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Abstract—Dynamic graphs are used to represent changing
relational data. In order to create a dynamic graph representing
relationships or interactions over time, it is necessary to choose
a method of adding new data and removing, or otherwise de-
emphasizing, past data to decrease its influence. In particular, the
question of aging edges is new to dynamic graphs and has not
been thoroughly studied. In this work, we address the problem
of aging vertices and edges to create a dynamic graph from a
stream of temporal data. We provide two new methods, active
vertex and active edge, and also evaluate two methods from
the literature, sliding window and weight decay. By analyzing
various properties of the dynamic graphs created by each aging
method, we provide practitioners with quantitative comparisons.
We find several interesting similarities and differences. The active
vertex and weight decay methods reduce the variability over time
of several vertex level measures compared to sliding window
and active edge. This means that in practice, active vertex or
weight decay may be more useful if graph stability is preferred,
while sliding window or active edge may be preferred if the
graph should be sensitive to changes in the underlying data
stream. Each method also differently affects global measures.
The most connected graph is produced by active vertex, while
the most disconnected by weight decay. We observe that despite
the differences, the graphs produced by each method experience
similar types of changes at similar points in time.

I. INTRODUCTION

Graphs are used to represent and analyze a variety of
datasets, such as social networks, web traffic, financial transac-
tions, and biological data. Many of these datasets are changing
constantly, and to be properly analyzed they must be repre-
sented by dynamic graphs.

Whenever dynamic graph analysis is performed, it is neces-
sary to decide how to create a dynamic graph from temporal
data. Typically, a dynamic graph is represented by a sequence
of graph snapshots, each showing the state of the graph at
some particular point in time. To do this, new data must be
added and old data removed or de-emphasized in order to
model change. The question of how to age off past data is
not straightforward. Competing goals include preserving graph
stability and detecting new changes.

A. Contributions

While dynamic graph analysis requires a choice about the
method of aging edge and vertex data, the analysis of different
approaches of doing so remains an open question. This paper
addresses the problem of how to age past data when creating a
dynamic graph from a stream of temporal data. By aging, we
refer to any process that decreases the influence of historical

data in a graph. The goals are (1) to provide practitioners
with quantitative comparisons of available methods and (2) to
provide and compare new alternative approaches.

In section II, we present two new methods, called active
vertex and active edge, and discuss two existing methods
from the literature, sliding window and weight decay. Through
experiments on temporal graphs from five social networks in
section III, we compare and contrast these approaches to find
patterns that consistently appear.

B. Related Work

Previous work has studied how to build a static graph from
data. De Choudhury et al. [7] examine how to transform raw
email communication data into a single, static relationship
graph. Structurally different graphs will be formed based on
what, if any, communication frequency or volume threshold
is set for edge creation. The authors set a threshold on the
geometric mean of the annual rate of messages exchanged and
study how the graph structure changes as the threshold varies.
This work is similar to ours because it addresses the question
of how temporal data is used to form a graph. However, the
authors only consider creating static graphs, while we address
dynamic graph creation.

Clauset and Eagle [5] create a dynamic graph of the Reality
Mining dataset using the sliding window approach and exam-
ine how the size of the sliding window affects periodicity. They
also investigate a “natural” window size based on the power
spectra of metrics. The window size in the sliding window
approach is also studied by Kossinets and Watts [14], who find
that vertex-level properties are less stable than global graph
ones. While [5] and [14] only consider a single technique to
create dynamic graphs, the goal of our work is to compare
different methods.

The work most similar to ours is [16] and [17].
Saganowski et al. [17] study the effect on community evolu-
tion of using a sliding time window to build a dynamic graph
compared to aggregating all past data. The authors examine
how the length and amount of overlap of the window size af-
fects how many communities continue, split, merge, dissolve,
and appear between consecutive snapshots. Oliveira et al. [16]
also compare the sliding window approach to aggregating all
data. Both works find that removing old data with a sliding
window approach causes more change in community structure
compared to aggregating all data. Our work differs from theseIEEE/ACM ASONAM 2016, August 18-21, 2016, San Francisco, CA, USA
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in important ways. The previous works only study one method
of aging data to create dynamic graphs: the sliding window
approach, while we compare two previous and two new
methods. To the best of our knowledge, this is the first work
that compares the effects of different methods for removing
data in dynamic graphs. Second, [16] and [17] each examine
only a single dataset. By using multiple datasets, we are able
to study which patterns occur consistently for a variety of data
sources.

