
ORIGINAL ARTICLE

Tracking local communities in streaming graphs with a dynamic
algorithm

Anita Zakrzewska1 • David A. Bader1

Received: 19 December 2015 / Revised: 4 July 2016 / Accepted: 9 August 2016 / Published online: 30 August 2016

� Springer-Verlag Wien 2016

Abstract A variety of massive datasets, such as social

networks and biological data, are represented as graphs that

reveal underlying connections, trends, and anomalies.

Community detection is the task of discovering dense

groups of vertices in a graph. Its one specific form is seed

set expansion, which finds the best local community for a

given set of seed vertices. Greedy, agglomerative algo-

rithms, which are commonly used in seed set expansion,

have been previously designed only for a static, unchang-

ing graph. However, in many applications, new data are

constantly produced, and vertices and edges are inserted

and removed from a graph. We present an algorithm for

dynamic seed set expansion, which maintains a local

community over time by incrementally updating as the

underlying graph changes. We show that our dynamic

algorithm outputs high-quality communities that are simi-

lar to those found when using a standard static algorithm. It

works well both when beginning with an already existing

graph and in the fully streaming case when starting with no

data. The dynamic approach is also faster than re-compu-

tation when low latency updates are needed.

1 Introduction

Graphs are used to represent relationships and communi-

cation between entities in fields such as Web traffic,

financial transactions, online communications, and biology.

A commonly studied feature of graphs is community

structure. A graph community may be broadly defined as a

set of vertices that is densely connected. In datasets rep-

resenting online social networks, multiplayer games, or

online project management, graph communities can cor-

respond to groups of friends on social networks, online

players, or officemates who work together on the same

project. They can also be found in a variety of other graphs,

such as protein–protein interaction networks.

Global community detection methods divide the entire

graph into groups, which may form a partition or overlap.

Local community detection finds a set relevant to a small

set of vertices of interest, which we call seed vertices. This

problem is sometimes called seed set expansion. Because

many graphs may now have millions or billions of vertices,

visualization is difficult and many computationally inten-

sive algorithms cannot be run on commodity platforms.

Seed set expansion can be used in such cases to extract a

relatively small subgraph relevant to the vertices of inter-

est. It can also used to find overlapping, global communi-

ties. In this work, however, we do not address the issues of

global community detection, but focus on finding a local

community for a given seed set. We use the terms seed

set expansion and local community detection inter-

changeably. We also use the terms community and cluster

interchangeably.

In contrast to static seed set expansion, which is run

once on an unchanging graph, dynamic seed set expansion

incrementally updates a local community. Edges may be

inserted or removed to reflect evolving actions,

& Anita Zakrzewska

azakrzewska3@gatech.edu

David A. Bader

bader@cc.gatech.edu;

http://www.cc.gatech.edu/*bader

1 Computational Science and Engineering, Georgia Institute of

Technology, Atlanta, GA 30332, USA

123

Soc. Netw. Anal. Min. (2016) 6:65

DOI 10.1007/s13278-016-0374-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-016-0374-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-016-0374-5&domain=pdf

communications, or relationships between entities. When

the graph changes, the community of a seed vertex must be

updated as well.

1.1 Contributions

We develop a dynamic algorithm to incrementally update a

local community when the underlying graph changes. This

algorithm is faster than re-computing, while maintaining

good community quality. It can handle batch updates of

various sizes and is easily parallelized for multiple

expansions from different seeds. This paper presents the

extended version of the work by Zakrzewska and Bader

in Zakrzewska and Bader (2015). We evaluate the dynamic

algorithm using a larger number of datasets and analyze

how community size affects both the quality of commu-

nities output and the speedup over re-computation. We also

extend our algorithm to the fully streaming case. Finally,

we discuss an approach for tracking the interaction of

entities of interest using dynamic seed set expansion.

2 Related work

Global community detection seeks to find dense groups of

vertices in an entire graph. There is no single definition of a

community, and various metrics are used. In general,

structural graph communities have high internal edge

density and few inter-community edges.

Existing global algorithms include random walk meth-

ods, spectral partitioning, label propagation, greedy

agglomerative and divisive algorithms, and clique perco-

lation. For surveys on community detection, see Fortunato

(2010) Plantié and Crampes (2013) Tang and Liu (2010).

While most methods partition the graph into mutually

disjoint groups, there is a growing body of work in

detecting overlapping communities Xie et al. (2013),

where each vertex may belong to multiple groups. Methods

include OSLOM Lancichinetti et al. (2011), link parti-

tioning Evans and Lambiotte (2010), label propagation Xie

and Szymanski (2012), clique percolation Derényi et al.

(2005), and multiple local expansions Lancichinetti et al.

(2009) Havemann et al. (2011) Lee et al. (2010).

Local community detection is the task of finding an

appropriate cluster for a specific vertex or set of vertices.

This has also been called seed set expansion, and we will

use those two terms interchangeably. The task of finding a

community relevant to a given set of vertices is interesting

in its own right, but it can also be used for applications

such as visualization. Additionally, local community

detection can be used in cases where the entire graph is too

large or changing to be completely known.

Clauset presents a greedy method for seed expansion

that starts from a single vertex and then iteratively adds

neighboring vertices to maximize the local modularity

score Clauset (2005). The complexity of this approach for

general graphs is Oðn2dÞ, where d is the average degree

and n the final community size, although this will depend

on the graph structure. Riedy et al. assume the set of seed

vertices may belong to different communities. Each vertex

starts out in its own cluster. Merges may then occur

between a seed’s community and either another seed’s

community or a singleton vertex in order to maximize

global modularity Riedy et al. (2011). Bagrow and Bollt

use a different approach in the L-shell method Bagrow and

Bollt (2005), in which vertices are added from successive

shells. A shell is a set of vertices at a fixed distance from

the seed. Unlike in Clauset (2005), multiple vertices are

added to the cluster at once. This will likely improve

running time, but may lower quality.

Local community detection has also been achieved

through spectral methods. Andersen et al. Andersen et al.

(2006) use the Spectral PageRank-Nibble method. Their

final community minimizes conductance and is formed by

adding vertices in order of decreasing PageRank values. In

the random walk approach of Andersen and Lang Ander-

sen and Lang (2006), some vertices in the seed set may not

be placed in the final community. Our work addresses the

problem of local community detection.

Several algorithms for detecting global, overlapping

communities use a greedy, agglomerative approach and run

multiple separate seed set expansions Lancichinetti et al.

(2009) Havemann et al. (2011) Xie et al. (2013) Lee et al.

(2010). Lanchichinetti et al. use single vertices as

seeds Lancichinetti et al. (2009). Overlapping communi-

ties are produced by sequentially running expansions from

a node not yet in a community. Lee et al. use maximal

cliques as seed sets Lee et al. (2010). These approaches

relate to our work because they find and expand cores in

order to find global communities. However, in this work

we do not address global communities. Rather, the focus is

on finding the best community for a given seed or set of

seeds.

Finding clusters in dynamic graphs poses a variety of

challenges and the work in this field fits into several cat-

egories. A survey of work involving communities in

dynamic graphs can be found in Aynaud et al. (2013)

and Cazabet and Amblard (2014). Many methods seek to

find the best community sequence given the dynamic data.

One type of approach relies on the entire history of tem-

poral data to obtain communities Tantipathananandh et al.

(2007) Mucha et al. (2010) Jdidia et al. (2007). Using all

snapshots over time may produce better community evo-

lutions, but it can be computationally expensive and

65 Page 2 of 16 Soc. Netw. Anal. Min. (2016) 6:65

123

requires knowledge of all data. In many real life applica-

tions, online results are needed at regular intervals when

the data change. This type of approach would need to be

rerun whenever new data appear and may produce different

community histories for each run.

