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Abstract—In this work we present a new local, vertex-level
measure of community change. Our measure detects vertices
that change community membership due to the actions (edges)
of a vertex itself and not only due to global community shifts.
The local nature of our measure is important for analyzing
real graphs because communities may change to a large degree
from one snapshot in time to the next. Using both real and
synthetic graphs, we compare our measure to an alternative,
global approach. Both approaches detect community switching
vertices in a synthetic example with little overall community
change. However, when communities do not evolve smoothly over
time, the global approach flags a very large number of vertices,
while our local method does not.

I. INTRODUCTION

Graphs are used to represent relationships between entities,
whether in web traffic, financial transactions, computer net-
works, or society, and often contain dense subsets of highly
interacting vertices called communities. Many real-world net-
works are constantly evolving, requiring a measure applicable
for dynamic graphs. In a dynamic graph, nodes may move
between communities. Here, we focus on finding vertices that
experience a change in their local community behavior, and
call these vertices allegiance switching. For example, in a co-
authorship network, we want to find researchers who have
moved from one lab or department to another or changed their
field of publication.

The contribution of this paper is a new local measure of
community change. Our measure has the following properties:
(1) sensitivity: it detects vertices that have a change in their
community and (2) stability: the community change detected is
related to the actions (edges) of the vertex and not only caused
by global community shifts. We also compare an alternative
approach, show that it detects a different set of vertices, and
explain why it is insufficient for our goals.

A. Related Work

Popular community detection algorithms include greedy
modularity maximization, spectral partitioning, label propa-
gation, and clique percolation [8]. In our experiments, we use
the Louvain method of community detection, which iteratively
greedily optimizes modularity by making local swaps [5].
However, our method can use any algorithm that labels com-
munities.

As many real world networks are constantly evolving,
there is a large body of work in the dynamic community

detection area [3]. Some approaches use the entire history of
temporal data to identify communities with smooth evolutions
over time [14]. However, many applications require an online
approach – identifying communities at regular intervals in
time without knowledge of future data [7]. This can be done
by maximizing community quality as well as minimizing
transition cost from the previous community decomposition
[6]. However, this smooth transition approach is often com-
putationally expensive and limits the methods available. The
result of communities found at the previous timestep can
also be used as a starting point for detection at the next
timestep. Examples include an incremental version of the
Louvain algorithm [4] and incremental spectral clustering [12].

In addition to detecting the communities themselves in
dynamic networks, the notion of tracking community behavior
over time has been studied. Tracking the overlap between
communities from one timestep to another is essential to detect
continuing, merging, splitting, and newly forming commu-
nities [13]. Tracking vertex behavior with respect to their
communities is also a question of interest. Asur et al. look
at vertices that appear, disappear, join, and leave a community
and how this behavior influences the communities they are a
part of [2]. Our work focuses on this area, but differs from
[2] because it uses a local measure.

II. ALLEGIANCE CHANGING VERTICES

A. Definitions

Let G = (V,E) be a graph, where E is the set of edges
and V the set of vertices. A dynamic graph changes over time
due to activity such as edge deletions, additions, and weight
changes, as well as vertices appearing and disappearing. As a
graph changes, we can take snapshots of its current state at any
time. We denote the snapshot of the dynamic graph G at time t
by Gt = (Vt, Et). In this work we use a sliding window on the
stream of edge insertions to create graph snapshots over time,
though other approaches could be used. For example, with a
window size of 10, Gt10 would consist of all edges present in
the stream from time t1 to time t10. Gt15 would then partially
overlap with Gt10 by consisting of all edges from time t5 to
t15. We refer to the community of vertex v at time t by Ct(v).

B. Motivation

In this work we present a local, vertex-level measure of
community change. We seek to detect vertices that haveIEEE/ACM ASONAM 2016, August 18-21, 2016, San Francisco, CA, USA
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Fig. 1: As the graph changes over time, vertex v has a
high local measure of community change. Its neighbor set is
Nt(v) = {y, x, w, q, s, t}. The set of neighbors that leave v’s
community is Lt(v) = {y, x, w}. The set of neighbors that
join v’s community is Jt(v) = {q, s, t}. The set of neighbors
that stay in the same community is St(v) = ∅.

changed their community membership and refer to them as
allegiance switching. Recall the coauthorship graph where
vertices represent researchers and an edge indicates that two
researchers have coauthored a paper within the time period
under consideration. In such a graph, we may wish to detect
researchers who have moved to a different lab or university or
changed the field in which they publish.

The detected community change of a vertex v should be
local: caused by a change in v’s actions (its edges) and not
only a global shift. For example, suppose vertex v has edges
only to vertices w and u. If w and u both move to a new
community, v will likely move along with them and exhibit
a global change in community membership. However, the
behavior of v will not have changed (as it is still connected
to the same two neighbors) and it will remain in the same
community as its neighbors. Therefore, we would not want to
mark v as allegiance changing.