II. AGING METHODS

In this section, we describe and discuss methods for creating
dynamic graphs from temporal data. While static graphs
represent data at one point in time, dynamic graphs represent
data over time.

Static graphs are created from a collection of actions or
relationships. Deciding how these actions are transformed
into edges and vertices of a static graph is not always
straightforward. For example, in the case of a graph built
from interactions between people, it is necessary to determine
under what circumstances such communication should form an
edge. One approach is to set a threshold for the frequency of
communication over time before an edge is created. Different
thresholds will produce very different graphs [7]. When form-
ing a static graph of relationships between people based on
common event attendance, various approaches may differently
factor how many events two people attended and the number
of people at each event [2], again with differing results.

Creating dynamic graphs poses additional complications. In
addition to the problems found in the static case, it is necessary
to decide when new data is added, when old data is removed,
and how the two processes are combined.

As time passes, new actions take place and relationships
change. A dynamic graph should reflect this change. In order
for a graph to represent the evolving nature of the underlying
data, new edges, representing new relationships, may be added,
and old edges, representing old relationships, may be down-
weighted or removed.

A. Definitions

We make a distinction between the stream of edges that
represent actions over time and the graphs built from the
stream. Let S be a stream of edges in time, where each
(src, dst, weight, time) ∈ S is a tuple of the two end-
point vertices, the edge weight, and the time of the ac-
tion represented by the edge. The edge actions occurring
during a specific time interval are represented by Sl,k =
{(src, dst, weight, time) ∈ S | l < time ≤ k}.

Let G = (V,E) be a static graph where V are the vertices
of G, and E are the edges. For our notation, each edge
(u, v) ∈ E will have a weight (u, v).weight and a timestamp
(u, v).time and each vertex v ∈ V will have a timestamp
v.time, corresponding to the latest time of any of its edges.
G may be created from data in S using Algorithm 1.

We then represent a dynamic graph DynG by a series of
graph snapshots over time. At each point in time, there is

a static graph representing the current state. As time moves
and the underlying data changes, vertices and edges will be
added, removed, and modified to create a new graph snapshot.
DynG = {G1, G2, . . . , Gn} where Gt = (Vt, Et) is the state
of the dynamic graph at time t. We discuss various methods
of creating dynamic graphs from a stream of edges S in the
subsequent sections.

Throughout the paper, we will use u as the unit of time and
assume that all times are relative to the starting time used. For
example, if u is one month, then t will represent the number
of months, G1 is the graph after the first month, and S0,2

contains the edges with times within the first two months.

B. Sliding Window

The sliding window approach builds a dynamic graph by
creating graph snapshots from intervals, or windows, of a
stream of edges. Only the most recent data in the stream,
inside the current window, is used to create a graph, while
all previous data is forgotten. For example, a daily sliding
window would create the most recent graph snapshot using
only activity from the last day.

Using the sliding window model, each graph snapshot Gt
is created as defined below, where λ is the window size and
ToGraph is defined in Algorithm 1.

Gt = ToGraph(St−λ,t)

If the unit of time is one week, then λ = 3 means that the
sliding window size is three weeks and the window shifts
by one week, causing a 2/3 overlap between consecutive
windows.

Data: Sl,k
Result: G
initialize empty G;
for (src, dst, weight, time) ∈ Sl,k do

if (src, dst) ∈ G then
(src, dst).weight+ = weight;

else
insert (src, dst) into G;
(src, dst).weight = weight;

end
(src, dst).time = time;
src.time = time;
dst.time = time;

end
Algorithm 1: ToGraph

Consecutive windows can overlap to varying degrees, or
not at all, with a higher degree of overlap causing smoother
and more gradual changes. The sliding window approach is
easily interpreted because it is clear what data each graph
snapshot represents. The emphasis on new versus historical
data can be adjusted with the window size. However, it
does not distinguish well between temporary and persistent
relationships. For example, two people who communicate
regularly over time, but did not communicate in a given week
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will have no edge when using a weekly sliding window.
Therefore, the resulting dynamic graph may change greatly
between consecutive snapshots. This method is best suited for
applications where a graph should represent only the most
recent actions, not a balance of historic and new data, and it
requires a careful choice of window size and overlap.

