Quickly Finding a Truss in a Haystack

Oded Green', James Fox!, Euna Kim', Federico Busato?, Nicola Bombieri?, Kartik Lakhotia®, Shijie Zhou?,
Shreyas Singapura®, Hanging Zeng®, Rajgopal Kannan®, Viktor Prasanna®, and David Bader!

!Computational Science and Engineering, Georgia Institute of Technology
’Department of Computer Science, University of Verona
3Department of Electrical Engineering, University of Southern California

Abstract—The k-truss of a graph is a subgraph such that
each edge is tightly connected to the remaining elements in the
k-truss. The k-truss of a graph can also represent an important
community in the graph. Finding the k-truss of a graph can
be done in a polynomial amount of time, in contrast finding
other subgraphs such as cliques. While there are numerous
formulations and algorithms for finding the maximal k-truss of
a graph, many of these tend to be computationally expensive
and do not scale well. Many algorithms are iterative and use
static graph triangle counting in each iteration of the graph. In
this work we present a novel algorithm for finding both the k-
truss of the graph (for a given k), as well as the maximal
k-truss using a dynamic graph formulation. Our algorithm
has two main benefits. 1) Unlike many algorithms that rerun
the static graph triangle counting after the removal of non-
conforming edges, we use a new dynamic graph formulation
that only requires updating the edges affected by the removal.
As our updates are local, we only do a fraction of the
work compared to the other algorithms. 2) Our algorithm is
extremely scalable and is able to concurrently detect deleted
triangles in contrast to past sequential approaches. While our
algorithm is architecture independent, we show a CUDA based
implementation for NVIDIA GPUs. In numerous instances, our
new algorithm is anywhere from 100X-10000X faster than
the Graph Challenge benchmark. Furthermore, our algorithm
shows significant speedups, in some cases over 70X, over a
recently developed sequential and highly optimized algorithm.

I. INTRODUCTION

The subgraph isomorphism problem tries to answer the
following question, given two graphs H and G (where H
is the smaller of these graphs): is there a 1 — 1 mapping of
vertices in H to vertices in GG such that each edge in H is
also in G?. For example, H might be a clique of size k, in
which case the question is, “Is there a clique of size k in G?”.
The answer to this question is an NP — C'omplete problem.
Yet, there are simplifying assumptions on the structure
of H that can help make the problem computationally
feasible and tractable - so long as a simpler subgraph H
is defined. The need for subgraph isomorphism presents itself
in numerous applications, including community detection
and social network analysis, were there is a need to find
a subgraph with a given set of properties. Another way of
looking at the subgraph isomorphism problem is pattern
finding, where H represents the pattern. Therefore, it is
not overly surprising that in many cases the pattern will
be relatively small in comparison with the initial input - this
is almost like looking for a “needle in a haystack”. For
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example, a triangle in a graph can be thought of as a pattern
and enumerating all the triangles in the graph meets the
requirements of the subgraph isomorphism problem. While
maximal clique finding is computationally intractable, finding
and enumerating all the triangles in a graph can be done in
polynomial time. Thus, the problem of subgraph isomorphism
can be tractable for specific patterns and for a known H.

The HPEC Graph Challenge [31] seeks to find a high
performance solution for a specific subgraph isomorphism
problem where the structure of H is a k-truss within G.
A k-truss is subgraph where each edge is part of at least
k — 2 triangles. The maximal k-truss in a graph, denoted by
k = kpaz is the largest k-truss in the graph where the set of
satisfying edges is not empty. The exact k or structure of the
final maximal k-truss is not known apriori and is dependent
on the graph. Finding the maximal k-truss can be done in
polynomial time [4], [33], [14], [8].

Contribution

In this paper we show a new algorithm for finding a k-
truss subgraph as well as the maximal k-truss in a graph.
While the algorithm focuses on finding trusses in a static
graph, we introduce concepts and principles used in dynamic
graph algorithms. First of all we use a dynamic graph data
structure designed for sparse networks where the edges can
be removed efficiently from the graph without needing to
rebuild the graph after each change [10], [3]. Second, we
show a highly efficient and scalable dynamic graph triangle
counting algorithm for updating the number of triangles in the
graphs without needing to recompute all the triangles in every
iteration. While our algorithm is architecture independent, we
show an implementation of it for the NVIDIA GPU.

