative update:

∆x(k+1) = αAt+1∆x(k) + α∆Axt + rt

This formulation lends itself quite nicely to using the Jacobi
algorithm. In line 6 we calculate the new solution xt+1 using
the old solution xt and the calculated correction ∆x. After
updating the solution from time t to the solution at t+1, lines
7 and 8 update the residual between these two timepoints. We
do so by calculating ∆r, the difference in the two residuals
at time t and t+ 1. The residual rt+1 at time t+ 1 measures
the correctness of the updated solution xt+1. We write the
new residual rt+1 in terms of the old residual rt to obtain the
difference between the two as ∆r.

rt+1 = 1− (I − αAt+1)xt+1

= 1− (I − αAt+1)(xt + ∆x)

= 1− (I − αAt+1)xt − (I − αAt+1)∆x

= r̃t+1 − (I − αAt+1)∆x

= rt + α∆Axt − (I − αAt+1)∆x

= rt + ∆r

∴ ∆r = α∆Axt − (I − αAt+1)∆x

III. RESULTS

We test our method of updating Katz Centrality scores in
dynamic graphs on synthetic and real-world networks. For
synthetic networks, we use R-MAT graphs [20]. An R-MAT
generator creates scale-free networks designed to simulate
real-world networks. Consider an adjacency matrix: the matrix
is subdivided into four quadrants, where each quadrant has
a different probability of being selected. Once a quadrant
is selected, this quadrant is recursively subdivided into four
subquadrants and using the previous probabilities, we select

Algorithm 4 Solve for xt+1 at time t + 1 given previous
solution xt at time t and new edge updates ∆A.

1: procedure DYNAMIC KATZ(At,xt,∆A)
2: rt = 1− (I − αAt)xt = 1− xt + αAt

3: At+1 = At + ∆A
4: r̃t+1 = rt + α∆Axt

5: ∆x = JACOBI(I − αAt+1, r̃t+1, 10−4)
6: xt+1 = xt + ∆x
7: ∆r = α∆Axt − (I − αAt+1)∆x
8: rt+1 = rt + ∆r
9: return xt+1

one of the subquadrants. This process is repeated until we
arrive at a single cell in the adjacency matrix. An edge
is assigned between the two vertices making up that cell.
For real-world networks, we use five graphs taken from the
KONECT collection [21]. The five datasets used are given in
Table I and comprise a mixture of citation and social networks.
To have a baseline for comparison, every time we update the

Graph |V | |E| Edge Ordering
cit-HepPth 34 546 421 578 Temporal
facebook 42 390 876 993 Temporal
slashdot 51 083 140 778 Temporal

email-EuAll 265 214 420 045 Random
twitter 465 017 834 797 Random

TABLE I: Graphs used in experiments. Columns are graph
name, number of vertices, number of edges, and edge ordering.

centrality scores using our dynamic algorithm, we recompute
the centrality vector statically using Algorithm 2. Denote the
vector obtained by static recomputation by xR and the vector
obtained by our dynamic algorithm by xS . We create an initial
graph G0 using the first half of edges, which provides a
starting point for both the dynamic and static algorithms. To
simulate a stream of edges in a dynamic graph, we insert the
remaining edges in batches of size b and apply both algorithms.
If the edges in the graphs have timestamps associated with
them, we insert them in timestamped order (denoted Temporal
in Table I), otherwise we permute the edges randomly (denoted
Random). We use batch sizes of b = 1, 10, 100, and 1000.
This section provides results on our algorithm with respect to
performance and quality on synthetic and real graphs.

A. Synthetic Graphs

We generate graphs with the number of vertices as a power
of 2, ranging from 210 to 214 and vary the average degree of
the graphs from 10 to 50. For each total number of vertices
and average degree, five graphs are created and tested and the
results shown are averaged over these five trials. All results
shown for the synthetic cases use a batch size of 1, meaning
after we create the initial graph G0, we sequentially insert the
remaining 1/2 of edges. The results for other batch sizes are
similar.

The primary motivation behind a dynamic approach is
to prune any unnecessary work in the static algorithm to

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

152

obtain a faster method of producing the ranking vector for
dynamic graphs. Therefore, we evaluate the performance of
the dynamic algorithm in terms of speedup compared to the
static algorithm. For a particular timepoint after inserting a
batch of edges, let TR and TS denote the time taken by
static recomputation and our dynamic method respectively.
Since we are using iterative methods to calculate the centrality
vectors, we also evaluate the performance of the dynamic
algorithm with respect to the speedup in number of iterations.
Let IR and IS denote the number of iterations taken by
static recomputation and our dynamic algorithm respectively.
We calculate speedup in time as speedup(time) = TR

TS
and

speedup in iterations as speedup(iterations) = IR
IS
.

