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Abstract—Power is a primary concern for mobile, cloud,
and high-performance computing applications. Approximate
computing refers to running applications to obtain results
with tolerable errors under resource constraints, and it can
be applied to balance energy consumption with service quality.
In this paper, we propose a “Good Enough (GE)” scheduling
algorithm that uses approximate computing to provide satis-
factory QoS (Quality of Service) for interactive applications
with significant energy savings. Given a user-specified quality
level, the GE algorithm works in the AES (Aggressive Energy
Saving) mode for the majority of the time, neglecting the low-
quality portions of the workload. When the perceived quality
falls below the required level, the algorithm switches to the
BQ (Best Quality) mode with a compensation policy. To avoid
core speed thrashing between the two modes, GE employs a
hybrid power distribution scheme that uses the Equal-Sharing
(ES) policy to distribute power among the cores when the
workload is light (to save energy) and the Water-Filling (WF)
policy when the workload is high (to improve quality). We
conduct simulations to compare the performance of GE with
existing scheduling algorithms. Results show that the proposed
algorithm can provide large energy savings with satisfactory
user experience.

Keywords-approximate computing, scheduling algorithm,
power efficiency, multicore servers

I. INTRODUCTION

Large-scale cloud data centers and high-performance

computing systems consume an exorbitant amount of energy.

The electricity consumption of U.S. data centers in 2013 is

estimated to have reached 91 billion kilowatt-hours. Future

computing systems must adhere to strict power limits. For

example, the U.S. Department of Energy has set a target

power consumption of 20 MW to achieve Exascale comput-

ing in the next decade [3, 4]. Being able to handle large-scale

computing and data processing with stringent energy budget

is a critical challenge.

It has been observed that one can save a great deal

of energy when applications can be computed in an ap-

proximate rather than exact fashion [17]. Fortunately, many

such applications exist. Many interactive services, such as

video rendering, web search, financial data analysis, process

monitoring, and GPS tracking, can tolerate some degree of

inaccuracy, where small errors in the result do not affect the

overall quality of perceived user experience. In this context,

approximate computing provides a great opportunity to solve

many power-constrained computing problems.

Indeed, recent research has shown that different data of

the same size may contribute differently to the achievable

quality [12]. In addition, the marginal quality gain decreases

with increased data processing volume. This phenomenon

of diminishing returns was proposed in economics as early

as 1776 [2], and it now plays an important role in many

fields including computing. Without loss of generality, one

can formulate the trend of diminishing returns as a concave

function that maps the processed data of a service to its

quality contribution. In our study, we take advantage of

approximate computing to achieve good enough quality with

less data (and workload), and in addition, exploit the law of

diminishing returns to maintain the quality level with less

energy consumption by selecting the most quality-efficient

part of the input data or workload to execute.

We explore the characteristics of interactive applications,

which can tolerate approximate results with concave quality

functions, and design a “Good Enough (GE)” scheduling

algorithm to reduce the power consumption on multicore

servers. In contrast to the existing “Best Effort (BE)”
scheduling paradigm (e.g., [9, 14]), our GE algorithm may

discard part of the workload that contributes little to the

quality even when the power budget is sufficient to complete

the jobs. We call this service providing regime the AES
(Aggressive Energy Saving) mode. Due to the unpredictable

nature of jobs that arrive randomly for online scheduling, the

AES mode may not always guarantee the desired quality.

With online monitoring of the user experience, once the

service quality is perceived to have fallen below the required

level, GE will adopt a compensation policy and switch to

the BQ (Best Quality) mode, which attempts to achieve the

highest possible quality by completing all jobs so as to meet

the overall quality demand of user experience.

The switching between the AES mode and the BQ mode,

however, may adversely consume additional energy when

the workload is light, due to the fact that the compensation
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policy may introduce core speed thrashing. Moreover, apply-

ing significantly different speeds at the cores using DVFS

(Dynamic Voltage and Frequency Scaling) can inadvertently

boost energy consumption. To further reduce energy without

sacrificing quality, the GE algorithm adopts a hybrid power

distribution policy. Specifically, when the workload is light,

an Equal-Sharing (ES) policy is used, which distributes

the power equally among the cores. In this case, it can

significantly reduce the energy consumption in BQ mode

without losing quality. On the other hand, when the workload

is high, a Water-Filling (WF) policy is used, which favors the

cores with smaller power demands to improve the quality.