Altogether, our new algorithm is significantly faster than
the HPEC Graph Challenge [31] benchmarks. While our
algorithm always completed in a reasonable amount of
time, there are numerous instances in which one or more
of the benchmarks did not complete. In most cases we
saw that our new algorithm is easily 100X faster than
the best performing Graph Challenge benchmark and upto
10000X faster than the other remaining benchmarks. Our
new algorithm also outperformed the recent work of Wang &
Cheng [33]. While the algorithm in [33] is highly efficient,
it is also inherently sequential as it is unable to update the



triangle count concurrently when removing multiple edges.
Our algorithm is concurrent and extremely scalable.

II. RELATED WORK
A. Problem Definition

Given a graph, G = (V, E), the vertices are denoted as V'
and the edges are denoted by E. The maximal k-truss of the
graph, H = (V, E) meets the following criteria: 1) VCV,
2) EC E, 3) HCG, and 4) Ve € E,tri(e) >= k — 2.
For the maximal k-truss problem, k needs to be the maximal
value before £ = () and V = (). In many papers, the term
support of edge can be used to replace the term ¢ri(e). We
use both throughout this paper.

B. K-Truss

The k-truss was first introduced by Cohen [4] as a
relaxation of a clique (due to the reduced complexity of
the truss) while still ensuring that if two vertices are in a
given truss it is quite likely their common neighbors will be
in the truss. Several different approaches for finding trusses
and the maximal k-truss are also discussed in [4]. Yet, these
share common algorithmic properties: 1) the algorithm is
executed in an iterative fashion and 2) in each iteration of the
algorithm, a subset of edges is removed from the graph. Edges
are removed from the graph if their support (i.e. number of
triangles they participate in) is not large enough based on the
given iteration.

In [5], Cohen discusses the benefits of implementing graph
algorithms in the Map-Reduce framework which enables
the analysis of large networks. It is worth noting that
the work in [5] preceded the creation of the Pregel [25]
framework. The introduction of Pregel improved expressibility
and simplicity of implementing graph algorithms in a Map-
Reduce framework, though performance of these algorithms
did not improve as much. While the work in [5] showed the
ability to scale to larger networks, the work by Wang and
Cheng [33] showed that an optimized algorithm designed for
a single shared-memory system can easily outperform the
Map-Reduce implementation.

Wang and Cheng [33] show several different optimizations
for finding the maximal k-truss , though these algorithms are
sequential'. Further, Wang and Cheng [33] discuss several
iterative approaches for finding trusses, including a bottom-up
approach and a top-down approach. The bottom-up approach
is closer to the approach taken by [4], whereas the top-down
approach works in the reverse direction (starting from the
edge with the largest number of triangles and working its way
down). The top-down approach is ideal for cases when there
is a need to find either the maximal k-truss or for k’s close
to the maximal k-truss . In practice, the top-down approach
has a performance penalty making it more expensive than
the bottom-down approach in many instances.

'One of the main challenges associated with a parallel implementation
of their algorithms is the need for correct triangle counting in parallel and
dynamic environment. A solution to the problem was recently given in [24]
and is discussed in additional detail in Section II-E.
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Sariyuce et al. [28] present a new approach for decompos-
ing a graph into a forest of nuclei. These nuclei are dense
sub-graphs with clique-like properties. One nuclei subgraph
used in the decomposition is the maximal k-truss.

Kabir and Madduri [17], [18] show a parallel algorithm for
k-truss decomposition for multi-core systems. Their algorithm
also uses an efficient triangle counting phase that avoids
unnecessary graph intersections as well as two edge queues
for storing the list of active edges in the graph. The active
edges are used for updating the support of edges and filtering
edges not matching the necessary support.

Gadepally et al. present the Graphulo [8] framework which
enables implementing graph algorithm using linear algebra
operators over the Apache Accumulo NoSQL database. The
formulation for finding a k-truss in Graphulo is similar to
the formulations of the baseline benchmarks of the HPEC
Graph Challenge, which are implemented in Matlab, Julia, and
Python using highly optimized libraries. The linear algebra
based algorithm in [8] presents one iteration of [4], [33] for
a specific k, though this can be extended to find the maximal
k-truss . Huang et al. [14] show how to maintain the various
trusses of a graph in a dynamic environment.