Dynamic communities may also be computed in an

online fashion, with clusters sequentially found for each

new snapshot of data available. The online approach can be

achieved by both maximizing the quality of clusters in the

new snapshot and minimizing the transition cost from the

previous community decomposition. Examples include

evolutionary clustering by Chakrabarti et al. (2006) and

FaceNet by Lin et al. (2009). Such an approach may result

in smooth transitions.

Another body of work finds communities in online data

by using the result previously found as a starting point for

the detection algorithm. Often the aim is to reduce com-

putational cost by reusing much of the previous community

structure and incrementally updating. Our work falls into

this category. The workflow for many of these algorithms

is as follows. A current graph exists with previously

detected communities. When a set of updates occur, the

previous community structure is modified based on the

updates. In some cases, a static community detection

algorithm is then applied to this modified community state.

We will refer to all algorithms that do not incrementally

update results as static methods and those that do as

dynamic or incremental methods. Note that an incremental

algorithm may use a static algorithm at some steps. Some

of these approaches are discussed below.

In Ning et al. (2010), the authors present incremental

spectral clustering by updating eigenvalues. In Aynaud and

Guillaume (2010), the authors use an incremental version

of the Louvain algorithm Blondel et al. (2008). When the

graph changes, instead of restarting from scratch, the pre-

vious community assignment is used as a starting point.

Each node can then move to a different community to

increase modularity. Shang et al. Shang et al. (2014) also

present an incremental algorithm to update the Louvain

method. After each update, communities either remain the

same, are merged due to inter-community edge addition, or

new vertices are placed in an existing or new community.

Static Louvain clustering is then restarted. The MIEN

algorithm Dinh et al. (2009) is an incremental version of

greedy agglomerative community detection, such as CNM.

After edges and vertices are added and removed at a time

step, all directly affected vertices (endpoints of an inserted

or removed edge or a vertex that was added or removed)

are moved into their own singleton communities. Next, the

chosen static community detection method is applied to

current community structure to obtain any further merges.

Aktunc et al. Aktunc et al. (2015) present an incremental

version of the SLM algorithm Waltman and Eck (2013),

which uses the clustering from the previous time step as a

starting point, with new vertices in their own singleton

communities. Takaffoli et al. Takaffoli et al. (2013) pre-

sent an incremental version of the local community

detection algorithm from Chen et al. (2009). The static

algorithm greedily adds the best neighboring vertex to the

community, based on a fitness function defined in the

paper, after which all vertices are checked for removal. The

incremental version uses the connected components of

communities found at the previous time step as starting

points before continuing expansion with the static algo-

rithm. Riedy and Bader move vertices of inserted or

deleted edges from their communities into singleton clus-

ters before restarting their static, parallel, agglomerative

algorithm Riedy and Bader (2013).

It is clear that many of these incremental approaches

have a similar principle. Vertices directly affected by graph

updates are removed from their previous community and

either moved to a different one or placed as a singleton. A

static algorithm then uses this modified community state as

a starting point. In Sect. 4, we describe an incremental

approach for local communities that follows this principle

and then compare its output to that of our algorithm.

In addition to detecting communities, the question of

tracking community operations has been studied Spil-

iopoulou (2011). Over time communities may grow,

shrink, split apart, merge together, disappear, and re-ap-

pear. Detecting these operations requires both finding

correct communities and matching them across time

intervals. One of the challenges in doing so is cluster

instability. The output of many algorithms is sensitive to

small variations in input. This issue is relevant to tracking

because community changes detected over time may be

true changes or the result of algorithm instability. Hop-

croft et al. Hopcroft et al. (2004) address this problem by

using multiple runs to detect stable clusters, or natural

communities, which are then tracked. In Asur et al.

(2009), Asur et al. define and detect a variety of com-

munity and vertex level events using overlap of consec-

utive community snapshots. Greene et al. define a

dynamic community as a sequence of similar static

communities and match static communities in each new

graph snapshot to the most recent frontier of a dynamic

community Greene et al. (2010). In this way, intermittent

dynamic communities can be discovered. Palla et al. use

overlap to match communities over time in a co-author-

ship and a phone call graph to track how long they per-

sist Palla et al. (2007). Our work does not focus on

detecting such community operations over time. However,

the relationship between community operations and our

algorithm is discussed in Sect. 7.

Soc. Netw. Anal. Min. (2016) 6:65 Page 3 of 16 65

123

3 Definitions and background

Let G ¼ fV ;Eg be a graph, where V is the set of vertices

and E the set of undirected edges. An edge ðu; v;xÞ 2 E

consists of two unordered vertices u, v, and a weight x. Let
kCin be the sum of all edge weights interior to community C

and kCout be the sum of all edge weights on the border of C.

kCin ¼
X

ðu;v;xÞ2Eju2C^v2C
x ð1Þ

kCout ¼
X

ðu;v;xÞ2Eju2C^v 62C
x ð2Þ

The quality of a community C is often measured using a

fitness function. As there is no single definition of a com-

munity, many fitness functions are commonly used.

Modularity, shown in Eq. 3, compares the number of intra-

community edges to the expected number under a random

null model Newman and Girvan (2004).

QðCÞ ¼ 1

Ej j ðk
C
in �

ð2kCin þ kCoutÞ
2

4 Ej j Þ ð3Þ

Conductance is another popular fitness score and measures

the community cut, or number of inter-community edge-

s Chung (1997).

/ðCÞ ¼ kCout

minð2kCin þ kCout; 2k
VnC
in þ k

VnC
out Þ

ð4Þ

Many overlapping community detection methods use a

modified ratio of intra-community edges to all edges with

at least one endpoint in the community, as in Eq. 5 Lan-

cichinetti et al. (2009) Lee et al. (2010). Havemann et al.

use a slightly modified version shown in Eq. 6, which

allows vertices to remain singleton communities Have-

mann et al. (2011).

f ðCÞLFM ¼ 2kCin
ð2kCin þ kCoutÞa

ð5Þ

f ðCÞMONC ¼ 2kCin þ 1

ð2kCin þ kCoutÞa
ð6Þ

The greedy local expansion algorithms used in Clauset

(2005) Lee et al. (2010) Havemann et al. (2011) can be

generalized to the form given by Algorithm 1. The com-

munity is iteratively expanded by adding the neighboring

vertex that maximizes the chosen fitness function. The

algorithm terminates when there exists no vertex whose

inclusion in the community increases the fitness score. In

Algorithm 1, seed represents the initial set of seed vertices,

fit(C) the fitness score for a community C, and Nb(C) the

set of vertices not in C with at least one neighbor in C. We

use this static algorithm as part of our new dynamic

method. For the experiments of Sect. 6, we use the fitness

metric f ðCÞMONC from Eq. 6, though the approach will

work for other fitness functions as well. We chose this

metric because unlike modularity and conductance, it is

local in nature. f ðCÞMONC and f ðCÞLFM have been used for

local expansions to produce overlapping communities with

good results. Although the two are very similar, f ðCÞMONC

allows vertices to remain singletons, which is beneficial

because not all vertices have a natural community.

4 Motivation and alternative approach

Our dynamic seed set expansion algorithm incrementally

updates the community when the underlying graph chan-

ges. Since incremental updates are faster than re-compu-

tation, our method can be used to improve performance for

any application of seed set expansion, as described in

Sect. 1. We begin with an initial graph G and perform a

static seed set expansion, as in Algorithm 1, resulting in the

initial community C. Next, a sequence of updates is applied

to G and we incrementally update C to reflect changes in

graph structure. Each graph update is of the form

ðu; v;DxÞ, where u and v are edge endpoint vertices and

Dx is an increment or a decrement in edge weight. An edge

insertion is represented by a weight increment to a

nonexistent edge, while a deletion is represented by a

decrement of the edge weight to 0.

