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Many common methods for data analysis rely on linear algebra. We provide new results connecting data
analysis error to numerical accuracy in the context of spectral graph partitioning. We provide pointwise
convergence guarantees so that spectral blends (linear combinations of eigenvectors) can be employed to
solve data analysis problems with confidence in their accuracy. We apply this theory to an accessible model
problem, the ring of cliques, by deriving the relevant eigenpairs and finding necessary and sufficient solver
tolerances. Analysis of the ring of cliques provides an upper bound on eigensolver tolerances for graph
partitioning problems. These results bridge the gap between linear algebra based data analysis methods and
the convergence theory of iterative approximation methods. These results explain how the combinatorial
structure of a problem can be recovered much faster than numerically accurate solutions to the associated
linear algebra problem.

Keywords: eigenvalues and eigenfunctions; graph partitioning; community detection; partitioning algo-
rithms; laplace equations; data mining; data analysis; iterative methods; approximation algorithms.

1. Introduction

Spectral methods are a valuable tool for finding cluster structure in data. While all spectral methods
rely on approximating the eigenvectors of a matrix, the impact of numerical accuracy on the quality of
the partitions is not fully understood. Spectral partitioning methods proceed in two steps, first, one or
more vectors approximating eigenvectors of a graph matrix are computed, and then a partitioning scheme
is applied to those vectors. While many theoretical results quantify the relationship between the exact
solution to the numerical problem and the solution to the original data mining problem, few address
data analysis errors introduced by error in the numerical solution. For instance, [1] studies the runtime
and quality (in terms of conductance) of partitioning algorithms including spectral methods, where the
eigenvector computation is used as a primitive operation without accounting for the trade-off between
run time and numerical accuracy. Guattery and Miller [2] studied various methods of applying exact
eigenvectors to partition graphs by producing examples where each variation does not find the optimal
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552 J. P. FAIRBANKS ET AL.

cut. Our paper addresses the effect of numerical error in the eigenvector computation on the quality of
sweep cuts which reveal graph structure.

In order to understand the impact of numerical error on spectral partitioning, we study both general
matrices and a specific family of graphs. Finding error and residual tolerances for general graphs is a
difficult problem. Section 2 provides tools for deriving a residual tolerance for arbitrary graphs. Section 3
analyses a model problem with clear cluster structure, where linear combinations of eigenvectors represent
a space of multiple good partitions, and applies results from Section 2 to derive a residual tolerance
sufficient for solving this model problem. This use of a model problem is well-established in the linear
algebra literature where the Laplace equation on a regular grid is common in papers and software regarding
the solution of systems of equations [3]. Analysis of this model problem allows us to derive a solver
tolerance for correctly recovering the clusters with a sweep cut scheme. This analysis illustrates the
difference between accurately solving the equation and correctly recovering the combinatorial structure.

This approach to approximate eigenvectors can be applied to other applications where a numerical
method solves a data mining problem, such as solving personalized Pagerank as a linear system [4] to rank
vertices in a graph, or evaluating commute times [5] to produce a metric distance on the vertices. These
methods also apply numerical solvers to infer a combinatorial or data analysis structure from the graph.
A similar treatment, in terms of a model problem, of these methods would benefit our understanding of
the relationship between numerical accuracy and data analysis accuracy.

Here we introduce the necessary concepts of data analysis quality and eigensolver accuracy. This work
focuses on partitioning graphs to minimize conductance as defined below. For any § C V,SUS = V
represents a cut of the graph. Define Vol (S) = }_, ¢ .y ai; as the total weight of the edges with an

endpoint in S, and define E (S , S') =D . Jes dij as the total weight of edges with one vertex in S and one
vertex in the complement of S. The conductance of a cut S is thus given by the formula [1]:

E(S.S)
min (Vol ($), Vol (5))

¢ () =

For any vector x, represent the sweep cut of x at 7 as in Equation (1).
S=8(t)=1{i|x >t} (1)

We denote by ¢ (x) the minimal conductance of a sweep cut of x, that is min, ¢ (S, (¢)). The conductance
of the graph is defined as ¢ = ming ¢ (S). If the graph has multiple partitions with conductance less
than a value v, then the application might accept any of them.

The accuracy of a solution to the eigenvector problem can be measured with three quantities: Rayleigh
quotient, error and residual. Spectral methods for finding low-conductance partitions rely on computing
vectors x and corresponding scalars A that solve the equations Mx = Ax for some graph-associated matrix
M. The Rayleigh quotient, © = x'Mx is an approximation to the eigenvalue A. The error ||[v — x||, where
v is the closest exact solution, is not accessible to a solver in general. The solver can use the norm of
the eigenresidual, ||[Mx — ux||, to determine when to stop iterations. Throughout this paper ||-|| will be
taken to mean the 2-norm with subscripts used to clarify when necessary. In order to practically use an
eigensolver, one must choose a residual tolerance ||Mx — ux| < e sufficient to ensure that the computed
eigenvector is accurate enough to solve the application problem. This paper provides concrete residual
tolerances for a specific model problem and provides tools for finding such tolerances for more general
graphs.

We briefly summarize notation for various graph matrices. Let 1 be the all ones vector. If A is
the adjacency matrix of a graph and D is the diagonal matrix whose entries are d;; = (Al);, then
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L = D — A is the combinatorial Laplacian, and I = I — D 2AD"? is the normalized Laplacian.
Solutions of the generalized eigenvector problem Ly = Dy are scaled solutions to the eigenvector
problem D~2LD"2x = x where the scalingis x = D%y. We refer to D"2AD™7 as A, and use the identity
ML) =1—= Ayt @A) to replace computations involving small eigenvalues of the normalized Laplacian
matrix with computations involving large eigenvalues of the adjacency matrix.

Conductance is an appropriate measure of partition quality for spectral partitioning because of
Cheeger’s inequality which bounds the conductance of the graph in terms of the eigenvalues of the
Laplacian matrix.

THEOREM 1 (General Cheeger Inequality [6]) If x is a unit vector orthogonal to D?1such that x"L.x = I
then D~2x has a sweep cut S such that ¢ (S) = ¢ (x) < /2u.

When x satisfies Lx = A,X, ¢g < ¢ (D‘%x> < /2%, (L). This general form of Cheeger’s inequality
indicates that finding low-energy Laplacian eigenvectors is sufficient for constructing low-conductance
partitions of the graph.

In graph partitioning, the goal is to compute a partition of the graph that optimizes the chosen
objective. When applying spectral methods to graph partitioning, our goal is not to compute very accurate
eigenpairs, but instead to partition the vertex set of a graph correctly. Because spectral partitioning can
be used recursively to find small clusters, we focus on splitting a graph into two parts. Our results on the
model problem indicate that approximate eigenvectors are sufficient to solve the data analysis problem
and are much faster to compute if the graph has the right structure.

1.1 A model problem

We use a simple model (the ring of cliques) to study the capabilities of spectral partitioning algorithms,
form theory to characterize performance and potentially enhance these algorithms. Such use of model
problems is well-established in the numerical analysis literature regarding iterative solutions to dis-
cretized partial differential equations (PDEs) [7]. The Dirichlet Laplacian on a unit square discretized
on a Cartesian lattice is a simple problem with known eigenpairs and is used to study the properties of
various eigensolvers. These simple model problems do not demonstrate the algorithms perform well on
real-world problems, but are tools for algorithm development and theoretical analysis. For spectral parti-
tioning, the ring of cliques is one candidate model problem for which we can derive complete knowledge
of the eigenpairs. In PDEs, the order of discretization error (difference between continuous solution and
discrete solution) provides the solver with a stopping criterion. In spectral graph partitioning, we do not
have this luxury, and we must develop theory to understand how perturbations in a spectral embedding
impact partitioning quality. Another reason to develop a collection of model problems is to enable careful
study of this impact in well-understood situations.

In order to provide a striking example of our improved analysis, Section 3 studies our model prob-
lem in detail. The goal is to understand when approximate eigenvectors have sweep cuts that correctly
identify graph structures. The ring of cliques has been studied as ‘the most modular network’ in order to
demonstrate a resolution limit in the modularity maximization procedure for community detection [8].
For this family of highly structured graphs, the correct partition is unambiguous. We use the ring of
cliques to investigate how spectral embeddings for partitioning are affected by numerical error. Because
of the high degree of symmetry, the ring of cliques allows for a thorough closed form analysis producing
formulas for the eigenvectors and eigenvalues [9, 10]. A sweep cut using exact eigenvectors partitions
the graph with small conductance and successful recovery of all the clusters. We quantify the effects of
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approximation error on sweep cut partitions of this graph. Our findings demonstrate that despite a small
spectral gap, which implies slow convergence of non-preconditioned eigensolvers, the ring of cliques is
well-partitioned by low accuracy approximations to the eigenvectors.

