
Research Article
Modeling the Power Variability of Core Speed Scaling on
Homogeneous Multicore Systems

Zhihui Du,1 Rong Ge,2 Victor W. Lee,3 Richard Vuduc,4 David A. Bader,4 and Ligang He5

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2School of Computing, Clemson University, Clemson, SC, USA
3Intel Corporation, Santa Clara, CA, USA
4School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
5Department of Computer Science, University of Warwick, Coventry, UK

Correspondence should be addressed to Zhihui Du; duzh@tsinghua.edu.cn

Received 10 June 2017; Accepted 18 September 2017; Published 25 October 2017

Academic Editor: Thomas Leich

Copyright © 2017 Zhihui Du et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We describe a family of power models that can capture the nonuniform power effects of speed scaling among homogeneous
cores on multicore processors. These models depart from traditional ones, which assume that individual cores contribute to
power consumption as independent entities. In our approach, we remove this independence assumption and employ statistical
variables of core speed (average speed and the dispersion of the core speeds) to capture the comprehensive heterogeneous impact
of subtle interactions among the underlying hardware. We systematically explore the model family, deriving basic and refined
models that give progressively better fits, and analyze them in detail. The proposed methodology provides an easy way to build
powermodels to reflect the realistic workings of current multicore processors more accurately. Moreover, unlike the existing lower-
level power models that require knowledge of microarchitectural details of the CPU cores and the last level cache to capture core
interdependency, ours are easier to use and scalable to emerging and futuremulticore architectureswithmore cores.These attributes
make the models particularly useful to system users or algorithm designers who need a quick way to estimate power consumption.
We evaluate the family of models on contemporary x86 multicore processors using the SPEC2006 benchmarks. Our best model
yields an average predicted error as low as 5%.

1. Introduction

We consider the problem of how to model the power of a
modern multicore processor as a function of the speed of its
cores. On its surface, the problem seems simple as it is natural
to assume that cores are independent of one another: the
classic power model posits that the total processor power is
the sumover that of independent cores. However, we find that
in practice suchmodelingmethods do not adequately capture
what happens on real multicore systems in which there may
be interactions among cores.

By way of motivation, let us consider the following classic
model and then compare what it predicts to what happens
in an actual experiment. In the classic single-core model, the

power, 𝑃SC, consumed by a core is expressed as the following
function of its operating frequency (“speed”), 𝑓:

𝑃SC (𝑓) ∝ 𝛼 ⋅ 𝑓𝛽, (1)

where 𝛼 is a workload-dependent factor and 𝛽 ≥ 1 is a
hardware technology-dependent parameter. For simplicity,
(1) omits a term for constant (or static) power, but our
argument and methods hold with or without the term. This
model appears in a variety of papers on the power-aware
scheduling problem [1, 2], in particular when the system
provides dynamic voltage and frequency scaling (DVFS) [3,
4].

A widely adopted approach used for multicore power
modeling extends from the method for single-core power

Hindawi
Scientific Programming
Volume 2017, Article ID 8686971, 13 pages
https://doi.org/10.1155/2017/8686971

https://doi.org/10.1155/2017/8686971

2 Scientific Programming

50 100 150 200 250
Time (in seconds)

80

90

100

110

120

Po
w

er
 (i

n
w

at
ts) to 0.8 GHz

From 2.5 GHz
Core 1–3 ramps

GHz
From 0.8 GHz

Core 1–3 ramps

to 2.5 GHz
From 0.8 GHz
Core 0 ramps

GHz
From 2.5 GHz
Core 0 ramps

to 2.5

to 0.8

Figure 1: A motivating example to demonstrate that the power
consumption of each core is determined by its own core speed
and the speeds of other cores on the same chip. The employed
AMDmulticore processor has 4 cores with per-core DVFS. Initially,
all cores run at the same frequency of 0.8GHz. Then, one of the
cores scales up its frequency by one step every 30 seconds until the
frequency reaches the highest value of 2.5 GHz.This process repeats
on another core until all cores run at the highest frequency. After
that, the experiment continues in reverse until all cores drop their
frequencies to 0.8GHz.

modeling. It sums the power consumed by individual cores
[5–8]. As a result, the power consumption of an 𝑁-core
processor, denoted by 𝑃MC, is calculated by

𝑃MC (𝑓1, . . . , 𝑓𝑁) = 𝛼
𝑁

∑
𝑐=1

𝑓𝛽𝑐 . (2)

Critically, this approach assumes independence: the power of
an individual core does not depend on what is happening
on other cores on the same chip. Consider an environment
consisting of multiple homogeneous cores, where all cores
execute the same workload. In this setting, one may derive
two predictions from (2). First, all cores contribute to the
total power consumption independently. Second, scaling any
core from one speed to another causes the same change
in the total power consumption, regardless of the speed of
the other cores. In other words, the cores have uniform
power effects with speed scaling. For example, suppose a
multicore processor has 16 cores with their frequencies set
as ⟨𝑓0, 𝑓1, . . . , 𝑓15⟩. If 𝑓𝑖 = 𝑓𝑗, then changing the frequency
of core 𝑖 from 𝑓𝑖 to 𝑓𝑖 + 𝛿𝑓 causes a total power change
of 𝛼((𝑓𝑖 + 𝛿𝑓)𝛽 − 𝑓𝛽𝑖), which will have the same value as
𝛼((𝑓𝑗 + 𝛿𝑓)𝛽 − 𝑓𝛽𝑗) if we change the frequency of core 𝑗 from
𝑓𝑗 to 𝑓𝑗 + 𝛿𝑓.

However, the observations made in our experiments
contradict these predictions. Figure 1 shows how the total
processor power varies with a sequence of frequency scaling
on a representative homogeneous multicore processor. In
our experiments, all cores execute the same workload. The
experimental results may be summarized as follows.

(i) The effect on power from speed-scaling a core depends
on the states of the other cores. The resulting change
in total power depends on whether the scaling
updates the maximum speed among the cores. This

observation contradicts the first prediction derived
from (2).

(ii) The scaling that updates the maximum speed among
the cores leads to a significantly larger change in total
power than others.That is, the same increase in speed
among the cores may have nonuniform power effects.
This observation contradicts the second prediction
derived from (2).

Thus, we may conclude that power models should
account for interdependency and variability among the cores
to estimate the power consumption of a multicore proces-
sor more accurately. Unfortunately, only a few studies [9–
12] have investigated this issue. In general, these studies
decompose a processor to its architectural components and
use performance counters to infer the power consumption
of each component. The effect of core interdependency on
power consumption is explicitly captured through shared
resources and differentiated behaviors of cores. Due to the use
of hardware performance events, the models are detailed and
complex. Furthermore, they have only been developed for
dual- or quad-core processors. This approach is problematic
when applied to emerging and future processors that may
have eight or more cores.

Multicore processors that integrate a dozen or more
DVFS-capable cores are commonplace today and manycore
processors are pervasive. The goal of this study is to propose
a family of practical power models that are accurate and
easy to use and, at the same time, can be scaled to emerging
and future multicore technologies. Our power models use
two statistical parameters, average speed and dispersion of
speeds, on cores. The former is used to accurately capture
the holistic impact of multicore speeds while the latter
captures the core dependencies. The evaluation shows that
our models are more accurate than the traditional models
by reflecting interdependence among cores but also maintain
a similar level of simplicity. Our models are at the system
level and eliminate the need tomodel individual architectural
components with hardware performance events.

We explore this family of models systematically, to show
how one can “derive” a suitable power model for multicore
processors by experiments. We carry out the experiments
using SPEC2006 [13] on contemporary multicore processors
and ultimately obtain a “basic power model” with an average
relative error of 3% (in absolute value) for most benchmarks.
These results help bolster the practical case for using our
approach. And for those applications in which the basic
power model is not as accurate, we find that an improved
piecewise model, which partitions the maximum frequency
among the cores into a small number of segments, best
expresses overall power consumption of a multicore proces-
sor.