To motivate our approach, we first discuss an alternative

algorithm for dynamic seed set expansion and the problems

it may run into. We will compare the quality of our algo-

rithm to this alternative in Sect. 6. It is based on the

updating approach found in Aynaud and Guillaume

(2010) Shang et al. (2014) Aktunc et al. (2015) Riedy and

Bader (2013). Each of these methods update only the

directly affected vertices (endpoints of modified edges) and

then use the updated community structure as a starting

point for a static community detection algorithm. Although

these are global approaches, they all update greedy static

algorithms, and we can easily use the same principle to

create an alternative local approach to test against.

65 Page 4 of 16 Soc. Netw. Anal. Min. (2016) 6:65

123

After every edge update, we remove certain affected

vertices from the local community before restarting the

static expansion from Algorithm 1. We remove both end-

point vertices of a deleted intra-community edge and the

member vertex of an inserted border edge. Edges outside

the community do not require any vertex removals. Deleted

border edges and inserted intra-community edges

strengthen the membership of the corresponding endpoint

vertices and therefore also do not require vertex removals.

Unfortunately, this simple method has severe shortcomings.

For example, the community may split apart and the algo-

rithm may not be able to detect this because the neighbors of

removed vertices remain in the community. This is shown

in Fig. 1a, where the community is no longer optimal as it

is actually composed of two natural communities. In the set

of vertices that has split off and should be removed, most

neighbors of each vertex are also in the community, and

therefore, no vertex will be removed. Even if we evaluate

multiple vertices at once for removal, the same problem

may occur if the set that has split off is large enough.

The simple updating method may fail even when it

outputs a valid community in the graph. This is because

seed set expansion differs from global community detec-

tion in an important way: the local community is chosen for

a particular seed set. The task is not simply to find any

good community in the graph, but rather the appropriate

community for the seed. Changes to the graph may shift the

community C to one not centered around the original seed,

as shown in Fig. 1b. While C may still have a good fitness

score, it may not be a local community of the seed and

would not be produced by a complete re-computation using

static seed set expansion.

Given these considerations, quality evaluation for an

updated community of a seed is more difficult than for

general communities. We must consider not only the

degree to which the chosen set of vertices resembles a

community, but also whether it is a good community for

the seed. A static seed set expansion algorithm detects the

best community for the seed set using full information.

Thus, one method of determining quality is to use the

community found using static seed set expansion as a

baseline and consider an incremental updating algorithm to

be successful if it produces similar results.

5 Dynamic seed set expansion algorithm

5.1 Algorithm overview

The dynamic seed set expansion algorithm begins with the

computation of a community using a static expansion on

the initial graph as in Algorithm 1. When the algorithm

begins, the community initially contains only the seed, and

new vertices are then iteratively added. In each iteration,

the neighboring vertices of the current community are

potential new members and the vertex producing the

greatest increase in the fitness score is chosen. The initial

computation thus results in an ordered sequence of vertices

added to the community and a corresponding sequence of

nested sets, each with an increasingly greater fitness score.

As the goal is to maintain a community centered around the

seed, it is necessary to keep track of the order in which

vertices were added.

Let mi denote the ith vertex added as a member of the

community in Algorithm 1 andMi ¼ fmj j j� ig.Mi has an

interior edge weight sum of ki;in, a border edge weight sum

of ki;out, and a fitness score of si. Note that ki;in is equal to

kMi

in and ki;out is equal to kMi
out as in Eqs. 1 and 2. If mi is

vertex v, then we say that v has position i or qðvÞ ¼ i.

We refer to this collection of sequences by W ¼
fmi; ki;in; ki;out; si j 0� i� endg, as shown in Table 1. Here

by end we represent the last position in the sequence W,

and Mend is the current community, which we also call C.

The dynamic algorithm works as follows. In phase A, we

start with the initial graph and perform static seed set

expansion (Algorithm 1) to produce W. In phase B, a

stream of graph updates is applied. With each graph

update, the algorithm updates the community by modifying

W while ensuring that the sequence si remains monotoni-

cally increasing. That is, we require the updated commu-

nity to contain vertices that, if added one by one as in the

static algorithm, result in an increasing sequence si. This

guarantees that the resulting community remains relevant

to the source seed.

After each update to the graph, we modify the sequence

of community members mi to ensure that the corresponding

fitness scores are increasing. The algorithm then detects

any decreases in the sequence of fitness scores and removes

Should be
removed

(a) (b)

Fig. 1 Shortcomings of the simplistic algorithm from Sect. 4. Undesired community evolution shown left to right. a Undetected community

splitting. b Undetected seed migration

Soc. Netw. Anal. Min. (2016) 6:65 Page 5 of 16 65

123

vertices from the community to eliminate any such

decrease. Next, it checks whether any new vertices should

be added and updates W if needed.

This process is shown in Fig. 2, where the first image

shows a community centered around the seed vertex. The

order of the community members, m, is shown along with

the corresponding scores. The second image shows the

state of the community after edges have been inserted into

and removed from the graph. The members of the com-

munity still remain the same, but the number of internal

and border edges has changed. As a result, the sequence of

scores is no longer increasing and the community is inva-

lid. The third image of Fig. 2 shows community members

adjusted using our dynamic algorithm so that the score

sequence remains increasing. The details of the dynamic

algorithm are given below.

5.2 Algorithm details

The dynamic algorithm updates W after each graph update

and ensures both that the sequence of fitness scores si
remains monotonically increasing and that there are no

additional vertices in G whose inclusion in the community

would increase the fitness score further. For each batch of

edge updates, the following four steps are performed (some

may be omitted depending on the case). Further explana-

tions are given later.

1. Values ki;in, ki;out, and si inW are updated to reflect new

internal and border edges.

2. Vertices that are endpoints of an updated edge are

checked for removal. If a vertex v is removed, the

community members are further pruned and W is

updated to reflect the pruning.

3. W is scanned to check that the sequence of fitness

scores si is still monotonically increasing. If a dip

exists at position i, W is truncated after position i (set

W ¼ W0;i�1).

4. The static seed set expansion algorithm is restarted to

check whether neighboring vertices in Nb(C) should be

added to the community.

Table 1 Community evolution sequence W

Position 0 1 2 … n

Members m0 m1 m2 … mn

Inner edges k0;in k1;in k2;in … kn;in

Border edges k0;out k1;out k2;out … kn;out

Fitness score s0 s1 s2 … sn

v0

v1
v3

v4

v2
v5

v6

v7

v0

v1
v3

v4

v2
v5

v6

v7

v0

v1
v3

v4

v2
v5

v6

v7

(1) (2)

(3)

Fig. 2 The process of storing and maintaining W for a community is

shown. The seed vertex v0 is in red, and all members of the

community have a black border. The Top right image shows a

correctly detected local community with member vertices ordered and

a corresponding sequence of increasing fitness scores. Top right

shows the state of the graph and W after edges have been inserted into

and removed from the graph. The sequence of members is the same,

but the corresponding scores have changed so the score sequence is

no longer increasing at all points. In the bottom left, our dynamic

algorithm has been applied to update the community. Vertices v4 and

v6 are removed, and the sequence of scores is once again increasing

(color figure online)

65 Page 6 of 16 Soc. Netw. Anal. Min. (2016) 6:65

123

The four steps of the dynamic algorithm are given in

Algorithm 2. To save space, three simplifying assumptions

are made. First, as edges are undirected, the order of ver-

tices in an edge update ðu; v;DxÞ is arbitrary. Therefore,

we only consider qðuÞ\qðvÞ. Second, we assume one seed

vertex, referred to as seed. The algorithm can handle any

number of seed vertices, though this only makes sense if

there is prior knowledge that all those vertices will belong

to the same community. Third, we only consider a single

edge update, even though the algorithm can handle batches

of more than one update. To process a batch, several edge

updates are accumulated before updating the graph and the

community. Step 1 is first performed for each update in the

batch, then step 2 is performed for each update, and finally

steps 3 and 4 are only executed once per batch. Because

steps 3 and 4 of the algorithm can be performed once per

batch, accumulating a larger set of updates before pro-

cessing results in a faster running time. On the other hand,

the community is not updated as frequently. Using a larger

batch size can be thought of as a compromise between a

fully dynamic algorithm, which updates results immedi-

ately, and infrequently using the static algorithm to re-

compute communities.