C. Triangle Counting

Triangle counting is a building block for numerous appli-
cations. Therefore, it is not overly surprising that numerous
algorithms and optimizations have been designed to efficiently
compute it. Some libraries and implementations have focused
on good system utilization with good load-balancing [12],
[34], others have focused on data scalability to support larger
graphs GraphX [35], GraphLab [23]. Techniques such as
vertex re-ordering have been shown to help reduce the number
of cache misses [30], [27]. Other algorithms have used vertex
covers to reduce the number of necessary intersections [9].

D. GPU Triangle Counting

Leist et al. [21] show the first GPU algorithm for triangle
counting. In this approach each GPU thread is responsible
for a different intersection. Green et al. [13] offer a different
parallelization scheme for the GPU that uses numerous GPU
threads for each adjacency intersection and extends the Merge-
Path formulation [26], [11] to Intersect-Path. Intersect-Path
improves the performance over [21] by an order of magnitude.
Wang et al. [34] analyze the performance of several different
approaches for triangle counting on the GPU.

E. Streaming and Dynamic Triangle Counting

Similar to the static graph triangle counting algorithms,
numerous algorithms have been designed for streaming graphs
[2], [1], [19]. Streaming graphs are graphs were the edges are
inserted or removed one at a time (typically at high rates) and
the number of vertex and edges memory accesses per update
is limited to O(1) operations. In the case of triangle counting,
many streaming graph algorithms focus on approximating
the number of triangles. Furthermore, many streaming graph
algorithms focus on the easier case of edges insertions [19].
Becchetti ef al. [1] note that there are numerous applications



where these approximations are not good enough - this is
also true for the case of finding the exact and largest k-truss
in a graph.

In addition to streaming graphs algorithms, dynamic graph
triangle counting algorithm can be found in [6], [29], [24].
Ediger et al. [6] use the STINGER [7] dynamic graph data
structure for updating the graph and analytics in batches.
For a single update this is simple, however, then the update
consists of multiple edges (combined into a single batch)
a situation can arise where numerous edges in a batch can
create a triangle - such a triangle can go undetected in a
parallel environment. Therefore the approach taken in [6] and
Graphln [29] is to recompute the triangles of a vertex from
scratch even if only one of its edges is affected.

Recently, a dynamic graph triangle counting algorithm was
presented by Makkar et al. [24] that shows a new inclusion-
exclusion formulation for detecting triangles within a given
batch, thereby reducing the amount of work required to update
the number of triangles per vertex. This new algorithm does
not require recomputing the number of triangles for a whole
vertex as required by previous approaches. This algorithm,
with its ability to support a batch of edge deletion, is extremely
useful for finding the k-truss . Our new algorithm, discussed
in Section III extends this algorithm from [24] to support
counting triangles per edge rather than per vertex.

III. KTRUSS ALGORITHM USING DYNAMIC GRAPHS

In this section we present our new algorithm for finding
the maximal k-truss (or a specific k-truss ) in a graph. The
algorithm in [4] suggests recomputing the triangles in every
iteration - this is computationally expensive. The algorithm
in [33] avoids recomputing triangles for effect edges, yet is
sequential. Our new algorithm is both scalable and avoids
unnecessary computations. The new algorithm extends the
algorithm from [24] and updates the number of triangles per
edge rather than per vertex.

Both the algorithms in [4] and [33] require removing edges
from the graph once the edges no longer support the necessary
number of triangles. This edge deletion process is exactly
where the algorithm in [24] excels by avoiding unnecessary
computations. Part of the edge deletion process also includes
removing the edge from the graph. For sparse graphs, this has
proven to be challenging, yet several recent data structures
have been created that take care of the graph update at high
rates, these include STINGER [7] and cuSTINGER [10], [3]
for the GPUs. We use cuSTINGER in our implementation
as it supports sorted updates [24] and its data layout is great
for both static graph and dynamic graph triangle counting.

Algorithm 1 presents the pseudo code for our new algo-
rithm. While the various functions in the algorithm do not
highlight the parallelism in the algorithm, the function calls
are all inherently parallel. For example, finding all the vertices
with a support smaller than k —2 can be done by accessing all
the edges in the graph concurrently. Deleting the edges that
lack support can also be done in parallel. Lastly, updating the
triangle counting of the edges can also be done in parallel.
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Algorithm 1 New algorithm for finding k-truss

Input: G = (V, E), K
1: procedure UPDATETRIANGLE(G', Eeim)

2: Construct Grem = (Vrems Erem)

3: D> Update triangles where 1 edge-pair is deleted
4:  paralle for all (u, v) € Epem do

5: Intersect(Gqy, Gy)

6:

7. > Update triangles where 2 edge-pairs is deleted
8: parallel for all (u, v) € Epem do

9: Intersect(Gqy, Grem,v)

10:

11: function ONEK(G, K)

12: > Par-for on all edges in graph looking for sup(e) < k — 2
13 Erem 4 FindUnderKm?2(G, K)

14:  while (| Eyem | # 0) do

15: Remove(G, Erem)

16: if (G = 0) then

17: return

18: UpdateTriangle(G, Erem)

19: > Par-for on all edges in graph looking for sup(e) < k — 2
20: Erem — FindUnderKm2(G, K)

21: return

22 function NEWKTRUSS(G, K)

23:  while True do

24: OneK (G, K)

25: if (G = () then

26: return k — 1;

27: ke k41

A. Triangle Subtraction

Consider a triangle in a graph consisting of three vertices
u, v, w. The different and ordered triangles consisting of ver-
tices are : (u,v,w), (u,w,v), (v,w,u), (v,u,w), (w,u,v),
and (w, v, u). As the graph is undirected, there is a certain
amount of symmetry: sup(u,v) = sup(v, u). This also means
that if (u, v) is deleted, then (v, u) is also deleted. We denote
a set of two edges (u,v) and (v,u) as an edge-pair.

Thus, given a triangle in the graph prior to the removal of
a subset of edge-pairs, the following scenarios can arise from
the removal: 1) a single edge-pair is removed, 2) two edge-
pairs are removed, and 3) all three edge pairs are removed. If
a single edge-pair is removed, then the remaining two edge-
pairs need their support to be modified. If two edge-pairs are
removed, then the remaining edge-pair needs to be updated.
When all three edge-pairs are deleted, then no modifications
are required as all the edges are no longer in the graph. Note,
that 1) a single deleted edge-pair can affect multiple triangles
and 2) these three scenarios capture all the possible changes
caused by a deletion of a given edge-pair.

B. Triangle Detection For Single Edge-Pair Deletions

Assuming that the deleted edge-pair consists of vertices
u and v, we are required to find all the affected triangles.
This requires intersecting the adjacency arrays of w and v
in G (where G' = (V, E)) is the graph after the removal of
the edges). By intersecting (u,v) and (v, u), the common
neighbors are found. For each of these common neighbors
a triangle is decremented from its edge count. This is the
simpler of the two cases.

C. Triangle Detection For Dual Edge-Pair Deletions

The process for detecting and updating the number of
triangles when deleting two edge pairs is a bit more complex
(the reader is referred to [24] for additional details) and
we provide only a sketch of the process. For simplicity,
assume that these edges are (u,v), (v, u), (v, w), (w, u). Thus,
we are required to update the edge pair (v, w) and (w,v).
Given the set of deleted edges E,¢y,, a graph of the deleted
edges is created, we call this graph Grem = (Viem, Erem)-



TABLE I
GPU AND CPU SYSTEM USED IN EXPERIMENTS.

[ Architecture

[ Processor | Micro-architecture | SM | SP (per SM) | Total SPs | DRAM Size | DRAM Type |

[ GPU-CUDA [ PI00 ] Pascall [ 56

[

64 [ 3854 ] 16GB | HBM2 |

Processor

[_Archi [ Micro-archi [

| Frequency |

Cores | LL-Cache | DRAM Size | DRAM Type |

[ CPUX8664 | Broadwell | 2 Intel Xeon E5-2695 v4 |

2.1 GHz

[ 2x 16 [ 2x 45 MB | 1024GB__| DDR42400 |

TABLE II
NETWORKS USED IN OUR EXPERIMENTS. | E| REFERS TO DIRECTED
EDGES. NETWORKS ARE SORTED BASED ON THE NUMBER OF EDGES.
EXECUTION TIME IS FOR CUSTINGER-DELTA.