To evaluate the performance of the GE algorithm, we

conducted simulations and compared the results with those

from two other quality control policies, namely, power

control policy and speed control policy. The power control

policy reduces the total power budget for a given workload

to support the specified quality. The speed control policy

limits the maximum available speed to support the specified

quality. The BQ mode is selected to schedule the jobs under

both policies. Experiments were also designed to compare

GE with an existing best effort energy-efficient algorithm

and other widely used scheduling policies. The simulation

results show that the GE algorithm can provide sufficient

quality (90%) with up to 23.9% energy savings compared

with these existing solutions.

The major contributions of this paper are as follows:

• We design a GE (Good Enough) scheduling algo-

rithm that takes advantage of approximate computing

to significantly reduce the energy consumption. The

algorithm strategically selects the most quality-efficient

parts of the jobs to execute while achieving sufficiently

high quality with less energy.

• We design a quality compensation policy to guarantee

a user-specified quality level. The policy dynamically

switches the execution between two execution modes

(Aggressive Energy Saving (AES) mode and Best Qual-
ity (BQ) mode) with the help of online monitoring of

the service quality.

• We design a hybrid power distribution scheme that uses

the Equal-Sharing (ES) policy and the Water-Filling
(WF) policy to distribute the power budget among the

cores depending on the workload. This scheme avoids

the thrashing overhead on energy consumption between

the two execution modes especially when the workload

is light.

The rest of this paper is organized as follows. In Section

II, we formulate the scheduling problem. The GE algorithm

is introduced in details in Section III, followed by its

performance evaluation in Section IV. In Section V, we

summarize the related work. Finally, in Section VI, we

conclude this paper and briefly outline the future work.

II. PROBLEM FORMULATION

To formulate the problem of energy-efficient scheduling,

we first develop a model for what we call “good enough”
services on multicore servers.

A. Good Enough Services

Consider a set of n service jobs: J = {J1, J2, · · · , Jn}.

Every job Jj ∈ J has a start time sj , a deadline dj , and a

processing demand pj (representing the data that needs to

be processed). Each job can only be executed between its

start time and its deadline. A job can be partially processed

without completing the entire processing demand pj . In this

paper, we focus on applications, such as web search, which

have a similar response time requirement. For simplicity, we

assume the same duration in which a job can be processed,

i.e., dj−sj is the same for all jobs. For convenience, suppose

the jobs are ordered by their starting time, i.e., s1 ≤ s2 ≤
· · · ≤ sn. The above assumption suggests that the jobs also

have agreeable deadlines, i.e., d1 ≤ d2 ≤ · · · ≤ dn. For jobs

with agreeable deadlines, it is highly desirable to schedule

them in a non-preemptive manner in order to reduce the

context switching overhead; that is, jobs are processing by

the Earliest Deadline First (EDF) order without preemption

(at least on a single core). We focus our attention to only

such schedules in this paper.

An important property of “good enough” services is that

jobs can be partially processed, thus they may return results

with some quality loss (again, considering a web search).

For each job Jj , we use cj to denote the processed volume

during [sj , dj ], where cj ≤ pj . The processed volume

contributes to the perceived quality of the job [12]. We define

a quality function f : R+ → R+ that maps the processed

volume of a job (a positive number) to a value that represents

the perceived quality of the (partially) executed job, which is

normalized between 0 and 1. The average quality achieved

by executing a set of jobs is defined to be:

Q(J ) =

∑
Jj∈J f(cj)

∑
Jj∈J f(pj)

.

The specific form of quality function for different ap-

plications may be different. We use a concave function

to capture the trend of diminishing returns, which is a

common characteristic among such applications. Without

loss of generality, in this paper, we take the following

concave quality function:

f(x) =
1− e−cx

1− e−cxmax
, (1)

where c is a constant multiplier that determines the concavity

of the function, and xmax denotes the upper bound on the

processing demand of the jobs.
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B. Multicore Servers
We consider multicore servers with core-level dynamic

voltage and frequency scaling (DVFS). A server is composed

of m cores, {M1,M2, · · · ,Mm}, each of which can be set

to run at a different frequency. We assume that the total

power consumption of the server is the sum of the power

consumption of all cores1. The power consumption of each

core consists of a dynamic part and a static part. The dy-

namic power is a (convex) function of the core’s speed [28].