The complexity of obtaining one community with the

static expansion algorithm is Oðn2dÞ, where n is the final

community size and d is the average degree, though this is

an overestimate for graphs whose vertices share many

neighbors. In each iteration, in order to add the best can-

didate, all vertices neighboring the current set (the border

set) are checked and the corresponding change in fitness

score is computed. With n current members of average

degree d, there may be nd distinct border set vertices to

check, resulting in a time complexity of OðndÞ. In reality,

however, many member vertices will have the same

neighbors, so not all nd are distinct. By maintaining a list of

current border set vertices, such as with a hash map, it is

only necessary to process unique neighbors in each itera-

tion. Thus, in practice, the time complexity of checking

neighboring vertices each iteration may be less than OðndÞ.
Assuming the community and border set are each repre-

sented with a hash map, adding a vertex v has OðdÞ
complexity because each of v’s neighbors may need to be

either added to the border set or have their count of edges

touching the community updated. To obtain a final com-

munity of size n, n iterations must be completed.

In the worst case, the dynamic algorithm must re-com-

pute a large portion of the community. Because this re-

computation is performed with the static expansion, the

worst case time complexity is Oðn2dÞ as well. In practice,

many of the updates result in no decrease in the fitness

score sequence so that only a scan of W is needed. In this

case, the complexity becomes OðnÞ. The time complexity

of each step is given next. Step 1 updates the values of ki;in,

ki;out, and si by iterating once over each sequence in W. The

complexity is OðnÞ where the n is the length of W. In step

2, if no vertices are removed, the complexity is Oð1Þ. The
complexity of removing a vertex v in step 2 is OðdÞ
because each neighbor of v must either also be checked for

removal if it is a member or else have its count of edges

touching the community decreased. With a community size

of n, at most n vertices can be removed in step 2, taking

OðndÞ time. Step 3 requires a scan of the scores in W and

takes OðnÞ time. Step 4 uses the static expansion and

therefore has a worst case complexity of Oðn2dÞ. The data
structures required are a representation of the community

and of the set of border vertices, both of which may be, for

example, a hash map. The sequences inW are each an array

with length n. Additional details of each step are given

next.

Step 1: First, ki;in and ki;out in W are updated to reflect

new edges internal to and on the border of the community.

Soc. Netw. Anal. Min. (2016) 6:65 Page 7 of 16 65

123

The input is ðu; v;DxÞ, where u and v are vertices and Dx
the corresponding change in weight.

Step 2: Once W has been updated in step 1, the fitness

score sequence si may no longer be monotonically

increasing. For some edge updates, keeping one of the edge

endpoints in C may cause a decrease in fitness score. For an

edge update ðu; v;DxÞ with v 2 C, we check whether

sqðvÞ�1 � sqðvÞ. If so, then keeping v as the qðvÞ th member of

C causes a non-increase in the fitness score. Accordingly, v

is removed from C andWmust be updated: ki;in, ki;out, and si
for qðvÞ� i� end must be recalculated to reflect the fact

that edges of v are no longer inside C. For each edge (v, u),

if u 2 C, the edge changes from an internal community

edge (contributing to kin) to a border edge (contributing to

kout). If u 62 C, the edge changes from a border edge to an

edge with no influence on the fitness score. Only entries in

W after position qðvÞ must be updated because previous

entries were added to the community before v.

The removal of a vertex v from C in step 2 may cause

other vertices in C to be removed as well. Candidate ver-

tices are neighbors of v that were added to C after v. Let u

be such a neighbor. At the time of u’s inclusion in C,

adding u increased the fitness score by increasing kin,

which was due to u having neighbors already in the com-

munity. However, at least one such neighbor was v, which

is now no longer in C. Thus, it is possible that without v in

C, u would not have enough neighbors in C to be added.

We can check this by testing whether sqðuÞ�1 � sqðuÞ. If v is

removed from C, all such neighbors u of v in C are also

checked. Neighbors of v added to C before v (qðuÞ\qðvÞ)
need not be checked because they were added to C without

the assistance of v. If any neighbor u of v is removed, then

we must in turn check neighbors of u that were added to

C after u. In order to perform the entire pruning process, a

selective breadth first search beginning from v is per-

formed, as in step 2 of Algorithm 2.

Step 2 is only performed if there is a specific candidate

vertex for removal, which will always be an endpoint of an

updated edge. An edge update ðu; v;DxÞ can cause the

removal of an endpoint v only when sqðvÞ�1 � sqðvÞ due to

either a decrease in kqðvÞ;in or an increase in kqðvÞ;out. This

occurs in three cases. The first case is an edge decrement

with v 2 C, u 2 C, and qðuÞ\qðvÞ. The second is an edge

increment with v 2 C and u 62 C. The third is an edge

increment with v 2 C, u 2 C, and qðvÞ\qðuÞ. This third

case may seem counterintuitive because an intra-commu-

nity edge is incremented, densifying the community.

However, we must maintain an increasing sequence of

fitness scores si in W. As v was added to C before u, the

edge between v and u is a border edge at position qðvÞ and
becomes internal only starting at position qðuÞ. Thus, by
incrementing it, the sum of border edges kqðvÞ;out increases.

If, due to this increase, sqðvÞ � sqðvÞ�1, then v must be

removed from C. In a later step, v may be re-added to C,

but it must be removed from position qðvÞ of W because it

causes a non-increase of si.

Step 3: Next we scan all of W to check whether si are

still monotonically increasing. If si�1 � si, we truncate W at

position i� 1 and set end ¼ i� 1. The community is now

C ¼ Mi�1 with fitness score si�1, and the sequence of fit-

ness scores in W is monotonically increasing.

Step 3 differs from step 2 because instead of a selective

pruning, all of W after the chosen position is deleted. It also

serves a different purpose than step 2. We perform step 2

only when there is a specific candidate vertex to check for

removal from C. Step 3 can check all vertices. For exam-

ple, let the update be ðu; v;DxÞ, with v 2 C, u 2 C,

qðvÞ\qðuÞ, and Dx[0. By incrementing an intra-com-

munity edge, kqðuÞ;in increases and the set MqðuÞ becomes

denser. Thus, any vertex added after position qðuÞ may no

longer increase the fitness score, and all W after position

qðuÞ must be scanned for such vertices. In addition, after

step 2 the entire sequence of fitness scores may still no

longer be increasing. Step 3 is more computationally

expensive than step 2 because after detecting a score drop

at position i, step 3 truncates all of W after i� 1, while step

2 selectively prunes. However, unlike step 2, it guarantees

a monotonically increasing sequence of fitness scores. Of

course, step 3 could replace step 2 entirely, but this

increases running time. In Sect. 6, we show results for a

modified dynamic algorithm that skips step 2.

Step 4: Finally, new vertices can be added to the com-

munity. Vertices neighboring C are checked for inclusion

by running the loop in Algorithm 1. For every vertex added

to C, W is updated by appending a new entry that includes

that vertex and the corresponding sum of interior edges

kend;in, sum of border edges kend;out, and fitness score send.

5.3 Fully streaming version

The algorithm, as described above, begins with an initial

existing graph and an initial community for this graph.