Average degree 10 20 30 40 50
n = 1024 1.75× 1.95× 2.15× 2.44× 2.7×
n = 2048 1.98× 2.39× 2.7× 3.14× 3.56×
n = 4096 2.42× 3.12× 3.62× 4.3× 5.08×
n = 8192 3.35× 4.32× 5.25× 6.41× 7.46×
n = 16384 4.63× 6.26× 7.64× 9.15× 10.46×

TABLE II: Speedup in time for R-MAT graphs.

Average degree 10 20 30 40 50
n = 1024 4.89× 5.29× 5.6× 6.01× 6.38×
n = 2048 5.12× 5.77× 6.27× 6.73× 7.12×
n = 4096 5.34× 6.2× 6.69× 7.24× 7.66×
n = 8192 5.81× 6.52× 7.18× 7.77× 8.25×
n = 16384 6.0× 6.89× 7.62× 8.29× 8.72×

TABLE III: Speedup in iterations for R-MAT graphs.

Tables II and III give the average speedup in time and
iterations respectively for R-MAT graphs. As we increase the
average degree in the graph, the speedups in time and iterations
obtained are larger. Additionally, we see greater speedups
for graphs with larger values of n. The dynamic algorithm
likely has more of an effect for larger graphs because there
is more work to be done for larger graphs with the static
algorithm. Unlike the static algorithm, our dynamic algorithm
only traverses parts of the graph where updates have occurred.

B. Real Graphs

Next we show results on real graphs (from Table I). Figures
2a and 2b plot the speedup w.r.t time and iterations versus
batch size respectively, comparing our dynamic algorithm
against static recomputation. We show the maximum, median,
and minimum speedup over the 5 real graphs. Note that the
y-axis in Figure 2a is on a log scale with base 10 and the
y-axis in Figure 2b is on a log scale with base 2 for clarity.
In Figure 2a we see that our dynamic algorithm can be over
two orders of magnitude faster for a batch size of 1 than both
static recomputation approaches. The median speedup in time
is about 50× for a batch size of 1 and even for a batch size of
1000 edges we always have greater than a 1× speedup. Figure
2b shows that we can obtain over an 80× speedup in iterations

for a batch size of 1. This is especially significant because the
static method can take hundreds or thousands of iterations
in some cases, so our algorithm would provide large savings
of resources in many applications. Finally, we see a greater
speedup in both time and iterations for the smaller batch sizes
of 1 and 10. This is because as the batch size increases, the
dynamic algorithm nears the work of a static algorithm. This
shows that the dynamic approach is most useful for monitoring
applications where the rankings must be updated after only a
small number of data changes.

100 101 102 103

Batch size

100

101

102

103

S
pe

ed
up

 (t
im

e)

maximum
median
mininum

(a) Average speedup over time.

100 101 102 103

Batch size

20

22

24

26

28

S
pe

ed
up

 (i
te

ra
tio

ns
) maximum

median
mininum

(b) Average speedup in iterations over time.

Fig. 2: Performance results for five real networks for different
batch sizes.

We have shown that we are able to achieve results faster
using a dynamic algorithm compared to static recomputation
every time the graph changes when calculating centrality
scores in dynamic networks. However, it is also important
to ensure that the centrality scores returned by the dynamic
algorithm are similar to those returned by the static algorithm.
To measure the error between the statically computed vector
xR and dynamically computed vector xS , we compute the
pointwise difference as error = ‖xR−xS‖∞. Table IV gives
the error averaged over all time points for each batch size and
all the different graphs. We see that regardless of the batch
size, the dynamic algorithm is able to maintain similar quality

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

153

Batch size
Graph 1 10 100 1000

cit-HepPh 2.08e-05 2.33e-05 1.26e-05 6.35e-06
facebook 8.61e-05 1.08e-04 1.18e-04 6.71e-05
slashdot 5.42e-05 7.56e-05 7.80e-05 7.85e-05

email-EuAll 1.36e-05 4.32e-06 3.88e-06 3.87e-06
twitter 2.57e-05 1.73e-05 1.98e-05 1.96e-05

TABLE IV: Average error for different batch sizes.

to that of static recomputation. We obtain an average error of
about 10−4. The error we see between xR and xS is negligible
because the values in the ranking vector itself can be as large
as 104. Additionally, we terminate the solver when we get to
a residual norm of 10−4, meaning that we are not likely to
obtain much more precise solutions than this. Finally, Figure
3 plots the error for different graphs over time for a batch
size of b = 10, though the results for different batch sizes are
similar. We sample at 30 evenly spaced time points and see
that the quality does not worsen over time, showing little to no
increase in the error. This shows that the dynamic algorithm is
robust to many edge insertions and at no point in time is there
evidence that we would need to restart the dynamic algorithm.