C. Proposed Method

Given a dynamic graph, at each timepoint t, we create a
snapshot Gt, and detect communities Ct. Using this com-
munity decomposition we define three sets for each vertex
v ∈ Vt. St(v) is the set of neighbors of v that were in the same
community as v at the previous snapshot Gt−1 and stay in the
same community as v in Gt. Lt(v) is the set of neighbors of
v that were in the same community in Gt−1, but are no longer
in Gt. Jt(v) is the set of neighbors of v that were not in the
same community as v in Gt−1, but are in Gt. Formally these
are defined in Equations 1, 2, and 3 respectively.

We define the set of neighboring vertices of v at time t
by Nt(v) as all vertices w that have an edge to v in either
Gt or Gt−1. Note that Nt(v) contains vertices adjacent to
v at the current and previous snapshot, instead of just the
current snapshot, because the set of neighbors of v may change
significantly.

St(v) ={w|w ∈ Nt(v)

∧ Ct−1(v) = Ct−1(w) ∧ Ct(v) = Ct(w)}
(1)

Lt(v) ={w|w ∈ Nt(v)

∧ Ct−1(v) = Ct−1(w) ∧ Ct(v) 6= Ct(w)}
(2)

Jt(v) ={w|w ∈ Nt(v)

∧ Ct−1(v) 6= Ct−1(w) ∧ Ct(v) = Ct(w)}
(3)

A large change in v’s neighborhood at time t occurs when
(1) the set Lt(v) is large, indicating that many vertices with
which v interacted and which were in the same community as
v are no longer in the same community as v, (2) the set Jt(v)
is large, indicating that v is now connected to vertices which
were not previously in its community, and (3) the set St(v) is
relatively small, so that a low percentage of v’s neighborhood
was and continues to be in the same community.

Using St(v), Lt(v), and Jt(v), we define αt(v) and βt(v)
below.

αt(v) =
|Lt(v)|

|St(v) ∪ Lt(v)|
(4)

βt(v) =
|Jt(v)|

|St(v) ∪ Jt(v)|
(5)

Figure 1 shows an example. Intuitively, a high value of
αt(v) indicates that a large percentage of neighbors of v have
left v’s community (or v has left theirs). Similarly, a high value
of βt(v) means that a large percentage of v’s neighbors were
not in the same community as v at time t− 1, but joined v’s
community at time t (or v joined their community). Therefore,
vertices v with high values αt(v) and βt(v) have experienced
a large change in their local neighborhood.

The focus is on the community membership of a vertex
v relative to its neighbor set Nt(v) because the neighbors
represent other entities v has directly interacted with. The one
hop neighborhood of a vertex v represents all other entities
with which v has interacted. With a larger number of hops,
any relationship becomes much weaker and more difficult
to characterize. v may be in the same community as many
vertices with which it does not interact or which are not
even in a two hop neighborhood. Therefore, our measure of
community change is local.

D. Setting a Threshold

In order to mark a vertex as allegiance switching, it needs
to have both high values of αt(v) and βt(v). In this section
we discuss how to combine the two scores and set a threshold.

To combine the two values, both of which fall between 0
and 1, we can draw from work from the field of fuzzy logic,
where the logical conjunction of two values (“x and y”) is
represented by taking the minimum (min(x, y)), using Gödel’s
t-norm, or by taking the product (x ∗ y), using the Product
t-norm [10] [11]. In section III, we use both the minimum
and the product of αt(v) and βt(v) to demonstrate two
different approaches of combining the two values, although
other methods could be used as well.

As in any extreme value problem, there can be various
ways of setting a threshold, depending on the application. In
section III, we use a fixed threshold for min(x, y) and the
top 1 score percentile for x ∗ y. A fixed threshold is easily
interpreted and can be set by the end user. For example, for a
given application, it may be determined that both αt(v) and
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βt(v) need to be above 0.8. On the other hand, choosing only
vertices with a score greater than or equal to a top percentile
score allows the threshold to be adjusted to the distribution of
a particular dataset.

E. Alternative Approaches

In this section we consider two alternative approaches to
detecting allegiance changing vertices and discuss why our
metric better captures the desired behavior. The first is a global
approach, which matches communities in consecutive snap-
shots. For each pair of consecutive graph snapshots Gt−1 and
Gt, we compute communities using the Louvain algorithm [5].
Two communities, Cj ∈ Gt−t and Ci ∈ Gt, are matched
as equal if the Jaccard index |Cj ∩ Ci|/|Cj ∪ Ci| ≥ 0.75,
as a split if |Cj ∩ Ci|/|Ci|) ≥ 0.75, and as a merge if
|Cj ∩ Ci|/|Cj |) ≥ 0.75. A vertex is marked as allegiance
switching if Ct−1(v) and Ct(v) are not matched as the equal,
merging, or splitting. In section III, we compare the vertices
marked with our approach to those marked with this global
approach, which is similar to [2] [9].