The sliding window approach has been used to create
dynamic graphs in many works. Non-overlapping windows are
used to study the incremental k-clique clustering algorithm [8]
and to test a framework for tracking community evolution
on the Enron dataset [18]. Overlapping sliding windows have
been used to create dynamic graphs to predict vertex central-
ity [13], to test the DENGRAPH algorithm for incremental
community detection [11], and to study community dynam-
ics [10] [9]. In [14], a sliding window of 60 days is used to
create graphs of email exchanges. Unlike many other sliding
window approaches, instead of summing the number of edges
to obtain a weight, the weight is set to the geometric rate of
bilateral email exchange during the 60 day window. Clauset
and Eagle [5] analyse a network of physical contact from the
Reality Mining study and investigate the effect of the size of
the window.

C. Edge Weight Decay

The second method discussed in this work is the edge
weight decay approach in which, over time, the weight of
old edges is decreased. The philosophy behind this is to
treat new data as more important than old data, while also
allowing stronger (higher weight) relationships to last longer
than weaker (lower weight) ones. This is done by creating
a new graph snapshot from a weighted combination of the
previous graph and the new edges. Edges below a weight
threshold ε are removed to eliminate relationships that are no
longer relevant. Throughout the text we refer to this method
as weight decay. Each graph snapshot created by weight decay
is defined as:

Gt = Decay(Gt−1, α) + β ∗ ToGraph(St−1,t)

where Decay is defined in Algorithm 2.

Data: G = (E, V ), α
Result: G
for (src, dst) ∈ E do

(src, dst).weight = (src, dst).weight ∗ α;
if (src, dst).weight < ε then

remove (src, dst) from G;
end

end
Algorithm 2: Decay

In the edge weight decay method, edges that represent
frequent communication or strong relationships will last for a
longer time, which may create a dynamic graph with smoother
transitions between snapshots compared to the sliding win-
dow approach. The parameters α and β control the relative

importance of historic and new data, while ε represents the
lowest weight edge that will remain in the graph. Compared
to the sliding window approach, the interpretation of a graph
snapshot based on the parameters is more difficult because
there is no simple interpretation, such as “activity from the
past week”.

Variations of the edge weight decay method have been used
in the literature to create dynamic graphs. [4] predicts future
links in a co-authorship network by exponentially decaying
weights, to strike a balance between the the recency of a
co-published paper and the number of co-published papers.
The authors in [6] summarize past behavior by using a linear
combination of new and historical data and keeping only the
top k edges for each vertex. This same method is used in [12]
to predict future data. In [3], the authors predict future edges
in a mobile network using exponential aging.

D. Active Graph

In addition to sliding window and weight decay from the
literature, we also propose a new approach to creating a
dynamic graph from a stream of edges. This approach relies
on identifying active parts of the graph and preserving data in
these active parts. The idea behind our new approach stems
from the fact that entities join and leave social networks and
the amount of time a given entity or relationship is active
in the network varies greatly. For example, many users join
an online social network and soon become inactive [19] [15].
The edges representing their initial activity upon joining can
likely be removed quickly because they no longer participate.
Other users, however, remain active in the social network.
Their information may be more important and therefore kept
in the dynamic graph for longer.

We call the two variations the active vertex and active edge
methods. Active vertex keeps track of the last time each vertex
was active (had a new edge in the stream S). Vertices whose
last activity is within a specified window of time, τV , are
considered active and we keep all edges whose two endpoint
vertices are active. All other edges are removed. Each graph
snapshot using active vertex is defined as:

Gt = CheckActiveVertices(Gt−1+ToGraph(St−1,t), t)

where CheckActiveVertices is defined in Algorithm 3.
For the second variation, active edge, we keep track of the

last time an edge’s weight was incremented (the last time an
activity occurred between the two vertices). Edges whose last
activity is within a specified window, τE , are considered active
and their weights do not decrease. Instead, inactive edges are
removed from the graph regardless of their weights. Each
graph snapshot using active edge is defined as:

Gt = CheckActiveEdges(Gt−1 + ToGraph(St−1,t), t)

where CheckActiveEdges is defined in Algorithm 4.
The active vertex and active edge methods can be useful in

representing the history of activity in active parts of the graph,
while forgetting the inactive portions. They may also be useful
in storing important parts of the graph when memory size is
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Data: G = (E, V ),t
Result: G
for (src, dst) ∈ E do

if t− src.time > τV or t− dst.time > τV then
remove (src, dst) from G;

end
end

Algorithm 3: CheckActiveVertices

Data: G = (E, V ),t
Result: G
for (src, dst) ∈ E do

if t− (src, dst).time > τE then
remove (src, dst) from G;

end
end

Algorithm 4: CheckActiveEdges

limited because edges are either preserved with cumulative
weights, or removed completely. Similarly, they may be useful
for visualization to represent accumulated relationships only
of active vertices, thus reducing visual clutter.

E. Setting Parameters for Each Aging Method

In section III, we compare the four methods described. To
make a fair comparison, we will set the various parameters
to make all methods as similar as possible. The unit of time
u is the same for each method so that the same number of
edges from S is added for each new snapshot. To make weight
decay similar to sliding window, we set α = ε

1
λ . An edge with

weight 1 will then exist in the graph for λ snapshots, just as in
sliding window. Higher weighted edges will stay in the graph
for longer. β = 1 so that new data has the same weight as in
the other methods.

For sliding window, only data within λ time of the current
time is included in a graph snapshot. For active vertex, we
can set the threshold of a vertex being active τV to equal
λ from sliding window. Similarly, for active edge, τE is set
equal to λ. Note that setting τV = λ means that the set of
vertices with degree greater than zero of a graph snapshot Gt
produced by sliding window and by active vertex will be the
same. Similarly, setting τE = λ causes the set of edges in a
graph produced by sliding window and by active edge to be
the same (the edge weights may differ though).

III. RESULTS

A. Experimental Setup

We compare the four methods for creating dynamic graphs
using the five social network datasets listed in Table I. These
are graphs of co-authorship relationships from Dblp, emails
from the Enron dataset, thread replies on the Slashdot website,
YouTube friendships, and Facebook wall posts, each from
the Konect website [1]. For a proper comparison, we set the
parameters of each method as described in section II-E. The

TABLE I: Datasets and parameters used.

Graph Vertices Edges Time
Unit u

Window
Size

DBLP 1,314,050 18,986,618 1 year 3 years
Enron 87,273 1,148,072 4 months 1 year
Slashdot 51,083 140,778 1 month 3 months
YouTube 3,223,589 9,375,374 2/3 months 2 months
Facebook 46,952 876,993 4 months 1 year

unit of time, or the amount of new data added at each time step,
is the same for each method and given in Table I. For each
dataset apart from Dblp, we removed beginning and ending
times with few edges and then set u so that when λ = 3,
approximately four non-overlapping windows fit into the time
range. For the Dblp dataset, we used 30 years of data from
1984 to 2014 and chose a window size of 3 years based
on the assumption that research relationships may change
significantly over this time interval. For sliding window, we set
λ = 3, yielding a 2/3 overlap between consecutive windows.
Parameters of other methods are then set as described in
section II-E. Both τV and τE are set to equal λ. ε should be a
small value so we chose 0.1 and therefore α = 0.1

1
3 ≈ 0.464.

The above parameters are used for results in Figures 1, 2,
and 3. In the experiments shown in Figure 4, we vary the
amount of overlap between consecutive windows of sliding
window, while keeping the number of months in each sliding
window the same as shown in Table I. The details are further
explained in section III-D.

B. Global Properties

Based on the chosen parameters, sliding window and active
vertex will result in graphs with the same number of vertices,
while sliding window and active edge will produce graphs with
both the same number of vertices and edges. Weight decay
will output graphs with at least as many vertices and edges as
sliding window.

In Figure 1a, the sum of edge weights of the dynamic graphs
is shown over time. For all graphs, active vertex produces the
highest edge weight sum. Interestingly, weight decay, although
it stores more edges than sliding window and active edge,
produces the lowest edge weight sum. This suggests that edge
weights in the graphs produced by these datasets are generally
low and fall below the removal threshold ε quickly.