We adopt a well-established model: Pdynamic = a × sβ ,

where a > 0 is a scaling factor and β > 1 is an exponent

parameter [6, 7, 15, 28]. While the static power is an

important component of the power consumption, we assume

that the cores cannot be individually shut down during

execution, so the static power is the same for all the cores. As

such, we can ignore static power in the power consumption

formulation for the scheduling algorithms.
Consider that a total budget H is given for the server’s

dynamic power, which can be distributed arbitrarily among

the cores. The power consumption of core Mi at time t
is denoted by Pi(t). The total power P (t) of all cores at

time t should satisfy P (t) =
∑m

i=1 Pi(t) ≤ H . The total

energy consumption E of a schedule is the total power

integrated from the start time of the first processed job to the

deadline of the last processed job, i.e., E =
∫ dn

s1
P (t)dt. In

the scheduling model, we assume that a job can be assigned

to any core of the server, but once the job has been assigned

to a core, it cannot be migrated to other cores.

C. Good Enough Quality and Scheduling Objective
In our scheduling problem, the user can specify a good

enough quality, or QGE , such as 90% or 95%. This quality

will be used by the scheduling algorithm as a constraint

such that the average quality achieved by executing a job set

should be no smaller than QGE . The objective is to minimize

the total energy consumption subject to this constraint.

Formally, the scheduling problem can be formulated as an

optimization problem:

minimize E

s.t. Q(J ) ≥ QGE

If we set QGE = 100%, it means that we do not allow

any loss of quality. The traditional best effort scheduling

can be treated as a special case of the optimization problem

proposed here. Our Good Enough scheduling applies when

QGE < 100%. Although a user can specify any acceptable

quality demand, in general, more energy can be saved with

less QGE .

III. GOOD ENOUGH SCHEDULING

In this section, we present the Energy-Aware “Good

Enough (GE)” Scheduling algorithm for multicore servers.

1We omit the power consumptions of memory, cache and other subsys-
tems in this study.
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Figure 1. The execution time percentage of the AES mode.

We first provide an overview of the GE algorithm, following

by an explanation of different execute modes and power

distribution policies. The entire algorithm is presented at the

end of this section.

A. Overview of the Algorithm

GE is a job scheduling algorithm aiming to save as

much energy as possible, provided it can meet the user-

specified quality requirement. The algorithm takes advantage

of approximate computing and also the law of diminishing

returns, in that the algorithm only executes the most quality-

efficient part of a given workload in order to reduce energy

consumption.

Given a user-specified quality level, GE first stays at

the Aggressive Energy Saving (AES) mode, in which the

algorithm discards the low quality part of each job as

much as possible to save energy. At the same time, the

overall quality will be monitored continuously upon each

scheduled job. If the overall quality becomes less than the

user-specified quality level, a compensation policy will be

applied, in which case the scheduling algorithm switches to

the Best Quality (BQ) mode to improve the quality. Once

the overall quality can satisfy the given quality demand, GE
will switch back to AES mode again to save energy.

The compensation policy is necessary to maintain the

quality level, but it may lead to core speed thrashing between

the AES and BQ execution modes when the total workload is

light, which can be detrimental to energy saving. We employ

an Equal-Sharing (ES) power distribution policy to address

this issue, to keep the speed difference among the cores

within a desirable range.

B. Aggressive Energy Saving Mode

The main aspect of the algorithm is to apply approximate

computing to support a practical user-specified quality level

to save energy. This is in contrast to other energy-aware

methods where full quality is required. The AES mode of

our algorithm adopts a job cutting policy to discard the low

quality portions of the jobs based on a given good enough
quality QGE before they are executed on each core.
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Figure 2. Job cutting of four jobs from longest to the shortest.

This AES execution mode can significantly save energy

for our scheduling algorithm as long as the algorithm can

work mostly in the AES mode during job execution, which

is indeed the case. Fig. 1 shows the percentage of time that

the GE scheduling algorithm stays in the AES mode for a

typical job set. When the workload is light, the algorithm

can mostly run in the AES mode to save energy. This is

the major reason that the algorithm turns out to be able to

significantly reduce energy consumption.

In the AES mode, the algorithm cuts jobs in response to

the user-specified quality. According to the concave quality

function, which observes the law of diminishing returns, we

can see that processing the head of each job would contribute

more to the quality than processing the tail of the job with

the same amount of workload. Consequently, our algorithm

executes the most quality-preserving part of the job at the

head while cutting its tail.

The job cutting is performed starting from the longest job.

We call it the Longest-First (LF) job cutting policy. Fig. 2

shows an example with four jobs of various lengths. The job

cutting algorithm is described as follows:

1) Sort the jobs according to their proceeding demands.