However, the method can be extended to work on a fully

streaming graph. Instead of starting with an initial graph, it

can begin with an empty graph and use the dynamic algo-

rithm to build and then maintain a community. Given a seed

vertex v (or set of seed vertices), the community will be

initialized containing only v (or the set of seeds), with no

interior or border edges. After each edge insertion or dele-

tion (or batch of such updates), the dynamic algorithm will

update the community as usual. The community will begin

to grow as edges are inserted around v. We show results for

our dynamic algorithm both when beginning with an initial

graph and for a fully streaming graph in Sect. 6.

65 Page 8 of 16 Soc. Netw. Anal. Min. (2016) 6:65

123

6 Results

6.1 Experimental setup

We test our dynamic seed set expansion algorithm on six

social network graphs, listed in Table 2. All datasets were

obtained from the Koblenz Network Collection The

koblenz network collection KONECT (2015). The graphs

used represent Slashdot thread replies in which each vertex

represents a user, wall posts between Facebook users,

contact between users carrying wireless devices, replies

between users on the Digg Web site, and posts of students

on UC Irvine forums. As these graphs represent social

interactions, they are likely to display group structure.

These graphs were chosen because they contain times-

tamped data, allowing us to track real community evolu-

tion. We can insert and remove edges in the order given by

timestamps.

We perform two types of experiments with each of these

real social networks. In the first type, an initial graph is

formed out of the first one-third of edges. Static seed set

expansion is run on this initial graph as in Algorithm 1. The

remaining two-thirds of edges are streamed in as edge

insertions or edge weight increments. Edge deletions and

edge weight decrements are created by removing old edges

with a sliding window approach. Edges are inserted and

removed in the same timestamped order, but with edge

deletions lagging by a gap. This gap is given for each graph

in Table 2. The update stream ends when no new edges can

be inserted. The removal of old interactions as new inter-

actions are added allows communities to evolve. For all

graphs except the Manufacturing Emails graph, the sliding

window gap is set to one-third of the edges. Because the

Manufacturing Emails graph is very dense, we set both the

initial number of edges and the sliding window gap to one-

ninth, instead of one-third, of the edge count.

The second type of experiment performed on each graph

uses the dynamic algorithm in a fully streaming manner.

Instead of beginning with an existing initial graph, we

begin with an empty graph and process all edge insertions

and deletions as a stream. Because there is no initial

community for the dynamic algorithm to begin with, this

approach is more challenging. Any community must be

incrementally built.

For seed vertices, we chose from each of the Facebook,

Slashdot, Digg, and UC Irvine graphs 100 random vertices

whose degree was in the top 75th percentile for the given

graph and 100 random vertices whose degree was in the top

99th percentile. Both medium- and high-degree vertices

were chosen to allow variety in the experiments. We did

not choose low-degree vertices because the graphs tended

to have skewed degree distributions so vertices with low-

degree percentiles appeared only a few times in the dataset.

For the Haggle Contact and Manufacturing Email graphs,

because the total number of vertices was small, we simply

chose 100 random vertices as seeds. We use the fitness

function fMONC with parameter a ¼ 1:0 and a ¼ 0:8. A

smaller a allows for larger communities, and different a
parameters were chosen to evaluate results for different

types of communities. A value of a ¼ 1:0 is recom-

mended Lee et al. (2010) Lancichinetti et al. (2009), and

we used a ¼ 0:8 to obtain slightly large communities. Our

results consist of the two experiment types for all seed

vertices of the six datasets with both a parameters. The

code was implemented in C and run on an 8 core Intel i7-

2600 K CPU at 3.40 GHz.

6.2 Quality of communities

In order to compare the communities output by the

dynamic algorithm to those from static re-computation, we

repeatedly rerun the static algorithm as a graph is updated.

This means that at any point in time (after each number of

graph updates) for each seed vertex of each graph, we have

the community computed with our dynamic algorithm and

the community computed by running the static algorithm.

The community obtained by the static algorithm can serve

as a baseline ground truth. Of course, in a real dataset there

may be more than one good local community for a seed

vertex, but in the absence of real ground truth, using the

results of the static algorithm is suitable.

The algorithm performance is measured by four metrics.

The first is the ratio of the fitness scores in the dynamic

algorithm vs. those obtained by re-computation. The sec-

ond is the ratio of the size of the community output by the

two methods. Because our approach maintains vertices that

induce increasing fitness scores, the output will be relevant

to the seed. Therefore even if the vertex members of the

two sets differ, as long as the scores and sizes are similar,

we can say that the communities are comparable in quality.

Communities in real graphs are known to be overlapping,

so there may be multiple sets for an algorithm to return.

The remaining two metrics are the precision and recall,

which compare the overlap between the members of

Table 2 Datasets used as test graphs with number of edges and

vertices and the size of the sliding window

Graph Vertices Edges Sliding window

Facebook 46,952 876,993 292,331

Slashdot 51,083 140,778 46,926

Haggle contact 274 28,244 9414

Digg 30,398 87,627 29,209

Uc irvine forum 1899 59,835 11,240

Manufacturing emails 167 82,927 9214

Soc. Netw. Anal. Min. (2016) 6:65 Page 9 of 16 65

123

communities output by the dynamic algorithm and those

output by the static algorithm. For a given graph update, let

CU be the community produced by the dynamic algorithm

and CR be the community output by the static method.

Then Eqs. 7 and 8 give precision and recall.

precision ¼ jCU \ CRj
jCU j

ð7Þ

recall ¼ jCU \ CRj
jCRj

ð8Þ

Table 3 shows the mean score ratio, size ratio, precision,

and recall for each graph. In both tables, the top section

shows results when the first third edges are used to form an

initial graph before using the dynamic algorithm. The

bottom section shows results when starting with an empty

graph. A batch size of 1 is used, which means that com-

munities are updated after each edge.

Table 3a shows results for our algorithm. While both

the fitness score and community size tend to be higher for

the dynamic algorithm, the values are near 1 for most

graphs, showing similar quality. Recall is higher than

precision, which makes sense given that community sizes

of the dynamic method are larger. The fact that average

recall is high, with most values at or above 0.9, means that

all relevant vertices are returned, which may be important

for many applications. At the same time, the size of the

community is not on average much larger, so not many

additional vertices are returned. While precision is not as

high as recall, the average is above 0.8 for half the graphs

and above 0.7 for most graphs. As mentioned before, the

lack of perfect overlap does not mean poor quality because

a different equally good community may be returned. The

fact that the fitness function score is high with community

size similar to re-computation indicates good results.

Table 3 The average score

ratio, size ratio, precision, and

recall for each graph with a

batch size of 1

Type Graph Score ratio Size ratio Precision Recall

(a) Results for our dynamic algorithm

Our Dynamic algorithm

With initial Facebook 1.07 1.56 0.72 0.86

Slashdot 1.02 1.17 0.84 0.90

Haggle contact 1.09 1.23 0.98 0.99

Digg 1.06 1.33 0.77 0.92

Uc Irvine forum 1.14 2.13 0.67 0.81

Manufacturing 1.23 2.22 0.88 0.95

Full streaming Facebook 1.08 1.83 0.63 0.84

Slashdot 1.02 1.20 0.81 0.90

Haggle contact 1.12 1.30 0.98 0.99

Digg 1.07 1.41 0.75 0.92

Uc Irvine forum 1.27 3.94 0.59 0.80

Manufacturing 1.29 2.75 0.85 0.94

(b) Results for the alternative algorithm from Sect. 4

Alternative approach

With initial Facebook 1.69 29.95 0.28 0.78

Slashdot 1.44 15.82 0.34 0.86

Haggle contact 2.20 6.00 0.94 0.99

Digg 1.57 33.00 0.21 0.84

Uc irvine forum 2.63 33.53 0.23 0.86

Manufacturing 3.49 22.06 0.51 0.98

Full streaming Facebook 2.44 196.21 0.17 0.78

Slashdot 1.95 173.86 0.25 0.85

Haggle contact 2.61 7.98 0.90 0.99

Digg 2.36 212.98 0.12 0.84

Uc irvine forum 3.16 56.60 0.12 0.89

Manufacturing 3.53 23.30 0.48 0.94

Re-computing with the static algorithm is used as the baseline. The bottom section of each table shows

results for the fully streaming case

65 Page 10 of 16 Soc. Netw. Anal. Min. (2016) 6:65

123

The results of the dynamic algorithm are slightly more

similar to those of the static algorithm when beginning with

an initial graph, seen in the top half of Table 3a, compared

to the fully streaming case, seen in the bottom half. This

result intuitively makes sense as the dynamic algorithm

does not start with a pre-computed community in the latter

case. However, the results are still good in the fully

streaming case. The recall and precision remain fairly high,

the score ratio is close to 1 for all graphs, and the size ratio

is below 2 for all but two graphs. This shows that our

dynamic algorithm still works well when applied in a fully

streaming manner.