We evaluated our approach systematically on current
generations of Intel and AMD processors. To instantiate the
model for a given application and processor, one needs to
only run the applications on the processor a few times, each
with a different setting of core speeds. Once fitted, the power
models can be used to predict the power consumption at any
settings of core speeds. Further, if in the future the processor

Scientific Programming 3

architectures evolve, the proposed family of models can still
be applied, since the models take a general form with the
statistical values of core speeds as input. In principle, one
needs to only rerun the designed experiments to determine
the new values of the coefficients in the model.

The model properties and results presented in this paper
may enable future researchers to use more appropriate
analytical frameworks to tackle a variety of power- and
energy-aware algorithms and application design problems,
including both classical scheduling algorithms under DVFS
and emerging scheduling problems such as the problem of
how to assign work to cores and set core speeds to satisfy a
power bound [14].

The main contributions of this work are as follows.

(i) The presented family of models accurately captures
the nonuniform power effect of frequency scaling on
multicore processors. Such models are much needed
for power-aware, multicore-based HPC systems.

(ii) By using only a couple of high-level variables, the
models are easy to use and can be applied to emerging
and future processors with more cores.

(iii) The models are the first to use statistical mea-
surements as model variables, in contrast to the
commonly adopted complex approach that models
individual cores andothermicroarchitectural compo-
nents with hardware performance events.

(iv) The models in the family have different forms with
different numbers of variables. It is at users’ liberty
to choose one that best suits their needs, such as
balancing accuracy and complexity.

2. A Family of Multicore Power Models

The discussions of Figure 1 suggest that it may not be correct
to model the power consumption of a multicore processor by
modeling the power consumed by each individual core and
then adding them together. Therefore, we propose a family
of new models for estimating the power consumption of
multicore processors. These models use statistical measures
of core speeds, such as means and dispersions, as model
variables.

Note that we focus on homogeneous multicore proces-
sors. Such an environment is common in parallel computing
programmed by MPI and OpenMP, which are the dominant
parallel programming paradigms for solving scientific and
engineering problems. We leave the research on heteroge-
neous architectures to our future work.

2.1. The Model Family. The general form of the model family
is as follows. Let 𝑓 denote the average frequency of the
cores in a multicore processor and Δ denote the dispersion
of speeds among the cores. Below, we will consider several
possible forms of Δ. Assuming that power consumption
correlates with 𝑓 and Δ, we posit a general model of the form

𝑃MC (𝑓, Δ) ≡ 𝑎0 + 𝑎1 ⋅ 𝑓 + 𝑎2 ⋅ 𝑓
𝑘
2 + 𝑎3 ⋅ Δ + 𝑎4 ⋅ Δ𝑘4 , (3)

where {𝑎0, . . . , 𝑎4} and {𝑘2, 𝑘4} are the parameters to be
estimated. In this general model, the average frequency is
simply calculated by 𝑓 ≡ (1/𝑁)∑𝑁𝑐=1 𝑓𝑐, where 𝑁 is the
number of cores and {𝑓1, . . . , 𝑓𝑁} are their frequencies.

For Δ, a natural choice is the standard deviation among
frequencies, denoted by 𝜎. However, we also consider several
more possibilities. Let 𝑓+ ≡ max1≤𝑐≤𝑁 𝑓𝑐 denote the maxi-
mum frequency setting of any core and 𝑓− ≡ min1≤𝑐≤𝑁 𝑓𝑐 be
the minimum frequency. Thus, in addition to 𝜎, we consider
the following three measures of speed dispersion:

(i) Δ+: the difference between the maximum frequency
and the average frequency, namely, 𝑓+ − 𝑓.

(ii) Δ−: the difference between the average frequency and
the minimum frequency, namely, 𝑓 − 𝑓−.

(iii) Δ+−: the difference between the maximum and mini-
mum frequency, namely, 𝑓+ − 𝑓−.

In the proposed model family, instead of considering
many individual core speeds, we only employ two statistical
parameters to capture the typical speed distribution of all
cores in a processor.

2.2. Candidate Models. From the general form of (3), we
consider several specific cases as candidate models for fitting,
denoted as 𝑅1 through 𝑅5 below:

𝑅1: 𝑎0 + 𝑎1 ⋅ 𝑓 + 𝑎3 ⋅ Δ

𝑅2: 𝑎0 + 𝑎1 ⋅ 𝑓 + 𝑎4 ⋅ Δ𝑘4

𝑅3: 𝑎0 + 𝑎2 ⋅ 𝑓
𝑘
2 + 𝑎3 ⋅ Δ

𝑅4: 𝑎0 + 𝑎2 ⋅ 𝑓
𝑘
2 + 𝑎4 ⋅ Δ𝑘4

𝑅5: 𝑎0 + 𝑎1 ⋅ 𝑓 + 𝑎2 ⋅ 𝑓
𝑘
2 + 𝑎3 ⋅ Δ + 𝑎4 ⋅ Δ𝑘4 .

(4)

Note that 𝑅5 is the same as (3). The other cases simplify the
general form.

Beyond𝑅1 through𝑅5, we consider two additional classic
power models for comparison. One assumes a polynomial
relation between power and frequency of each individual core
(𝑅6), and the other assumes a linear relationship (𝑅7):

𝑅6: 𝑃MC (𝑓1, . . . , 𝑓𝑁) = 𝑎0 + 𝑎1 ⋅
𝑁

∑
𝑐=1

𝑓𝑘1𝑐

𝑅7: 𝑃MC (𝑓1, . . . , 𝑓𝑁) = 𝑎0 + 𝑎1 ⋅
𝑁

∑
𝑐=1

𝑓𝑐.
(5)

Note that fitting 𝑅2, 𝑅3, 𝑅4, 𝑅5, and 𝑅6 requires nonlinear
regression methods, whereas simple linear regression is
sufficient to fit 𝑅1 and 𝑅7.

2.3. Building the PowerModels. Thepurpose of this work is to
propose amethodology for system users or algorithmdesign-
ers to build accurate and simple power models for current

4 Scientific Programming

and even future multicore processors. In this subsection, we
present the methodology for building our power models.

The following procedure is used to determinewhich of the
candidate models in Section 2.2 can best represent the power
consumption of multicore processors.

In general, the procedure involves designing different
frequency settings, running benchmark application(s) on
the given modern multicore processor, and recording the
power consumption and the corresponding frequency set-
tings. More details of the procedure are described below.

2.3.1. Frequency Settings. We performed an (or approxi-
mately) exhausted test in training to understand the relation-
ship between frequency and power. But in model setup runs,
we only need to run the experiments with a small number
of frequency settings using the following frequency sampling
method, the principle of which is that a small number of
frequencies still represent the full spectrum of all possible
frequencies. If a multicore processor has 𝑁 homogeneous
cores and each core can be set at 𝐾 different frequencies
independently, the total number of frequency settings is
(𝑁+𝐾−1𝑁). For example, if𝐾 = 16 and𝑁 = 4, then (𝑁+𝐾−1𝑁) =
(194) = 5168. For a large 𝐾, that is, a core has many different
frequency levels, we select the minimum and maximum
frequency and 2∼3 additional frequencies in between to cover
all the speed range. For a large𝑁, that is, there aremany cores
in a multicore processor, we divide the cores into smaller
groups, and all cores in a group are configured with the same
frequency setting.

2.3.2. Monitoring Power Consumption. The tool for monitor-
ing power consumption in the experiments can be a hardware
power meter device or other software power measurement
packages. The exemplar software power measurement pack-
ages are Intel’s Running Average Power Limit (RAPL) inter-
face [15] and other packages such as likwid-powermeter
[16]. The accuracy of the RAPL-based power measurement
tool is adequate for high-level power prediction.

