
Computers & Operations Research 77 (2017) 44–57
Contents lists available at ScienceDirect
Computers & Operations Research
http://d
0305-05

n Corr
E-m
journal homepage: www.elsevier.com/locate/caor
A parallel local search framework for the Fixed-Charge
Multicommodity Network Flow problem

Lluís-Miquel Munguía a,n, Shabbir Ahmed b, David A. Bader a, George L. Nemhauser b,
Vikas Goel c, Yufen Shao c

a College of Computing, Georgia Institute of Technology, Atlanta GA 30332, United States
b Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta GA 30332, United States
c ExxonMobil Upstream Research Company, Houston, TX 77098, United States
a r t i c l e i n f o

Article history:
Received 8 October 2015
Received in revised form
5 July 2016
Accepted 20 July 2016
Available online 22 July 2016

Keywords:
FCMNF
Parallel computing
Primal heuristics
Discrete optimization
Multicommodity capacitated network
design
x.doi.org/10.1016/j.cor.2016.07.016
48/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail address: lluis.munguia@gatech.edu (L.-M. M
a b s t r a c t

We present a parallel local search approach for obtaining high quality solutions to the Fixed Charge
Multicommodity Network Flow problem (FCMNF). The approach proceeds by improving a given feasible
solution by solving restricted instances of the problem where flows of certain commodities are fixed to
those in the solution while the other commodities are locally optimized. We derive multiple independent
local search neighborhoods from an arc-based mixed integer programming (MIP) formulation of the
problem which are explored in parallel. Our scalable parallel implementation takes advantage of the
hybrid memory architecture in modern platforms and the effectiveness of MIP solvers in solving small
problems instances. Computational experiments on FCMNF instances from the literature demonstrate
the competitiveness of our approach against state of the art MIP solvers and other heuristic methods.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The Fixed-Charge Multicommodity Network Flow (FCMNF)
problem is a classic optimization problem arising in numerous
applications. Given a directed capacitated network and a set of
commodities, the objective is to route every commodity from its
origin to destination through the network so as to minimize the
total cost. The cost associated with an arc is the sum of a fixed cost
derived from its use and a variable cost proportional to the flow
going through it. The total cost is derived from the sum of all arc
costs.

The FCMNF problem was proven to be NP-Hard [1]. In practice,
realistic sized instances of the FCMNF problem are extremely
difficult to solve to optimality. Consequently a variety of heuristic
approaches and integer programming techniques have been de-
veloped and proven to be effective means to achieve high quality
solutions quickly. In this paper, we introduce a local search heur-
istic framework for the FCMNF problem that is explicitly designed
for both parallel shared-memory systems and distributed-memory
systems. Our method finds competitive solutions by exploring a
large number of local search neighborhoods concurrently. Given a
feasible solution s, the local searches proceed by solving restricted
unguía).
instances of the problem where flows of certain commodities are
fixed to those in the solution s while that of the other commodities
are optimized. We take advantage of a state-of-the-art Mixed In-
teger Programming (MIP) solver to drive these local searches.

Recent works have introduced successful heuristic methods for
obtaining high quality solutions. Most common heuristics consist
of embedding a problem-specific mechanism for improving solu-
tions in the context of a metaheuristic search framework. Gham-
louche et al. [2] identify cycles in the network as a heuristic
strategy for finding alternative flow routes. The same methodology
is used in further works in combination with machine learning
techniques in order to improve and guide the local search [3].
Chouman et al. [4] use a similar approach to identify arc-balanced
cycles in combination with a Tabu Search. A different heuristic
approach is presented by Yaghini et al. [5], where the authors
define local search neighborhoods based on simplex pivots in the
context of a simulated annealing framework. Other meta-heuristic
frameworks for the FCMNF problem are based on Evolutionary
algorithms [6] and Scatter Search procedures [7–9]. The latter
works were developed more than a decade ago and differ in the
generation of the original population, and the mechanisms used
for solution improvement and recombination.

Heuristic strategies can also be used in the context of an ex-
haustive search framework. An example is the local branching
technique introduced by Fischetti et al. [10]. Their method uses
linear inequalities to branch on smaller subproblems, which are

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.07.016
http://dx.doi.org/10.1016/j.cor.2016.07.016
http://dx.doi.org/10.1016/j.cor.2016.07.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.07.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.07.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.07.016&domain=pdf
mailto:lluis.munguia@gatech.edu
http://dx.doi.org/10.1016/j.cor.2016.07.016
http://dx.doi.org/10.1016/j.cor.2016.07.016

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–57 45
solved by a black-box MIP solver. Examples of applications of local
branching for the FCMNF problem are studied by Rodríguez-
Martín et al. [11]. The efficacy of the previously cited work resides
in the use of heuristics algorithms in combination with exact
mixed-integer programming techniques.

Katayama et al. [12] develop a column generation, path-based
formulation enhanced by strong inequalities in conjunction with
an arc capacity scaling approach. In [13], the same scheme is im-
proved by using local branching ideas to polish the solutions ob-
tained through arc capacity scaling strategies.

Despite providing high quality solutions quickly, heuristic
methods cannot provide optimality certificates because of their
exclusive focus on primal solutions. Hewitt et al. [14] introduce an
algorithm that provides lower bounds on the optimal solution in
addition to primal solution improvements. Such improvements are
found by solving strategically restricted MIP subproblems while
tighter lower bounds are found with mathematical programming
approaches. In further work, their approach combines the use of
restricted MIPs in the context of a branch-and-price framework
that also provides a performance guarantee upon completion [15].
The authors take advantage of parallelism to solve the pricing
problems and restrictions.

Parallelizations of large neighborhood search algorithms have
been successfully implemented in other applications such as the
LNG inventory routing problem [16]. To our knowledge, parallel
computing remains a relatively unexplored field for the FCMNF
problem. Crainic et al. [17] propose an asynchronous parallel Tabu
Search where every processor communicates with a centralized
solution pool. They introduce and test several communication
policies as well as strategies for handling the exchanged in-
formation. In [18], special emphasis is put on the control of the
information diffusion between the different processors. The au-
thors present a multilevel parallel local search algorithm that
employs parallel cycle-based Tabu Searches defined by sets of
fixed arcs. Their approach differs greatly from ours in many as-
pects. These include the solution improvement method used, the
fact that our method has a solution recombination step, the ar-
rangement and synchronization of parallel resources, the com-
munication protocol, and the information exchanged between
processors. Crainic et al. [19] provide a comprehensive literature
review on the application of parallelism in meta-heuristics. Our
contribution is a highly scalable parallel algorithm specifically
designed to find quality primal solutions of large-scale FCMNF
problems. Many algorithmic enhancements are combined in order
to attain competitive levels of parallel performance: a novel par-
allel decomposition procedure based on the problem structure, a
highly parallelizable local search scheme, and a tiered parallel
procedure that is able to combine large numbers of partial solu-
tions quickly. Solution crossover methods such as the one used in
our approach have already been introduced and discussed pre-
viously [20,21]. In contrast to these works, we introduce a paral-
lelization of the method that enables the recombination of a large
number of solutions simultaneously.