[ Name [ VI [ 1El | kmaz | Time(s) |
p2p-GnutellaO8 6.3K 21K 5 0.007
ca-HepTh 9.8K 26K 32 0.005
ca-HepPh 12K 119K 239 0.009
email-Enron 37K 184K 22 0.026
soc-Epinions | 76K 406K 33 0.09
cit-HepPh 35K 421K 25 0.24
soc-Slashdot0902 82K 504K 36 0.085
roadNet-PA IM 1.5M 4 0.078
flickrEdges 106K 2.3M 574 0.26
amazon0601 400K 2.4M 11 0.12
graph500-scale18 262K 4.2M 159 0.74
graph500-scale19 524K 8.4M 213 6.8
graph500-scale20 640K 16M 284 17.3
cit-Patents 3.8M 16.5M 36 453
graph500-scale21 2.IM 34M 373 117
graph500-scale22 4.2M 67TM 485 291
graph500-scale23 8.4M 134M 625 780

[ Name (Wang & Chang 33)) [ [V [ [E[ | kmaz | Time(s) |
wiki-Talk 2.4M 4.7M 53 9.07
as-skitter 1.7M 11M 68 57.1
soc-LiveJournal I 4.8M 43M 362 258

Given Gyerm and G, to find the common neighbors (v, w) and
(w,v), we do the following intersections between the vertex
pairs: (Urem, 0)s (Upem, @), (urem,@: (Wrem, ) where the
adjacencies arrays of ¢,,v are in G and the adjacencies
arrays of Urem, Urem, Wrem are in Grep,. Note, all four of
these intersections are required due to the asymmetry of the
adjacency arrays in the two different graphs.

IV. EXPERIMENTAL SETUP

Our experiments are conducted on an NVIDIA P100 GPU
connected to an Intel Xeon E5-2695 with 32 cores (details
in Table I. The P100 is a Pascal based GPU with 56 SMs
and 64 SPs per SM, for a total of 3584 SPs. The P100 has a
total of 16GB of HBM2 memory. The Intel Xeon E5-2695
is a Broadwell based processor running at 2.1 GHz with
45MB L3 cache. The server consists of two such processors
with a total of 1TB of memory. While the new algorithm is
architecture independent, the final implementation targets the
GPU. Thus, while the GPU is connected to a high-end Intel
processor, in practice we only utilize a single CPU thread.

A. Dynamic Graphs

The cuSTINGER data structure is the first fully dynamic
graph data structure for the GPU [10], [3]. cuSTINGER uses
dynamically growing arrays. This allows for improved locality
and increased parallel scalability for the GPU’s warp based
execution model. Specifically, the use of arrays cuSTINGER
allows for inserting and deleting edges from the graph while
ensuring that the edge lists are sorted after the update with
relatively low computational effort [24].

B. Benchmarks

We compare the performance of our algorithms with
several different implementations, including the baseline
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benchmarks defined by the HPEC Graph Challenge [31].
The baseline benchmarks are formulated in a linear algebra
based formulation in several different programming languages:
Matlab/Octave, Julia, and Python. While these programming
languages are high-level, they utilize several optimized
libraries for the sparse matrix representation as well as for
the SpMV operations. We also compare our new algorithm to
Graphulo [8] and Wang and Chen [33]. Of these, only [33]
and our algorithm use a non linear algebra formulation.

We evaluate the benchmarks on two related but distinct
challenges: 1) finding k-truss for a specific value of k and 2)
finding all k-trusses up to and including the maximal. We treat
these as distinct because there are algorithmic optimizations
that are available to the former that aren’t to the latter, and
vice versa. The results of Wang and Cheng [33] are only for
the latter problem. On the other hand, the Graph Challenge
benchmarks find trusses of a single k by default. We extended
these implementations to iteratively find the maximal k-truss,
as suggested in [8].

Our implementations - in our performance analysis we
compare two different implementations: 1) cuSTINGER-
Iterative - a ndive algorithm that enumerates the triangles for
all the edges in the graph for each iteration of the algorithm
using a static graph formulation and 2) cuSTINGER-Delta - an
implementation of the new algorithm discussed in III. While
both these algorithms utilized the cuSTINGER data structure
for deleting edges not meeting the support requirements of
the k-truss, only cuSTINGER-Delta utilizes the smart update
process.

Python - we found the Python implementation to typically
be the most stable of the Graph Challenge benchmarks.
Whereas the other benchmarks did not always complete, the
Python benchmark always did. The Python implementation
utilizes SciPy [16] library for its sparse operations. This
benchmark is sequential.

Matlab/Octave - this sequential benchmark supports both
Matlab and Octave syntax. We used the Octave framework for
the execution. We ran into memory-related errors (exceeding
memory, seg faults) on some inputs.

Julia - we found that the sequential Julia implementation
had several problems, including memory leakage and bad
parsing of the input files. Further, there were several cases
that the execution was so slow that the benchmarks were
stopped.