2.3.3. Regression Analysis. Once the data are measured, we
fit the candidate models, 𝑅1 through 𝑅7, to them using
standard statistical parameter estimation procedures. Fits are
specific to a processor, and we report on fit quality both
for individual benchmarks and for mixed workloads (see
Sections 4.2 and 4.3). Models 𝑅2 through 𝑅6 require nonlin-
ear regression methods, whereas 𝑅1 and 𝑅7may be fitted by
standard linear regression procedures. Additionally, models
𝑅2 through𝑅6 require determining both the coefficients (i.e.,
𝑎0–𝑎4) and the value of exponents (i.e., 𝑘2 and 𝑘4), whereas in
𝑅1 and 𝑅7, only the values of coefficients (i.e., 𝑎0, 𝑎1, and 𝑎3
in 𝑅1 and 𝑎0 and 𝑎1 in 𝑅7) need to be determined.

2.3.4. Models Screening. Finally, after fitting each candidate
model, we analyze the parameter values and the fitting quality
of each model and identify which model best captures the
relation between power consumption and core frequencies.
Note that we only need to run an application on a multicore
processor with a limited number of frequency settings to

obtain the experimental data. Once we have established the
power model, we can use the model to predict the power
consumption under any frequency setting of the multicore
processor.

3. Model Analysis and Refinement

In this section, we propose the basic model based on the
method in the last section. The analysis shows that the basic
model can be used for different optimization purposes. We
also show the weakness of the basic model for some cases and
how we improve it with the refined model.

3.1. The “Basic Model” and What It Implies. We have con-
ducted extensive experiments on x86 multicore processors
(see the experiment results in Section 4). After comparing
the results obtained by our candidate models with those by
the classicmulticore powermodel, we find that𝑅1, combined
with the dispersionmeasure Δ+, typically exhibits the best fit.
Hereafter, we will refer to 𝑅1 as the basic model; that is,

𝑃basic (𝑓, Δ+) ≡ 𝑎0 + 𝑎1 ⋅ 𝑓 + 𝑎3 ⋅ Δ+. (6)

Observe that the basic model is linear with 𝑓 and
Δ+. Although dynamic power is generally nonlinear with
frequency, the relation we observed in reality on current
processors appears to be linear approximately.

The basic model suggests that two different frequency
settings may deliver the same throughput or performance
for a given application but cause significantly different power
consumption. For example, consider the following two dif-
ferent frequency distributions on four cores, which both have
an average of 1.6 GHz: [1.6, 1.6, 1.6, 1.6] and [1.2, 1.6, 1.6, 2.0].
These haveΔ+ values of 0GHz and 0.4GHz, respectively.The
classic multicore powermodel such as𝑅7will predict that the
same amount of power will be consumed under these two
frequency distributions. However, using (6), we can predict
that the distribution with greater values ofΔ+ will causemore
power consumption.

Among all frequency distributions, those with the min-
imum Δ+ = 0 define a theoretical Pareto frontier and
will consequently consume the least amount of power. For
example, consider Figure 2. This figure shows the measured
power of benchmark 410.bwaves running on an Intel Core
i7-2600K (a quad-core Sandy Bridge processor). The red
line is the Pareto frontier obtained by the basic model.
Each of the blue dots is the measured power when the
application is running with a particular average frequency.
It can be observed from this figure that, with the same
average frequency, different frequency distributions make
a huge difference with power consumption. In this figure,
the optimal frequency distribution saves up to 48% of the
power, compared with other frequency distributions. For a
given power budget, the optimal frequency distribution can
outperform näıve ones by up to 37.5%. Assume “𝐹𝑟” in this
figure corresponds to an initial frequency distribution with
an average frequency and power consumption. Then, the
basic model indicates that we can save power by following
the vertical line down to 𝐴, or improve performance by

Scientific Programming 5

Pareto efficiency analysis for 410.bwaves

Measured points
Pareto frontier

(1)

(2)

(3)

A

B

C

19
22
25
28
31
34
37

Po
w

er
 (W

)

1.86667 2.13333 2.4 2.66667 2.93333 3.21.6
Average frequency (G)

Fr

Figure 2: Theoretical Pareto frontier (in red) suggested by our
model. From any user specified point 𝐹𝑟, following the vertical line
(1), we can reach point𝐴which can provide the same average speed
with the lowest power.The power difference between 𝐹𝑟 and𝐴 is the
saved power. Following the horizontal line (2), we can reach point 𝐵
which can provide the highest throughput (the fastest average speed)
with the same power. The speed difference between 𝐵 and 𝐹𝑟 is the
increased average speed. Following line (3), we can reach point 𝐶
which can provide higher speed with less power than 𝐹𝑟.

following the horizontal line rightward to 𝐵, or balance both
improvements by reaching point 𝐶.

3.2. Model Refinements. The basic model can be refined
in certain contexts. For some of the benchmarks, such as
458.sjeng of SPEC2006 [13] (see the experimental results in
Table 2), the prediction result of the basic model is not very
accurate. Digging deeper, Figure 3 plots the power consump-
tion of 458.sjeng as a function of𝑓 andΔ+; observe that the
power surface consists ofmultiple piecewise planes. Similarly,
the contour lines of the measured power surface, shown in
Figure 3(b), reveal that the distance between the parallel
contour lines is uneven. Again, this observation confirms the
piecewise planar nature of the power surface.

These observations further suggest that we might be
able to extend our basic model to be piecewise linear. More
formally, let [𝜙−, 𝜙+] be the interval of all possible frequencies.
𝜙− is the low bound of possible frequencies and 𝜙+ is the up
bound of possible frequencies. Consider a 𝑘-way partition of
this interval into 𝑘 segments (each segment corresponds to a
part of our refined piecewise model) such that

𝜙− ≡ 𝜙0 < 𝜙1 < 𝜙2 < ⋅ ⋅ ⋅ < 𝜙𝑘−1 < 𝜙𝑘 ≡ 𝜙+. (7)

Then, a piecewise linear power model can take the following
form:

𝑃MC (𝑓, Δ+) =
{
{
{

𝑎𝑖,0 + 𝑎𝑖,1 ⋅ 𝑓 + 𝑎𝑖,3 ⋅ Δ+

when 𝜙𝑖−1 ≤ 𝑓 + 𝑎 ⋅ Δ+ ≤ 𝜙𝑖,
(8)

where 𝑎𝑖,0, 𝑎𝑖,1, and 𝑎𝑖,3 are the coefficients of frequency
segment 𝑖 ∈ {1, . . . , 𝑘}. For the SPEC2006 benchmarks, we
have observed that 𝑘 ≤ 3 is sufficient to capture any piecewise

Table 1: Experimental platform with different microarchitectures.

Processors Available frequencies (MHz)
Model name 𝑃 × 𝐶
AMD Opteron 2 × 4 2500, 1800, 1300, 800
Xeon Haswell 2 × 14 2601 (turbo)

[2600, 1200] by −100
Xeon Ivy Bridge 2 × 10 2501 (turbo)

[2500, 1200] by −100
Xeon Sandy Bridge 2 × 8 [2600, 1200] by −100

linear behavior. The coefficient 𝑎 indicates the line between
different pieces when they are projected onto the 𝑓-Δ+ plane.

In practice, it is not straightforward to determine the
exact values of 𝜙𝑖 and 𝑎 in (8). The motivating example in
Figure 1 shows that a significant power change occurs when
the maximum speed among the cores changes. So, we can
replace 𝜙𝑖−1 ≤ 𝑓 + 𝑎 ⋅ Δ+ ≤ 𝜙𝑖 with 𝜙𝑖−1 ≤ 𝑓+ ≤ 𝜙𝑖
to simplify the process of determining the values of 𝜙𝑖 and
𝑎. Experimental results show that this is an effective way to
establish the improved piecewise power model.

4. Model Evaluation

We employ 28 benchmarks of SPEC2006 to evaluate the
proposed basic model on several different modern multicore
processors. The extensive experimental results show that our
basic model is accurate for most cases.The refinedmodel can
further improve the accuracy of the basic model for some
special workloads.