We present experimental results that show the effectiveness of
our parallel local search approach. For the instances in the C
problem set [22], our method identifies primal solutions that are
within an average optimality GAP of 0.58% with respect to the best
known lower bound in an average time of 152 s per instance. We
also test our parallel algorithm against the GT problem set [14],
which contains substantially bigger instances. Our method takes
less than 200 s on average to obtain a better solution than the best
one found by CPLEX running for 5 h. We are able to identify con-
siderably better solutions in more time. In addition, we present
parallel scalability and load balancing performance results, which
show that our novel implementation is able to take advantage of a
large number of parallel processors to effectively reduce
computation times in a load balanced execution.
The remainder of the paper is structured as follows. Section 2

presents an arc based MIP formulation of the FCMNF problem.
Sections 3 and 4 provide a detailed description of our local search
methodology and its parallel implementation on hybrid-memory
parallel architectures, respectively. Section 5 presents computa-
tional experiments and results on standard instances from the
literature. Finally, Section 6 provides some concluding remarks.
2. Problem description

Our local search approach is based on an arc-based MIP for-
mulation of the FCMNF problem, which is described as follows. Let

= ()G V A, be a directed network, where V is the set of vertices and
A the set of arcs. Let K be a set of commodities to be routed
through G. Each commodity ∈k K is specified by a source vertex

∈s Vk , a destination ∈t Vk and a quantity qk of flow to be routed.
Each arc () ∈i j A, has an associated fixed cost fij that is imposed
only when commodities are routed through it. Arcs also have a
variable cost cij that is proportional to the flow traversing it and a
maximum flow capacity uij. The problem consists of finding a
routing for every commodity in K such that the arc capacities are
respected and the costs are minimized. Let the flow variable xkij
denote the proportion of commodity ∈k K that is routed through
the arc () ∈i j A, . In addition to the flow variables, we also in-
troduce the binary variables yij, which reflect whether each arc (i,
j) is used. The FCMNF problem can then be formulated as the
following MIP:

∑ ∑ ∑+
()∈ ()∈ ()∈

c q x f ymin
1x y

k K i j A
ij k ij

k

i j A
ij ij

,
, ,

subject to:

∑ ∑− = ∀ ∈ ∀ ∈
()()∈ ()∈

x x d i V k K,
2i j A

ij
k

j i A
ji
k

i
k

, ,

∑ ≤ ∀ () ∈
()∈

q x u y i j A,
3k K

k ij
k

ij ij

∈ { } ∀ () ∈ ()y i j A0, 1 , 4ij

≤ ≤ ∀ () ∈ ∀ ∈ ()x i j A k K0 1 , , . 5ij
k

Restriction (2) ensures the conservation of flow. The flow differ-
ential for a vertex i and a commodity k is expressed by dki , which is
defined as:

=
=

− =

⎧
⎨⎪
⎩⎪

d
i s

i d

1 if
1 if

0 otherwise.
i
k

k

k

The coupling constraints (3) guarantee that the flow through
each arc does not exceed the arc capacity. The capacity restrictions
have a two-fold function, as they also ensure that the fixed cost is
imposed when an arc is used. All commodity flow variables re-
lative to the same arc are aggregated in the same constraint. A
tighter and stronger LP relaxation can be obtained by introducing
a set of | |·| |A K independent constraints:

≤ ∀ () ∈ ∀ ∈ ()x y i j A k K, , . 6ij
k

ij

These are redundant with respect to (3). We choose not to include
them in our model due to performance issues resulting from their

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–5746
large number.
We consider two problem variations that differ in whether each

commodity may be split through multiple paths or not. In the
formulation above, the flow variables are continuous, as specified
in constraint (5). Alternatively, each variable xij

k is binary and (5) is
replaced by:

∈ { } ∀ () ∈ ∀ ∈ ()x i j A k K0, 1 , , . 7ij
k

The techniques described in this paper are compatible with both
problem variants.
Inp

Ou
f

3. Local search methodology

In the proposed local search scheme, an initial primal solution
to an FCMNF instance is improved iteratively by sequentially ap-
plying heuristic local searches. In each heuristic local search, so-
lutions are improved by solving a smaller, tractable MIP sub-
problem that is derived from the original instance. Such reduction
in the problem size is obtained by fixing a chosen subset of the
variables to the corresponding values of the previously obtained
feasible solution. The selection of variables is such that arc sharing
is encouraged to reduce costs. New improved solutions replace the
primal incumbent after each iteration, and the scheme is repeated.

We parallelize this procedure by partitioning the sequence of
local searches to an arbitrary number of independent sequences,
each of which can be explored in parallel. To achieve this de-
composition, we introduce a local search partitioning mechanism,
which determines the work to be performed by each of the par-
allel processors. Potentially, each independent subproblem se-
quence can produce an improved primal solution. The final step in
the algorithm combines the solution improvements found in
parallel into a single feasible solution using a recombination
scheme. This parallel procedure may be repeated an arbitrary
number of times by using the obtained solution as an input for the
next iteration. We depict this parallel local search procedure in
Fig. 1. Next, we describe each component of the overall method in
detail.
Feasible
Solution

sa

sb

sc

sp

...

Local search
sequence
partitioning

sa'

sb'

sc'

sp'

...

sa

sb

sc

sp

...

. . .

Local
Search

. . .

. . .

. . .

Fig. 1. Parallel decomposition of a sequential local search procedure. Local searches are d
recombined in an improved solution.
3.1. The local search mechanism

At the most basic level of the algorithm, improvements in so-
lutions are found by solving restricted instances of the original
problem, in which flows of certain commodities are fixed. Given a
commodity c and a feasible solution s, we define the set of ad-
jacent commodities Adj(c) as the group of commodities that share
flow at least in one arc with c in s, i.e.,

() = { ′ ∈ | ∃ () ∈ > > }() ()
′Adj c c K i j A x x, s. t. 0 and 0i j

c
i j
c

, , . A local
search neighborhood is then defined in the form of a new MIP
subproblem, where the flow of the adjacent commodities and c are
free and the remaining flow x is taken from s and fixed. Simulta-
neously, the arc use variables y are also free for arcs that are not
used by the remaining flow. A pseudo-code description of the local
search procedure is given in Algorithm 1.

Algorithm 1. Local neighborhood search.
Loc
Sea

istribu
ut: Feasible solution s and commodity c from a FCMNF
instance
tput: Feasible solution to the FCMNF instance
unction LOCALSEARCH(Solution s, Commodity c)
Compute Adj(c) based on s
for all commodities k not in Adj(c) do

Fix the flow variables xij
k to the values in s, ∀ () ∈i j A,

end for
SOLVESUBPROBLEM()
return BESTSOLUTION()
nd function
e

Depending on the selected commodity, the resulting subset of
fixed variables may vary in size. Commodities with a large number
of adjacent commodities produce difficult MIP subproblems due to
the small number of variable fixings. In contrast, commodities
with little flow interaction may yield excessively restricted local
searches. Disparities in the instance size can be reduced by es-
tablishing a threshold on the number of variables that can be fixed
in addition to an optimization time limit.
Final
Solution

Solution
Recombination

Improved
Solution 1

...

al
rch

Improved
Solution 2

Improved
Solution 3

Improved
Solution P

Termination
condition
not met

ted in a total of P sequences. As a result, P feasible solutions are obtained and

Fig. 2. Subproblem partitioning shown on a small example with three commodities. A subproblem is defined for each commodity, where the flow highlighted in red is
optimized and the remaining flow is fixed. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–57 47
3.2. Partitioning the subproblem sequence

Given the above local search neighborhood definition and a
feasible solution to a FCMNF instance, we can define as many
different variable fixings as commodities in the instance. A small
example is shown in Fig. 2. Each derived MIP subproblem is
characterized by a specific commodity and its adjacent flow and
can be optimized in parallel.

Consider a set of local searches to be explored, each of which is
identified by a specific commodity. As a first step towards paral-
lelization, we require such work to be decomposed into a set of
disjoint local search subsets. Work partitions that yield load-ba-
lanced optimizations are highly desirable. As an additional re-
quirement, we incentivate that commodities with heavy flow in-
teraction should be placed in the same subset. With this specific
grouping, we would expect each local search subset to correspond
to a highly interrelated subset of the variables.

Algorithm 2. Solution recombination algorithm.
Inp
Ou

f

Fig. 3. Connection graph generated from a feasible solution. Commodities are re-
ut: Feasible solution set S
tput: Feasible solution to the FCMNF instance with an ac-
cumulation of the improvements.
unction SOLUTIONRECOMBINATION(Solution set S)
for () ∈i j Arcs, do
if ()i j, is not used in any ∈s S then

Fix variable yij to 0
end if

end for
Add all ∈s S as starting solutions
SOLVESUBPROBLEM()
return BESTSOLUTION()
nd function
presented with vertices, and there is an arc between two vertices if their corre-

e

The partitioning problem can be transformed into a graph
partitioning problem as follows. A new weighted graph

= ()G V A,s s s , called the connection graph, is determined from a
feasible solution s, the set of arcs A and the set of commodities K.
In Gs, the set K represents the vertices: =V Ks .