2) At each iteration, cut the longest job (there could

be multiple jobs with the same length) to make the

remaining workload the same as the second longest

job; update the overall quality Q after cutting.

3) If Q > QGE (where QGE is the user-specified quality

level), we continue with another iteration by going

back to the previous step and cut the now longest

job(s) until Q becomes no greater than QGE .

4) If Q = QGE , the job cutting is complete.

5) If Q < QGE , let U and C denote the set of uncut jobs

and the set of cut jobs after this iteration, respectively.

Calculate the total quality FU =
∑

Jj∈U f(pj) of the

uncut jobs, and the total quality FC =
∑

Jj∈C f(pj)
of cut jobs. The desired quality of each cut job is then

given by f(c) = (QGE (FU + FC) − FU )/| C |. Use

binary search on the concave quality function to find

the proceeding demand c of each cut job such that its

quality is f(c).

A remaining issue is how to handle jobs that are already

scheduled running. Once a job is assigned to run on a core

of the server, it needs to stay on the same core. We solve this

problem by considering a running job as a new one (with

its original proceeding demand) upon a new schedule. We

calculate its desired demand according to the same LF policy

above. If the calculated demand is smaller than its remaining

demand, this job will be cut accordingly. Otherwise, the job

will continue to run with the remaining demand.

C. Best Quality Mode

During the AES mode, it is possible that some jobs in the

current schedule may not be able to finish when a new event

(e.g., job arrival) triggers the next schedule to start. In this

case, some jobs will be discarded and the desired quality

level may not be achieved.

To address this issue, we develop a compensation policy

in our algorithm. We calculate the current quality whenever

a new schedule is triggered. If the current quality is less than

the user specified quality, the compensation policy will stop

the job cutting and all jobs will be executed to completion

in order to improve the total quality. We call this execution

mode the Best Quality (BQ) mode. Once the quality is raised

above the user-specified quality level, the execution mode

will be switched back to the AES mode to save energy.

Our experiments (described in Section IV-D) show that the

compensation policy in BQ mode provides good quality

guarantee for jobs in the long run.

D. Hybrid Power Distribution Policy

Although the compensation policy can provide the user

specified quality guarantee, switching between AES and

BQ may cause core speed thrashing when the workload

is light. Core speed thrashing refers to the phenomenon

that when the cores run at significantly different speeds

using DVFS, or when a core switches between very high

and very low speeds, the power consumption increases. The

larger the speed variation, the worse it is for energy saving.

This phenomenon is due to the fact that the power-speed

relation is a convex function, where the minimal power

consumption is obtained when the cores are running at the

average speed [28]. In our case, core speed thrashing can

cause significantly more energy consumption even though it

may not reduce quality.

In order to solve this problem, we employ an Equal-
Sharing (ES) policy, which aims at sharing the power budget

equally among different cores to avoid large speed difference

among them. ES policy can successfully reduce the energy

consumption for light workloads without sacrificing the

quality guarantee. During heavy workloads, the cores are

assigned with significant work and would require power to

run above the average speed in order to complete the work

and meet the user specified quality. In this scenario, we

employ the Water-Filling (WF) policy [9], which distributes

the power budget by satisfying the low demand first and all
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the remaining power is used to support heavy-loaded cores.

Our previous work [9] has demonstrated that the WF policy

is effective to guarantee the user specified quality.
Overall, our approach is a hybrid power distribution pol-

icy, which employs ES to save energy during light workload

and employs WF to improve quality when the workload

is heavy. The threshold for differentiating light and heavy

workload is called the critical load, and the performance of

the algorithm can be sensitive to the threshold.

E. The GE Algorithm
We now put different pieces together and describe the GE

algorithm. GE is an online scheduling algorithm, so when

new jobs arrive, they are first kept in a waiting queue. The

scheduling algorithm then assigns the jobs to specific cores

when certain conditions are met. These conditions are called

triggering events, and they include “quantum triggering”

(when the scheduler is run periodically at each scheduling

interval), “idle-core triggering” (when a core becomes idle),

and “counter triggering” (when the number of jobs in the

waiting queue has reached a certain threshold).
When the scheduler runs, the jobs currently waiting in

the queue are assigned to different cores in a batch. In this

context, one can apply Round Robin (RR), which is an effec-

tive policy despite its simplicity. However, to achieve a more

balanced job distribution, we choose to use the Cumulative
Round Robin (C-RR) policy [9]. The only difference is that