Studying the ring of cliques provides guidance for practitioners on useful tolerances for eigensolvers.
We are able to construct the smallest perturbation that induces a mistake in the sweep cut partition. This
perturbation shows that when looking for clusters of size b in a general graph the eigensolver tolerance

must be smaller than O (b‘%>. Analysis of the ring of cliques provides an upper bound on the eigensolver

accuracy that is sufficient to recover community structure.

1.2 Contributions

This paper provides the following contributions. Section 2 extends a known error bound on the com-
putation of eigenvectors to the computation of linear combinations of eigenvectors. By extending this
classical error bound to linear combinations of eigenvectors, we find a condition on the spectrum of
where numerically accurate blends are easy to achieve. Theorem 4 provides a general condition under
which approximate eigenvectors preserve sweep cuts. Section 3 analyses a model problem and derives
necessary and sufficient error tolerances for solving the model problem, which are essentially tight for
some parameter regime. We show for the model problem where the number of clusters is polynomial
in the size of the clusters, the power method takes O (1) iterations to identify the clusters. For a ring of
cliques with n vertices and ¢ clusters, we show that the residual tolerance sufficient to find the optimal
cutis O (n=>>q~"/?) and the residual tolerance sufficient to recover the clusters is O (n~'/2g~'/?). These
bounds yield a quantitative difference between the difficulty of the numerical problem and the difficulty
of the data analysis problem.

1.3 Related work

Iterative methods for solving eigenvector problems are well-understood. These algorithms are able to
generate solutions to arbitrary approximation factors, but have run time which increases in the number
of iterations, where more iterations leads to better approximations. Iterative methods [11, 12] have been
shown to provide fast approximate solutions for a wide range of problems. Many iterative eigensolvers can
be represented as y = p(M)x where p is a polynomial applied to the matrix M times a vector [3, 12]. The
degree of p depends on the number of iterations of the method, which is controlled by the eigenresidual
tolerance |My — ny|l < €. The simplest such method is the power method which is easy to analyse
because p(M) is always M* where s is the number of iterations. More sophisticated methods choose p(M)
adaptively and typically converge more quickly. A practical implementation of the Arnoldi method can
be found in [11], which is commonly used in practice.

Localized eigenvectors are essential to analysis of the ring of cliques. Cucuringu and Mahoney [13]
examine the network analysis implications of localized interior eigenvectors in the spectrum of the Co-
voting network of US Senators. The graph is defined with connections between members of the same
session of Congress who vote together on the same bills and connections between individuals who are
re-elected to consecutive sessions. The first 41 eigenvectors are oscillatory across the congressional
sessions with little variation between the vertices in the same session, but the next eigenvectors are small
in magnitude on most sessions but take large positive values on members of one party and large negative
values on members of the other party within a few sessions. Thus blends of the dominant eigenvectors
indicate the sessions of congress. The ring of cliques also exhibits globally periodic extremal eigenvectors
and localized interior eigenvectors due to its Kronecker product structure. We show that the ring of cliques
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has a basis for an interior eigenspace with the non-zero entries of each vector completely restricted to an
individual clique. This localization allows us to show that approximate eigenvectors recover the interesting
combinatorial structure.

Other work focuses on the impact of errors in measurement on the behaviour of data analysis algo-
rithms. In the context of Gram (kernel) matrices, Huang er al. [14], studies the effect of perturbing the
original data points on the spectral partitioning method. A similar line of investigation is pursued in
[15] where data points are quantized to reduce bandwidth in a distributed system. This work connects
approximation with performance. If one can demonstrate that data analysis accuracy is not affected too
much, then one can use an algorithm which sacrifices accuracy to improve performance. Our paper treats
the data as correctly observed and handles error in the iterative solver.

The impact of approximate numerical computing has been shown useful for several applications.
In [16] eigenvectors of a kernel matrix are approximated with the power method and then k-means
is applied to these approximations. The k-means objective function is well-approximated when using
approximate eigenvectors. The bounds given in [16] depend on using the k eigenvectors to partition into k
parts and depend on the kth spectral gap to control accuracy of approximation. Experiments also show that
k-means on the approximate eigenvectors is faster and sometimes more accurate in terms of normalized
mutual information compared with using exact eigenvectors. Our paper focuses on partitioning into two
clusters based on sweep cuts of a single approximate eigenvector and makes a rigorous analysis of a
model problem in order to understand how the numerical accuracy interacts with combinatorial structure
of the data clusters. Pothen ef al. [17], which used spectral partitioning for distributed memory sparse
matrix computation, recognized the value of low-accuracy solutions. Approximate spectral coordinates
are used to reorder matrices before conducting high accuracy linear solves. Our paper contributes to the
understanding of how numerical approximation accuracy contributes to data analysis accuracy.

2. Blends of eigenvectors

To understand the relationship between eigensolver error and graph partitioning, we study error bounds
and the effect of pointwise error on the sweep cut procedure. Theorems 2 and 3 bound the error to a
subspace in terms of the residual and quantities derived from the eigenvalues of the matrix. This control
over the error is then used in Theorem 4 to relate eigenresidual to the conductance of a sweep cut of the
graph. These results apply to general matrices. Although a small spectral gap implies poor control on
the error to a single eigenvector, we derive a condition where low accuracy approximations effectively
partition the graph. Section 3 applies these theorems to a special family of graphs to show that blends are
faster to compute and provide nearly optimal partitions.

2.1 Converging to a single eigenspace

Let M € R™", M = M' be a general symmetric matrix. Consider the solutions to the equation Mv = Av.
Because M is symmetric, there are n eigenvalues in R (counting multiplicities). The set of all eigenvalues
is the spectrum A (M), which we order decreasingly as Ay > A, > --- > A,.Fork = 1,...,n,let v; be an
eigenvector associated with Ay, Mv, = A, vy, such that v;v, = 0 whenever [ # k. Define the eigenspace
associated with A, as the invariant subspace associated with A, that is

X ={xeR": Mx = ;x}.

These definitions imply dim(X;) equals the geometric multiplicity of A; and &} = AX; when A, = A,.
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REMARK 1 The results in this section are stated and proved in terms of generic symmetric matrix M
because they apply beyond spectral graph theory. Spectral partitioning methods use the eigenvectors of

L=I1-A. Counting eigenvalues from largest to smallest starting with 1, we see A, (A) =1—2Au (ﬁ)

. . . -1 . . A .
with the same eigenvectors. Letting v; = D'/21||D'?1| ", the normalized eigenvector of A associated

with A (A) = 1, one can apply the results of this sectionto M = A—v, v/ to partition graphs. Subtracting

v, v} moves the eigenvalue 1 to 0, or v, is an eigenvector associated with 0 € A (A — vlvtl). Thus, for
this M and for k where A; (M) > 0, we have

M M) = 1= (A).

In particular, for the Fiedler eigenvalue, A; (M) = X, (A) =1—-X, (I:), and the Fiedler vectors in the
associated eigenspace correspond to extremal eigenvalue A, (M).

Let (x,), x € R?, u € R, be an approximate eigenpair of M with ||x|| = 1 and u = x' Mx, the
Rayleigh quotient, which minimizes the function ||Mx — 0x|| over all real values 6. Define the two-norm
of the eigenresidual as € = |[Mx — ux||. Asin [18], we have a simple eigenvalue bound. By decomposing
x in the eigenbasis X = ) |_, o Vi, we see

2 2 2 2 2 : 2
= M —_ = )\, — > )\ - 5
€ = |[Mx — ux| ;_. o (M —p)° = (kE_] ak> (gg;gn( k M))

where > . a,f = 1, meaning there exists an eigenvalue A, within € of u,
min [, — u| < e€.
1<k<n

Also in [18], we have bounds estimating convergence to an eigenspace in angle. Define the eigengap
for Ay as &; = min, e,y A — Al. Moreover, if € is small compared with §; there exists a normalized
eigenvector v € X; with which x has a small angle,

miny/1 — (x, v)*> <
veXy

2] m

Instead of presenting a proof of this well-known result, we derive a similar bound for ¢, and point-wise
approximation to an eigenspace associated with an extremal eigenvector.