4.1. Experimental Setup

4.1.1. Workloads. We chose the computation-intensive
benchmarks from SPEC2006 [13]. SPEC benchmark is used
because it represents general-purpose computing. In the
future, we would include more different workloads whose
power is sensitive to speed.Of the 29 benchmarks in this suite,
we omitted 400.perlbench due to its long execution times.
In the experiments, we assigned a benchmark application to
run on each core. We considered two assignments: uniform
assignment, where the same benchmark is assigned to all
cores, and mixed assignment, where different benchmarks
are assigned to run on different cores.

4.1.2. Multicore Processors. We carried out our experiments
on different generations of Intel x86 microarchitectures and
one AMD Opteron architecture. In Table 1, 𝑃 denotes the
number of processors and 𝐶 denotes the number of cores on
each processor.

4.1.3. Speed Scaling and Core Affinity. We used the Linux
user-level cpufreq interface to set the frequencies of
the cores. (To set core 𝑖 as the frequency of Fre, we
use the cpufreq interface on the following command line:
echo Fre > /sys/devices/system/cpu/cpu𝑖/cpufreq/
scaling setspeed.) We used the Linux command

6 Scientific Programming

Table 2: Comparison of different regression models with single benchmark 410.bwaves as the workload.

Regression model #% ≤ 5% #% ≤ 3% Max.% Avg.% Max. err. Min. err. Avg. abs. err.
Variables Reg. func.

𝑓, Δ+

𝑅1 1.000 0.985 0.042 0.004 0.255 −0.801 0.111
𝑅2 1.000 0.985 0.036 0.004 0.681 −0.356 0.101
𝑅3 1.000 0.980 0.040 0.004 0.758 −0.235 0.103
𝑅4 1.000 0.985 0.036 0.003 0.679 −0.336 0.097
𝑅5 1.000 0.985 0.031 0.003 0.600 −0.308 0.093

𝑓, Δ+−

𝑅1 0.942 0.714 0.078 0.022 1.445 −1.840 0.577
𝑅2 0.942 0.700 0.069 0.022 1.795 −1.500 0.576
𝑅3 0.942 0.714 0.074 0.022 1.802 −1.466 0.575
𝑅4 0.942 0.714 0.067 0.022 1.762 −1.514 0.574
𝑅5 0.557 0.328 0.240 0.054 3.534 −4.547 1.372

𝑓, Δ −

𝑅1 0.700 0.485 0.159 0.039 3.172 −3.013 1.009
𝑅2 0.328 0.242 0.316 0.086 5.387 −6.195 2.222
𝑅3 0.700 0.471 0.151 0.039 2.862 −3.169 0.994
𝑅4 0.442 0.285 0.183 0.064 5.108 −5.061 1.692
𝑅5 0.157 0.114 0.369 0.141 8.047 −8.483 3.616

𝑓, 𝜎

𝑅1 0.957 0.657 0.080 0.024 1.307 −1.964 0.637
𝑅2 0.928 0.642 0.067 0.024 1.880 −1.407 0.639
𝑅3 0.957 0.671 0.081 0.024 1.948 −1.300 0.637
𝑅4 0.928 0.671 0.066 0.024 1.847 −1.413 0.635
𝑅5 0.728 0.400 0.143 0.042 3.376 −3.271 1.086

𝑓1, . . . , 𝑓𝑁
𝑅6 0.585 0.385 0.191 0.046 3.624 −3.324 1.179
𝑅7 0.585 0.385 0.197 0.046 3.732 −3.236 1.170

1.5
2

2.5
3

3.5

0
0.5

1
1.5

Average frequency (G)

458.sjeng

DiffMaxAvg (G)

10

15

20

25

30

Av
er

ag
e p

ow
er

 (W
)

(a) The measured power surface is piecewise planar in 𝑓 and Δ+

458.sjeng

0

0.2

0.4

0.6

0.8

1

D
iff

M
ax

Av
g

(G
)

2.5 32
Average frequency (G)

(b) The contour lines of the measured power surface in
Figure 3(a) are parallel lines, but the distances are not equal

Figure 3: The measured power surface varies linearly with 𝑓 and Δ+, but with varying slopes.

taskset to bind a process to a physical core. (To bind the
launched process, BenchName, to core 𝑖 and run it 𝑘 times, the
following command can be used: taskset -c 𝑖 runspec
--config=My.cfg --action onlyrun --size=test
--noreportable --iterations=𝑘 BenchName.)

4.1.4. Power Measurement. If the multicore systems have
power monitoring tools, we will use them directly. For all

quad-core Intel processors in Table 1, a clamp ammeter
(meter) was equipped to measure the power. For the AMD
Opteron processor, the PowerPack tool [17] was installed
to get the power. For the platforms that do not provide
a power measurement method, such as the machine with
dual octacore Sandy Bridge processor and the dual 14-core
Haswell processor, we used Intel’s Running Average Power
Limit (RAPL) interface [15] to obtain the power (PKGPower).

Scientific Programming 7

4.2. Model Accuracy. Table 2 shows the results of different
candidate models for the benchmark 410.bwaves, on the
quad-core Ivy Bridge platform. Note that we recorded and
analyzed a full set of experimental data covering all bench-
marks and platforms and the results for other benchmarks
show similar trends.

We assess model accuracy using a variety of criteria. In
Table 2, “#% ≤ 5%” and “#% ≤ 3%” refer to the fraction
of predictions whose relative error, |model − measured|/
measured, is no more than 5% and 3%, respectively. The
larger the value is, the more accurate the power model is.
“Max.%” and “Avg.%” are the maximum and average values
of all relative errors. “Max. err.” and “Min. err.” mean the
maximum and minimum values of all errors. “Avg. abs. err.”
means the average of the absolute value of residual. The
smaller the value is, the more accurate the power model is.
According to Table 2, models 𝑅1 through 𝑅5 all achieve very
high prediction accuracy with variables 𝑓 and Δ+. But model
𝑅1 is the simplest one.

Furthermore, the experimental results show that the aver-
age relative error of 𝑅1 is as low as 0.004% and replacing Δ+
with any other dispersion variable leads to higher prediction
errors.

We have also tested the effectiveness of the models
usingmixedworkloads.We generated thesemixedworkloads
using two methods: (i) using four different benchmarks and
(ii) using two different benchmarks. (For instance, “two
different benchmarks” on a quad-core processor means that
one benchmark runs on two cores and another different
benchmark runs on the remaining two cores.) The results
are similar to those in Table 2. These results suggest that the
effectiveness of 𝑅1 is not just tied to a particular workload.
Section 4.3 explores uniformversusmixedworkloads inmore
detail.

The experimental results in Table 2 show that our basic
model, 𝑅1, is accurate. Figure 4 shows the average relative
error of the basic model for running the 28 SPEC2006
benchmarks on the seven multicore processors. As can be
seen from the figure, except for the Haswell-EP, the basic
model achieves very low average relative error (less than 2%)
for most benchmarks running on the other six multicore
processors, while for Haswell-EP, the average relative error is
a little bit high (less than 5%) for most benchmarks.

For the few benchmarks whose average relative errors are
greater than 5% (but are all less than 13%), we will employ
the refined piecewise model (see Section 3.2) to improve the
prediction accuracy.

We compare the prediction accuracy of the basic model
and the piecewise model in Table 3. Overall, the piecewise
approach improves prediction accuracy. For example, the
results of benchmark 458.sjeng show that the piecewise
model reduces the maximum relative error to 0.3% from
the original 50.4% of the basic model. They also show that
average relative error decreases from 0.094 to 0.001 and the
improvement is about 9x on average.