C-RR is cumulative in the sense that it assigns jobs to the

core where the last job distribution cycle stops. As such,

it is expected to achieve a more balanced job distribution

over the long run, which would be more desirable for both

quality and energy.
After the jobs are assigned to the cores, the scheduling

algorithm chooses the power distribution policy according to

the current workload. If the current workload is heavier than

the critical load, WF is selected as the power distribution

policy; otherwise, ES is chosen.
Next, at each core, the scheduling algorithm calculates the

quality and decides to run either in the AES mode or in the

BQ mode. In the AES mode, the jobs assigned to the core

are cut according to the user-specified quality level.
For all jobs assigned to a core, if the assigned power

budget is not enough to satisfy the requests of all the work-

load, the existing Quality-OPT algorithm [14] is applied

to calculate the most efficient part of the jobs to achieve

the highest possible quality with limited power (this can be

considered as a second cut to achieve the best quality).
Finally, the jobs assigned to each core are executed

in order of their deadlines by the existing Energy-OPT
algorithm [28] to achieve the least power consumption.

IV. EXPERIMENTAL EVALUATION

In this section, we describe empirical studies to evaluate

the proposed algorithm by comparing it with other widely

used scheduling algorithms.

A. Evaluation Methodology

Our algorithm is based on “good enough” services on

multicore systems that support core-level DVFS. We rely on

simulations to model such architectures and use web search

as the application for “good enough” interactive services.

We evaluate the performance of the scheduling algorithm in

the following aspects:

• Whether the GE algorithm can save more energy com-

pared with other scheduling policies that operate in the

same scenarios;

• Whether the compensation policy can guarantee the

quality demand from the users;

• Whether the hybrid power distribution policy can avoid

core speed thrashing to achieve more energy savings;

• Whether the proposed quality control policy can com-

pete with power budget and speed control policies;

• How the quality function, the amount of power budget,

the number of cores, and discrete speed scaling affect

our algorithm.

We follow through our evaluation methods and elaborate the

corresponding five sets of experiments as follows.

1) Comparing Scheduling Algorithms: Under the same

multicore server and application models, we compare the

performance of the GE algorithm with six other scheduling

algorithms, namely, OQ (Over Qualified), BE (Best Effort),
FCFS (First-Come First-served), FDFS (First-Deadline
First-served), LJF (Longest Job First) and SJF (Shortest Job
First).

In particular, OQ sets the quality target to be 2% more

than the user specified quality demand without compensation

policy. BE always execute the jobs in the BQ mode and

always employs the WF power distribution policy.

The other four algorithms are triggered whenever a core

becomes idle, and a job in the waiting queue (with the

earliest release time in FCFS, the earliest deadline in FDFS,

the largest service demand in LJF, and the smallest service

demand in SJF) is assigned to the core. The default power

distribution policy for all four algorithms is ES. The job is

executed with the slowest possible speed to finish before

deadline to save energy. However, if the power supplied to

the core is not enough to complete the job, the job will be

executed with the highest available speed till the deadline is

reached.

2) Impact of Compensation Policy: We compare our

algorithm with the one without a compensation policy to

see how the compensation policy can affect quality and

energy. For the compensation policy, our algorithm will

immediately switch to BQ mode to improve the quality once

the perceived quality has fallen below the promised level.

Without a compensation policy, the algorithm would never

switch to BQ mode regardless of the quality.

3) Hybrid Power Distribution policy: We compare the

two power distribution policies—Water-Filling (WF) and
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Equal-Sharing (ES)—to show that Equal-Sharing can effi-

ciently avoid core speed thrashing under light workload and

Water-Filling can improve quality under heavy workload.

4) Comparing Control Policies: We compare the pro-

posed quality control policy with two other policies, namely,

power control policy and speed control policy. The GE algo-

rithm employs the good enough quality QGE to determine

the job cutting in our quality control policy. The power

control policy employs the least power budget which can

complete the quality guarantee of the jobs to direct power

distribution. The speed control policy applies the minimum

speed which can complete the quality guarantee of the jobs

to limit the power distributed to all the cores.

5) Sensitivity Studies: We study the sensitivity of our

algorithm under the following scheduling scenarios:

• Effect of quality function: We show how quality func-

tions with different concavity can affect the overall

quality with the same energy consumption.

• Effect of power budget: We show the tradeoff between

quality and energy and its implications when different

power budgets are used, especially under heavy load.