THEOREM 2 Consider approximate eigenpair (X, ) of symmetric M € R™" with ||x|| = 1 and
w = x'Mx. Assume

— Ai| < min — Al
Il — Al semin lw — Al
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Given eigenresidual with norm € and eigengap §;, there exists an eigenvector v € & , with ||v|| = 1, and
error bound

V8¢
Ix—v] < <—
1

Proof. Let av be the closest vector in & to x. Decompose X into its eigenvector components within &
and perpendicular to X}, x = av+ > o vy. Because | — Aq| < §; is minimal, we have

v LX)
= —ule?+ Y a—pleg = ) - p |oekz—Zoz,%.
vl Vil v LX)

Rearranging gives

42
3z Z o
8 vl

8e?
Ix=vl*=lx—avl*+v-—av|*=|x—av|]*+ (1 —a)* <2(1 —a?) < 5 O
i

This result implies,

1 n

2 2
=S vl < x =y s =
n i=1

soif €2/n is small compared with the §2, then the average error squared is also small. Moreover, we have
a point-wise error bound,

«/—e
max |xl _vll = ”X_V” =
l

1<i<n

Note that this error analysis is independent of the algorithm used to compute the solution.

For large graphs, it is typical that Fiedler eigenvalue is so close to the nearest eigenvalue, that the error
bounds demand an extremely small eigenresidual. Thus for such matrices M with small §;, computation
of high accuracy approximations to the Fiedler vector can be impractical. However, it may be practical to
compute a vector with x” Mx close to A; which may not be very close to the true extremal eigenspace. In
this case the following section examines convergence to a linear combination of eigenvectors associated
with a range of eigenvalues.

2.2 Converging to a subspace spanned by multiple eigenspaces

This section generalizes the previous error bound to the distance between x and a subspace spanned by
the eigenvectors associated with a range of eigenvalues. Theorem 3 is related to the Davis—Kahan sin 6
theorem [19]. Assume that linear combinations of eigenvectors associated with a range of eigenvalues
[A4, A, ] are satisfactory for subsequent data analysis algorithms. If the Rayleigh quotient is within [A,, A, ]
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and the eigenresidual is smaller than the distance between p and any eigenvalue outside [A,, A, ], then the
following theorem holds. Define the blend gap and blend space, respectively, as

8pq() = min ) (A — i and le’ = Span{X,,, X, ... X, }.

{k<p)Ulk>q

THEOREM 3 Consider approximate eigenpair (X, ) of symmetric M € R™” with |x|| = 1 and
w =X'Mx € [Ay, A,]. Given eigenresidual with norm

€ = |Mx — px|| < min (1 — Agi1, Apot — i) = 8pq(1)

there exists a vector v € X;? , with ||v|| = 1, £, error bound,

Ix —v| < .
3p.q (1)

Proof. Letx = ) /_ oy and TIx = )} vy, the £;-orthogonal projection onto X¢. Note Y, o =
1. In the case where ||IIx|| = 1, we can let v = x and see the bound is clearly satisfied. For ||TTx|| < 1,
we first demonstrate that ||x — I1x]| is controlled by e,

€’ = |Mx — px|*

n
2 2 2
€ ZE o | — pl
k=1

q
€= Y Glu—pl+) ol —pl

{k<p}Ulk>q} k=p

q
228, Y a4y el —ul

€ >
(k<pUtk=q) k=p
2 2 2
=8, Y o
(k<p}Ulk>q)

q
=8, [1->
k=p

€ > |x— x|
5rq(11)
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There is a unit vector in X that is also within some factor of € to x. Let v = Ix/|I1x]|, then
lv — IIx|| = 1 — ||IIx]||. We have

ITIx )1 + (|7 — TDx||* = 1
ITx|)* = 1 — | — TDx|?

62

8pq(10)?

62
Imx) = 11— ——.
8pg(10)

Using the inequality a < /a fora € (0, 1), we see

ITIx||* > 1 —

€2 €?

< )
Spg()? 7 8pq(n)?

Iv—Tx[| =1—[Ix|| <1— /1

Then, because (x — ITx)"(ITx — v) = 0, we have

2 2 4 2 2
Ix = VI = Ix = TIX|P 4 TIx = VP < o <
g Spg()* 8p() O

REMARK 2 Note that the size of the blend gap, 6,,(11), is dependent on (i) the size of |1, — A,[, (ii) how
internal Rayleigh quotient w is within [A,, A, ] (iii) and how far the exterior eigenvalues are, [A; — Agy1]
and |A,_; — A, |. For a problem where the spectrum is not known a priori, it is difficult to state an acceptable
interval [, A,,] for accomplishing a given data mining task. Section 3.2 provides an example where one
can choose [A,, A, ] a priori. The Congress graph has A4; — A4, > 0.4 and the first 41 eigenvectors indicate

the natural clustering of the graph into sessions [13]. This analysis thus applies to a real world network.

For the spectral partitioning application, p = 1 and 6,; = 1 — Agq (A - Vlv’l) > Ay — Agy1, Which

can be much larger than the spectral gap A, (A - V1Vt1) — A (A — Vlv’l). In Section 2.1 the goal of

computation is a single eigenvector and the output of the approximation is a blend of eigenvectors, the
coefficients of the output in the eigenbasis of the matrix describes the error introduced by approximation.
In Section 2.2 the goal of computation is a blend of eigenvectors, and we improve the error bound when
the spectral gap is small.

In order to relate numerical accuracy to conductance for general graphs we examine the impact of
pointwise error on sweep cuts. For any prescribed conductance value 1, we derive a condition on vectors
v such that we can guarantee that small perturbations of v have conductance less than or equal to . Let
Sy (¢) represent the sweep cut of v at ¢ as in Equation (1).

LeMMA 1 For any graph G, vector v € R" and scalar ¢ > 0, define T, (v) = {t | ¢ (Sv(1)) < ¥}. Let
gv (1) = min;|v; — t] and gy = MaXeer, v &v (1) If [|Z]l . < gv, then ¢ (v +2) < .
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Proof. I£S,(t) = Sy, (t) wecanapply ¢ (V+2) < ¢ (Syiz (1) = (Sy (1)) < . Sy (1) = Sy, (¢) if and
only if sign(v; + z; — t) = sign(v; — t) for all i. By checking cases, one can see that ||z||,, < min;|v; — ¢|
is sufficient to guarantee that v; 4 z; — ¢ has the same sign as v; — t. O

Note that Lemma 1 is not a necessary condition as z = % (v —t1) is a much larger perturbation
of v such that ¢ (v +z) < 1. Lemma 1 defines g, as a measure of sensitivity of a single vector with
respect to preserving sweep cuts of conductance less than or equal to . For vectors v with small gy,
a small perturbation can disrupt the sweep cuts which achieve conductance less than . By defining
the sensitivity of an invariant subspace appropriately, Theorem 4 provides a path to deriving a residual
tolerance for arbitrary graphs. Denote by dyi, dimax the minimum and maximum degree of G.

THEOREM 4 Let G be a graph and ¢ > 0. Define V = Span {D~ 2v1 D*%vq} where forj € {1...q}

Av ; = A,v; and v; are orthogonal. For any vector x, let u = x'Ax and 8y () = MiNg_pup=g) |Ak -
w|. For any q € V, let g, be defined as in Lemma 1. Define g = minyey jvj,=1 g If ’Ax - /,LXH <
L, ,o)g, then ¢ (DEx) < v

Proof. By Theorem 3 applied to x, there is a unit vector q € Span{v, ...v,} such that [x —q| <

Ix —qll, < j::;g Define z = (D_%x — V) [v||™!, where v = D_%q € V. By scaling, normalizing,
and applying the properties of induced norms of matrices we see

D~ ZX—
dmax
lzll, = < Ix—ql <g.
|p-* H o
Since
7)., < g = min max min |y, — ]| <
Izlleo < & = VeV, IVlp=1 reTy ie(l.. n| i 1< 8.
. _1
Lemma 1 implies ¢ (D 2x) <. O

If one can bound the value of g from below, then this theorem gives a residual tolerance for the
eigenvector approximation when using sweep cuts to partition the graph. Section 3.3 applies this theorem
to the ring of cliques family of graphs.