= {()| ∈ ∃ () ∈ > > }() ()A u v u v V i j A x x, , and , s. t. 0 and 0s s
i j
u

i j
v

, , ,
i.e., there is an arc (u, v) in ()G V A,s s s if and only if commodities u
and v share flow in an arc in s. In addition, we specify the weight
of an edge () ∈u v A, s to be the number of shared arcs. An example
is depicted in Fig. 3.
sponding commodities share an arc in the solution.

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–5748
Thus, the division of commodities among P parallel processors
can be translated into a graph partitioning problem of the con-
nection graph, where the cut between the P different subsets is
minimized. The connection graph partitioning can be accom-
plished with minimal computational efforts by specialized graph
partitioning algorithms, including the Kernighan–Lin method [23],
which are available in graph partitioning libraries such as Metis
[24].

3.3. The solution recombination procedure

Consider a set S of improved solutions obtained from a single
original feasible solution after a parallel local search. Given the
nature of the local search neighborhood, it is likely that the solu-
tions that compose S are highly similar in most parts of the arc
design. Solutions can be effectively combined by focusing on the
arc variations that have been produced as a product of the local
search phase. To do so, a new MIP subproblem is devised, where
the y variables corresponding to the arcs that are not used in any
solution from the set are fixed to zero. Note that each of the so-
lutions in S is still feasible in this new MIP subproblem and can,
therefore, be used as a starting solution. In Algorithm 2 a pseudo-
code description of the solution recombination mechanism is gi-
ven and a small example is shown in Fig. 4.

Similar to our heuristic local search scheme, the subset of fixed
variables in each solution recombination may vary in size. Solu-
tions in the earlier stages of the computation may incorporate
many changes in the routing, resulting in a difficult MIP sub-
problem due to the small number of arc fixings. The opposite ef-
fect may be obtained if little improvement is found during the
Fig. 4. The solution recombination step is shown on a small example with three commod
highlighted in red is optimized while the remaining arcs fixed. (For interpretation of the
this paper.)
local search phase. We resolve the differences in the problem size
by specifying an optimization time limit.

3.4. Obtaining a first feasible solution

The parallel method presented in this paper relies on an ori-
ginal feasible solution to improve upon. A starting solution is
produced by solving a relaxation of the original problem, which is
obtained by removing the fixed costs from the objective function
computation. The fixed costs are a major complicating factor in
solving the FCMNF problem. When they are omitted we have an
LP if the flow can be split and an IP otherwise. We use these
simplified models to obtain preliminary primal solutions
that satisfy the flow restrictions, although the solutions are far
from being optimal. In our experience, however, the quality of
the first feasible solution has proven to be unimportant because
great progress is always achieved in the initial iterations of the
scheme.
4. Parallel implementation

In this section, we present more details of the algorithm im-
plementation. For parallel scalability, our scheme is designed for
hybrid memory systems that combine both distributed-memory
systems as well as parallel shared-memory machines. Through-
out the paper, we refer to a computing node (or processor) as a
set of multiple CPU cores that share a single, unified memory
subsystem as shown in Fig. 5a (shared-memory system). For
scalability, parallel execution may take place across several
ities. A subproblem is defined for a set of input solutions, where the flow in the arcs
references to color in this figure caption, the reader is referred to the web version of

Fig. 5. Schematic depiction of parallel systems with different memory configurations. System (a) features a unified memory space, which is accessible by every parallel core
simultaneously. In contrast, system (b) has a segmented memory space, which is distributed between the different parallel cores.

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–57 49
computing nodes concurrently. In this case, the memory space is
segmented and distributed between the individual processors as
depicted in Fig. 5b (distributed-memory system). As such, a col-
lection of parallel processors constitute a parallel distributed-
memory system. Efficient implementations require algorithm
design techniques tailored for each memory environment. An
important distinction in the implementation is found in the
synchronization of parallel components. Parallel distributed-
memory systems usually rely on synchronous message passing
techniques such as MPI [25] to perform communications between
processors. In contrast, communication between the parallel
cores in a single computing node is much simplified because
memory is shared.

We start describing our parallel scheme by its implementation
in a single shared-memory parallel processor as shown in Algo-
rithm 3. Consider a processor with C parallel processor cores and
a starting solution s that is initially given to each of them. Each
core proceeds to improve its local solution in parallel by resolving
a different sequence of MIP subproblems and accumulating the
improvements found in the optimization process. Given that the
parallel cores share the same memory space, the work parti-
tioning can be arranged dynamically. In order to do so, we em-
ploy a shared data structure which holds the subproblems that
every core has access to. When a subproblem is solved, it is re-
moved from the shared set. In this fashion, subproblems are
Algorithm 3. Parallel local search iteration.

Input: Feasible solution s from a FCMNF instance, set of com-
modities K

Output: Improved feasible solution to the FCMNF instance
function PARALLELLOCALSEARCH(Solution s, Commodity set K)
for every thread ∈t Ci in parallel do
Initialize Solti as a copy of s

while there exists commodity ∈k K do
Remove k from K
newSol¼LOCALSEARCH(Sol k,ti)

if newSol represents improvement over Solti then

=Sol newSolti

end if
end while

end for
return SOLUTIONRECOMBINATION(Sol)

end function
distributed dynamically among the parallel cores such that the
routing of each commodity is optimized by exactly one of them.

Each variable fixing yields a smaller integer problem as pre-
viously described, which is then solved using a black-box MIP
solver. As a product of the parallel local search, improvements in
the routing are accumulated in at most C different solutions. We
employ our solution recombination step to combine them to a
single feasible solution, which may be used as input to the next
iteration. To ensure full system utilization, we may assume the
number of commodities given by | |K to be greater than the overall
number of parallel cores P. When P is bigger than | |K , only | |K
parallel cores are used during the local search phase. The algo-
rithm is designed such that each parallel core may improve its
local solution copy by sequentially solving multiple MIP sub-
problems and replacing the solution when improvements are
found.

We adapt our implementation to a hybrid memory parallel
system by augmenting Algorithm 3 in a two-layered scheme,
where each level is dedicated to a different level of parallelism.
The first layer is responsible for the local search partitioning be-
tween the different distributed-memory processors by the use of
MPI. The second execution tier takes place in the shared-memory
setting of each parallel processor and is responsible for the actual
local search exploration. It is in this inner execution level where
the MIP subproblems are collectively resolved by the parallel cores
in each processor.
Algorithm 4. Distributed-memory parallel local search
framework.

Input: Feasible solution s from a FCMNF instance, set of com-
modities K

Output: Improved feasible solution to the FCMNF instance
function DISTRIBUTEDLOCALSEARCH(Solution s)

while termination criteria is not met do
Let Part be a partition of the commodity set K in P sub-

sets based on s
for all processors Pi in Parallel do

=SolutionPi PARALLELLOCALSEARCH ()s Part, Pi

AllProcSolutions¼ALL-TO-ALLEXCHANGE ()SolutionPi

end for
s¼SOLUTIONRECOMBINATION(AllProcSolutions)

end while
return s

end function

Fig. 6. Parallel hybrid memory framework. The process described in Fig. 1 is expanded to accommodate the parallel execution in distributed-memory systems.

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–5750
Fig. 6 describes the interactions between each tier and the
workflow of the execution. As a first step, the set of MIP sub-
problems is partitioned and distributed among the processors.
After the partitioning, each computing node proceeds to find im-
provements in the primal solution by the same procedure as
shown in Algorithm 3. The execution returns to the distributed-
memory context, where an all-to-all solution exchange commu-
nication is performed in order to combine the improvements
found by the different processors. In Algorithm 4 we present a
pseudo-code description of the distributed-memory execution
layer.