Table 3b shows the results of the alternative algorithm

described in Sect. 4. It is clear that the alternative

approach grows very large communities with low preci-

sion. However, the problem is not restricted to the large

size of the clusters. For half the graphs, the recall of the

alternative is lower than that of our algorithm. Therefore,

the communities also contain fewer of the ground truth

members compared to our algorithm. When run with a

small batch size, our algorithm performs better. With a

large enough batch size, we expect that the quality of

alternative algorithm would improve because most ver-

tices would be removed from the community at each

update. However, that would be very similar to re-com-

puting from scratch.

Table 5 shows the average score ratio, size ratio, pre-

cision, and recall of both dynamic approaches (again with

the results of the static algorithm as a baseline) for different

community sizes. Averages are taken across all seed ver-

tices on all six graphs. The runs for each seed vertex on

each graph are divided by the average size of the com-

munity output by the dynamic algorithm. If the community

of a seed vertex is on average 20, the values for that

experiment will contribute to the 10–24 size bin in Table 5.

Again, results are shown separately for the case when we

start with an initial graph and the fully streaming case

where we begin with an empty graph.

The results in Table 5a show that when the dynamic

algorithm outputs smaller communities, the results are

more similar to the output of the static method. However,

the quality of the results remains high up to a size of 500 so

our algorithm performs well on a wide range of sizes.

Table 5b shows these statistics for the alternative approach

described in Sect. 4. Even for the same community sizes,

the precision of the alternative is much worse than that of

our algorithm.

Figure 3a shows the average precision and recall of our

dynamic algorithm, compared to the static algorithm,

against the number of updates applied to the graph. We

begin with the first third of the edges as an initial graph

before streaming updates. A batch size of 1 is used. Aver-

ages are taken across multiple independent expansions,

each with its own seed. The x-axis represents the number of

insertions and deletions applied to the graph, and the y-axis

shows the average precision or recall of communities output

by the dynamic algorithm after that many updates. For each

graph, the number of edge insertions and size of the deletion

sliding window is given in Table 2.

Apart from the Facebook graph, there is no downward

trend in either precision or recall of our approach as the

number of insertions and deletions increases. This shows

that we can use our dynamic algorithm for a large number

of updates before a static recalculation should be applied.

In fact, for these datasets, there is no indication that a static

re-computation would be necessary.

Figure 3b shows the precision and recall of our algo-

rithm for the fully streaming case when we begin with an

empty graph. For several of the graphs, the precision and

recall are lower in the fully streaming case, which makes

sense given that the dynamic algorithm begins with no

initial community. However, the values are still high in

most cases with no downward trend. In fact, for the Digg,

UC Irvine forum, and Slashdot forum graphs, the precision

increases at the beginning. This suggests that the dynamic

algorithm can improve its output.

6.3 Performance results

In this section, we evaluate the performance of using

various batch sizes of updates with the dynamic algorithm.

Using a batch size of x means that x edge updates are

accumulated before applying them to the graph and

updating the community. A smaller batch size provides

updated results more frequently. When working with a

static algorithm, in order to produce updated results for

each batch, the algorithm must be rerun. For example, if

there are 2000 edge insertions and deletions, then using a

batch size of 1 would require 2000 batches to be processed,

while using a batch size of 10 would require processing

200 batches. With a batch size of 10 and 200 batches, our

algorithm, or the static algorithm, would be run 200 times,

each time processing 10 updates.

In Fig. 4, we compare the running times of our dynamic

algorithm and the static algorithm. For each seed set of

each graph, the running time is measured as the total time

taken to process all edge insertions and deletions. This is

not the time of processing a single batch, but the time to

process all batches. To fairly compute the running time of

the static algorithm, we only re-compute with the static

algorithm when an edge update occurs that may affect the

community result. Many edge updates will affect vertices

not related to the community, and we need not update in

those cases. When accumulating a batch, we only count

edge insertions with at least one endpoint vertex in the

Soc. Netw. Anal. Min. (2016) 6:65 Page 11 of 16 65

123

current community. We count edge deletions with at least

one endpoint vertex either in the community or with

neighbors in the community.

Figure 4a shows the mean, median, and quartiles of the

speedup of the dynamic algorithm over static re-computa-

tion. The speedup is the ratio of the running time of the

static algorithm over the running time of the dynamic

algorithm. This speedup ratio is computed for every seed

set of every graph. A speedup of x means that using the

dynamic algorithm is x times faster than re-computing, so

higher values are better. The x-axis shows the batch size

used and the y-axis shows the speedup, both on a log scale.

It is clear that the advantage of the dynamic algorithm is

greatest for small batch sizes. This is expected because the

total running time of the static algorithm decreases

proportionally as the batch size increases. When the batch

size is increased by a factor of x, there are x times fewer

batches and re-computation occurs x times less frequently.

Because the running time of the static algorithm does not

depend on the batch size, when the number of batches

decreases by a factor of x, the total running time also

decreases by a factor of x. The dynamic algorithm, however,

performsmorework as the batch size increases. Steps 3 and 4

are only run once per batch, but the decrease is not by a factor

of x as some stepsmust occur the same number of times, once

per edge update, regardless of the batch size. This is shown in

Fig. 4b, which shows the mean running time, across all seed

sets of all graphs.

For batch sizes of 1, 10, and 100, using the dynamic

algorithm is faster than using the static algorithm. Of

Table 4 The average score

ratio, size ratio, precision, and

recall across all graphs binned

by community size

Type Size range Score ratio Size ratio Precision Recall

(a) Results for our algorithm

Our dynamic algorithm

With initial 1–4 1.00 1.02 0.98 0.99

5–9 1.04 1.27 0.84 0.94

10–24 1.05 1.34 0.78 0.89

15–49 1.07 1.44 0.71 0.83

50–99 1.14 1.98 0.73 0.84

100–499 1.41 3.34 0.76 0.91

500? 1.99 11.35 0.52 0.92

Full streaming 1–4 1.00 1.02 0.98 0.99

5–9 1.04 1.31 0.84 0.95

10–24 1.05 1.44 0.74 0.88

15–49 1.08 1.64 0.67 0.83

50–99 1.16 2.17 0.67 0.82

100–499 1.58 5.23 0.69 0.90

500? 2.77 25.87 0.32 0.91

Results for the alternative algorithm from Sect. 4

Alternative approach

With initial 1–4 1.02 1.04 0.99 1.00

5–9 1.12 2.01 0.65 0.93

10–24 1.20 3.05 0.49 0.88

15–49 1.22 4.67 0.35 0.82

50–99 1.32 7.65 0.27 0.79

100–499 2.85 23.46 0.30 0.87

500? 3.64 61.95 0.10 0.90

Full streaming 1–4 1.03 1.07 0.98 1.00

5–9 1.22 2.22 0.61 0.92

10–24 1.22 3.49 0.46 0.90

15–49 1.24 5.06 0.31 0.81

50–99 1.33 9.63 0.22 0.79

100–499 2.87 24.25 0.27 0.87

500? 3.76 85.00 0.06 0.92

A batch size of 1 is used. Re-computing with the static algorithm is used as the baseline. The bottom section

of each table shows results for the fully streaming case

65 Page 12 of 16 Soc. Netw. Anal. Min. (2016) 6:65

123

course, the dynamic algorithm performs less work and

solves a slightly different problem because it updates the

results instead of computing from scratch. However, for

applications where it is desirable to continually know the

current community as the underlying graph changes, the

community must be updated when the graph is modified. In

such cases, the comparison of the dynamic and static

algorithms is fair. The updated output can be obtained

either by static re-computation or incrementally with a

dynamic algorithm.