• Effect of number of cores: We show how different

numbers of cores can affect quality and energy, and the

optimal number of cores to use for best performance.

• Effect of discrete speed scaling: We show how to

support GE under discrete speed scaling model, and

study its impact on quality and energy.

In the last study above, we modify the power distribution

policy in order to support discrete speed scaling. After

performing the WF power distribution and starting from the

core with the lowest assigned power, we rectify the speed

to a discrete value closest to but no smaller than the chosen

speed, subject to the total power budget. If in this case the

power budget cannot support such a discrete speed, we will

select the next lower discrete speed.

B. Simulation Setup

We model a web search server with m = 16 cores.

We model the web search requests with partial evaluation

support as follows. The arrival of the requests follows a

Poisson process and the deadline of each request is defined

to be 150ms after its arrival (delayed responses may affect

user experience). The service demand of a request follows

a bounded Pareto distribution with three parameters α, xmin

and xmax, which represent the Pareto index, the lower bound

and the upper bound on the service demand, respectively.

For simplicity, we use number of processing units instead

of number of instructions to represent the service demands

of the requests. We define the processing capability of a

core executing at 1GHz in one second to be 1000 processing

units. Our simulation results show this definition works with

different parameter values, hence we only present the results

with α = 3, xmin = 130 and xmax = 1000 (the mean

service demand of a request can then be calculated to be
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Figure 3. Quality and energy comparison of different scheduling algo-
rithms.

192 processing units). We set the concavity multiplier in

Equation (1) to be c = 0.003. Taking different concave

quality functions would not change the conclusion of our

experimental results.

We set a total power budget of H = 320W , and a good
enough quality of QGE = 0.9. We apply the dynamic power

function Pdynamic = a × sβ , where a = 5 and β = 2 are

constants and s is the core speed (in terms of GHz). The

average speed for each core is 2GHz; that is, it can finish

2000 processing units in one second. In our simulations, we

do not consider static power since it serves as a constant

offset common to all scheduling algorithms.

Under this setting, we define the critical load for job

arrival (to differentiate light load and heavy load) to be

154 requests per second, which means that on average the

requests consume 77.8% of the server’s total processing

capacity with the given power budget and number of cores.

The system is overloaded when job arrival rate is larger than

198 requests per second, in which case the arrival rate will

exceed the total processing capacity of the server.

Our scheduling algorithm has three triggering events

(described in Section III-E). We set the quantum trigger to

be 500ms and the counter trigger to be 8 requests. The total

simulation time for all experiments is set to be 10 minutes.

C. Comparing GE with Different Scheduling Algorithms

In this subsection, we show that using the same hardware

architecture and application model, the GE algorithm not

only guarantees the user specified quality demand but also

achieves more energy savings than the other algorithms.

Fig. 3a shows that when the system is not overloaded,

the GE algorithm can always achieve the stable quality at

around QGE = 0.9. BE can achieve better quality but since

the user-specified quality is expected to be good enough

for guaranteed user experience, higher quality is considered

unnecessary and cost more energy. OQ requires more power

and cannot satisfy the quality demand when the workload

is heavy. This shows that our compensation policy is more

effective than the over qualified policy, which always tries

to provide a little more quality beyond the user demand.

We can also conclude from Fig. 3a that the qualities of

LJF and SJF are the worst among all the algorithms, because
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Figure 4. Quality and energy comparison of different scheduling algo-
rithms with random deadline intervals.

they perturb the arrival/deadline order of the jobs. For LJF,

the longest job is first scheduled but it may have the furthest

deadline, while some shorter jobs with earlier deadlines will

have to be discarded, thus the quality becomes undesirable.

The same is true with SJF. FCFS achieves relatively higher

quality since it respects the deadline order of the jobs. As a

result, it can finish more jobs.

Fig. 3b shows that GE algorithm costs the least amount

of energy among all the algorithms that can satisfy the

QGE requirement. This is because GE employs the LF
job cutting policy to significantly reduce the unnecessary

workload and the hybrid power distribution policy to avoid

core speed thrashing for saving energy. In the best case, the

GE algorithm is shown to achieve 23.9% energy reduction

compared with the BE algorithm. The energy of SJF reduces

with increasing workload because the algorithm may discard

more long jobs with early deadlines. In this case, the short

jobs are executed with slow speed for energy efficiency, but

the long jobs may not have the chance to be executed before

their deadlines. This also explains why SJF has the worst

quality among all the algorithms.