A distributed-memory implementation raises the issue of
scalability. The effectiveness of the recombination step, for in-
stance, is dependent on the input size. If the number of input
solutions is small and all of them are highly similar, the resulting
recombination MIP may be small and relatively easy to solve.
Fig. 7. Potential load imbalance c
However, a large number of input solutions may produce a very
small number of fixings and, therefore, a problem that may be
hard to optimize quickly. Thus, its scalability may be limited.

By splitting the recombination process into two consecutive
phases, a large number of input solutions can be accumulated
while maintaining a large number of fixings. An additional benefit
lies in a better utilization of the parallelism, since each processor
performs the first phase of the recombination independently.

In addition to scalability, load balancing is another component
of parallel efficiency. Load balancing refers to the uniform dis-
tribution of work among parallel processors. Due to the synchro-
nous nature of our algorithm, achieving an even load balance is
essential in order to maximize the throughput of our parallel
computations. Fig. 7 depicts all the potential load imbalance pit-
falls of our parallel implementation. First, the parallel cores within
a processor may compute each of the local search sequences
auses of the implementation.

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–57 51
unevenly. Additionally, load imbalance could be aggravated by
differences in the solving time of the first solution recombination.
Both factors could affect the synchronization between processors,
potentially delaying the second phase of the solution recombina-
tion. Its prevention depends on how the work is partitioned and
the time limit parameters that decide the granularity of the local
searches as well as the recombination times. Further experiments
presented in the next section will determine the degree of load
imbalance of our approach.

Another positive aspect of the synchronous implementation is
an efficient handling of the communications between parallel
processors. Overall, only two communication steps are required
every iteration. A communication of the work partitions is per-
formed prior to the local search, as well as an all-to-all exchange of
solutions between each of the recombination phases. In both
cases, collective communication primitives can be used in order to
reduce overhead.
1 =S 7605norm (Intel Xeon X5650)
2 = =S S 8262Comb Comb1 2 (Intel Core i7-2600)
3 =S 4452IPSearch (Intel Xeon E5520)
5. Experimental results

In this section, we study the performance of our parallel local
search in terms of solution quality, parallel scalability and load
balance. Our framework is implemented in Cþþ and uses CPLEX
12.4 as the MIP solver. Our tests were performed on an 8-node
computing cluster, with each node having two Intel Xeon X5650
6-core processors, 24 GB of RAMmemory and a Red Hat Enterprise
Linux distribution. Unless otherwise noted, CPLEX was set to its
default configuration whenever it was used for comparison pur-
poses. CPLEX is configured with 12 threads, as it can take ad-
vantage of parallelism in shared-memory machines. We test the
competitiveness of our parallel method by comparing its perfor-
mance against previous heuristic approaches presented in the
literature. For this purpose, two FCMNF problem instance sets are
used, the C instances [22] and the GT instances [26] used in [14]. In
order to assess the scalability of our parallel method, we test the
performance under different processor configurations.

The choice of the local search parameters such as the search
time limit can have a significant impact on the effectiveness of the
method. An ideal combination is highly dependent on the instance
size, the number of arcs and the number of commodities. To cope
with this variety of choices, we test several parameter configura-
tions and choose the best performing one in average. For each
problem class, 8 representative instances were selected and sam-
pled with a collection of parameters. In Fig. 8, we report the per-
formance results for both the C instances and the GT instances in
terms of the average optimality GAP. Each algorithm sample had a
time limit of 100 s and 300 s for the C and the GT instances, re-
spectively. For the remaining set of experiments in the C instance
set, the time limits were set to 10 s for each local search and 20 s
for solution recombination. When solving the GT instances, the
local search time limit set to 20 s and 50 s was allowed for the
recombination process.

5.1. C instance set performance results

The C instance set is composed of 37 FCMNF medium-sized
instances. They have networks with 20 or 30 vertices, a number of
arcs ranging from 230 to 700 and a number of commodities ran-
ging from 10 to 400. The configuration of each problem instance is
specified with the tuple { }Nvertices NArcs NCommodities F V T L, , , / , / ,
where F indicates that the instance's fixed costs are predominant
in relation to the variable costs (V otherwise). T characterizes a
tightly capacitated problem instance and L denotes loose arc ca-
pacities. In order to evaluate the quality of the solutions obtained
with our scheme, we compare it against the results presented in
prior publications and default CPLEX on the problem variant
where the flow routing can be split between different paths.
Specifically, results are compared with those reported in the IP
Search scheme (IPSearch) by Hewitt et al. [14], two sets of results
obtained with the capacity-scaling combined scheme (Comb1 and
Comb2) by Katayama [13], and CPLEX with a time limit of 1 h. We
refer to the results obtained with our Parallel Local Search as ParLS.

The performance results over the C instance set are shown in
Table 1, where the best lower bound for each instance is reported
followed by the best primal solution found by each method. The
best values are denoted in bold. When a value is optimal, it is
marked with an asterisk. We specify the time required to reach the
best solution as reported originally by the authors. In order to
eliminate the discrepancies between computer systems, we also
report the normalized CPU times for IPSearch, Comb1, and Comb2
according to the CPU performance metrics in Passmark [27]. Nor-

malized times are calculated as =
·

Tnorm
T S

S
orig orig

norm
, where Torig is the

original time reported by the authors, while Snorm
1 and Sorig

2,3 are
the CPU scores of the processors used in our experiments and the
other authors in the comparison, respectively. The lower bounds
for each problemwere either obtained from the literature or found
by CPLEX with a 12-h limit. The reported GAP values are relative to
the optimal solution or to the best lower bound. It is computed as

= ·−GAP 100P L
P

sol B

sol
, where Psol is the solution to each instance and LB

its lower bound.
ParLS finds an optimal solution in 15 out of 37 instances. In

comparison to the incumbents reported in the literature, better or
equally good solutions are found in 20 cases. When we consider all
37 instances, we obtain solutions that are within an average op-
timality GAP of 0.58%. The convergence to such solutions is ob-
tained very quickly, averaging 152 s per instance. Comparing our
results to previous research is a difficult task due to the diversity in
the experimental conditions and the differences in the hardware
and software. However, our parallel method identifies quality so-
lutions that are competitive with the ones reported in prior work
and requires much less time to achieve them. The incumbents
reported in Comb2 and CPLEX are results that represent an im-
provement over those obtained with our approach. But the solu-
tion times are larger by a factor of 20 and 15, respectively.

5.2. GT instances

The GT set is composed of 24 FCMNF instances, which range in
the number of arcs from 2000 to 3000 and have 50 to 200 com-
modities. When an arc-based formulation is considered, the in-
stance sizes range between 102,000 and 603,000 variables. They
are additionally presented in two versions, whether the problem
instances are tightly capacitated (F_T) or loosely capacitated (F_L).
We compare the performance of our parallel local search (reported
as ParLS) with the IP Search scheme from Hewitt et al. [14] (IP-
Search), both with a time limit of one hour. We also compare the
best results obtained by CPLEX with a time limit of 5 h (CPLX). We
tested several CPLEX emphasis configurations, including optim-
ality and feasibility, and found the default configuration to be the
best performer. In addition to the default setting, we include a
comparison against the solution polishing heuristic of CPLEX. In
the CPLXSP setting, CPLEX is allowed 1 h of optimization time and
4 h of solution polishing. CPLEX is also used to determine the
lower bound on every instance. Results are detailed in Table 2,
where the best found primal solutions found are given, as well as
the time required by the parallel local search to improve the best

Table 1
C instance set optimization results.