The effect of active vertex and weight decay is the opposite
on graph connectivity. Figure 1b shows that weight decay
produces graphs with a larger number of connected com-
ponents, meaning that it creates a more disconnected graph.
Active vertex, on the other hand, produces the fewest connected
components, meaning that the graph is more connected.

It is interesting to see that while the scores produced by
different methods differ, they follow the same pattern by
increasing and decreasing at the same time. This suggests that
when the method parameters are matched using the method
described in section II-E, similar types of changes can be
detected by any of the four methods. For example, the points
in time at which a graph disconnects will be approximately the
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(a) The sum of edge weights over time.
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(b) The number of connected components over time.

Fig. 1: Global properties of the dynamic graphs are shown over time. The x-axis shows the graph snapshot count.

same for each method, marked by an increase in the number
of connected components.

C. Vertex Properties

Figure 2 shows results for several vertex-level centrality
scores over time. The vertex centrality properties analyzed are
unweighted degree (number of edges for a vertex), weighted
degree (sum of edge weights of a vertex), and betweenness
centrality (the number of shortest paths between all vertices
that pass through the given vertex). For each of the three
properties, we compute the Spearman’s rank correlation be-
tween consecutive snapshots. This measures how much the
ranking of vertices according to a particular property (such
as degree) changes from one snapshot to the next. We also
compute the overlap, using the Jaccard index, between the
top 1% of vertices (according to degree or weighted degree
or betweenness centrality) of consecutive snapshots. Both the
overlap and the rank correlation indicate how stable over
time the properties measured are. The x-axis shows the graph
snapshot count. Note that for statistics using unweighted
edges, results for the active edge method are the same as for
the sliding window. For rank correlations, vertices that appear
in either of two consecutive snapshots are used.

As with the global properties, the vertex-level properties
produced by each method increase and decrease at the same
time. The graphs produced by each method change in similar
ways at similar points in time, even though the magnitude of
change may be different.

For all measures, the score rank correlation coefficients and
top 1% overlap are highest for active vertex. This means that
active vertex reduces the variability of vertex centrality over
time. It produces graphs that are less sensitive to quick changes
in time. This can be useful for applications where the graph
should change gradually over time. Weight decay also has a
relatively high rank correlation scores and high overlaps of
the top 1% of vertices for unweighted degree and betweenness

centrality. On the other hand, it produces the most variation
in weighted degree centrality.

On the other hand, sliding window has the lowest rank
correlation scores and the lowest overlap of the top 1% of
vertices. This means that sliding window produces dynamic
graphs with a high variability of vertex centrality over time.
High degree vertices will more easily become low degree
vertices and vice versa. Because the graphs produced by
sliding window may change quickly, it may be less suitable
for applications that require gradual evolution. On the other
hand, it may be more appropriate for creating graphs that are
sensitive to recent changes.

The fact that active vertex and weight decay reduce the
variability of vertex centrality compared to sliding window is
even more pronounced when we consider only medium and
high degree vertices instead of all vertices. Figure 3 compares
the betweenness centrality rank correlation of all vertices, as
in Figure 2e, to the rank correlation of only vertices with
degree greater than 9 (a vertex must have such a degree in at
least one of the two consecutive snapshots). In the top plots,
each bar shows the ratio of the average betweenness centrality
rank correlation of active vertex compared to the average rank
correlation of sliding window. Values above 1 indicate that
active vertex produces higher rank correlations than sliding
window. The bottom plots show the same ratio for weight
decay compared to sliding window.

Plots on the left show rank correlations using all vertices and
those on the right use only vertices with degree greater than 9
in either consecutive snapshot. It is clear that ratios are higher
when the rank correlation uses only the vertices of degree
greater than 9. This means that the betweenness centrality
variability of medium and high degree vertices is more affected
by the choice of aging method than is the variability of low
degree vertices.