Wang and Cheng [33] - this benchmark is highly op-
timized, yet sequential algorithm for finding the k-truss.
The code for this algorithm is not open-source, as such we
compare the performance of our algorithm directly to the
numbers reported in their paper. Details of the system used
for these experiments can be found in [33].



TABLE III
EXECUTION TIME COMPARISON FOR FINDING THE MAXIMAL k-TRUSS
WITH THOSE FOUND IN [33] AND £ = 3 WITH THOSE FOUND IN [15].

P2P HEP Amazon Wiki Skitter Ly
Time (Wang & Cheng [33]) <1 <1 31 121 281 664
Time (cuSTINGER-Delta) 0.014 0.038 0.43 9.07 57.1 258
Speedup < 70 < 26 72 13 5 2.57
S10 S11 S12 S13 S14 S15 S16
Time (Graphulo [15] 1.63 393 12.1 372 110 3290 8770
Time (cuSTINGER-Delta) 0.003 0.007 0.016 0.042 0.106 0.352 1.18
Speedup 518 595 741 883 1041 9330 7847

Graphulo [8] - while the Graphulo framework has an
open-source k-truss implementation, we were unable to
collect execution times due to errors. As such, we use the
execution times reported in [15], and ran the same inputs on
cuSTINGER for comparison. This benchmark is parallel -
details of the system used for these experiments can be found
in [15].

C. Dataset

The HPEC Graph Challenge [31] has a pre-determined set
of networks that are to be used for evaluating the performance
of the new algorithm. This consists of graphs from the SNAP
dataset [22] and synthetic graphs which are also used for
the Graph500 benchmark. Details of the Graph Challenge
Graphs can be found in the upper part of Table II. For the
sake of brevity we do not present all the graphs in the Graph
Challenge list, rather we highlight only a subset of them.
We used adjacency files as provided by the Graph Challenge
dataset for cuSTINGER, and convert them into their incidence
forms for linear-algebra-based benchmarks. The graphs used
in [33] also consist of SNAP graphs and can be found in
the bottom part Table II, though they are not in the original
Graph Challenge List. As such, we preprocessed these graph
from their original SNAP [22] format to the one required by
the benchmarks. For comparison with the results of Graphulo
[15], we generated scale-free graphs (scales 10-16) using their
generator script and seed. We then converted these graphs to
be run on cuSTINGER.

V. PERFORMANCE ANALYSIS

Fig. 1 (a) and (c) depict the execution of the various
algorithms for finding the maximal k-truss and for finding
the k-truss for k = 4, respectively. The abscissa denotes
the number of edges in the input graph and the ordinate
depicts the execution time. Note, both the abscissa and the
ordinate are log based. Missing data points imply either the
benchmark did not finish in a reasonable amount of time (our
upper-bound on execution time was approximately 8 hours)
or the benchmark did not complete for some reason (exceed
memory, crashed in the graph loading phase). The motivation
for separately getting execution times for the maximal k-truss
versus finding trusses of a predefined k stems from the way
that edges are removed from the graph. Consider the case
where k is selected to be k,,,,. Even though the output of
both these test cases will be the same, the execution time for
k = kpqz Will be faster than the execution time when needing
to look for k4, due to more aggressive edge filtering.
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For both these approaches, it can be distinguished from
Fig. 1 that both the new implementations, cuSTINGER-
Iterative and cuSTINGER-Delta, significantly outperform the
remaining benchmarks by orders of magnitude (from 100X
and upto 10000X). While it is not fair to compare a GPU
implementation with a sequential implementation, we note
that the speedup of our algorithms is not just from the use
of a NVIDIA GPU, but is due to several additional factors:
1) problem formulation, 2) algorithmic optimizations, and
3) data structure support. It is also worth noting the work
of Lee et al. [20] compares the performance of CPUs to
GPUs and narrowed down the relative speedup of a GPU
over a CPU to a significantly smaller value than our achieved
speedups. Problem formulation - based on the findings of
Schank & Wagner [32], it has been established that the time
complexity for the linear algebra formulation is higher than
the vertex-centric formulation (which we use). Algorithmic
optimizations - our new algorithm has several important
algorithmic optimizations that reduce the total amount of work
required for re-enumerating the number of triangles per edge.
Data structure support - given our usage of cuSTINGER
[10], [3] and its support of dynamic graphs, we don’t need
to recreate the sparse graph after each iteration of the graph.
This saves a lot of time on memory allocations.