Problem LB/Opt Primal solution value Time to best solution (s) Normalized Time to best solution (s)

IPSearch Comb1 Comb2 CPLEX ParLS IPSearch Comb1 Comb2 CPLEX ParLS IPSearch Comb1 Comb2 CPLEX ParLS

100/400/010/VL 28,423n 28,423n 28,426 28,423n 28,423n 28,486 35 0 2 1 3 20 0 2 1 3
100/400/010/FL 23,949n 23,949n 24,459 23,949n 23,949n 24,022 9 23 106 112 1 5 25 115 112 1
100/400/010/FT 63,066 65,885 68,410 64,207 64,143 64,207 813 12 2736 3600 53 476 13 2974 3600 53
100/400/030/VT 384,802n 384,836 384,809 384,802n 384,802n 384,802n 330 2 1503 680 42 193 2 1634 680 42
100/400/030/FL 49,018n 49,694 49,588 49,018n 49,018n 49,018n 886 167 864 3600 29 519 182 939 3600 29
100/400/030/FT 132,129 141,365 142,191 138,152 138,587 136,861 888 12 11028 3600 79 520 13 11986 3600 79
20/230/040/VL 423,848n 424,385 423,848n 423,848n 423,848n 424,075 4 0 1 1 2 2 0 1 1 2
20/230/040/VT 371,475n 371,779 371,906 371,475n 371,475n 371,573 41 1 3 1 1 24 1 3 1 1
20/230/040/FT 643,036n 643,187 643,649 643,036n 643,036n 643,036n 45 1 15 5 10 26 1 16 5 10
20/230/200/VL 94,213n 95,097 94,218 94,213n 94,218 94,213n 822 104 3060 3600 123 481 113 3326 3600 123
20/230/200/FL 137,642n 141,253 137,702 137,642n 137,854 137,642n 691 254 4409 3600 144 405 276 4792 3600 144
20/230/200/VT 97,914n 99,410 97,968 97,914n 97,914n 97,914n 821 68 2161 606 52 481 74 2349 606 52
20/230/200/FT 135,863 140,273 136,265 136,031 136,144 135,867 156 263 4538 3600 240 91 286 4932 3600 240
20/300/040/VL 429,398n 429,398n 429,398n 429,398n 429,398n 429,398n 19 0 1 1 1 11 0 1 1 1
20/300/040/FL 586,077n 586,077n 587,512 586,077n 586,077n 586,077n 29 1 8 3 16 17 1 9 3 16
20/300/040/VT 464,509n 464,509n 464,509n 464,509n 464,509n 464,509n 24 1 4 1 23 14 1 4 1 23
20/300/040/FT 604,198n 604,198n 604,198n 604,198n 604,198n 604,198n 68 1 4 1 3 40 1 4 1 3
20/300/200/VL 74,753 75,319 74,840 74,811 74,929 74,811 802 101 5048 3600 361 470 110 5487 3600 361
20/300/200/FL 11,3862 117,543 115,801 115,748 115,541 115,580 686 350 7769 3600 250 402 380 8444 3600 250
20/300/200/VT 74,991n 76,198 74,995 74,991n 74,991n 74,991n 388 65 2158 791 58 227 71 2345 791 58
20/300/200/FT 106,672 110,344 107,315 107,315 107,102 107,102 396 258 3798 3600 122 232 280 4128 3600 122
30/520/100/VL 53,958n 54,113 53,976 53,958n 53,958n 53,978 218 7 673 721 20 128 8 731 721 20
30/520/100/FL 93,570 94,388 94,201 93,967 93,967 93,967 226 150 3266 3600 83 132 163 3550 3600 83
30/520/100/VT 52,046n 52,174 52,248 52,046n 52,046n 52,046n 455 7 2004 3600 32 266 8 2178 3600 32
30/520/100/FT 96,260 98,883 97,833 97,385 97,107 97,862 815 4992 4802 3600 158 477 5426 5219 3600 158
30/520/400/VL 112,735 114,042 112,787 112,774 112,774 112,787 394 95 5917 3600 542 231 103 6431 3600 542
30/520/400/FL 147,790 154,218 149,486 149,423 149,242 149,677 750 1184 3387 3600 463 439 1287 3681 3600 463
30/520/400/VT 114,641n 114,922 114,641n 114,641n 114,641n 114,641n 621 54 3726 3600 461 364 59 4050 3600 461
30/520/400/FT 150,685 154,606 152,630 152,576 153,005 154,137 466 358 5149 3600 288 273 389 5596 3600 288
30/700/100/VL 47,603n 47,612 47,603n 47,603n 47,603n 47,603n 32 4 64 18 179 19 4 70 18 179
30/700/100/FL 59,958n 60,700 60,067 59,958n 60,066 60,058 741 228 2888 3600 111 434 248 3139 3600 111
30/700/100/VT 45,872n 46,046 46,070 45,872n 45,872n 45,879 371 9 5559 3600 258 217 10 6042 3600 258
30/700/100/FT 54,904n 55,609 55,164 54,904n 54,904n 54,904n 387 26 4456 3600 173 227 28 4843 3600 173
30/700/400/VL 97,189 98,718 97,901 97,875 97,914 98,090 222 466 4727 3600 243 130 506 5138 3600 243
30/700/400/FL 131,690 152,576 134,723 134,620 135,892 136,257 860 2115 7312 3600 223 504 2299 7947 3600 223
30/700/400/VT 94,508 96,168 95,267 95,250 95,293 95,651 365 1570 6376 3600 374 214 1706 6930 3600 374
30/700/400/FT 128,243 131,629 129,910 129,910 130,140 131,104 225 3955 8165 3600 428 132 4299 8874 3600 428

Average GAP and time 1.73 0.89 0.47 0.51 0.58 408 456 3180 2317 152 239 497 3457 2317 152

Fig. 8. Parameter sensitivity analysis for C and GT instances. Parameter configurations are specified with two numbers X–Y, where X refers to the local search time limit and Y
to the solution recombination time limit.

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–5752
solution found by the other three methods. The reported GAP
values are calculated with respect to the best found lower bound.

The results demonstrate the considerable difficulty in solving
the GT instance set, as CPLEX is only able to achieve an average
optimality GAP of 24.09% after 5 h of execution. A big part of the
challenge resides in the complexity of obtaining tight lower
bounds due to the weakness of the arc-based formulation. The
solution polishing heuristic is generally more effective than the
default CPLEX configuration, even though its advantage is dimin-
ished in instances with a high commodity count. In selected in-
stances with 50 commodities, CPLXSP provides solutions of similar
quality as ParLS. However, ParLS achieves them in substantially less
time. In comparison to all three methods, our parallel local search
scheme finds better solutions for every instance. On average, it
requires less than 200 s to improve the best solution found by
CPLEX running for 5 h. Improvements become more noticeable in
the instances with more commodities because these benefit more
from parallelism and are more challenging for CPLEX.

5.3. Scaling results

One of the primary goals of our approach is to exploit a large
degree of parallelism. We rely on the concurrent exploration of a
large number of local searches to find competitive solutions faster.

Table 2
GT instance set optimization results.