Fig. 4 shows the results when the job model is modified

to allow its service interval to change randomly between

150ms and 500ms. In this experiment, we consider an

additional algorithm FDFS (First Deadline First Service),
because the deadlines of the jobs may no longer be agree-

able. GE algorithm is still shown to achieve stable quality

around QGE with the least energy consumption. The results

for GE, OQ and BE are similar to the ones shown in

Fig. 3, because they consider all the jobs in each scheduling

decision. The other algorithms, however, consider only one

job at a time. FCFS performs extremely bad in this case

because some jobs come first but their deadlines are late,

which can lead to some urgent jobs to be discard. FDFS
performs better than other algorithms because it observes

the deadline orders of jobs, in which case more jobs can

finish to improve the quality. FDFS also demonstrates that

algorithms that schedule jobs in the order of deadline can

achieve better stability and quality.
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Figure 5. Quality and energy comparison with and without quality
compensation policy.
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Figure 6. The speed variation with different power distribution policies.

D. Impact of Compensation Policy

Fig. 5a demonstrates the importance of the quality com-

pensation policy for providing the quality guarantee. The LF
job cutting policy can aggressively save energy, but it may

lead to quality loss. The compensation policy can switch

from the AES mode to the BQ mode to boost quality when

it has fallen below the given target QGE . Fig. 5b also shows

that the compensation policy consumes a little more energy

in order to achieve the promised quality.

E. Hybrid Power Distribution Policy

Fig. 6 shows that the average speed of Water-Filling (WF)
is almost the same as that of Equal-Sharing (ES) when

the load is light. However, the speed variance of WF is

much larger than that of ES. Consequently, we conclude that

WF together with the compensation policy can increase the

energy cost due to the speed thrashing phenomenon under

light load. ES can efficiently avoid core speed thrashing in

this case to save energy consumption with the same quality

compared with WF (shown in Fig. 7a).

Fig. 6 also shows that both the average speed and the

speed variance of WF are larger than those of ES when the

load is heavy (but not very heavy). Because WF can take

full advantage of the power budget while ES cannot exploit

the unused power for lightly loaded cores, it explains why

WF can achieve better quality than ES when the workload

become heavy (shown in Fig. 7a).

Now, Fig. 7a clearly shows that ES can achieve the same

quality as WF when the load is light. At the same time,

Fig. 7b shows that ES consumes less energy because it can

effectively avoid core speed thrashing. Thus, we employ the
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Figure 7. Quality and energy comparison with different power distribution
policies.
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Figure 8. Quality and energy comparison with different control policies.

ES power distribution policy in this case. Fig. 7a also shows

that WF achieves higher quality when the load is heavy.

To guarantee quality, we therefore employ the WF power

distribution policy in this case. This observation suggests

that a hybrid power distribution policy not only avoids

significant energy loss from speed thrashing under light load,

but also achieves better quality under heavy load.

F. Comparing Control Policies

We implement two other policies to control the quality

by providing limited power budget or speed in the BE
algorithm. One is called power control policy with BE (BE-
P), which allocates the power according to the users’ quality

demands. The other is called speed control policy with BE
(BE-S), which sets the maximum core speed according to

the users’ quality demands.

Fig. 8 shows that the GE algorithm, which employs the

quality control policy, outperforms the other two policies.

BE-P performs better than BE-S, because the workloads of

different cores are not balanced. In particular, BE-P employs

WF to distribute the power budget, which helps to balance

the power distribution based on the demands of the cores.

When the load is heavy, the performance of the three

control policies is similar to one another. In this case, all

the cores are overloaded and the algorithms can make full

use of the given power budget or speed. Fig. 8b shows that

GE consumes a little more energy than BE-P and BE-S to

guarantee the user experience.

G. Sensitivity Studies

We now report the results of the five sets of sensitivity

studies in the following.
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Figure 9. Effect of parameter c on the quality function and service quality
of GE.
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Figure 10. Quality and energy of GE with different power budgets.

1) Effect of quality function: GE is designed for “good
enough” services modeled with concave quality functions.

The quality function used in Equation (1) has a parameter c
that can affect the concavity of the function. Fig. 9 shows dif-

ferent quality functions with different c values. We observe

that larger c increases the concavity of the quality function,

which makes the partial evaluation of the GE algorithm more

effective in gaining more quality for the same amount of

work done, thus resulting in higher overall quality.