4.3. Uniform versus Mixed Workloads. We consider two
benchmarking scenarios: one in which we run the same

N
eh

al
em

Sa
nd

y
Br

id
ge

Iv
y

Br
id

ge

H
as

w
el

l

Sa
nd

y
Br

id
ge

-E
P

A
M

D

H
as

w
el

l-E
P

Multicore processors

Av
er

ag
e r

el
at

iv
e

0
2
4
6
8

10
12

er
ro

r (
%

)

Figure 4: The average relative errors of the 28 benchmarks on
different multicore processors according to our basic power model.

benchmark on all cores (“uniform” case) and the other
in which we run different benchmarks on different cores
(“mixed” case).

First, consider the uniform case, for the specific example
of the benchmark, 410.bwaves, running on a quad-core Ivy
Bridge processor. The model predictions match very well the
actual measurements for various core speeds, as shown in
Figure 5(a). In addition, Figure 5(b) shows that themaximum
absolute error is less than 0.25 watts and that the maximum
relative prediction error is less than 4.2%. Furthermore, more
than 98.6%of the predicted values have a relative error within
3%, and the average relative error is less than 0.45%.Though
not shown, the test results with 28 SPEC2006 benchmarks
show a similar level of model accuracy.

We also find strong linear relationships among power,
𝑓, and Δ+ in Figures 5(c) and 5(d). Figure 5(c) shows a
flat surface (plane) where CPU power increases linearly
with 𝑓 and Δ+. These relationships are easier to see in
Figure 5(d), which is a flattened contoured version of the
same data; the straight parallel contour lines again reflect
linear relationships. These observations essentially confirm
that the basic model, 𝑅1, should be expected to work well.

We also consider mixed workloads, in which each core
runs a different application. The model fits under mixed
workloads show a similar level of accuracy for 𝑅1. For exam-
ple, when running the set of benchmarks, {410.bwaves,
433.milc, 437.leslie3d, 444.namd}, one per core on the
quad-core Ivy Bridge, the maximum absolute residual is less
than 0.31 watts, and the maximum relative error is less than
4.3%. Furthermore, more than 98.5% of the predicted values
have a relative error within 3%, and the average relative error
is less than 0.5%. Other mixed workloads with two and four
different benchmarks exhibit similar degrees of accuracy.

5. Discussion

The models proposed in Section 2 raise some natural ques-
tions, including why the power effect of frequency scaling of
a core is dependent on other cores’ states and why power
models as a linear function of frequency could accurately
capture the power effect of frequency scaling empirically.

8 Scientific Programming

Table 3: Comparing the errors of the basic and piecewise models for predicting the power of different benchmarks.

Benchmark Model #% ≤ 5% #% ≤ 3% Max.% Avg.% Max. err. Min. err. Avg. abs. err.

401.bzip2 Basic 0.985 0.985 0.055 0.007 0.880 −0.347 0.160
Piecewise 1.000 1.000 0.013 0.003 0.346 −0.219 0.094

403.gcc Basic 0.985 0.971 0.158 0.006 0.586 −1.999 0.111
Piecewise 1.000 1.000 0.010 0.001 0.111 −0.226 0.035

410.bwaves Basic 0.985 0.985 0.084 0.010 1.620 −0.517 0.308
Piecewise 1.000 1.000 0.010 0.002 0.269 −0.234 0.078

416.gamess Basic 0.800 0.685 0.175 0.029 2.819 −2.015 0.716
Piecewise 0.900 0.842 0.081 0.018 2.056 −1.580 0.460

429.mcf Basic 0.928 0.800 0.152 0.020 1.160 −2.048 0.379
Piecewise 1.000 1.000 0.017 0.003 0.346 −0.183 0.082

433.milc Basic 0.985 0.985 0.095 0.012 1.661 −0.593 0.326
Piecewise 1.000 1.000 0.011 0.003 0.244 −0.379 0.090

434.zeusmp Basic 0.985 0.985 0.084 0.010 1.488 −0.459 0.278
Piecewise 1.000 1.000 0.009 0.001 0.229 −0.224 0.052

435.gromacs Basic 0.985 0.971 0.159 0.006 0.555 −1.950 0.110
Piecewise 1.000 1.000 0.010 0.001 0.156 −0.221 0.035

436.cactusADM Basic 0.985 0.971 0.171 0.006 0.574 −2.122 0.123
Piecewise 1.000 1.000 0.006 0.002 0.160 −0.137 0.048

437.leslie3d Basic 0.985 0.985 0.102 0.012 1.884 −0.589 0.354
Piecewise 1.000 1.000 0.012 0.002 0.253 −0.312 0.069

444.namd Basic 0.985 0.985 0.068 0.008 1.214 −0.359 0.217
Piecewise 1.000 1.000 0.008 0.001 0.213 −0.161 0.045

445.gobmk Basic 0.985 0.985 0.086 0.010 1.690 −0.557 0.321
Piecewise 1.000 1.000 0.009 0.001 0.274 −0.234 0.062

447.dealII Basic 1.000 0.928 0.044 0.010 1.269 −0.721 0.415
Piecewise 1.000 1.000 0.014 0.001 0.501 −0.395 0.074

450.soplex Basic 0.985 0.985 0.082 0.007 1.563 −0.299 0.189
Piecewise 1.000 1.000 0.007 0.001 0.192 −0.152 0.051

453.povray Basic 0.985 0.985 0.120 0.005 0.582 −1.697 0.113
Piecewise 1.000 1.000 0.005 0.001 0.112 −0.122 0.038

454.calculix Basic 0.985 0.985 0.050 0.006 0.927 −0.330 0.190
Piecewise 1.000 1.000 0.009 0.002 0.314 −0.186 0.066

456.hmmer Basic 0.857 0.800 0.161 0.024 1.269 −2.195 0.458
Piecewise 0.914 0.914 0.071 0.007 1.368 −1.435 0.165

458.sjeng Basic 0.642 0.142 0.504 0.094 6.841 −3.331 1.896
Piecewise 1.000 1.000 0.003 0.001 0.087 −0.080 0.030

459.GemsFDTD Basic 0.971 0.914 0.131 0.008 1.777 −1.507 0.170
Piecewise 0.985 0.985 0.064 0.003 1.730 −0.369 0.085

462.libquantum Basic 0.985 0.985 0.052 0.007 0.973 −0.347 0.199
Piecewise 1.000 1.000 0.029 0.001 0.754 −0.239 0.054

464.h264ref Basic 0.985 0.985 0.066 0.008 1.246 −0.422 0.247
Piecewise 1.000 1.000 0.010 0.001 0.235 −0.374 0.061

465.tonto Basic 0.900 0.771 0.123 0.023 1.278 −1.977 0.531
Piecewise 0.971 0.814 0.059 0.015 1.331 −1.225 0.394

470.lbm Basic 0.985 0.985 0.087 0.009 1.210 −0.310 0.192
Piecewise 1.000 1.000 0.009 0.001 0.162 −0.173 0.029

471.omnetpp Basic 0.642 0.385 0.357 0.065 5.816 −3.424 1.652
Piecewise 0.900 0.757 0.216 0.024 4.616 −1.218 0.611

473.astar Basic 0.985 0.985 0.050 0.006 0.869 −0.282 0.163
Piecewise 1.000 1.000 0.008 0.002 0.191 −0.143 0.055

481.wrf Basic 0.885 0.785 0.156 0.021 1.398 −2.143 0.416
Piecewise 0.928 0.900 0.071 0.009 1.206 −1.435 0.214

Scientific Programming 9

Table 3: Continued.

Benchmark Model #% ≤ 5% #% ≤ 3% Max.% Avg.% Max. err. Min. err. Avg. abs. err.