This section connects the eigenresidual to the error when computing blends of eigenvectors, and
quantifies the impact of error on the sweep cut procedure. If the eigengap is small enough, then one
cannot guarantee that the Rayleigh quotient is closest to the Fielder value, thus one cannot guarantee
that the computed eigenvector is close to the desired eigenvector. In this small gap setting, a small
eigenresidual indicates that the computed vector is close to the desired invariant subspace. Theorem 4
shows that vectors with small eigenresidual preserve low conductance sweep cuts for general graphs.
Theorem 4 illustrates how the residual tolerance depends on both the blend gap 8, , () and the sensitivity
g of the eigenvectors. The following section applies this theory to the ring of cliques in order to derive
solver tolerances for graph partitioning.
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3. The ring of cliques

To demonstrate the theory developed in Section 2, we employ a previously studied model problem, the
ring of cliques [8]. Theorems 5 and 6 derive explicit formulas for all eigenvalues and eigenvectors. These
formulas determine the relevant residual tolerance. Moreover, complete spectral knowledge gives a strong
understanding of the convergence properties of simple iterative methods.

The ring of cliques has several attractive properties for analysis of spectral partitioning. The commu-
nity structure is as extreme as possible for a connected graph, so the solution is well-defined. Also, we
can apply theorems about block circulant matrices [10] to produce closed form solutions to the eigen-
vector problem. This graph serves as a canonical example of when solving an eigenproblem accurately
is unnecessarily expensive to achieve data analysis success. This example shows that it is possible for
the combinatorial structure of the data to be revealed faster than the algebraic structure of the asso-
ciated matrices. The graph is simple to partition accurately as there are many cuts relatively close to
the minimum, any robust partitioning algorithm will correctly recover the cliques in this graph. How-
ever, a Fiedler eigenvector is difficult to calculate with guarantees of point-wise accuracy when using
non-preconditioned iterative methods. An algorithm that computes a highly accurate eigenpair will be
inefficient on large problem instances. Sections 3.3 and 3.4 apply the tools from Section 2 in order to
derive a residual tolerance sufficient for solving the ring of cliques. Section 3.5 bounds the number of
power method iterations necessary to recover the ring of cliques, and Section 3.6 validates and illustrates
these observations with an experiment.

3.1 Definition

A g-ring of b-cliques, R, is parameterized by a block size b and a number of blocks g. Each block
represents a clique of size b and all possible internal connections exist within each individual set of b
vertices. For each block, there is a single vertex called the corner connected to the corners of the adjacent
cliques. These ¢ corners form a ring. Each block also has (b — 1) internal vertices that have no edges
leaving the block. Let ® denote the standard Kronecker product for matrices [9]. The adjacency matrix
associated with R, , is a sum of tensor products of simple matrices (identity, cycle and rank-one matrices).
We have

A=1,® 11, —1,) +C, ® (e€),

where the ; are identity matrices of dimension k, 1, is the all ones vector with dimension b, e; is the first
standard basis vector with a one in its first entry and zero elsewhere and C, is the adjacency matrix of a
cycle graph on g vertices. The matrix A and other matrices associated with this graph are block-circulant,
which implies the eigenvectors are the Kronecker product of a periodic vector and the eigenvectors of a
small eigenproblem defined by structure in the blocks [9]. Figure 1 shows the structure of the graph, and
Fig. 2 shows the block structure of the adjacency matrix.

Any partition that breaks a clique cuts at least b — 1 edges while any partition that does not break any
cliques cuts at most ¢ edges. The best partition is break the ring into two contiguous halves by cutting
exactly two edges. There are ¢/2 partitions that achieve this minimal cut for even g. We will consider
any of these equivalent. Any partition that breaks fewer than b — 1 edges will be regarded as a good, but
not optimal cut. The fact that many partitions are close to optimal and then the vast majority of partitions
are very far from optimal is a feature of this model problem.
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FiG. 1. A drawing of R} 4 laid out to show structure.

[ J, el 0 .- erel]
elefi Jp eleﬁ 0
0 eleﬁ Jp elefi 0

0 el J, epel
lere! 0 el Jp |

where Jb = lbli - Ib.

FIG. 2. The adjacency matrix of Ry, 4 has block circulant structure.

3.2 Eigenpairs of Ry, normalized adjacency matrix

Due to the block-circulant structure of the ring of cliques we are able to compute the eigenvalues and
eigenvectors in a closed form. Let €59, s9 be the periodic vectors as defined in Equation (2).

2k 2k
kg __ . kg . .
¢, = cos (_q j) s;” =sin (_q j> forj=1,...,q. 2)

We employ results from [10, 20] to derive the full spectrum of A and a full eigenbasis. In summary,
there is an eigenvalue —(b — 1)~ with a large multiplicity, n — 2g = (b — 2)g. Furthermore, the
eigenspace associated with —(b — 1)~! can be represented in a basis that contains variation internal
to each clique, that is with eigenvectors of the form h ® e; where e; is the ith standard basis vector
for each i € {1...g}. For this reason, we call A = —(b — 1)~! a noise eigenvalue. The positive
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192 T T T T T T T T

count of eigenvalues

NG
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
eigenvalue

FIG. 3. Distribution of eigenvalues of A for Rp=8,g=32- The grey bars represent a histogram of the eigenvalues, including multi-
plicities. The red diamond represents a large multiplicity of (n — 2¢) at —(b — 1)~! corresponding to Xoise (see Theorem 5).

There is a green interval near 1 containing the portion of the spectrum given by Agk) and a blue interval near O containing )»;k) for
k=0,1,...,q/2] (see Theorem 6). The large separation between these two intervals is a feature of this model problem.

eigenvalues are called signal eigenvalues. The signal eigenvectors have the form p*? ® (£e; + g)),
where p*? is either s*7 or ¢*9, e, is one in its first entry, g; is zero in its first entry and one elsewhere
and & is a scalar. All of the internal members of the cliques take the same value in any eigenvector
associated with A (A) # (b — 1)~!. The slowly varying eigenvectors (associated with A; (A) ~ 1) give
nearly optimal partitions of the graph. Linear combinations of these slowly varying signal eigenvectors
also give low conductance partitions. There are ¢ — 1 non-localized eigenvectors with small positive or
negative eigenvalues. These eigenvectors have the internal clique members and their corner with different
sign which causes them to misclassify some of the corners. The distribution of the eigenvalues of R,
is illustrated in Fig. 3. The rest of Section 3.2 contains formulas for the eigenpairs and the details of
their derivations.

THEOREM 5 (R, Noise Eigenpairs) There is an eigenspace X, With multiplicity (n — 2¢) associated
with eigenvalue

Anoise = _(b - 1)71'

Any vector that is zero-valued on all corner vertices and sums to zero on each individual set of internal
vertices is in Xppise-

Proof. This is a specific case of locally supported eigenvectors [20] (LSEVs) brought on by a high level
of local symmetry in R, ,. For each clique /C, let x = e; — e; for vertices i and j that are internal vertices
of K, where e;, €; are basis vectors in R". Both x and Ax are zero valued outside of K. Internally, due to
D72 (e; — ;) = (b — 1)""/*(e; — ¢;) and the orthogonality 1} (e; — €;) = 0, we see

A 1 -1
Ale; —€) = m(lhlz —D(e;—¢) = le(ei —€).
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Thus, x is an eigenvector of A associated with —(b — 1)7!. There are (b — 2) such linearly independent
eigenvectors for IC, and the same is true for all g cliques. Thus, we have a multiplicity of g(b—2) = n—2q
for eigenvalue Aqgie = —(b — 1)7L. O

These vectors are in the interior of the spectrum and thus are very well-attenuated by the power-
method.! The remaining eigenvectors must be constant on the internal nodes of the blocks because of
orthogonality to the LSEVs which are spanned by e; — e;. In any vector v the projection of v onto the
global eigenvectors defines a mean value for the elements of the blocks. Since all of the eigenvectors of
interest are orthogonal to the constant vector, their entries must sum to zero. So the LSEV's cannot change
the mean of a block. The remaining eigenvectors are given in Theorem 6.