2) Effect of power budget: The effect of power budget is

shown in Fig. 10. High power budget is not at all necessary

when the load is light. When the load increases, GE can

achieve more stable service quality with more power budget.

Increasing load also increases the energy consumption till

the total power reaches the given budget, after which point

higher load has no impact on the energy consumption.

3) Effect of core count: In general, more cores in a server

can help achieve higher quality with lower energy (we ignore

the effect of static power here). This is because a larger core

count can process more data given the same power budget

due to the convexity of the power function. It also decreases

the potential contention of the jobs at each core, in which

case a job can be executed more slowly to save energy.

Fig. 11 shows the impact of different numbers of cores on

both quality and energy. We observe that a small number of

cores only achieves very limited quality, but consumes a lot

of energy. The situation improves with increasing number of

cores. The algorithm is able to achieve higher quality and

lower energy till the system is saturated when additional

cores bear no effect on the distribution of jobs.
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Figure 11. Quality and energy of GE with different numbers of cores.
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Figure 12. Quality and energy of GE with continuous and discrete speed
scaling.

4) Effect of discrete speed scaling: In reality, the core

speed cannot be changed continuously. Fig. 12 compares the

quality and energy of GE with continuous and discrete speed

scaling. Fig. 12a shows that discrete speed scaling can miss

some quality because the cores cannot use the ideal speed

to execute the scheduling solutions. Fig. 12b also shows that

discrete speed scaling consumes marginally less energy for

the same reason.

V. RELATED WORK

In this section, we briefly review some existing work in

three related areas.

Approximate Computing: Approximate computing,

originally proposed in 1956, has been widely used in lossy

compression and numerical computation [26]. Kugler [17]

provided a summary of research in approximate computing.

There exists work that focused on the kernel level to apply

approximate computing to make computing more energy-

efficient [8, 22, 24]. Others applied approximate computing

at the system level to explore the accuracy of computation

and performance-energy trade-offs [1, 5, 10, 16, 21, 25, 27].

Acun et al. [1] proposed a system to tackle power, reliability,

and performance, where they use load balancing to achieve

higher quality, use profiling data to reconfigure cache and

turn off unused network to decrease energy consumption.

Our previous work also attempted to achieve the best quality

with less energy [9]. The algorithm, however, does not

take advantage of approximate computing to reduce energy

consumption, and it does not employ the hybrid power

distribution policy employed in this paper.

Diminishing Returns: The phenomenon of diminishing

returns was first discovered in economics [2], and now it

has been widely adopted in computing. Han et al. [12, 13]

applied approximate computing combined with diminishing

returns and proposed AccuracyTrader and CLAP algorithms

for low tail latency and high accuracy services. They pro-

posed to aggregate the data from web search or the CF

recommender system. They aggregated the data with high

correlations to the result, which contributes more accuracy or

quality. For error-tolerant services, diminishing returns can

help achieve higher accuracy or quality when we schedule

the most efficient part of the data under heavy load. In

this paper, we adopted the idea of aggregated dataset and

combined diminishing returns and approximate computing

to achieve good enough computing.

DVFS for Energy Saving: DVFS has been widely

explored for achieving higher energy efficiency [11, 19, 20,

29, 32]. Some research is based on system-level DVFS,

where all cores must maintain the same speed [18, 23]. Other

research is based on core-level DVFS, where each core can

set the speed individually [9, 30, 31]. It has been shown

that core-level DVFS can have a significant impact on the

energy efficiency on multicore systems [31]. Yao et al. [28]

first suggested that the power is a convex function of the

processor speed, which presents a reasonable simplification

for power-speed relationship. We explored this power-speed

convex function and combined it with core-level DVFS to

achieve greater energy efficiency.

VI. CONCLUSION

Energy efficiency is an important concern for future high-

performance computing and data processing. In this paper,

we proposed a novel online scheduling algorithm for “good
enough” services on multicore servers to guarantee user-

specified quality requirement rather than simply contriv-

ing to achieve the best quality. The proposed algorithm

employs a job cutting policy and a compensation policy

to guarantee user-specified quality, and relies on a hybrid

power distribution scheme to eliminate the effect of core

speed thrashing under light load conditions to save energy.

Simulation results show that the algorithm can save up

to 23.9% energy compared to the best effort scheduling

algorithm with marginal and acceptable quality loss, thus

responding strongly to the power challenge. We believe that

the proposed energy saving method based on approximate

computing can also be applied to other big-data applications

and employed on different hardware platforms (such as

many-core processors), and it will be our future work.
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