482.sphinx3 Basic 0.985 0.985 0.056 0.007 0.786 −0.229 0.141
Piecewise 1.000 1.000 0.009 0.001 0.165 −0.091 0.030

483.xalancbmk Basic 0.900 0.628 0.070 0.025 1.577 −1.995 0.744
Piecewise 0.942 0.742 0.059 0.021 1.420 −1.843 0.651

410.bwaves

Measured power
Predicted power

20

22

24

26

28

Po
w

er
 (W

)

20 30 40 50 60 7010
Samples

(a) Model prediction versus actual power measurement

410.bwaves

Residual

−0.8

−0.6

−0.4

−0.2

0

0.2

Re
sid

ua
l

20 30 40 50 60 7010
Samples

(b) The residuals distribution of our power model

1.5 2 2.5 3 3.5
0

1
2

Average frequency (G)

410.bwaves

DiffMaxAvg (G)

18

20

22

24

26

28

Av
er

ag
e p

ow
er

 (W
)

(c) A fairly perfect power plane indicating that power linearly
increases with 𝑓 and Δ+

410.bwaves

2.5 32
Average frequency (G)

0

0.2

0.4

0.6

0.8

1

1.2

D
iff

M
ax

Av
g

(G
)

(d) Parallel straight contour lines on the power plane

Figure 5: Model verification with a single benchmark, 410.bwaves, running on all cores.

5.1. DVFS Interdependency for Multicore Processors. Figure 1
reveals that the same speed scaling fromone source frequency
to a target may result in different changes for the total
processor power. The scaling that updates the maximum
frequency among the cores leads to more significant changes
for the total power than others. Such differences are explained
by two main reasons.

5.1.1. Power of Uncore Devices. The cores on the same pro-
cessor share uncore devices, which include the last level
cache, memory controller, and interconnection links. Uncore
device power increaseswith twomain sources. First, when the

devices receivemore requests from cores, they consumemore
power to respond [12]. Second, uncore devices on modern
processors are equipped with power-aware technologies and
can transit among multiple sleep states and performance
states [18]. A higher core frequency can trigger the uncore
devices to transit from sleep states to active states, or from
low performance states to high performance states [18, 19].
Such power state transition leads to a more significant power
increase than activity request with the first source.

Uncore device power partly explains the different power
effects between the scalings. The scaling that increases the
highest speed among the cores not only causes more uncore

10 Scientific Programming

Table 4: The power effects of DVFS scaling for different DVFS
mechanisms.

Mech. (i) Mech. (ii) Mech. (iii)
Clock Shared Individual Individual
Voltage Shared Shared Individual
DVFS Dependent Dependent Independent
Platforms Sandy Bridge, Ivy Bridge Opteron Haswell

activities but also transits uncore devices to higher power
states. Consequently, it leads to a larger increase for the whole
processor power. In contrast, other scalings only cause uncore
activities without updating the uncore performance states
and thus increase the uncore device power with a smaller
amount.

5.1.2. DVFS on Chip Multiprocessing Cores. The mechanism
implementing the DVFS technology is the other reason for
the nonuniform power effect of speed scaling on multicore
processors. DVFS technology transits the processor cores
among different performance states, where a performance
state of a core corresponds to a pair of (frequency, voltage).
The tuning of the voltages and frequencies for chip multipro-
cessing cores is implemented by one of the three hardware
mechanisms [20–22]: (i) one single shared clock domain and
one single shared voltage domain by all the cores, (ii) multiple
clock domains and one single shared voltage domain, and
(iii) multiple clock domains andmultiple voltage domains, or
individual per-core DVFS.

Different mechanisms determine the various dependen-
cies between the cores. With mechanism (i), the supplied
shared voltage must match the highest frequency among the
cores in order for DVFS to work properly. Consequently, if
a scaling updates the maximum frequency among the cores,
it causes large processor power jump/drop due to the tuned
up/down frequency and voltage; other scalingsmerely change
processor power. Mechanism (ii) has a finer power control
than mechanism (i) as each core can individually scale its
frequency. Mechanism (ii) is effectively Dynamic Frequency
Scaling (DFS). Mechanism (iii) deploys individual clock and
voltage domain for each of the cores and independently
controls per-core frequency and voltage. Table 4 summarizes
the interdependencies of power effects of DVFS scaling for
these three mechanisms. Note that only mechanism (iii)
supports per-core DVFS.

Technology has been shifting from mechanism (i) to
mechanism (iii) [20–22]. Mechanism (i) has been mostly
adopted by earlier generations of Intel processors such as
Xeon Nehalem and SandyBridge architectures to limit the
platform and packaging cost. To improve the granularity
of DVFS control, AMD processors, as shown in Figure 1,
explore mechanism (ii) to change frequencies of individual
cores. More recently, per-core DVFS using mechanism (iii)
[21, 23] is available on Intel Haswell processors to improve
DVFS effectiveness formultithreadedworkloadswith hetero-
geneous behavior.

The challenge that users face in designing DVFS schedul-
ing is that, no matter whether the underlying architectures

support per-core DVFS or not, operating systems and kernels
including cpufreq and the Intel P-State driver give users an
impression that they do. Such discrepancy between user per-
ception and the actual hardware ability can lead to poorDVFS
scheduling decisions and adverse application performance
degradation. To make better DVFS scheduling decisions,
users must first identify the architectural DVFS mechanism
and carefully select a propermodel specific to themechanism.
Our models resolve this issue as they are applicable to all
types of DVFS mechanisms for all generations of modern
processors, relieving users from the burden of characterizing
the underlying architectural and DVFS mechanisms.

5.2. Cubic Power Model versus Linear Power Model. It has
been widely accepted that the dynamic power is a cubic
function of frequency for DVFS-capable processors [1–4];
that is,

𝑃 ∝ 𝑓3. (9)

This cubic function is derived from two relations. First,
the dynamic power of CMOS devices is a function of
frequency and transistor’s supply voltage [24].

𝑃 = 𝐴 × 𝐶 × 𝑉2 × 𝑓, (10)

where 𝐶 is the capacitance being switched per clock cycle,
𝑉 is the transistor’s supply voltage, 𝐴 is the activity factor
indicating the average number of switching events undergone
by the transistors in the chip, and 𝑓 is the frequency.

Second, frequency 𝑓 depends on supply voltage 𝑉 in the
following relation:

𝑓 ∝ (𝑉 − 𝑉th)𝜅 /𝑉. (11)

Here, 𝑉th is threshold voltage and 𝜅 is a technology-
dependent constant accounting for velocity saturation. For
1000 nm technology and older, 𝜅’s value could be 2 [25, 26]
and supply voltage is much larger than threshold voltage [27].
Consequently, frequency is considered to be proportional to
supply voltage and power is considered proportional to the
cubic function of frequency.

The power proportional to 𝑓3 relation becomes inac-
curate due to technology evolution in two aspects. First,
to effectively reduce dynamic power consumption, supply
voltage has been reduced over the years and is now only
slightly larger than threshold voltage𝑉th [27–29]. Resultantly,
supply voltage for DVFS processors has a small range, and its
scaling in this range leads to smaller variation for dynamic
power. Second, 𝜅 reduces over the generations of technology.
It is approximately 1.3 in 45 nm technology and could be
even smaller in newer generations. Consequently, reducing
the voltage by a small percentage will reduce the operating
frequency by a larger percentage [29]. Thus, the power
effect of voltage scaling is overshadowed by the power effect
of frequency scaling, and power is effectively governed by
frequency scaling as a linear function, as captured by our
models.

Scientific Programming 11

6. Related Work

As power becomes a critical constraint at all levels of HPC
systems from chip, node to data center, extensive research
has been conducted to measure, model, and manage power
on computer components and systems. In this section, we
briefly present related work in power measurement and
architecture-level power modeling and also discuss most
closely related work in system-level power modeling.