Figure 4c shows the mean dynamic speedup over re-

computation for each graph. For a batch size of 1, we

achieve mean speedups of two orders of magnitude on

some graphs. The dynamic approach is faster for batch

sizes of up to and including 100. Figure 4d shows the mean

dynamic speedup over re-computation for different

0.00

0.25

0.50

0.75

1.00
Slashdot

0.00

0.25

0.50

0.75

1.00
Facebook

0.00

0.25

0.50

0.75

1.00
Digg

0.00

0.25

0.50

0.75

1.00
Ucirvine

0.00

0.25

0.50

0.75

1.00
Contact

0.00

0.25

0.50

0.75

1.00
Manufacturing

precision
recall

0.00

0.25

0.50

0.75

1.00
Slashdot

0.00

0.25

0.50

0.75

1.00
Facebook

0.00

0.25

0.50

0.75

1.00
Digg

0.00

0.25

0.50

0.75

1.00
Ucirvine

0.00

0.25

0.50

0.75

1.00
Contact

0.00

0.25

0.50

0.75

1.00
Manufacturing

precision
recall

(a)

(b)

Fig. 3 The precision and recall

of our dynamic algorithm, using

results of re-computation with

the static algorithm as a

baseline, are shown over time

for all graphs. The x-axis

represents the number of edge

insertions and deletions made to

the graph. Thus, left to right

shows how average precision

and recall change as the graph

changes. For each graph, all

edges are inserted and edges are

removed with a sliding window.

The number of edges and size of

sliding window is given in

Table 2. a Starting with one-

third of the dataset as the initial

graph before streaming updates.

b Fully streaming version:

starting with an empty graph

and streaming the entire graph

as updates

Soc. Netw. Anal. Min. (2016) 6:65 Page 13 of 16 65

123

community sizes. The dynamic approach performs rela-

tively better for communities of size 25 and up. This is not

surprising because the static algorithm will take longer to

re-compute a large community.

7 Community operations

Tracking the evolution of communities through operations

is an important topic when studying dynamic

graphs Spiliopoulou (2011) Cazabet and Amblard (2014).

When dealing with global clusters, it is typical to compare

the overlap of communities found at different times in

order to detect continuing, growing, shrinking, merging,

splitting, appearing, and disappearing communities. The

focus of our work has been to present an algorithm that

maintains a local community over time by incrementally

updating. However, we will briefly discuss potential

approaches to detecting community operations to motivate

future work.

First, it is necessary to address the number of seed ver-

tices used to expand a single community and the implica-

tions in a dynamic context. Although each seed set consists

of a single vertex in our experiments, the algorithm can be

run with a seed set of multiple vertices of interest. However,

because a single community is found for the seed set, it only

makes sense to use multiple vertices if there is reason to

believe that there exists some community containing all of

them. In a dynamic graph, the seed vertices should remain

in a single community over time. Therefore, for the com-

munity operations addressed below, we limit our discussion

to the use of one seed vertex per community.

100 101 102 103

Batch Size

10-1

100

101

102

103

D
yn

am
ic

 S
pe

ed
up

 O
ve

r R
ec

om
pu

ta
tio

n
Dynamic Speedup Percentiles

25th percentile
50th percentile
75th percentile
mean

100 101 102 103

Batch Size

10-2

10-1

100

101

S
ec

on
ds

Running Times

dynamic
static

100 101 102 103

Batch Size

10-1

100

101

102

103

M
ea

n
D

yn
am

ic
 S

pe
ed

up
 O

ve
r R

ec
om

pu
ta

tio
n

Dynamic Speedup Per Graph

Slashdot
Facebook
Digg
Ucirvine
Contact
Manufacturing

100 101 102 103

Batch Size

10-1

100

101

102

103

M
ea

n
D

yn
am

ic
 S

pe
ed

up
 O

ve
r R

ec
om

pu
ta

tio
n

Dynamic Speedup by Community Size

0-4
5-9
10-24
25-49
50-99
100-499
500+

(a) (b)

(c) (d)

Fig. 4 Subfigures a, c, and d show the speedup of our dynamic

algorithm compared to re-computing with the standard, static

algorithm. A speedup of x means that using the dynamic algorithm

is x times faster than re-computing. Subfigure b shows the running

time. a The speedup mean, median, and quartiles are plotted for all

runs on all graphs. b The mean running time over all seed sets is

shown for both the dynamic and static methods. c The mean speedup

is given for each of the six graphs. d The mean speedup is shown for

different community sizes. Each point shows the mean using all

expansions with an average community size in the specified range

65 Page 14 of 16 Soc. Netw. Anal. Min. (2016) 6:65

123

For local communities, we can track the evolution of

individual local communities and detect interactions

between communities. A community can grow, shrink,

and disappear, which is easy to detect by the size of the

community. The volatility of a single cluster could be

measured by comparing the members of consecutive

times.

Independent local communities can merge and split by

increasing and decreasing their overlap. If, for example,

two vertices have highly overlapping communities, then

this indicates similarity or interaction between them. A

metric based on overlap, such as the Jaccard index, and a

threshold could be used to determine when the communi-

ties of two seeds have merged or split. A simpler option

marks a merge, or beginning of interaction, when the

community of one seed includes another seed vertex. A

split, or end of interaction, is marked when the latter seed is

no longer included in the former seed’s community. This is

shown in Fig. 5.

8 Conclusion

We have presented a new algorithm that incrementally

updates the local community of a seed set when the

underlying graph changes. For a variety of real social

networks with timestamps, this dynamic approach pro-

duces communities with high fitness scores and with high

overlap with the communities produced by a standard

greedy algorithm that must be rerun whenever the graph is

updated. The dynamic algorithm works well both when

beginning with an initial existing graph and in a fully

streaming manner when beginning with no initial data. The

dynamic method is faster than re-computation, and the

performance improvement is greatest when low latency

updates are needed. The speedup achieved varies based on

the size of a local community, with the dynamic algorithm

performing relatively better on large communities. The

algorithm is easily parallelized across independent expan-

sions. We also discuss an approach for tracking vertex

interaction over time using local communities, which may

be further addressed in future work.

Acknowledgments The work depicted in this paper was partially

sponsored by Defense Advanced Research Projects Agency (DARPA)

under agreement #HR0011-13-2-0001 (DARPA PERFECT). The

content, views and conclusions presented in this document do not

necessarily reflect the position or the policy of DARPA or the U.S.

Government, no official endorsement should be inferred.