THEOREM 6 (Ring of Cliques Signal Eigenpairs) Fork =0,...,[%] — 1, define

2k
ak=2cos<L)
q
1 b—1 b+1
= |ay/— -V -1+ | —
Be= oo Vo1
W=+ B+ (B —1)
V=B B+ G-

(k) ](k) l
Al = 1

! 192_17L b—1
® }Y 1
Ay = 1—

2 1,2_1Jr b—1

Let 1, and 1, be the vectors of all ones in R” and RY, respectively. Also let e; have a one in its first entry,
zero elsewhere and g; = 1, — e;. We have the following eigenpairs.

(i) For k = 0, we have two eigenvalues of A, A(lo) and Xéo), each with multiplicity 1. The associated
(unnormalized) eigenvectors are

v =vb+11,®e)+vVb—1(1,®¢g)
and
vW=0b-1)"1,8e)-vVb+11,08g),
respectively.

! n a single iteration the shifted power method, X3, = (A + (b — 1)7'I)x;, perfectly eliminates all of the energy in the
(n — 2q)-dimensional eigenspace associated with A = —(b — 1)~ 1. If the graph is perturbed with the addition and removal of a few
edges, the eigenvectors become slightly less localized and the associated eigenvalues spread out to a short range of values and are
not perfectly eliminated in a single iteration. However, the power method or a Krylov method will rapidly attenuate the energy in
the associated eigenspaces.
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(ii) Foreachk =1,...,[%] — 1, we have two eigenvalues of A, )»ik) and A;k), each with multiplicity 2.
Two independent (unnormalized) eigenvectors associated with )Lik) are

vﬁkl) =c"® (Efk)el + gl) and vﬁkg =s® (Efk)el + gl) )

®)
5 are

Two independent (unnormalized) eigenvectors associated with A

Wi =cg (60 +g) and V=50 (&% +g).

(iii) If ¢ is even, then for k = £, we have two eigenvalues of A, A(Iq/ * and )éq/ % each with multiplicity
1. The associated (unnormalized) eigenvectors are

V§Q/2) =" Q ((‘31@/2)91 + gl)
and

V;q/2) =5 ® (fz(q/z)el + gl) )
respectively.

Note if values of A" and A" coincide for (p, k) # (g, () the eigenvalue multiplicities add up.

Proof. LetD, = diag((b+1)1—2g;). We decomposeA = (I,®B;)+(C,®B,), where I, is the identity in
R4, C, is the adjacency matrix of a g- cycle, (C,);j = 1 <= |i—j| = I mod ¢, B| = D,:l/z(l,,1§7 —I)Db_l/2
and B, = h—ilele’l. Because any eigenvector y of C, is also an eigenvector of I, eigenvectors of A have
the form y ® z. Vectors z are derived by plugging various eigenvectors of C, into y and solving for a set
of constraints that z must satisfy for (y ® z) to be an eigenvector associated with A.

We describe the eigendecomposition of C,. Fork =0, .. ., (‘511 — 1,0, = 2cos(2m/k) is an eigenvalue
of C,. For k = 0, a is simple, and 1, is the associated eigenvector. For k = 1,..., f%]-l, oy has
multiplicity 2 and the associated two-dimensional eigenspace is Span({c*?, s*7}), as defined in (2). If ¢
is even, then «,, is a simple eigenvalue as well and the associated eigenvector is ¢?/>7. Letting y be an
eigenvector associated with o, and using the properties of Kronecker products, we see

Aly®z) = [, ®B)) + (C,® B)]| (y®2) = [(I,y ® Biz) + (C,y ® B,7)]
=[(y®Biz) + (Y ® By2)| = [(y ® Biz) + (¥ ® a;B2) |
=yQ® (Biz + a;Byz) =y Q [(B) + aB»)z].
Here we see that if z is an eigenvector of H, := B + «;B,, then (y ® z) is an eigenvector associated

with A. Observe that H, = D;'/ 2(11,1;7 + oee] — 1 )D;'/ ’isa scaling of a rank-2 shift from the identity
matrix, where we would expect three eigenvalues: two simple and one of multiplicity (b — 2).

610z Jaquialdag z| uo Jesn Ausiaaiun sunidoH suyor Aq GEE6262/1LSS/v/SN0BNSIR-3]o1L_/18uW0d/W oo dno-olWwapeoe//:sdny woJj papeojumoq



566 J. P. FAIRBANKS ET AL.

We can easily verify that there is a (b — 2)-dimensional eigenspace of H, associated with —(b —1)~".
The tensor products of these vectors are an alternative basis associated with the LSEV's from Theorem 5.
The associated eigenspace of H; is orthogonal to Span({e,, g,}). Due to eigenvector orthogonality, the
two remaining eigenvectors of H, must in the span of {e;, g,}. Note that DZel = (b + 1)Pe; and Dﬁgl =
(b — 1)’g;. We use this to solve for these eigenvectors and their associated eigenvalues in terms of o
and b,

Hy(6e, +g) =A(e; +g)
(1,1 4 aee! — 1,)D, "’ (e, + g1) = AD,* (e, + g)).

The right-hand side expands to
(xg«/b i 1) e, + (A«/b - 1) g,

The left-hand side expands and simplifies to

& — fap & —1 —
(=) e (G- (=) -

(i s (1)

The coefficients of e; and g, must be equal, individually, because they are not linearly dependent.
Equating the left-hand and right-hand sides and simplifying gives two non-linear equations in & and A,

%-Olk b—1
el | 3
b+l+ b+1 § 3
§ -

—bz_l-i-l——b_l—k. @

Multiplying the second equation by &, setting the left-hand sides of both equations equal to eliminate A,
then simplifying, yields the following quadratic equation in &,

[b—1 ~—— |b+1
éz—<0lk m— b2_1+ %)S—(b—l):O,

which is easily solved. Define

1 b—1 b+1
Bk > (ak‘,b—i-l Y% +‘,b—l) an Yk
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FIG. 4. Some eigenvectors of A are shown for Ri6,10- The vertical axis shows the coordinate assigned to each vertex and is shared
across the sub-plots. The eigenvectors with eigenvalues close to 1 (left) indicate the block structure with differing frequencies. The
eigenvectors close to —1 (right) assign opposite signs to the internal vertices and corner vertices of each block.

Given &, X is determined by the second equation in (4). The solution set to non-linear equations (3)—(4)

is then
*) / *) Y 1
=B+ ,3134-)/1(,)&1 =ﬁ+1—m, and

(k)
1
k) __ _ 2 k) __ _
) =B \/,31("‘)’/“)\2 _—b2—1+1 _b—l

Thus we have local eigenpairs of H, ((S el + g1), A(k)) and ((&, De, + g, A(k)) The local eigenpairs
(P e, +g1), 1) yield global eigenpairs of A of the form ((¢; ® (& (k)e] +g)), Ay and (s, ® (£Ve, +
g1)), A( )) Similarly, ((§, (k)el +g1) A(k)) yield global eigenvectors of A associated with A(k) This accounts
for the last 2¢ eigenpairs of A. g

In order to illustrate these formulas, Fig. 4 shows the computed eigenvectors for the graph Ry 10
along with the eigenvalues. Eigenvectors associated with eigenvalues close to 1 have low conductance
sweep cuts.

CoRrOLLARY 1 The asymptotic expansions of the eigenvalues are as follows.

(1) For the signal eigenpairs, we see

4 -« 1 of
A =1- : o
! 2 -0 ae—1r Taprnr O

(i) For the non-signal (and non-noise) eigenpairs, we see

-1 o? o 1
PO Sl k. ko Ob™).
2 b+1 4b+1)2 20>-1) 4(b_1)2+ ™)
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(iii) In particular, if g is even we have

M=A"~1—|2—cos 2—]T : + : + cos’ 2_71 L
e g )]p—1" 212 q ) b+ D7

3 1 1
o )\’(‘1/2) ~1— ,
¢ b2—1+4(b—1)2+(b+1)2
1 1 1 1
gy = A0 & - - - ,
TR Tl b+ 1)?2 =1 (b—1)2
-2 1 1 1

)\'n:)\'(q/Z)% _ _ .
2 b+1 (b+1)2+b2—1 (b—1)?

In other words,
C, C
1——<A2<11 —q<k <1,
b2 b?

C G,
ot <, <0,
b b

O<)\,q+1 <

where C,, C,, C,41 and C, are positive quantities of order 1.