Problem LB Primal solution value Optimality GAP Time to improve solution (s)

CPLX CPLXSP IP Search ParLS CPLX CPLXSP IP Search ParLS CPLX CPLXSP IPSearch

F_T,500,2000,50 4,326,550 5,038,580 5,100,186 4,949,780 4,892,012 14.13 15.17 12.59 11.56 114 100 178
F_T,500,2000,100 6,368,730 7,592,260 7,381,313 7,619,670 7,273,916 16.12 13.72 16.42 12.44 78 366 75
F_T,500,2000,150 7,208,800 8,640,390 9,083,303 8,807,650 8,014,986 16.57 20.64 18.15 10.06 317 155 234
F_T,500,2000,200 8,845,440 11,858,000 11,213,371 11,893,100 10,617,796 25.41 21.12 25.63 16.69 257 463 257
F_T,500,2500,50 3,927,990 4,585,510 4,448,739 4,600,200 4,406,080 14.34 11.71 14.61 10.85 72 120 72
F_T,500,2500,100 5,330,490 6,942,260 6,559,397 6,953,660 6,365,848 23.22 18.74 23.34 16.26 134 297 134
F_T,500,2500,150 5,930,530 8,094,410 7,978,909 7,571,640 7,037,860 26.73 25.67 21.67 15.73 216 302 488
F_T,500,2500,200 8,327,720 11,963,100 11,911,900 11,452,900 10,727,261 30.39 30.09 27.29 22.37 312 313 396
F_T,500,3000,50 3,529,370 4,333,310 4,069,239 4,262,350 4,035,362 18.55 13.27 17.20 12.54 99 1188 166
F_T,500,3000,100 5,442,880 7,164,410 7,046,750 7,186,810 6,634,387 24.03 22.76 24.27 17.96 229 262 214
F_T,500,3000,150 6,236,240 8,773,910 8,172,602 8,709,390 7,517,445 28.92 23.69 28.40 17.04 150 257 155
F_T,500,3000,200 7,283,080 11,236,600 11,354,647 10,390,700 9,751,002 35.18 35.86 29.91 25.31 308 259 510
F_L,500,2000,50 3,432,140 3,882,110 3,726,114 3,823,610 3,722,839 11.59 7.89 10.24 7.81 136 1022 196
F_L,500,2000,100 5,497,770 6,706,100 6,404,834 6,453,880 6,005,177 18.02 14.16 14.81 8.45 146 300 271
F_L,500,2000,150 6,750,150 8,205,000 7,886,028 8,081,600 7,510,651 17.73 14.40 16.48 10.13 198 351 211
F_L,500,2000,200 8,031,600 10,181,700 10,376,103 9,828,350 9,338,097 21.12 22.60 18.28 13.99 424 375 592
F_L,500,2500,50 3,176,040 3,818,440 3,507,652 3,612,030 3,491,664 16.82 9.45 12.07 9.04 90 1223 213
F_L,500,2500,100 5,062,110 6,893,490 6,187,629 6,400,140 5,909,401 26.57 18.19 20.91 14.34 133 1076 303
F_L,500,2500,150 6,542,600 10,022,900 9520783 9,089,920 8,138,918 34.72 31.28 28.02 19.61 155 196 319
F_L,500,2500,200 7,717,740 11,937,300 11,566,824 10,099,200 9,788,913 35.35 33.28 23.58 21.16 384 483 1976
F_L,500,3000,50 2,958,630 3,668,660 3,492,641 3,457,280 3,369,303 19.35 15.29 14.42 12.19 110 187 254
F_L,500,3000,100 4,855,420 6,692,780 6,187,593 6,015,950 5,773,133 27.45 21.53 19.29 15.90 178 377 613
F_L,500,3000,150 6,031,650 9,378,030 9,479,082 8,919,720 7,741,294 35.68 36.37 32.38 22.08 223 196 254
F_L,500,3000,200 6,722,660 1,1240,900 11,291,918 10,040,000 9,195,115 40.19 40.46 33.04 26.89 264 264 691

Average value 24.09 21.56 20.96 15.43 196 422 365

Fig. 9. Scaling results for a selected test instance with 500 vertices, 3000 arcs and varying commodities. Each plot depicts the improvement in optimality GAP with respect to
the best lower bound as a function of time. The executions shown in each problem differ in the number of parallel cores used.

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–57 53

Table 3
Time required to reach certain gap with respect to the best found primal solution and the best lower bound.

Problem Number of computing
nodes

Time required to reach GAP with respect to best solution (s) Time required to reach GAP with respect to best lower bound
(s)

20% 10% 5% 1% 0% 35% 30% 25% 20% 15%

F_T,500,3000,50 1 (12 cores) 137 638 1388 – – 18 137 315 845 –

F_T,500,3000,50 2 (24 cores) 48 184 317 – – 10 51 146 240 –

F_T,500,3000,50 4 (48 cores) 29 85 144 227 725 9 29 62 104 182
F_T,500,3000,50 8 (96 cores) 28 78 161 314 – 3 28 48 111 282

F_T,500,3000,100 1 (12 cores) 378 2124 – – – 378 594 2124 – –

F_T,500,3000,100 2 (24 cores) 285 2069 – – – 247 443 2529 – –

F_T,500,3000,100 4 (48 cores) 126 300 596 – – 81 165 303 886 –

F_T,500,3000,100 8 (96 cores) 223 517 1057 2490 3506 221 348 577 1667 –

F_T,500,3000,150 1 (12 cores) 1110 2112 – – – 1110 1196 2336 – –

F_T,500,3000,150 2 (24 cores) 406 978 2325 – – 406 825 1637 – –

F_T,500,3000,150 4 (48 cores) 111 433 1303 2902 – 111 267 790 – –

F_T,500,3000,150 8 (96 cores) 143 462 703 2210 3589 143 281 563 2508 –

F_T,500,3000,200 1 (12 cores) 1216 – – – – 2465 – – – –

F_T,500,3000,200 2 (24 cores) 478 1951 – – – 1060 – – – –

F_T,500,3000,200 4 (48 cores) 281 518 1128 – – 455 999 – – –

F_T,500,3000,200 8 (96 cores) 197 427 674 3108 3379 423 623 – – –

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–5754
The next set of experiments is aimed at showing the effectiveness
and benefits of the application of parallelism.

In Fig. 9, scaling results are shown for a representative set of
instances. Since our approach parallelizes over the set of com-
modities, we test a variety of instances with a number of com-
modities ranging from 50 to 200. For each problem, we report
performance results for several processor configurations, ranging
from executions on one processor (12 parallel cores) to eight (96
parallel cores). The same results are specified in terms of time in
Table 3, where we show the time required to reach different GAP
values with respect to the best solution found for each instance as
well as with respect to the lower bound.

Overall, parallelism is beneficial and substantially better solutions
are achieved by using a larger number of processors. However, little
improvement is observed when the number of processors exceeds or
equals the commodity count. This is the case for the instances with
50 and 100 commodities, which are comparatively easier than in-
stances with similarly sized networks and a larger number of com-
modities. The impact of parallelism differs from instance to instance
due to their variability and the heuristic nature of our approach, in-
cluding the eventuality that not every local search may yield im-
provements at every iteration. Instances with more commodities
show better scalability, as more parallelism is exploited and there
exists more opportunities for solution improvements.
Fig. 10. Overall processor utilization results for a selected test instance with 500 vertices
parameter configuration, where the first number refers to the local search time limit an
5.4. Load balancing

Load balancing refers to the uniform distribution of work be-
tween parallel processors. We characterize the total execution
time of a specific processor Pi as the sum of the useful computation
time TCPi, the communication time TXPi and the idle time TIPi. We
define the communication time as the time spent performing
communication between processors, whereas the idle time TIPi

accounts for the idle time spent by a processor on synchronization
or waiting for other processors to finish their computations. Then,
we define the utilization of a processor Pi as the ratio of useful
computation time over the total execution time:

() =
+ +

U P
TC

TC TX TI
i

P

P P P

i

i i i

Fig. 10 displays the average core utilization for a representative
FCMNF instance under different processor configurations and
different time limit parameters. Each parameter configuration is
specified with two time limits, where the first number corres-
ponds to the local search time limit and the second refers to the
solution recombination time limit. We show that average pro-
cessor utilizations remain very high through all the tested com-
binations. When a single computing node (12 cores) is used, the
shared-memory dynamic work allocation mechanism proves to be
, 3000 arcs and 200 commodities. Each data set corresponds to a different time limit
d the second refers to the solution recombination time limit.

Table 4
C instance set: performance comparison between commodity assignation schemes.