References

Aktunc R, Toroslu IH, Ozer M, Davulcu H (2015) A dynamic

modularity based community detection algorithm for large-scale

networks: DSLM. In: Proceedings of the 2015 IEEE/ACM

international conference on advances in social networks analysis

and mining 2015. ACM, pp 1177–1183

Andersen R, Chung F, Lang K (2006) Local graph partitioning using

pagerank vectors. In: 47th Annual IEEE symposium on founda-

tions of computer science, 2006. (FOCS’06). IEEE, pp 475–486

Andersen R, Lang KJ (2006) Communities from seed sets. In:

Proceedings of the 15th international conference on World Wide

Web. ACM, pp 223–232

Asur S, Parthasarathy S, Ucar D (2009) An event-based framework

for characterizing the evolutionary behavior of interaction

graphs. ACM Trans Knowl Discov Data (TKDD) 3(4):16

Aynaud T, Fleury E, Guillaume JL, Wang Q (2013) Communities in

evolving networks: definitions, detection, and analysis tech-

niques. In: Mukherjee A, Choudhury M, Peruani F, Ganguly N,

Mitra B (eds) Dynamics on and of complex networks, vol. 2.

Springer, New York, pp 159–200

Aynaud T, Guillaume JL (2010) Static community detection

algorithms for evolving networks. In: WiOpt’10: modeling and

optimization in mobile, Ad Hoc, and wireless networks. IEEE,

pp 508–514

Bagrow JP, Bollt EM (2005) Local method for detecting communi-

ties. Phys Rev E 72(4):046–108

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast

unfolding of communities in large networks. J Stat Mech:

Theory Exp 10:P10008

Cazabet R, Amblard F (2014) Encyclopedia of social network

analysis and mining, chapter dynamic community detection.

Springer, New York, pp 404–414

Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering.

In: Proceedings of the 12th ACM SIGKDD international

conference on knowledge discovery and data mining. ACM,

pp 554–560

Chen J, Zaiane OR, Goebel R (2009) Detecting communities in large

networks by iterative local expansion. In: International confer-

ence on computational aspects of social networks, 2009.

(CASON’09). IEEE, pp 105–112

Chung FR (1997) Spectral graph theory, vol 92. American Mathe-

matical Society, Providence

Clauset A (2005) Finding local community structure in networks.

Phys Rev E 72(2):026–132

Derényi I, Palla G, Vicsek T (2005) Clique percolation in random

networks. Phys Rev Lett 94(16):160–202

Dinh TN, Xuan Y, Thai MT (2009) Towards social-aware routing in

dynamic communication networks. In: 2009 IEEE 28th Interna-

tional on performance computing and communications confer-

ence (IPCCC). IEEE, pp 161–168

Mark start of
interaction

Mark end of
interaction

Fig. 5 This figure illustrates tracking key vertex interactions using

seed set expansion. Vertices of interest are used as seeds and shown in

red, and communities are marked with shaded ovals. Left to right

marks the beginning of interaction between two seed vertices when

the community of one seed grows to include another seed. Right to

left marks the end of an interaction (color figure online)

Soc. Netw. Anal. Min. (2016) 6:65 Page 15 of 16 65

123

Evans T, Lambiotte R (2010) Line graphs of weighted networks for

overlapping communities. Eur Phys J B 77(2):265–272

Fortunato S (2010) Community detection in graphs. Phys Rep

486(3):75–174

Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of

communities in dynamic social networks. In: 2010 international

conference on advances in social networks analysis and mining

(ASONAM). IEEE, pp 176–183

Havemann F, Heinz M, Struck A, Gläser J (2011) Identification of

overlapping communities and their hierarchy by locally calcu-

lating community-changing resolution levels. J Stat Mech:

Theory Exp 1:P01023

Hopcroft J, Khan O, Kulis B, Selman B (2004) Tracking evolving

communities in large linked networks. Proc Natl Acad Sci

101(suppl 1):5249–5253

Jdidia MB, Robardet C, Fleury E (2007) Communities detection and

analysis of their dynamics in collaborative networks. In: ICDIM,

pp 744–749

Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the

overlapping and hierarchical community structure in complex

networks. New J Phys 11(3):033,015

Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding

statistically significant communities in networks. PLoS One

6(4):e18,961

Lee C, Reid F, McDaid A, Hurley N (2010) Detecting highly

overlapping community structure by greedy clique expansion.

In: 4th SNA-KDD workshop, p 3342

Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing

communities and their evolutions in dynamic social networks.

ACM Trans Knowl Discov Data (TKDD) 3(2):8

Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010)

Community structure in time-dependent, multiscale, and multi-

plex networks. Science 328(5980):876–878

Newman ME, Girvan M (2004) Finding and evaluating community

structure in networks. Phys Rev E 69(2):026–113

Ning H, Xu W, Chi Y, Gong Y, Huang TS (2010) Incremental

spectral clustering by efficiently updating the eigen-system.

Pattern Recognit 43(1):113–127

Palla G, Barabási AL, Vicsek T (2007) Quantifying social group

evolution. Nature 446(7136):664–667

Plantié M, Crampes M (2013) Survey on social community detection.

In: Ramzan N, van Zwol R, Lee J-S, Clüver K, Hua X-S (eds)

Social media retrieval. Springer, London, pp 65–85

Riedy J, Bader DA (2013) Multithreaded community monitoring for

massive streaming graph data. In: 2013 IEEE 27th international

parallel and distributed processing symposium workshops and

PhD Forum (IPDPSW). IEEE, pp 1646–1655

Riedy J, Bader DA, Jiang K, Pande P, Sharma R (2011) Detecting

communities from given seeds in social networks. Technical

Report GT-CSE-11-01, Georgia Institute of Technology. https://

smartech.gatech.edu/handle/1853/36980

Shang J, Liu L, Xie F, Chen Z, Miao J, Fang X, Wu C (2014) A real-

time detecting algorithm for tracking community structure of

dynamic networks. arXiv preprint arXiv:1407.2683

Spiliopoulou M (2011) Evolution in social networks: a survey. In:

Aggarwal CC (ed) Social network data analytics. Springer,

pp 149–175

Takaffoli M, Rabbany R, Zaı̈ane OR (2013) Incremental local

community identification in dynamic social networks. In:

Proceedings of the 2013 IEEE/ACM international conference

on advances in social networks analysis and mining. ACM,

pp 90–94

Tang L, Liu H (2010) Community detection and mining in social

media. Synth Lect Data Min Knowl Discov 2(1):1–137

Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework

for community identification in dynamic social networks. In:

Proceedings of the 13th ACM SIGKDD international conference

on knowledge discovery and data mining. ACM, pp 717–726

The koblenz network collection KONECT (2015). http://konect.uni-

koblenz.de

Waltman L, van Eck NJ (2013) A smart local moving algorithm for

large-scale modularity-based community detection. The Eur

Phys J B 86(11):1–14

Xie J, Kelley S, Szymanski BK (2013) Overlapping community

detection in networks: the state-of-the-art and comparative study.

ACM Comput Surv (CSUR) 45(4):43

Xie J, Szymanski BK (2012)Towards linear time overlapping

community detection in social networks. In: Advances in

knowledge discovery and data mining. Springer, pp 25–36

Zakrzewska A, Bader DA (2015) A dynamic algorithm for local

community detection in graphs. In: Proceedings of the 2015

IEEE/ACM international conference on advances in social

networks analysis and mining 2015, (ASONAM 15). ACM,

New York, pp 559–564

65 Page 16 of 16 Soc. Netw. Anal. Min. (2016) 6:65

123

https://smartech.gatech.edu/handle/1853/36980
https://smartech.gatech.edu/handle/1853/36980
http://arxiv.org/abs/1407.2683
http://konect.uni-koblenz.de
http://konect.uni-koblenz.de

	Tracking local communities in streaming graphs with a dynamic algorithm
	Abstract
	Introduction
	Contributions

	Related work
	Definitions and background
	Motivation and alternative approach
	Dynamic seed set expansion algorithm
	Algorithm overview
	Algorithm details
	Fully streaming version

	Results
	Experimental setup
	Quality of communities
	Performance results

	Community operations
	Conclusion
	Acknowledgments
	References