Proof. These are seen through the formulas in Theorem 6 and first-order Taylor expansion of
VBE + (b — 1) about leading asymptotic term ;((b*> — 1)?) and simplification. Let § = /b — 1 and
n = +/b+ 1. Then

T 42 1 Tar T

o6 r;)2 af0® 0’ ot wb® o
= MR

oy n? a,%@z o n?
62 = 1——)62—— — 4+ —
JBE+ \/ [ 5 2+4n2+2+492

on 1 a\ o, Nt ogh? Olk 5
=T+ (-2 - T+ B s %y T ow
+ [( >ttt 492 oG

On Nl 0l o
- 1——)——— i L owm
+< 2/ 29+4n3+29 +493+ ®™).
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Now, we see

1 (o0
f“=ﬁk+\/ﬁ£+92:5(%—9n+g)+ B+ 02

=—4+-4+_—4+-—4+00b7% and
n

0
=—9n+(ak—1)Z+—————n——+0(b*2).

2

Then, noting 72 — 072 = —2n72672, we see

1 (k)

)\(k) =1- — 21
! et on
1 1 N 1 o 1 N of
0Tt 202 404 At
4— 1 2
=1 X+ L on).

C 202 404 4gt
Substituting in for 6 and n gives the result presented in (i). Similarly, we see (ii) via
(k)
)\gk)zl—l~|—2——ak_1 oy o

02 on p? 4t 2072 404

Lastly, (iii) is seen by plugging in for specific values of k and o, = 2 cos (%)

REMARK 3 We observe several facts:

e The vector D~/ ZVEO) is the constant vector. It causes no errors, but does not help to separate any of

the cliques.

569

*  The vectors D~'/2v{"} and D~/>v{) for k = 1,...,[g/2] — 1 assign the same sign to the corners as
the internal members of each block and are associated with positive eigenvalues. Note that we can

consider all these eigenvectors as signal eigenvectors,

@1 2 (Tg1=1)
Xiigna = Span [v1 Vv ] .

Because Xggna L Ahoise, all sweep cuts of vectors in Xga keep internal vertices of each clique

together.

« If g is even, the vector D~"/2v\¥/* has values at the corners of opposite sign to the values of the
internal vertices and the sign of each corner oscillates around the ring. This is the most oscillatory

global eigenvector.

610z Jaquialdag z| uo Jesn Ausiaaiun sunidoH suyor Aq GEE6262/1LSS/v/SN0BNSIR-3]o1L_/18uW0d/W oo dno-olWwapeoe//:sdny woJj papeojumoq



570 J. P. FAIRBANKS ET AL.

Asymptotic spectral gap and estimates Asymptotic Fiedler eigenvalue and estimates

10!

10° — 0(¢?) — 0@?)
o—e (=10 101 b ° o—e (/=10
102l @ »—a 5=100 || s—a 5=100
= p=1000 10° 1 =2 5=1000 |{
|
_ 104 @ 10°
[} I A
8o 4 3
2 10 2 107}
= =
o
= 10° [ 00
< = 10
2
1070 10t
1072} 10t
lo—lA L L L L 10—15 n L L L
10° 10" 10° 10° 10* 10° 10° 10? 10° 10° 10* 10°
q (log scale) q (log scale)

FI1G. 5. Asymptotic estimates of spectral gaps (left) and Fiedler eigenvalues (right) for rings of cliques with parameters b =
10, 100, 1000 and g = 2,4, ..., 8096. Lines represent leading-order terms derived in Theorems 7 and 8 and point markers represent
actual eigenvalues as given by the formulas in Theorem 6.

*  The vectors D~'/2v{) and D~'/?v{) fork = 1,..., [q/2] — 1 assign opposite signs to the corners and
the internal members of each block. If vectors make large contributions to the blend we compute,
then there is potential to misclassify several of the corner vertices.

We use the previous result to derive asymptotic estimates of the eigengaps associated with eigenvalues
near 1 and the size of the Fiedler eigenvalue. These asymptotic estimates are compact formulas in terms
of b and ¢q. Figure 5 verifies these estimates empirically.

THEOREM 7 (R;, Asymptotic Eigengap) For the graph R, , the spectral gap relevant for computing an
eigenvector associated with A (L) is asymptotically O (n‘z) for large b and q.

Proof. Because AZ(A) = M(A), the eigenvalues of interest are AQ(A) = )\51) and M(A) = Aﬁz). We
will take Taylor expansions and collect the leading-order terms to understand the asymptotic behaviour.
Define the scalar function f(x) = +/x + a, for a constant a that we define below. Using the formulas in
the previous result, we see that A(ll) — Xiz) =

§" 86" B —PtVBE+G-D-VE+G-1) _ =+ ) —fx)
b2 —1 b2 —1 br—1

&)

with

1 1 (b . Bob 3, 1
={--— - = an =— 4 -4+ —
=G T 201 )M 2) AT 2T 2T o

We expand the two differences in the numerator of (5) separately, concentrating on the f (x;) —f (x,) term
first. A first-order Taylor expansion of f'(x) at x; yields

£

2
(2 —x1)7,

f) =fx) +f(x)x —xp) +
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where y € (min(x;, x,), max(x, x,)). Rearranging and plugging in, we see

/ £') nex -y
F) =f ) = F ) —x) =2 —x)” = 5T =

Further, assume g >> 4k and use a third-order Taylor expansion at 0 to see o, = 2 — 4(wk/q)?> +
O(g™). Similarly, &} = 4 cos* 2mk/q) = 2(1 + cos(4rmk/q)) = 4 — 16(7k/q)* + O(g~*). Thus,

(1 1 487> b\ (127 »
(xl_x"‘)_<1_2<b+1>>< 7 )+<1_5>< 7 )w(bq )

—67%b  247? »

Expansion of 8; — B, using the cosine Taylor expansions shows

o — 0y b—1 67T2 b—1 4
hi=p 2 Vor1- g Vbs1 1O

Lastly, (y + a)*? is O(b*) and (x; + a)'/? is O(b), so

67’ N —3n%b N 1272
PO+ Py Favh—1  @yxtavbr—1

M= = +0Wm™'q7.

As b — oo we see 2b~'\/x; + a — 1, so the first two terms cancel asymptotically and the third term is
O (q72b7). O

TreoreM 8 (Ring of Cliques Asymptotic Fiedler Eigenvalue) Let b and g be large and the same order.
For graph R,,, the smallest non-zero eigenvalue of L is O(b~%q ™).

Proof. The eigenvalue of interest is kn_l(l:) =1- )»2(21) =1- )\51) . Define scalar function g(z) =
+/z + 1/4. Using the formulas in Theorem 6 and a bit of algebra, we see

1 M 1 +J/B+ -1 1
l_k(ll)_b - 21 _ B B +( ) _ B @ ®
— -1 b-—1 b —1 b—1 p—1
with
_(—apb 20, -3 1 ol

T2 =) T2 —1) " 4b—1)y * 4(b + 1)

We derive the result by demonstrating that the larger terms in (6) cancel. Expanding the second term in
the right-hand side yields

,31 _ [¢3] 1 1 1 (1+Ol1)b 1—0[1

—1 2b+1) 2

Y- 2 2w-D T2y
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A second-order Taylor expansion of g(z) at zero shows for each z, we see g(z) = g(0) + ¢g'(0)z +
%g//(o)zz + %g///(O)Z:; + 21_4g(iv)(y)z4 — % 47— Z2 + 2Z3 + O(Z4), where
1 3

§@=—r——7~; ad  g@)= 8(z + 1/4)%2

L
$Q =5 =T 4z + 1/4)2

Plugging in, we see the terms of g(z) up to order b=2 are

1 (d—a)b 20,-3 N 1 4 ol (1 — o))*b?
220 —1) 2B —1) " Ab—17  ab+12 B —1p

The constant terms in B;/+/b* — 1 and g(z) cancel. The order »~! terms in 1 — k(ll) cancel to an order
b~2 term,

1 A+app  (I—aph 1 b 1

b—1 20*—1) 20*—1) b—1 b -1 b -1

Combining fractions, the order b 2termsin 1 — A(ll) are reduced to

1 1 —o N 200 — 3 L 1 N ol (1 —o))?b?
1 [202—1) " 200—1)  4b-12 " dbr12E 41
_Q—aph® | Qaj—=3)b  —ai+20 -9

b2 =12 2 —1)2 4(b? — 1)2

Factoring in the other b3 terms and the cosine expansion o; = 2 — 4(7/q)> + O(g™*), we see

472b? . _—
- O
qz(b2—1)2+0(b +b7%q7Y).