While we are unable to measure the magnitude of each
of the aforementioned optimizations and their contribution
to the overall speedup, we do know that our new algo-
rithm, cuSTINGER-Delta, is several times faster than our
cuSTINGER-Iterative (we saw an up to 30X difference
between the two algorithms). This is directly attributed to
our algorithmic optimizations. Also, it is worth noting that
due to these optimizations, our implementations scale to
significantly larger graphs (well over 100M edges) compared
to the remaining benchmarks.

Fig. 1 (b) depicts the projected energy (J) consumption for
maximal k-truss run-times and power measurements while
running benchmarks on the CPU and GPU respectively. We
used the ipmitool tool for measuring power. The power
measured for the CPU is (286%). The power measured for
the GPU also includes the CPU power and is only slightly
higher at (350%). Based on our measurement, the GPU is
not using its peak power. This probably has to do with the
fact that the GPU is executing relatively small kernels and
for a short period of time. However, the power-performance
plot of Fig. 1 (b) does not look significantly different than
Fig. 1 (a) - this is due to our new algorithm being extremely
power efficient due to its short execution time.

Fig. 1 (d). depicts the runtime of the various implemen-
tations as a function of the k, in the process of searching
for the maximal k-truss . The soc-Slashdot0902 graph was
selected as it successfully completed on all benchmarks. As
expected, generally the time per iteration decays over time
as the number of active edges (edges under consideration)
tends to monotonically decrease with the increase of k 2. The

2Note, the execution time for a given k is dependent on the number of
sub-iterations for that given k - this can also explain the increase in execution
time from k =3 to k =4
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(a),(b), (c): execution times and energy consumption for finding the trusses as a function of the graph size (number of edges in the input graph): (a)

maximal k-truss of the graph, (b) the energy consumption for find the maximal k-truss , and (c) for trusses of k = 4. These are log-log plots. (d) Execution
time of the various algorithms for finding the maximal k-truss ,for the soc-Slashdot, as a function of the iteration (k). Note, that while kynqz = 36, the
algorithms terminate for £ = 37 when the graph becomes empty. The Y-axis is log-scale.

only exception is the Python benchmark, where the time per
iteration remains in a constant range for this input. Our new
algorithms are orders of magnitude faster than the Graph
Challenge Benchmark [31].

Comparison with Wang and Cheng [33] Table III (upper)
compares our new algorithms with the algorithm by Wang &
Cheng [33]. We picked six inputs of varying sizes from their
list of tested graphs (all from the SNAP graph repository).
While [33] had numerous implementations, we compare
against their bottom-up approach as it is the most similar
to our algorithm. We show speedups of our algorithm over
theirs. In all cases the cuSTINGER-Delta implementation
outperforms [33].

Comparison with Graphulo [15] Lastly, we compare
our new algorithm, Table III (lower), with the Graphulo
framework which has a linear algebra based implementation
for finding a k-truss of a given size, using inputs from their
paper. The Graphulo framework is intended to process larger
graphs. Similar to the other linear algebra based formulations,
our new algorithm is orders of magnitude faster.

VI. CONCLUSIONS

In this paper we showed a new algorithm for finding k-
truss subgraphs. Our new algorithm uses a dynamic graph
formulation and exploits two important features: 1) it utilizes
a dynamic graph data structure that can insert and remove

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

edges without creating a new data structure after each update
and 2) it avoids recomputing the number of triangles per edge
in each iteration of the algorithm after the edge removals.
The latter of these properties means that our new algorithm
does a fraction of the work that static graph algorithms do -
this leads to significant speedups. In addition to this, our new
algorithm is also extremely scalable and can concurrently
detect when a deleted edge is part of multiple triangles and
it can update all the affected edges (in parallel).

While our algorithm is architecture independent, our CUDA
based implementation showed massive speedups over the
Graph Challenge benchmarks. There were numerous instances
where the Graph Challenge benchmarks did not complete in
reasonable amount of time (8 hours) whereas our algorithm
finished in a few minutes. Our new algorithm was often
over a hundred times faster than the best performing Graph
Challenge Benchmarks and thousands of times faster than the
remaining benchmarks. Our algorithm also scaled to much
larger graphs than in the benchmarks. While part of our
speedup can be attributed to the usage of an NVIDIA GPU,
the bigger part of the speedup is due to the new algorithmic
optimizations we showed. Further, our new algorithm is in
some case over 70X faster than a recently developed and
optimized algorithm that is inherently sequential.
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