Direct power measurement is a fundamental approach
to quantitative power evaluation and provides an ultimate
reference for analytical power modeling [30]. Limited by the
availability of power measurement tools, earlier work usually
instruments external meters to computer circuits to measure
the power consumption of individual components and fur-
ther the entire system. For example, PowerPack [17] is built
withNI data acquisition devices, which are instrumented into
the DC power lines to measure the power of computer com-
ponents including CPU andmemory. Similarly, PowerInsight
[31] and PowerMon [32] deliver the same functions with
self-made pluggable cards in smaller forms. More recently,
to meet the increasing demand for power monitoring and
measurement, commodity processors including those of Intel
and AMD have begun to provide embedded power meters
and interfaces [15, 33, 34]. Such embedded meters provide
accurate power measurements that are greatly helpful to
system and software designers. Nevertheless, direct power
measurement is limited to physical devices and components.
They cannot separate the power of individual cores on
multicore processors to support power management with
thread concurrency scaling, which is effective and most
needed for future architectures.

Analytical modeling, in contrast to physical measure-
ment, can be performed on both hardware and software units
with different granularity. Microarchitecture-level power
models are commonly used to investigate and evaluate new
power-saving and power-aware hardware and architectures.
Such models correlate power to parameters and usage of
architectural components including register files, function
units, clock, and caches [35–37]. Representative models
include Wattch [35] for single-core architectures and McPat
[37] for chip multiprocessors. Models with such great details
are complex and limited to HPC components and building
blocks.

System-level power modeling, which is the research
class that our work falls into, is an essential approach for
runtime frequency schedulers to achieve power reduction
and energy saving on HPC systems. Most previous studies
investigate single-core architectures and systems and can be
grouped into two basic categories [1, 2, 10, 38]. Models in
the first category [1, 2] describe power as a basic polynomial
function of CPU frequency in the form of (1).The polynomial
degree varies with power-aware technologies and is set to
3 for DVFS-capable processors and otherwise greater than
or equal to 1 [1]. Models in the other category [10, 38–
41] build correlation between hardware performance events
with power and leverage performance monitoring counters
available on hardware to collect hardware event data. In
general, the techniques in this category require extensive

profiling and large volumes of experimental data for model
training.

As multicore processors become the building blocks of
HPC systems, researchers attempt to understand their power
consumption. A widely adopted approach assumes that the
cores are independent and the total power consumption of a
multicore processor is the sum over the power of individual
cores, each of which is estimated by the traditional system-
level power models for single cores [5–8, 42]. Nevertheless,
as our work and Basmadjian and de Meer’s [9] show, simply
extending single-core power models without capturing the
core interdependency results in inaccurate power estima-
tion.

Little work has been done to capture the heterogeneous
power effect from cores interdependency in multicore pro-
cessor and all requiresmicroarchitectural decomposition and
event accounting. Basmadjian and deMeer [9] decomposed a
processor to its architectural components including on-chip
cores, off-chip caches, and interconnections and modeled
the power of each component with the power model in (1).
Specifically, in their work, the off-chip caches and inter-
connections capture the power interdependency between
cores. Bertran et al. [10] decomposed a processor further
in finer granularity to function units and front end and
derived the power of each component with its measurable
performance events with performance monitoring counters.
This work reflects the power effect of core interdependency
by using adjusted model coefficients for single-core proces-
sors. Shen et al. [12] similarly used measurable hardware
performance events on microarchitectural components to
estimate power. Particularly, they paid special attention to
chip maintenance power and shared it evenly between active
cores.

Our models are distinct from prior efforts in system-
level multicore power modeling. Our models are accurate by
capturing the interdependency between cores on multicore
processors, yet practical and easy to use by only using average
frequency and frequency dispersion as model variables. In
contrast, existing simple models such as (2) may provide
inaccurate power estimations and lead to wrong scheduling
decisions, while detailed models such as [9, 12] are not
scalable to future architectures that contain a large number
of cores. Simple and easy-to-use power models are critical for
power optimization and management for future applications
and system software [43].We believe that ourmodels provide
a viable solution and can promote the research in energy
optimization for traditional and emerging software.

7. Conclusions and Future Work

This work shows that simply extending the traditional single-
core power model might not faithfully capture the real
power behavior of modern multicore processors. The reason
is that the traditional model assumes that individual cores
contribute to power consumption independently. We show
that this assumption is not true. Our proposed alternative
uses aggregate statistical measures, mean frequency and dis-
persion, to express the interaction among cores. Compared to

12 Scientific Programming

the existing approaches that explicitly investigate the shared
resources among cores and use microarchitectural events
to capture heterogeneous power effects of individual core
speed scaling, our models are much simpler and scalable
to emerging and future multicore technologies. Our exper-
iments validate the effectiveness of the proposed model and
show its accuracy.

From our work, we draw several additional high-level
conclusions. First, the power consumption of a multicore
processor can be accurately predicted by a simple linear
model of the average core speed and the speed variation. The
linear model indicates that, besides the average speed, greater
speed variation can cause more power consumption.

Second, using our method, one can build the power
model that is suitable for an underlying multicore processor
without needing to know many hardware details.

Third, our power models can be used to analyze and
quantify the power characteristics inherent in the applica-
tions and the hardware architectures. For new multicore
processors, one only needs to run the experiments according
to the methodology presented in this paper to determine the
best model and value of its parameters from the experimental
data. The modeling method proposed in this work requires
running an application on the target processor a small
number of times.

Looking forward, evaluating not only the core but also the
uncore hardware effects (such as cache noise) may further
improve the model. To further reduce the number of runs
needed to derive the model parameters, future work might
combine the modeling approach proposed in this paper with
the general modeling approach developed in our prior work
[44, 45], thereby yielding powermodels that are both accurate
and generic.

Disclosure

Anyopinions, findings and conclusions, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect those of the NSF.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to thank Intel in Beijing for providing
the Haswell-EP platform for experiments. This research
is supported in part by the National Key Research and
Development Program of China (nos. 2016YFB1000602 and
2017YFB0701501), National Natural Science Foundation of
China (nos. 61440057, 61272087, 61363019, 61073008, and
11690023), and MOE Research Center for Online Education
Foundation (no. 2016ZD302). Parts of this work are also
supported by the U.S. National Science Foundation (NSF)
(Awards nos. 1339745, 1422935, and 1551511) and CAREER
(Award no. 0953100).

References

[1] N. Bansal, T. Kimbrel, and K. Pruhs, “Speed scaling to manage
energy and temperature,” Journal of the ACM, vol. 54, no. 1,
article 3, 2007.

[2] F. Yao, A. Demers, and S. Shenker, “Scheduling model for
reduced CPU energy,” in Proceedings of the 36th IEEE Annual
Symposium on Foundations of Computer Science, pp. 374–382,
IEEE, October 1995.

[3] T. D. Burd and R. W. Brodersen, “Energy efficient CMOS
microprocessor design,” in Proceedings of the 28th Hawaii
International Conference on System Sciences, vol. 1, pp. 288–297,
January 1995.

[4] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power
digital design,” in Proceedings of the IEEE Symposium on Low
Power Electronics, pp. 8–11, October 1994.

[5] S. Cho and R. G. Melhem, “Corollaries to Amdahl’s law for
energy,” IEEE Computer Architecture Letters, vol. 7, no. 1, pp. 25–
28, 2008.

[6] M. Ghasemazar, H. Goudarzi, and M. Pedram, “Robust opti-
mization of a chip multiprocessor’s performance under power
and thermal constraints,” in Proceedings of the IEEE 30th
International Conference on Computer Design (ICCD ’12), pp.
108–114, IEEE, Washington, DC, USA, October 2012.

[7] K. Meng, R. Joseph, R. P. Dick, and L. Shang, “Multi-
optimization power management for chip multiprocessors,”
in Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, pp. 177–186, ACM,
Ontario, Canada, October 2008.

[8] L. Yu, F. Teng, and F. Magoulès, “Node scaling analysis for
power-aware real-time tasks scheduling,” IEEE Transactions on
Computers, vol. 65, no. 8, pp. 2510–2521, 2016.

[9] R. Basmadjian and H. de Meer, “Evaluating and modeling
power consumption of multi-core processors,” in Proceedings
of the 3rd International Conference on Future Energy Systems:
Where Energy, Computing and Communication Meet, Madrid,
Spain, May 2012.