THEOREM 9 For any vector X € Xjjgna of Ry g, ¢ (D‘%x) < q¢ (vy).

Proof. For any x € X, let S, S be the partition given by the optimal sweep cut of D~2x. Fiedler’s nodal
domain theorem implies at least one of S,S is a connected component. Because the eigenvectors are
block constant, all vertices of each clique are assigned to the same side of the partition. These imply
that E (S, S) = 2. The optimal conductance partition is found when Vol (S) = Vol (5) = ¢(5). Thus

-1
¢c =0 ) = (q(;)

For any x € Ao, the optimal sweep cut of D 2x will partition the graph into two pieces one
containing k blocks and the other containing g —k blocks for some k < £. That is, min (Vol (S), Vol (S )) =

2k(§). Since only edges between cliques are cut, E(S,S) < 2k. Thus ¢ (D‘%x) < (3)71. By assigning
adjacent blocks to alternating sides of the partition, we see that the bound is tight. O

Notice that the smallest eigenvalue of L scales as O (b‘zq‘z), but the optimal conductance scales as

@ (b‘zq‘l), and that the worst case sweep cut partition of a blend has conductance 2(;)_1 independent
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of g. The remainder of this section shows that by accepting this factor of ¢ in conductance, one gains
tremendously in computational efficiency.

3.3 A residual tolerance for ring of cliques

In order to derive aresidual tolerance for the ring of cliques, we show that for any vector in Span{v, ... v,}
at least one block is sufficiently far from the other blocks in spectral coordinates.

LEMMA 2 Define B; = {ib + 2,..., (i + 1)b} as the vertex blocks of R,,. For any vector x, let u; =
|B;|~! Ziij x;. Let W be the span of {ej4; | i € 0...q —1}U{eg, | i € 0...g — 1}. For any vector
x €W, llpllo > n= "2 [Ix]l,.

Proof. By construction of X, x; = u; for allj € B;. Thus ||X]|,, = [|#tl.. Equivalence of norms implies
Ixll, < /. O

We are able to apply Theorem 4 and derive a residual tolerance for recovering the ring of cliques.

COROLLARY 2 If X is an approximate eigenvector of R, with eigenresidual less than -5~ for some

gv/n
constant C and x'1 = 0, then ¢ (D_%X) = 2(:)71'

Proof. In the setting of Theorem 4, choose G = R, ¥ = 2(12’)71. In the notation of Lemma 2 applied
to sorted v, for all v € V, g, = max; (uix1 — i) > q 'l > (qﬁ)_l. For some C € O (1),
8pq(1)g > ﬁﬁ So Theorem 4 implies computing x to a residual tolerance of qiﬁ is sufficient to guarantee

¢ <2() . 0

Corollary 2 gives a sufficient condition on approximate eigenvectors of R;, such that x partitions
the graph at least as well as any partition that recovers the cliques. Theorem 10 and Theorem 11 using
analysis specialized for R, , in Section 3.4 to construct the minimal perturbation that causes the sweep
cut procedure to fail.

3.4 Minimal perturbation

‘We want to find the minimal error at which a vector can make a mistake. The effects of the corner vertices
only enter into the constants of the following results, and for clarity of exposition we omit handling of

the corner vertices. Theorem 10 shows that no perturbation with norm less than (1 + 2qn)’% can induce
a mistake in the sweep cut. Theorem 11 constructs a perturbation that induces a mistake in the sweep cut
and has norm less than b~ 2. For the parameter regime g € O (1), the bounds in Corollary 2, Theorem 10
and Theorem 11 are all equivalent up to constant factors.

Using the same notation as Lemma 2, we say that a vector y recovers all the cliques of R, , if there
is a threshold ¢ € (min; y;, max; y;) such that for all B; with j,k € B;, y; < t if and only if y; < ¢.

THEOREM 10 Let WV be defined as in Lemma 2, and let P, be the orthogonal projector onto WV. For any
vector y orthogonal to 1, define z = (I — Py,)y. If |z, < (1 + an)’% llyll,, then y recovers all the

cliques of Ry,.
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Proof. Define x = P,,y. Without loss of generality, relabel the vertices and blocks such that u; < ;.
Let ; = max, z; and §; = min, z; for each B;. Note that o; > 0 and 8; < 0 since z L ep,. The vector y
recovers all the cliques if and only if there is a B; where o; — B;11 < ;11 — ;. In this case, a threshold
can be chosen in (,u,- + o, pi1 + ﬂk) Suppose that y does not recover all the cliques, then for all 5;
a; — Biy1 > Miy1 — Ui This implies Zl o i — Biy1 > Zf;ol Wit1 — M;. Thus we can bound the 1-norm
error as follows:

_1
Izl =Y (o = Bit) = g — 1 = 072 X
i

Since z must have at least ¢ non-zero entries ||z||, > (2qn)_% Ix|l,. Applying llyll* = IIxII* + l|zl*, we
see that (1 + 2qn)_% lyll < lizll,. -

The proof of Theorem 10 yields a construction for the minimal perturbation of x that does not recover
all the cliques.

THEOREM 11 For any unit vector x € VV orthogonal to 1, there exists a perturbation z where ||z|| <
1 .
b~2,Pyyz = 0 such that y = x 4 z does not recover all the cliques.

Proof. Forany x € W, setag =0, 8,1 = 0,0 = —fiyy = “HH

q—1

q—
O
Z( pivy — 1) = b7 IXIE =2 i < b7 x5
1
2

g—1
lzll3 =)o + By =

Theorem 10 iﬁl_[())lies that (1 + 2qn_)
and Theorem 11 implies that for some elements of the top invariant subspace accuracy less than b~ 2 s
necessary to ensure recovery of all the cliques from that vector.

Figure 6 lends validation to the formulas in Theorem 10. The experiment shown is to take a random
(Gaussian unit norm) linear combination of Xj;ena, and then construct the minimal perturbation that makes
a mistake. Figure 6 shows the minimum over all samples as a function of n. This experiment is conducted
for three different parameter regimes, ¢ = 25, b = 25 and b = g = /n. One can see that the lower bound
from Theorem 10 is below the empirical observation, and that this lower bound is within a constant factor
of the observed size of the minimal perturbation.

We can now apply Theorems 2 and 3 to determine the residual tolerance for an eigensolver for graph
partitioning. The residual tolerance can be no larger than that for the ring of cliques, but some graphs
may require smaller tolerances.

We can specialize the above analysis for the Fiedler vectors to derive error and residual tolerances
for recovering the optimal partition of R, ,. The block means for the fiedler vector are proportional to

2mi

i = cos ==, ora phase shifted version of this vector. Once the Fiedler vector is sorted the block means

NI'—‘

i=0
is a sufficient accuracy to ensure recovery of all the chques

are [; = COS (27” |'§"|) where i ranges over {¢g,q + 1...2g — 1}.

THEOREM 12 Let v, be a unit norm Fiedler vector R, ;. There exists a z with norm given in Equation (7)
such that any sweep cut of z + v, makes a mistake.

Iz|)?> = 2b~" sin® (%) . )
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n=qb

FIG. 6. Empirical measurements of minimal error perturbations on a log—log scale. Lower bounds are shown with the same colour
and marker with dashed lines.

Proof. We examine

( 27 (i + 1) 2711')2
Mit1 — Wi = | €08 ————— — cos —
q q

and the sum
2g—1

) 27 (i 4 1) 27i\?
E (Wiy1 — )" = cos ——— —cos — | .
i=q q q

The fact that (é] = (%1 implies w;,; = w; allows us to reparameterize the above sum as

! i+ 1/2] ami\? L 2 (i+1) 2mi\2 LT
Z = COST—COST ZZ COST—COS7 =qgsm —.

i=[q/2] lq/21

Thus there exists a z, ||z]|* = ¢ sin’ (%) such that any sweep cut of z + v, makes a mistake. O

Theorem 12 yields an error tolerance guaranteeing the optimal partitioning of R, of b~'/*sin (%)

The residual error bound € < +/8b~'/?sin (%) 8, = O (n=>¢~'/?) is a residual tolerance guaranteeing

optimal partitioning of R, , using spectral sweep cuts. In contrast a residual tolerance sufficient for
. . . 11 . .

recovering the cliques is O (n 2q 2) from Theorem 10. The next section shows how the larger residual

tolerance required by partitioning R, , with spectral blends leads to fewer iterations of an iterative solver.
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3.5 The power method

From the eigenvalues and error tolerances above, one can determine an upper bound on the number of
iterations required by the power method to recover all the cliques in R, .