However, using such a global approach has several disad-
vantages. A vertex may be marked as allegiance changing due
to purely global changes. A re-arrangement of community
composition may prevent a high enough overlap between
Ct−1(v) and Ct(v) to allow the clusters to match, and v would
then be marked as allegiance changing even if its own behavior
has not changed. In a dataset with a very smooth community
evolution, a global approach may work well; in practice
however, a graph may greatly change between two snapshots,
causing the communities to change drastically as well. In
section III we show that this global approach identifies a
very large percent of vertices as community switching because
communities change a lot between consecutive snapshots.
The success of the global approach may be increased by
using a community detection algorithm that tries to detect
communities with smooth transitions by taking into account
historical data [6] [14]; however, such algorithms can be more
computationally expensive.

Another alternative approach is to compare the neighbors
of a vertex v at time t to those at time t − 1 and count
how many have changed. However, doing so would not cap-
ture community allegiance changing behavior. For example,
consider the co-authorship network example mentioned in
Section II-B. From year to year, a researcher may change
who he co-authors papers with without changing his field or
even his work group. In the time represented by Gt−1 he
may co-author with colleagues w and u and during the time
represented by Gt co-author with colleagues y and z. In this
case, the set of neighboring vertices would change completely
with no overlap. However, if w, u, y, and z all belong to the
same lab or department and work together, then we would
not consider v to have changed behavior because he would be
working within the same group. Therefore, simply looking at
the change in vertex’s neighbors will not capture the behavior
we would like to find and we must consider behavior relative
to the community.

III. EXPERIMENTS

A. Synthetic Graphs
In this section we compare our local approach with the

global alternative described in section II-E using synthetic
graphs built with a stochastic block model. In an assortative
stochastic block model, vertices within the same community
are connected by an edge with probability p, while vertices
in different communities are connected with probability q,
where p > q. We generate a graph using 2 communities, 1000
vertices, p = 0.3, and q = 0.01. Then we randomly choose
5 vertices and change their community assignment. Both the
global approach and our local measure are able to identify all
of the vertices that moved between communities. After 20 such
runs, αt(v)∗βt(v) values of the selected vertices ranged from
0.93 to 1, while their min(αt(v), βt(v)) values ranged from
0.96 to 1. In this example, vertices cleanly move from one
community to another and both the global and local methods
can detect the change.

However, in graphs from real data, communities do not
always persist over time, but may may break apart and
rearrange. We simulate such change using a hierarchical block
model. Each community is composed of multiple, more tightly
connected, sub-communities. Vertices within the same sub-
community are connected with probability p1, vertices within
different sub-communities, but the same community, have an
edge with probability p2, and all others are connected with
probability q, where p1 > p2 > q. Community change is
then created by rearranging the sub-communities into different
communities, as shown in Figure 2. With 2 sub-communities
per community, the overlap between communities of the two
snapshots is 50% using the Jaccard index. Therefore, no
community will be matched and the global method will mark
every vertex as community changing, despite the fact that the
sub-communities remain the same. The local metric scores
αt(v) and βt(v), however, remain low for all vertices. For
example, after 20 runs using 2 communities, 2 sub-groups
per community, p1 = 0.6, p2 = 0.15, and q = 0.01, the
largest value of min(αt(v), βt(v)) of any vertex in any run
is 0.21 and the largest value of αt(v) ∗ βt(v) is 0.04. In
this synthetic example, while the communities are globally
unstable from one snapshot to the next, large portions of
the communities remain the same. The global approach only
detects this global change, while the local measure detects that
each vertex experienced little change in its own community
behavior.

B. Real Datasets
We evaluate our measure on three dynamic graphs from

the KONECT collection [1], listed in Table I. We create
snapshots Gt with the window size and overlap listed. A
window size of 6 months with 4 month overlap means that
each snapshot contains edges from a 6 month period and
consecutive snapshots overlap by 4 months. In the experiments
below, we find communities using the popular Louvain algo-
rithm [5], although any algorithm can be used, as our approach
is agnostic to it.
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Fig. 2: The rearrangement of communities in a hierarchical
stochastic block model is shown.

Graph Vertices Edges Snapshot
Window

Window
Overlap

DBLP 1,314,050 18,986,618 6 years 4 years
YouTube 3,223,589 9,375,374 3 months 2 months
Facebook 46,952 876,993 6 months 4 months

TABLE I: A description of the graphs and sliding window
used to build snapshots is shown.