0 20 40 60 80 100
Time steps

10-8

10-7

10-6

10-5

10-4

10-3

10-2

E
rr

o
r

cit-HepPh

facebook

slashdot

email-EuAll

twitter

Fig. 3: Error over time for all graphs for batch size b = 10.

IV. CONCLUSION

We have presented a new algorithm that incrementally
updates the Katz Centrality scores when the underlying graph
changes. Our dynamic algorithm is faster than statically re-
computing the centrality scores every time the graph changes,
and the performance improvement is greatest when low latency
updates are required. However, our approach is still faster than
recomputing from scratch even for large batch insertions of
edges into the graph. Our dynamic algorithm returns scores
that are within negligible error of the scores returned by static
recomputation. We have shown that the quality of the scores

using our dynamic algorithm does not deteriorate over time.
Future work will address updating the scores in a personalized
setting if we desire the averaged Katz scores for all vertices
from a specific seed set of vertices of interest and will extend
the algorithm to deal with insertion and deletion of vertices.

ACKNOWLEDGEMENT

This work is in part supported by a graduate fellowship
from the National Physical Science Consortium.

REFERENCES

[1] M. Benzi and C. Klymko, “A matrix analysis of different centrality
measures,” arXiv preprint arXiv:1312.6722, 2014.

[2] M. Benzi, E. Estrada, and C. Klymko, “Ranking hubs and authorities
using matrix functions,” Linear Algebra and its Applications, vol. 438,
no. 5, pp. 2447–2474, 2013.

[3] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[4] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[5] A. Bavelas, “Communication patterns in task-oriented groups,” The
Journal of the Acoustical Society of America, vol. 22, no. 6, pp. 725–
730, 1950.

[6] W. Wei and K. Carley, “Real time closeness and betweenness centrality
calculations on streaming network data,” 2014.

[7] A. E. Sariyuce, K. Kaya, E. Saule, and U. V. Catalyurek, “Incremental
algorithms for closeness centrality,” in Big Data, 2013 IEEE Interna-
tional Conference on. IEEE, 2013, pp. 487–492.

[8] O. Green, R. McColl, and D. A. Bader, “A fast algorithm for streaming
betweenness centrality,” in Privacy, Security, Risk and Trust (PASSAT),
2012 International Conference on and 2012 International Confernece
on Social Computing (SocialCom). IEEE, 2012, pp. 11–20.

[9] A. N. Langville and C. D. Meyer, “Updating pagerank with iterative
aggregation,” in Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters. ACM, 2004, pp. 392–
393.

[10] C. D. Meyer, “Stochastic complementation, uncoupling markov chains,
and the theory of nearly reducible systems,” SIAM review, vol. 31, no. 2,
pp. 240–272, 1989.

[11] W. J. Stewart, Introduction to the numerical solutions of Markov chains.
Princeton Univ. Press, 1994.

[12] B. Bahmani, A. Chowdhury, and A. Goel, “Fast incremental and
personalized pagerank,” Proceedings of the VLDB Endowment, vol. 4,
no. 3, pp. 173–184, 2010.

[13] J. Riedy, “Updating pagerank for streaming graphs,” in Parallel and
Distributed Processing Symposium Workshops, 2016 IEEE International.
IEEE, 2016, pp. 877–884.

[14] E. Kokiopoulou, J. Chen, and Y. Saad, “Trace optimization and eigen-
problems in dimension reduction methods,” Numerical Linear Algebra
with Applications, vol. 18, no. 3, pp. 565–602, 2011.

[15] D. Werner, Funktionalanalysis. Springer, 2006.
[16] M. Benzi and C. Klymko, “Total communicability as a centrality

measure,” Journal of Complex Networks, vol. 1, no. 2, pp. 124–149,
2013.

[17] R. Albert, H. Jeong, and A.-L. Barabási, “Internet: Diameter of the
world-wide web,” Nature, vol. 401, no. 6749, pp. 130–131, 1999.

[18] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[19] J. H. Wilkinson, Rounding errors in algebraic processes. Courier

Corporation, 1994.
[20] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model

for graph mining.” in SDM, vol. 4. SIAM, 2004, pp. 442–446.
[21] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings of

the 22nd International Conference on World Wide Web. ACM, 2013,
pp. 1343–1350.

2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

154

	Introduction
	Contributions
	Related Work

	Methodology
	Definitions
	Iterative Methods
	Static Algorithm
	Dynamic Algorithm

	Results
	Synthetic Graphs
	Real Graphs

	Conclusion
	References