THEOREM 13 Let xo be sampled from N, (0, 1). Let x; be the kth iteration of the power method, x;,; «~—
/8

5 W o \n-g)2 :
Axi/[|%¢|| for Ry, Let & = (T) +(3) . There is a k* of O (log, ) such that for k > k* a sweep

cut based on x; makes no errors with probability at least 1 — ¢.

Proof. First, we bound || (I — Pyy) X,||? and || P,,X,||? probabilistically. Each entry in x, is independently
sampled from A (0, 1). For any orthonormal basis of R”, {v;}{_,, the distribution of each v{x, is also
N (0, 1). Therefore, the distribution of ||P,,X,||? is a x 2-distribution of order ¢, which has expected value
¢ and cumulative distribution function y (¢/2,z/2)/ ' (q/2), where I'(-) is the gamma function and y (-, -)
is the lower incomplete gamma function. Let ¢, € (0, 1), using Chernoff bounds we have

a <49
po := Prob [||PWX0||2 > coq] =1- % >1-— (coel_”‘))q/z.

Similarly, || (I — Pyy) Xo||? is from a x>-distribution of order n — g, with expected value n — g and
known cumulative distribution function. Let ¢; € (1, o0), we have

n—q ¢1(n—q)
7/( 20 2

r(=)

p1 :=Prob [[PwxXoll* < ci(n — ¢)] = ) >1— (Clelfcl)w*q)/é

The union of events [||PWX0||2 > coq] and [||PWX0||2 <ci(n— q)] is a subset of all possibilities for

. 1(1=Py, )x0 112 (.
Wthh[ ( W);’ < a9
IPyyxoll coq

] holds. Therefore, setting ¢y = 1/8 and ¢; = 2, we see

[X=Pw)xl*> c(n—q)
IPwxol? coq

Pr0b|: ]>P0P1>1—§,

J/8\9? o\ (1—q)/2 . ..
where ¢ 1= | - + (;) is a small positive constant when ¢, b > 4. Because a sweep cut does

not depend on the norm of a vector, we consider the iteration, x; <— tAxk,l which is equivalent to the
power method. Letting A* = max (|Aq+1 [ [An |), this iteration accentuates vector components in the range
of Py, by a factor greater than 1 and attenuates those orthogonal to this space by factors less than A*/2,,.
If |PyyXo||2 > cog, then

2 2 2
X [17 = [PwXel|” = [[PywXoll” = cog.

Also, if || (T — Py) Xo[|* < ¢1(n — g), then

30\ % 34\ %
[ (L= Pyy) x¢|l* < ()T) | (X =Py x> < ()T) ci(n—q).

q q
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TABLE 1 Table corresponding to Fig. 7 with 10 iterations. Convergence to the Fiedler eigenpair is slow
(column 2), yet convergence to the orthogonal complement of X,ise is rapid (column 3)

i [x® — TLx?| [x@ — 11x® || W ¢ (x) V2u

0 1.24806e+01 2.25433e+01 1.52966e+00 2.03094e+00 1.74909e+00
1 9.20534e—01 5.02679e—02 8.37276e—01 1.05263e—02 1.29404e+00
2 1.02629e—01 1.45977e—02 5.67751e—02 6.68577e—03 3.36972e—01
3 1.08242e—02 8.10095e—04 1.01284e—02 4.89853e—03 1.42326e—01
4 1.01568e—02 4.28591e—05 9.87761e—03 4.89853e—03 1.40553e—01
5 1.01262e—02 2.26698e—06 9.85062e—03 4.89853e—03 1.40361e—01
6 1.01022e—02 1.19907e—07 9.82549¢—03 4.89853e—03 1.40182e—01
7 1.00782e—02 6.34217e—09 9.80038e—03 4.89853e—03 1.40003e—01
8 1.00543e—02 3.35448e—10 9.77526e—03 4.89853e—03 1.39823e—01
9 1.00303e—02 1.77422e—11 9.75013e—03 4.89853e—03 1.39643e—01
1 1.00063e—02 9.38388e—13 9.72498e—03 4.89853e—03 1.39463e—01
00 0.00000e+00 0.00000e+00 1.14176e—04 3.50018e—04 1.51113e—02

Ao (L) ¢ (V2) = ¢g V222 (L)

Therefore, under the assumptions on X, the kth iteration satisfies

o\ k £\ K
WPl (K [T =4 () Vot
1% r) Ve kg

By Theorem 10, if this ratio is less than (1 + 2qn)_l/ 2, then x; makes no errors. We see this is
ensured by

k>k" =

log4 4 log(b — 1) 4 log(1 + 2gn)
2log (Aq/k*)

Revisiting Corollary 1 we that 1, > 1 — C,/b* and 1* < max(C,41, C,)/b s0 A,/A* = C*b, where C* is
an order 1 constant. Plugging this in we see that k* is in O (logb q). 0

3.6 Experiment

Here we show the results of a numerical experiment in order to lend intuition and validation to the
theorems. Take R, and a random seed vector x*). Then apply the power iteration X = (A —v,v!)x(~1.
For b = 20 and ¢ = 30 the relevant measures of convergence are shown in Table 1. Figure 7 illustrates the
convergence behaviour in terms of the conductance of all sweep cuts, and the reordered adjacency matrix
represented in sparsity plots. Table 1 shows that the convergence to the Fiedler vector stalls after iteration
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First Iteration Second Iteration Third Iteration

eyt

F1G. 7. First three iterations of the power method applied to Rp—20,4=30. Above: sweep conductance of A reordered by sorting the
first (top-left), second (top-middle) and third iterations (top-right). The horizontal axis represents which vertex to split at under
the induced ordering; vertical axis is the conductance for each split on a log scale. Below: matrix sparsity plots of A reordered by
sorting the first (bottom-left), second (bottom-middle) and third iterations (bottom-right). Red lines demonstrate which edges are
cut for the optimal cut in each ordering.

3, but convergence to the space orthogonal to X continues unabated. Letting IT be the projection onto
XL ., we measure | [1x?|| for each iteration. Applying Theorem 13, we calculate that k* = 5 iterations
will perfectly resolve the clique structure with probability at least 1 — ¢ = 0.99999998575. After one
iteration the sweep cut did not split any cliques, but only a single clique is shaved off. After three iterations

a nearly optimal partition is found.

4. Conclusions

When partitioning graphs where the spectral gap is small, computation of an accurate approximation
to a Fiedler vector is difficult. In order to satisfy the needs of spectral partitioning without computing
eigenvectors to high accuracy, we introduce spectral blends and in particular the blend gap. Section 2.2
controls the distance between an approximate eigenvector and an invariant subspace in terms of the
eigenresidual and blend gap thereby showing that accurate approximation to a spectral blend is easier to
compute than an accurate approximation of a single eigenvector. We provide a general tool for deriving
residual tolerances based on the structure of the graph spectrum.

In order to illustrate the utility of spectral blends, Section 3 studies a model problem and uses the
theory of block cyclic matrices and LSEVs to present a closed form for the eigenvalues and vectors. We
show that any blend of large eigenvalue eigenvectors for the ring of cliques recovers a correct clustering.
This indicates that for problems where there are multiple good partitions of the graph, spectral blends can
be used to partition accurately. Section 3.4 provides residual tolerances for correctly partitioning the ring
of cliques graph with sweep cuts. When using the Fiedler vector to find the optimal partition, a sufficient
residual tolerance is O (n’S/ g7V 2). To recover the cliques, it is sufficient to choose a residual tolerance
of O (n~'/2¢~"/%). This result shows a gap between the accuracy required to solve the numerical problem
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and the accuracy required to solve the data analysis problem. This paper provides a path for deriving such
gaps in more general graphs.

Theorem 10 allows us to give guidance for error tolerances for spectral partitioning. One should solve
the eigenproblem to a tolerance no greater than O (n‘l) for graphs of size n. For general graphs, where
no information about the spectrum is known a priori, conductance based stopping criteria can identify
reasonable residual tolerances [21]. Theorem 13 shows that for the ring of cliques where the number of
clusters is polynomial in the sizes of the clusters, the number of power method steps taken to recover the
clusters is O (1). Further research will be able to expand these results to more general graphs which have
multiple good partitions.
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