D. Effect Of Overlap
The experiments for Figures 2 and 3 used parameters based

on consecutive snapshots of sliding window overlapping by
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(a) The Spearman’s rank correlation of unweighted degrees is shown
over time for each method.
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(b) The overlap (Jaccard index) between the top 1% of vertices
based on unweighted degree from consecutive snapshots is shown.
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(c) The Spearman’s rank correlation of weighted degrees is shown
over time for each method.
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(d) The overlap (Jaccard index) between the top 1% of vertices
based on weighted degree from consecutive snapshots is shown.
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(e) The Spearman’s rank correlation of betweenness centrality is
shown over time for each method.
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(f) The overlap (Jaccard index) between the top 1% of vertices based
on betweenness centrality from consecutive snapshots is shown.

Fig. 2: Local, vertex-level properties of the dynamic graphs produced by each method are shown over time. The x-axis shows
the graph snapshot count. Note that for statistics using unweighted edges, results for active edge are the same as for sliding
window. For rank correlations, vertices that appear in either of two consecutive snapshots are used.
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Fig. 3: The ratio of the average betweenness centrality rank
correlation of active vertex (top) and weight decay (bottom)
compared to that of sliding window is shown. Plots on the
left show rank correlations using all vertices an those on the
right use only vertices with degree greater than 9 in either
consecutive snapshot.

2/3, as described in section III-A. In Figure 4, we show
how the average scores of different methods change as the
amount of overlap between consecutive snapshots increases
and decreases. For sliding window, we test overlaps of 0, 1/2,
2/3, 3/4, and 4/5, while keeping the number of months in
each window constant. An overlap of h−1

h requires λ = h and
because the number of months in each windows equals uλ,
the unit of time u must decrease as λ increases.

The parameters of the other methods are set to match as
described in section II-E. For active vertex and active edge,
τV and τE are set equal to λ. For weight decay, ε = 0.1 and
values of α = ε

1
λ are then 0.0999, 0.316, 0.464 0.562, and

0.630 for different overlaps. The unit of time u is the same
for each method.

In Figure 4, the overlap increases left to right on each x-
axis. The difference between weight decay scores and sliding
window scores increases as the amount of overlap decreases.
This means that when a large amount of data is added and
removed between graph snapshots, weight decay reduces the
variability over time of vertex centrality even more compared
to sliding window. The same holds to a lesser degree for active
vertex. The lower the degree of overlap between consecutive
snapshots, the greater the difference between methods.

IV. CONCLUSION

This paper addresses the question of aging data for the
creation of dynamic graphs. In addition to existing methods,

we provide a new approach based on the concept of active
vertices and edges. By analyzing several global and vertex-
level graph properties, we find the differences and similarities
between dynamic graphs created by each aging approach.

The active vertex and weight decay methods both reduce the
variability of vertex centrality scores over time, especially for
medium and high degree vertices, compared to sliding window
and active edge. This difference is greater when more changes
are accumulated between consecutive graph snapshots. In
practice, active vertex or weight decay may be more useful
if graph stability is preferred, while sliding window or active
edge may be chosen if a faster reflection of changes in the
underlying data is needed. The choice of a method matters
more when more data is added between snapshots. However,
active vertex and weight decay have opposite effects on graph
connectivity. Active vertex method decreases the number of
connected components, while weight decay increases it. This
suggest that the types of edges that are kept in the graph by
the two methods are different.

Despite these differences, we find that if each method’s pa-
rameters are carefully chosen, they all produce dynamic graphs
with very similar patterns. The dynamic graphs produced by
each method experience similar types of changes at approxi-
mately the same time. This is an important consideration for
applications where the goal is to monitor the graph and detect
change-points in time.

The effects on the graph properties studied here will help
practitioners understand the consequences of choosing a par-
ticular method of removing old data. Because the topic of
aging data in dynamic graphs was previously largely unex-
plored, we focus on basic graph properties. Future work will
study the effect on more complex graph measures, such as
community evolution. We expect that the method chosen will
have a strong effect both on the communities found and how
much they change between consecutive snapshots.

ACKNOWLEDGMENTS

This work was partially sponsored by Defense Ad-
vanced Research Projects Agency (DARPA) under agreement
#HR0011-13-2-0001 (DARPA PERFECT). The content, views
and conclusions presented in this document do not necessarily
reflect the position or the policy of DARPA or the U.S.
Government, no official endorsement should be inferred.