[10] R. Bertran, M. Gonzelez, X. Martorell, N. Navarro, and E.
Ayguade, “A systematicmethodology to generate decomposable
and responsive power models for CMPs,” IEEE Transactions on
Computers, vol. 62, no. 7, pp. 1289–1302, 2013.

[11] J. C. McCullough, Y. Agarwal, J. Chandrashekar et al., “Evalu-
ating the effectiveness of model-based power characterization,”
in Proceedings of the USENIX Annual Technical Conference, vol.
20, 2011.

[12] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen,
“Power containers: An OS facility for fine-grained power and
energy management on multicore servers,” ACM SIGPLAN
Notices, vol. 48, no. 4, pp. 65–76, 2013.

[13] J. L. Henning, “SPECCPU2006 benchmark descriptions,”ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17,
2006.

[14] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R.
de Supinski, “Exploring hardware overprovisioning in power-
constrained, high performance computing,” in Proceedings of
the 27th ACM International Conference on Supercomputing (ICS
’13), pp. 173–182, ACM, Eugene, Ore, USA, June 2013.

[15] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le,
“RAPL:Memory power estimation and capping,” in Proceedings
of the 16th ACM/IEEE International Symposium on Low-Power
Electronics and Design, pp. 189–194, IEEE, August 2010.

Scientific Programming 13

[16] J. Triebig, “Likwid: Linux tools to support programmers in
developing high performance multi-threaded programs,” 2012,
http://code.google.com/p/likwid.

[17] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, andK.W. Cameron,
“PowerPack: Energy profiling and analysis of high-performance
systems and applications,” IEEE Transactions on Parallel and
Distributed Systems, vol. 21, no. 5, pp. 658–671, 2010.

[18] V. Gupta, P. Brett, D. Koufaty et al., “The Forgotten “Uncore”: on
the energy-efficiency of heterogeneous cores,” in Proceedings of
the USENIX Annual Technical Conference (USENIX ATC ’12),
pp. 367–372, 2012.

[19] H.-Y. Cheng, J. Zhan, J. Zhao, Y. Xie, J. Sampson, andM. J. Irwin,
“Core vs. uncore: The heart of darkness,” in Proceedings of the
52nd ACM/EDAC/IEEE Design Automation Conference (DAC
’15), pp. 1–5, IEEE, June 2015.

[20] U. R. Karpuzcu, A. Sinkar, N. S. Kim, and J. Torrellas, “EnergyS-
mart: Toward energy-efficient manycores for Near-Threshold
Computing,” in Proceedings of the 19th IEEE International
Symposium on High Performance Computer Architecture, pp.
542–553, IEEE, February 2013.

[21] E. Rotem, R. Ginosar, A. Mendelson, and U. Weiser, “Multiple
clock and voltage domains for chip multi processors,” in
Proceedings of the 42ndAnnual IEEE/ACMInternational Sympo-
sium onMicroarchitecture, pp. 459–468, ACM, December 2009.

[22] A. A. Sinkar, H. Wang, and N. S. Kim, “Workload-aware
voltage regulator optimization for power efficient multi-core
processors,” in Proceedings of the 15th Design, Automation and
Test in Europe Conference and Exhibition, pp. 1134–1137, IEEE,
March 2012.

[23] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level
analysis of fast, per-core DVFS using on-chip switching regula-
tors,” in Proceedings of the IEEE 14th International Symposium
on High Performance Computer Architecture, pp. 123–134, IEEE,
February 2008.

[24] T. Mudge, “Power: a first-class architectural design constraint,”
The Computer Journal, vol. 34, no. 4, pp. 52–58, 2001.

[25] R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and
threshold voltage scaling for low power CMOS,” IEEE Journal
of Solid-State Circuits, vol. 32, no. 8, pp. 1210–1216, 1997.

[26] J. Burr and A. Peterson, “Ultra low power cmos technology,” in
Proceedings of the 3rd NASA Symposium on VLSI Design, vol. 1,
1991.

[27] H. Iwai, “Roadmap for 22 nm and beyond,” Microelectronic
Engineering, vol. 86, no. 7, pp. 1520–1528, 2009.

[28] Intel Hewlett-Packard, “Microsoft, phoenix, and toshiba.
Advanced configuration and power interface specification,”
2004.

[29] N. S. Kim, T. Austin, D. Blaauw et al., “Leakage current: Moore’s
law meets static power,” The Computer Journal, vol. 36, no. 12,
pp. 68–75, 2003.

[30] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K.
S. McKinley, “Looking back on the language and hardware
revolutions: measured power, performance, and scaling,” ACM
SIGARCH Computer Architecture News, vol. 39, pp. 319–332,
2011.

[31] J. H. Laros, P. Pokorny, and D. Debonis, “PowerInsight—a
commodity power measurement capability,” in Proceedings of
the International Green Computing Conference (IGCC ’13), pp.
1–6, IEEE, June 2013.

[32] D. Bedard,M.Y. Lim, R. Fowler, andA. Porterfield, “PowerMon:
Fine-grained and integrated power monitoring for commodity

computer systems,” in Proceedings of the IEEE SoutheastCon
2010 Conference: Energizing Our Future, pp. 479–484, IEEE,
Concord, NC, USA, March 2010 (Chinese).

[33] J. Demmel and A. Gearhart, “Instrumenting linear algebra
energy consumption via on-chip energy counters,” Tech. Rep.
UCB/EECS-2012-168, University of California, Berkeley, Calif,
USA, 2012.

[34] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann,
and D. Rajwan, “Power-management architecture of the intel
microarchitecture code-named Sandy Bridge,” IEEE Micro, vol.
32, no. 2, pp. 20–27, 2012.

[35] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework
for architectural-level power analysis and optimizations,”ACM,
vol. 28, no. 2, pp. 83–94, 2000.

[36] P. Landman, “High-level power estimation,” in Proceedings of
the International Symposium on Low Power Electronics and
Design, pp. 29–35, IEEE, August 1996.

[37] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: an integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 469–480,
IEEE, December 2009.

[38] W. L. Bircher and L. K. John, “Complete system power estima-
tion using processor performance events,” IEEE Transactions on
Computers, vol. 61, no. 4, pp. 563–577, 2012.

[39] R. Joseph and M. Martonosi, “Run-time power estimation
in high performance microprocessors,” in Proceedings of the
International Symposium on Low Power Electronics and Design,
pp. 135–140, ACM, 2001.

[40] C. Möbius, W. Dargie, and A. Schill, “Power consumption esti-
mation models for processors, virtual machines, and servers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 6, pp. 1600–1614, 2014.

[41] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power
estimation and thread scheduling via performance counters,”
ACM SIGARCH Computer Architecture News, vol. 37, no. 2, p.
46, 2009.

[42] S. Albers, F. Müller, and S. Schmelzer, “Speed scaling on parallel
processors,” Algorithmica, vol. 68, no. 2, pp. 404–425, 2014.

[43] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and
K. S. McKinley, “Looking back and looking forward: Power,
performance, and upheaval,” Communications of the ACM, vol.
55, no. 7, pp. 105–114, 2012.

[44] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline
model of energy,” in Proceedings of the IEEE International
Symposium on Parallel & Distributed Processing, pp. 661–672,
Boston, Mass, USA, May 2013, https://smartech.gatech.edu/
xmlui/handle/1853/45737.

[45] K. Czechowski and R. Vuduc, “A theoretical framework for
algorithm-architecture co-design,” in Proceedings of the 27th
IEEE International Parallel and Distributed Processing Sympo-
sium, IPDPS 2013, pp. 791–802, Boston, Mass, USA, May 2013.

http://code.google.com/p/likwid
https://smartech.gatech.edu/xmlui/handle/1853/45737
https://smartech.gatech.edu/xmlui/handle/1853/45737

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