Problem LB/Opt Connection graph Random assignation

100/400/010/VL 28,423n 28,486 28,430
100/400/010/FL 23,949n 24,022 24,022
100/400/010/FT 63,066 64,207 64,492
100/400/030/VT 384,802n 384,802n 384,802n

100/400/030/FL 49,018n 49,018n 49,232
100/400/030/FT 132,129 136,861 138,550
20/230/040/VL 423,848n 424,075 424,075
20/230/040/VT 371,475n 371,573 371,573
20/230/040/FT 643,036n 643,036n 643,036n

20/230/200/VL 94,213n 94,213n 94,227
20/230/200/FL 137,642n 137,642n 138,282
20/230/200/VT 97,914n 97,914n 98,666
20/230/200/FT 135,863 135,867 136,241
20/300/040/VL 429,398n 429,398n 429,398n

20/300/040/FL 586,077n 586,077n 590,964
20/300/040/VT 464,509n 464,509n 464,549
20/300/040/FT 604,198n 604,198n 604,198n

20/300/200/VL 74,753 74,811 75,220
20/300/200/FL 113,862 115,580 116,796
20/300/200/VT 74,991n 74,991n 75,807
20/300/200/FT 106,672 107,102 108,289
30/520/100/VL 53,958n 53,978 54,004
30/520/100/FL 93,570 93,967 94,409
30/520/100/VT 52,046n 52,046n 52,046n

30/520/100/FT 96,260 97,862 98,041
30/520/400/VL 112,735 112,787 113,346
30/520/400/FL 147,790 149,677 150,616
30/520/400/VT 114,641n 114,641n 114,729
30/520/400/FT 150,685 154,137 156,555
30/700/100/VL 47,603n 47,603n 47,603n

30/700/100/FL 59,958n 60,058 60,390
30/700/100/VT 45,872n 45,879 46,040
30/700/100/FT 54,904n 54,904n 55,059
30/700/400/VL 97,189 98,090 99,369
30/700/400/FL 131,690 136,257 142,080
30/700/400/VT 94,508 95,651 96,708
30/700/400/FT 128,243 131,104 131,153

Average GAP 0.51 1.08

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–57 55
an effective means of load balance, as we achieve a utilization as
high as 98%. The utilization also decreases with higher processor
counts due to the requirement of more static partitions. Allowing
more time for each local search also has a detrimental effect on
processor utilization. This is due to the fact that the processors
that end their work prematurely will have increased idle time
penalties. Communication time is shown to be a small fraction of
the overall compute time, which confirms our algorithm to be
compute-bound.
Table 5
Performance comparison of solution recombination schemes.

Problem Allowed time Parallel recombinat

Improvement

F_T,500,2500,50 300 0.19
F_T,500,2500,50 900 0.20
F_T,500,2500,50 1800 0.20

F_T,500,2500,100 300 0.47
F_T,500,2500,100 900 0.95
F_T,500,2500,100 1800 0.22

F_T,500,2500,150 300 0.17
F_T,500,2500,150 900 0.99
F_T,500,2500,150 1800 0.35

F_T,500,2500,200 300 3.16
F_T,500,2500,200 900 0.33
F_T,500,2500,200 1800 0.01
5.5. Partitioning the subproblem sequence

An important component of the parallel algorithm consists in
partitioning the work among the parallel processors. In Section
3.2, we introduced the use of a graph partitioning problem to
determine the distribution of local searches among the processors.
By this transformation, the problem of finding a set of commodity
partitions is effectively equivalent to the problem of partitioning a
connection graph such that the cut is minimized. Our hope is that,
by enforcing tightly connected commodities to be assigned to-
gether, better solutions will be achieved.

In order to evaluate the impact of this algorithm phase in the
overall solution quality, we compare its performance against a
random assignation of commodities. In Table 4, a performance
comparison is shown for the C instance problem set. We specify
two sets of executions performed under the same conditions and
parameters. The time limit was set to be the time to best solution
by ParLS shown in Table 1.

On the C instance problem set, the random subproblem assig-
nation shows a slower solution improvement. When the same
time limit is considered, results are generally worse or equivalent
except for one of the smallest instances. On average, it achieves an
optimality GAP of 1.08% in comparison to the 0.51% obtained by
our original connection graph partitioning. In addition, the optimal
solution is only achieved in 6 instances whereas our proposed
scheme reaches optimality in 15.

Performance results on the GT instance problem set with a time
limit of 1 h are presented in Table 6. The original algorithm with
connection graph partitioning obtains better solutions in all in-
stances but two. These are two of the smallest instances in the set,
with 50 commodities. The impact on the performance varies
substantially from instance to instance, ranging from an almost
identical performance (0.1% GAP difference in the F_L,500,2000,50
problem) to a jump of 2.65% in the case of the F_T,500,3000,150
instance.

5.6. The parallel solution recombination

In the last stage of the algorithm, the local search improve-
ments are accumulated into one solution. As described in Section
3.3, a new MIP subproblem is formulated, where the arc variables
that are not used in any of the input solutions are fixed to zero. For
parallel scalability, the solution recombination process is split into
two structured phases.

In Table 5, we compare the effectiveness of our scheme against
a single-step recombination of solutions extracted from a number
of representative problem instances. For each of the tested
ion Single recombination

Fixed arcs Improvement Fixed arcs

2303 0.00 1930
2250 0.00 1754
2251 0.00 1754

2283 0.00 1800
2240 0.00 1779
2224 0.00 1711

2062 0.00 1311
2145 0.00 1566
2117 0.00 1569

2181 0.17 1492
2177 0.00 1534
2180 0.00 1520

Table 6
GT instance set: performance comparison between commodity assignation
schemes.

Problem LB/Opt Connection graph Random assignation

F_T,500,2000,50 4,326,550 4,892,012 4,914,193
F_T,500,2000,100 6,368,730 7,273,916 7,294,598
F_T,500,2000,150 7,208,800 8,014,986 8,155,082
F_T,500,2000,200 8,845,440 10,617,796 10,859,566
F_T,500,2500,50 3,927,990 4,406,080 4,378,135
F_T,500,2500,100 5,330,490 6,365,848 6,474,697
F_T,500,2500,150 5,930,530 7,037,860 7,199,470
F_T,500,2500,200 8,327,720 10,727,261 10,883,127
F_T,500,3000,50 3,529,370 4,035,362 4,056,824
F_T,500,3000,100 5,442,880 6,634,387 6,774,373
F_T,500,3000,150 6,236,240 7,517,445 7,765,078
F_T,500,3000,200 7,283,080 9,751,002 9,997,125
F_L,500,2000,50 3,432,140 3,722,839 3,726,822
F_L,500,2000,100 5,497,770 6,005,177 6,048,962
F_L,500,2000,150 6,750,150 7,510,651 7,587,028
F_L,500,2000,200 8,031,600 9,338,097 9,341,089
F_L,500,2500,50 3,176,040 3,491,664 3,510,419
F_L,500,2500,100 5,062,110 5,909,401 5,935,047
F_L,500,2500,150 6,542,600 8,138,918 8,350,529
F_L,500,2500,200 7,717,740 9,788,913 9,959,787
F_L,500,3000,50 2,958,630 3,369,303 3,364,152
F_L,500,3000,100 4,855,420 5,773,133 5,874,379
F_L,500,3000,150 6,031,650 7,741,294 7,947,452
F_L,500,3000,200 6,722,660 9,195,115 9,527,525

Average GAP 15.43 16.53

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–5756
instances, the best 96 solutions (one per parallel core) found after
certain time limit are selected and used as an input for the re-
combination. Each of the schemes is allowed 100 s of optimization.
In the case of the two-step recombination, the time limit is equally
distributed with 50 s for each phase.

We report improvements as percentages relative to the objec-
tive of the best input solution. It is computed as = ·−I 100BI F

BI
sol sol

sol
,

where BIsol is the best objective value among the 96 input solu-
tions and Fsol is the objective value of the final recombined solu-
tion. In addition, the number of fixed arcs is also reported. In the
case of the two-phase scheme, an average of the arc fixings of all
the recombinations is provided.