REFERENCES

[1] The koblenz network collection KONECT, 2016.
[2] Stephen P Borgatti and Daniel S Halgin. Analyzing affiliation networks.

The Sage handbook of social network analysis, pages 417–433, 2011.
[3] Shu-Yan Chan, Pan Hui, and Kuang Xu. Community detection of time-

varying mobile social networks. In Complex Sciences, pages 1154–1159.
Springer, 2009.

[4] Hung-Hsuan Chen, Liang Gou, Xiaolong Luke Zhang, and C Lee
Giles. Predicting recent links in foaf networks. In Social Computing,
Behavioral-Cultural Modeling and Prediction, pages 156–163. Springer,
2012.

[5] Aaron Clauset and Nathan Eagle. Persistence and periodicity in a
dynamic proximity network. arXiv preprint arXiv:1211.7343, 2012.

[6] Corinna Cortes, Daryl Pregibon, and Chris Volinsky. Computational
methods for dynamic graphs. Journal of Computational and Graphical
Statistics, 2012.

1061



0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Facebook

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.2

0.0

0.2

0.4

0.6

0.8
Dblp

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.2

0.0

0.2

0.4

0.6
Slashdot

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Enron

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Youtube

window
decay
active vertex

Mean Degree Rank Correlation

(a)

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Facebook

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Dblp

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Slashdot

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.3

0.4

0.5

0.6

0.7

0.8
Enron

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Youtube

window
decay
active vertex

Mean Overlap of Top 1% Vertices By Degree

(b)

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Facebook

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.4

0.5

0.6

0.7

0.8

0.9
Dblp

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Slashdot

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Enron

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Youtube

window
decay
active vertex

Mean Betweenness Centrality Rank Correlation

(c)

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

Facebook

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.30

0.35

0.40

0.45

0.50

0.55
Dblp

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Slashdot

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Enron

0 1/2 2/3 3/4 4/5
Consecutive Snapshot Overlap

0.2

0.3

0.4

0.5

0.6

0.7
Youtube

window
decay
active vertex

Mean Overlap of Top 1% Vertices By Betweenness Centrality

(d)

Fig. 4: Plots show how the average score changes as the amount of overlap between consecutive snapshots changes. The x-axis
shows the overlap between consecutive snapshots produced by the sliding window method. Parameters of other methods are
set to match this. The y-axis shows the average score over all snapshots for that amount of overlap.

[7] Munmun De Choudhury, Winter A Mason, Jake M Hofman, and
Duncan J Watts. Inferring relevant social networks from interpersonal
communication. In Proceedings of the 19th international conference on
World wide web, pages 301–310. ACM, 2010.

[8] Dongsheng Duan, Yuhua Li, Ruixuan Li, and Zhengding Lu. Incremen-
tal k-clique clustering in dynamic social networks. Artificial Intelligence
Review, 38(2):129–147, 2012.

[9] Tanja Falkowski, Jörg Bartelheimer, and Myra Spiliopoulou. Community
dynamics mining. In ECIS, pages 318–329, 2006.

[10] Tanja Falkowski, Jorg Bartelheimer, and Myra Spiliopoulou. Mining and
visualizing the evolution of subgroups in social networks. In Proceedings
of the IEEE/WIC/ACM International Conference on Web Intelligence,
pages 52–58, 2006.

[11] Tanja Falkowski, Anja Barth, and Myra Spiliopoulou. Studying commu-
nity dynamics with an incremental graph mining algorithm. Proceedings
of the 14th Americas Conference on Information Systems (AMCIS),
pages 1–11, 2008.

[12] Shawndra Hill, Deepak K Agarwal, Robert Bell, and Chris Volinsky.
Building an effective representation for dynamic networks. Journal of
Computational and Graphical Statistics, 2012.

[13] Hyoungshick Kim, John Tang, Ross Anderson, and Cecilia Mascolo.
Centrality prediction in dynamic human contact networks. Computer
Networks, 56(3):983–996, 2012.

[14] Gueorgi Kossinets and Duncan J Watts. Empirical analysis of an
evolving social network. science, 311(5757):88–90, 2006.

[15] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins.

Microscopic evolution of social networks. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 462–470. ACM, 2008.
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