By running the Louvain algorithm on each snapshot and
computing the overlap of communities in consecutive snap-
shots, as described in section II-E, we can see how smoothly
the detected communities change. Table II shows the average
percentage of communities with size greater than one that are
matched with a community in the following snapshot, either
as continuing, merging, or splitting. While a large number
of communities are matched, many are not. This does not
mean that all non-matched communities necessarily dissolve
completely. Rearranged communities, such as in the stochastic
block model example, will also fail to match. Communities
were matched using only vertices with non-zero degree in
both consecutive snapshots. Using all vertices produced even
fewer matches. This suggests that relying on a global matching
of communities is unreliable. The smoothness of community
evolution will of course depend on both the algorithm and
sliding window used. However, our results suggest that we
cannot rely on the dataset in question to have smooth tran-
sitions between communities of different snapshots, making
the global metric sensitive to many factors. Our measure
does not require stable clusters between snapshots because
it only considers the community of a vertex relative to that
of its neighbors. Clusters can be locally stable, without being
globally stable.

Figure 3 shows distributions of the scores for αt(v) and
βt(v) and the corresponding histograms of αt(v) ∗ βt(v) and
min(αt(v), βt(v)) for one snapshot of the DBLP graph. While
we do see evidence of outliers using just the raw αt(v) and

Graph % Continuing % Splitting % Merging
DBLP 63.3 2.0 18.7
YouTube 54.0 5.8 17.6
Facebook 51.5 6.4 28.8

TABLE II: The average percentage of communities matched
between snapshots is shown.

Graph Global % min(αt(v), βt(v)) % αt(v) ∗ βt(v) %
DBLP 64.6 2.5 2.5
YouTube 51.4 4.1 4.0
Facebook 77.5 6.3 6.2

TABLE III: The average percentage of vertices flagged is
shown for all three datasets.

Overlap Global % min(αt(v), βt(v)) % αt(v) ∗ βt(v) %
0 years 77.0 19.5 18.7
2 years 67.2 7.0 6.7
4 years 64.6 2.5 2.5
5.5 years 56.8 0.9 0.9

TABLE IV: The average percentage of vertices flagged using
varying overlaps of the DBLP dataset is shown. Each snapshot
contains data from 6 years and consecutive snapshots overlap
by the amount shown.

βt(v) scores in figures 3a and 3b, the outliers are much
clearer by looking at the combined metrics in Figures 3c and
3d. Figure 3d especially shows a clear trend of a decreasing
number of vertices as the score increases, and then a spike in
outlying vertices with a very high score.

Table III shows the average (over all snapshots) percentages
of vertices flagged by our local measure using both the
minimum and product to combine αt(v) and βt(v). Minimum
has a fixed threshold of 0.8 and product uses the top 1% score.
The percentage flagged by the alternative global metric is also
shown. For all datasets, we see that the global metric flags
many more vertices than either local metric. We also found
that almost all vertices flagged by the local method were
also flagged by the global approach. Therefore, for analysts
wishing to tag allegiance changing vertices, the local metrics
provide a much smaller set of candidates than their global
counterpart that are likely to be the vertices of interest. The
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(a) Histogram of the αt(v) scores.
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(b) Histogram of the βt(v) scores.
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(c) Histogram of the
min(αt(v), βt(v)) scores.
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(d) Histogram of the αt(v)∗βt(v)
scores.

Fig. 3: Histograms of individual and combined metrics for one
snapshot of the DBLP graph.
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global approach identifies such a large number of vertices
because many communities not are matched between consec-
utive snapshots Gt−1 and Gt. Because the communities do
not evolve smoothly, for a very large percentage of vertices v,
Ct−1(v) and Ct(v) do not match, causing v to be marked as
switching.

Table IV shows the percentage of vertices flagged as
allegiance changing using both the thresholding approaches
of min(αt(v), βt(v) and αt(v) ∗ βt(v) for various overlap
intervals for the DBLP dataset. We see that as we increase how
much consecutive snapshots overlap, the percentage of vertices
flagged as allegiance changing decreases. This is expected
because as the overlap between two consecutive snapshots
increases, fewer community changes occur.

IV. CONCLUSION

In this paper we have presented a local metric for identifying
vertex-level community changes. Using synthetic graphs, we
find that when communities change very little, both the global
and our local measures correctly detect vertices that switch
communities. However, when the communities of a graph
change between snapshots, the global method is unreliable,
flagging a majority of vertices, while our local method does
not. On graphs from real social networks, we find that the
local approach presented flags far fewer vertices of interest
compared to the global alternative. While there is an increas-
ing interest in dynamic networks and dynamic community
detection, finding community allegiance changing vertices is
a relatively new area. Measuring vertex level community-
oriented changes pinpoints vertices with interesting behavior,
allowing for further investigation. Our results suggest that the
global approach is flawed when communities do not evolve
smoothly between snapshots. Further work will investigate this
phenomenon in more detail and include more experimental
validation of our measure.
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