Through all tested instances, the two-phase scheme proves to
be a more effective strategy for recombining a large number of
solutions. Improvements are achieved because the input is parti-
tioned, and therefore a high level of fixings can be maintained.
That is not the case for a single-phase scheme, where the number
of fixings is significantly lower. As a result, improvements cannot
be found in the allowed time except for one instance.
6. Conclusions

We propose a scalable parallel approach for the Fixed Charge
Multicommodity Network Flow problem that is designed for both
shared memory parallel systems and distributed memory systems.
By the use of heuristic local searches based on solving restricted
MIP subproblems obtained by variable fixings, improvements in the
flow routing are found in parallel and are further combined to ob-
tain improved solutions. We rely on the network characteristics of
the instances and the given solutions to define core components of
the algorithm, such as the work partitioning and the solution re-
combination mechanism. Computational experiments demonstrate
the effectiveness and scalability of our approach, as high-quality
solutions are obtained for two problems sets from the literature.

Large sized FCMNF problem instances represent a computa-
tional challenge. Commercially available solvers and previous
heuristic methods struggle to provide solutions and lower bounds
that are within a reasonable optimality gap. It is precisely in the
size of these instances where many opportunities to exploit par-
allelism can be found. We demonstrate the value of parallel
computing and heuristic approaches for effectively generating
good primal solutions to large FCMNF problem instances. Optim-
ality certificates in the form of lower bounds are still difficult to
achieve. In future research, we will seek to solve this shortcoming
by applying the notions presented in this paper in the context of
an exact algorithm that combines primal and dual aspects.
Acknowledgments

Wewould like to thank Rodolfo Carvajal for helpful discussions.
This research has been supported in part by ExxonMobil Upstream
Research Company and the Air Force Office of Scientific Research.
References

[1] Magnanti TL, Wong RT. Network design and transportation planning: models
and algorithms. Transp Sci 1984;18(1):1–55.

[2] Ghamlouche I, Crainic TG, Gendreau M. Path relinking, cycle-based neigh-
bourhoods and capacitated multicommodity network design. Ann Oper Res
2004;131(1–4):109–33.

[3] Ghamlouche I, Crainic TG, Gendreau M, Sbeity I. Learning mechanisms and
local search heuristics for the fixed charge capacitated multicommodity net-
work design. Int J Comput Sci Issues 2011:5.

[4] Chouman M, Crainic T. A MIP-tabu search hybrid framework for multi-
commodity capacitated fixed-charge network design. CIRRELT; 2010.

[5] Yaghini M, Momeni M, Sarmadi M. A simplex-based simulated annealing al-
gorithm for node-arc capacitated multicommodity network design. Appl Soft
Comput 2012;12(9):2997–3003.

[6] Kleeman MP, Seibert BA, Lamont GB, Hopkinson KM, Graham SR. Solving
multicommodity capacitated network design problems using multiobjective
evolutionary algorithms. IEEE Trans Evol Comput 2012;16(4):449–71.

[7] Alvarez AM, González-Velarde JL, De-Alba K. Scatter search for network design
problem. Ann Oper Res 2005;138(1):159–78.

[8] Crainic TG, Gendreau M. Metaheuristics: progress in complex systems opti-
mization. Boston, MA: Springer; 2007. p. 25–40.

[9] Paraskevopoulos DC, Bektaş T, Crainic TG, Potts CN. A cycle-based evolutionary
algorithm for the fixed-charge capacitated multi-commodity network design
problem. Eur J Oper Res 2016;253(2):265–79.

[10] Fischetti M, Lodi A. Local branching. Math Program 2003;98(1–3):23–47.
[11] Rodríguez-Martín I, Salazar-González JJ. A local branching heuristic for the

capacitated fixed-charge network design problem. Comput Oper Res 2010;37
(3):575–81.

[12] Katayama N, Chen MZ, Kubo M. A capacity scaling heuristic for the multi-
commodity capacitated network design problem. J Comput Appl Math
2009;232(1):90–101.

[13] Katayama N. A combined capacity scaling and local branching approach to
capacitated multi-commodity network design problem. Far East J Appl Math
2015;92(1):1.

[14] Hewitt M, Nemhauser GL, Savelsbergh MWP. Combining exact and heuristic
approaches for the capacitated fixed-charge network flow problem. INFORMS
J Comput 2010;22(2):314–25.

[15] Hewitt M, Nemhauser GL, Savelsbergh MWP. Branch-and-price guided search
for integer programs with an application to the multicommodity fixed-charge
network flow problem. INFORMS J Comput 2013;25(2):302–16.

[16] Badrinarayanan VA, Furman KC, Goel V, Shao Y, Li G. Parallel large-neighbor-
hood search techniques for lng inventory routing, Optimization online.

[17] Crainic TG, Gendreau M. Cooperative parallel tabu search for capacitated
network design. J Heuristics 2002;8(6):601–27.

[18] Crainic TG, Li Y, Toulouse M. A first multilevel cooperative algorithm for ca-
pacitated multicommodity network design. Comput Oper Res 2006;33
(9):2602–22.

[19] Crainic TG, Toulouse M. Parallel meta-heuristics.Handbook of Metaheuristics,
International Series in Operations Research & Management Science, vol. 146.
USA: Springer; 2010. p. 497–541.

[20] Berthold T. Primal heuristics for mixed integer programs [Diploma thesis].
Technische Universitat Berlin.

[21] Rothberg E. An evolutionary algorithm for polishing mixed integer program-
ming solutions. INFORMS J Comput 2007;19(4):534–41.

[22] Frangioni A. Multicommodity problems. URL 〈http://www.di.unipi.it/opti
mize/Data/MMCF.html〉; 2013 [Online; accessed 2016-07-05].

[23] Kernighan BW, Lin S. An efficient heuristic procedure for partitioning graphs.
Bell Syst Tech J 1970;49(2):291–307.

[24] Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning

http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref1
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref1
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref1
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref2
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref2
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref2
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref2
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref3
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref3
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref3
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref5
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref5
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref5
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref5
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref6
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref6
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref6
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref6
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref7
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref7
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref7
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref8
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref8
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref8
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref9
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref9
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref9
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref9
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref10
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref10
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref11
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref11
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref11
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref11
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref12
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref12
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref12
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref12
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref13
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref13
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref13
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref14
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref14
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref14
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref14
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref15
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref15
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref15
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref15
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref17
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref17
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref17
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref18
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref18
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref18
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref18
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref19
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref19
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref19
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref19
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref19
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref21
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref21
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref21
http://www.di.unipi.it/optimize/Data/MMCF.html
http://www.di.unipi.it/optimize/Data/MMCF.html
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref23
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref23
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref23
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref24

L.-M. Munguía et al. / Computers & Operations Research 77 (2017) 44–57 57
irregular graphs. SIAM J Sci Comput 1998;20(1):359–92.
[25] Gropp W, Lusk E, Skjellum A. Using MPI: portable parallel programming with

the message-passing interface, vol. 1. Cambridge, Massachusetts: MIT Press;
1999.
[26] Hewitt M. Gt instances. URL 〈https://www.researchgate.net/publication/
304825234〉; 2010 [Online; accessed 2016-07-05].

[27] P.S.P. Ltd. Passmark software. URL: 〈http://passmark.com/〉; 2016 [Online; ac-
cessed 2016-07-05].

http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref24
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref24
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref25
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref25
http://refhub.elsevier.com/S0305-0548(16)30187-3/sbref25
https://www.researchgate.net/publication/304825234
https://www.researchgate.net/publication/304825234
http://passmark.com/

	A parallel local search framework for the Fixed-Charge Multicommodity Network Flow problem
	Introduction
	Problem description
	Local search methodology
	The local search mechanism
	Partitioning the subproblem sequence
	The solution recombination procedure
	Obtaining a first feasible solution

	Parallel implementation
	Experimental results
	C instance set performance results
	GT instances
	Scaling results
	Load balancing
	Partitioning the subproblem sequence
	The parallel solution recombination

	Conclusions
	Acknowledgments
	References

