
Mathematical Foundations of the GraphBLAS 
leremy Kepner (MIT Lincoln Laboratory Supercomputing Center), Peter Aaltonen (Indiana University), 
David Bader (Georgia Institute of Technology), Aydlll Bulu<; (Lawrence Berkeley National Laboratory), 
Franz Franchetti (Carnegie Mellon University), lohn Gilbert (University of California, Santa Barbara), 

Dylan Hutchison (University of Washington), Manoj Kumar (IBM), 
Andrew Lumsdaine (Indiana University), Henning Meyerhenke (Karlsruhe Institute of Technology), 

Scott McMillan (CMU Software Engineering Institute), lose Moreira (IBM), 
lohn D. Owens (University of California, Davis), Carl Yang (University of California, Davis), 

Marcin Zalewski (Indiana University), Timothy Mattson (Intel) 

Abstract-The GraphBLAS standard (GraphBlas.org) is being 
developed to bring the potential of matrix-based graph algo­
rithms to the broadest possible audience. Mathematically, the 
GraphBLAS defines a core set of matrix-based graph operations 
that can be used to implement a wide dass of graph algorithms in 
a wide range of programming environments. This paper provides 
an introduction to the mathematics of the GraphBLAS. Graphs 
represent connections between vertices with edges. Matrices can 
represent a wide range of graphs using adjacency matrices 
or incidence matrices. Adjacency matrices are often easier to 
analyze while incidence matrices are orten beUer for representing 
data. Fortunately, the two are easily connected by matrix multi­
plication. A key feature of matrix mathematics is that a very small 
number of matrix operations can be used to manipulate a very 
wide range of graphs. This composability of a small number of 
operations is the foundation of the GraphBLAS. A standard such 
as the GraphBLAS can only be efTective if it has low performance 
overhead. Performance measurements of prototype GraphBLAS 
implementations indicate that the overhead is low. 

I. INTRODUCTION 

Graphs are among the most important abstract data 
structures in computer science, and the algorithms 
that operate on them are critical to applications in 
bioinformatics [Georganas et al 2014], computer networks, 
and social media [Ediger et al 2010], [Ediger et al 2011], 
[Riedy et al 2012], [Riedy & Bader 2013]. Graphs have been 
shown to be powerful tools for modeling complex problems 
because of their simplicity and generality [Staudt et al 2016], 
[Bergamini & Meyerhenke 2016]. For this reason, the field of 
graph algorithms has become one of the pillars of theoretical 
computer science, informing research in such diverse areas as 
combinatorial optimization, complexity theory, and topology. 
Graph algorithms have been adapted and implemented by the 
military, commercial industry, and researchers in academia, 
and have become essential in controlling the power grid, 
telephone systems, and, of course, computer networks. 

Parallel graph algorithms are notoriously difficult 
to implement and optimize [Ediger et al 2012], 
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[Ediger & Bader 2013], [McLaughlin & Bader 2014a], 
[McLaughlin & Bader 2014b], [McLaughlin et al 2014], 
[Staudt & Meyerhenke 2016]. The irregular data access 
patterns and inherently high communication-to-computation 
ratios found in graph algorithms mean that even the best 
algorithms will have parallel efiiciencies that decrease as the 
number of processors is increased [Buluc;: & Gilbert 2012], 
[Azad et al 2015]. Recent work on communication-avoiding 
algorithms, and their applications to graph computations 
[Ballard et al 2013], [Solomonik et al 2013], might defer but 
not completely eliminate the parallel scalability bottleneck. 
Consequently, novel hardware architectures will also be 
required [Song et al 2010], [Song et al 2013]. A COlmnon 
graph processing interface provides a useful tool for 
optimizing both software and hardware to provide high 
performance graph applications. 

The duality between the canonical representation of 
graphs as abstract collections of vertices and edges and 
a matrix representation has been apart of graph theory 
since its inception [Konig 1931], [Konig 1936]. Matrix 
algebra has been recognized as a useful tool in graph 
theory for nearly as long (see [Harary 1969] and references 
therein, in particular [Sabadusi 1960], [Weischel 1962], 
[McAndrew 1963], [Teh & Yap 1964], [McAndrew 1965], 
[Harary & Tauth 1964], [Brualdi 1967]). The modern 
description of the duality between graph algorithms and 
matrix mathematics (or sparse linear algebra) has been 
extensively covered in the literature and is summarized 
in the cited text [Kepner & Gilbert 2011]. This text has 
further spawned the development of the GraphBLAS math 
library standard (GraphBLAS.org)[Mattson et al 2013] 
that has been developed in aseries of proceedings 
[Mattson 2014a], [Mattson 2014b], [Mattson 2015], 
[Buluc;: 2015], [Mattson 2016] and implementa-
tions [Buluc;: & Gilbert 2011], [Kepner et al 2012], 
[Ekanadham et al 2016], [Hutchison et al 2015], 
[Anders on et al 2016], [Zhang et al 2016]. This paper 
describes the mathematical properties that have been 
developed since [Kepner & Gilbert 2011] to support the 
GraphBLAS. 

The foundational mathematical concepts for matrix-based 
graph analysis are the adjacency matrix and incidence matrix 



representations of graphs. From these concepts, a more formal 
definition of a matrix can be constructed. How such a matrix 
can be manipulated depends on the types of values the matrix 
holds and the operations allowed on those values. Furthermore, 
the mathematical properties of the matrix values determine 
the mathematical properties of the whole matrix. This paper 
describes the key mathematical concepts of the GraphBLAS 
and presents preliminary results that show the overhead of 
the GraphBLAS is minimal (as compared to their underlying 
matrix Iibraries). 

H. ADJACENCY MATRIX 

Given an adjacency matrix A, if 

A(i, j) = 1 

then there exists an edge going from vertex i to vertex j (see 
Figure 1). Likewise, if 

A(i, j) = 0 

then there is no edge from i to j. Adjacency matrices can have 
direction, which means that A( i, j) may not be the same as 
A(j, i). Adjacency matrices can also have edge weights. If 

A(i,j) = a i= 0 

then the edge going from i to j is said to have weight a. 
Adjacency matrices provide a simple way to represent the 
connections between vertices in a graph. Adjacency matrices 
are often square, and both the out-vertices (rows) and the in­
vertices (columns) are the same set of vertices. Adjacency 
matrices can be rectangular, in which case the out-vertices 
(rows) and the in-vertices (columns) are different sets of 
vertices. Such graphs are often called bipartite graphs. In 
smmnary, adjacency matrices can represent a wide range of 
graphs, which incIude any graph with any set of the following 
properties: directed, weighted, and/or bipartite. 

in-vertex 
A 1 2 3 4 5 6 7 

1 • • 
2 • • x 

Q) 3 • t 

5 
Q) 4. • :;-
:5 5 • 0 

6 • 
7 • • • 

Fig. l. (left) Seven-vertex graph with 12 edges. Each vertex is labeled with 
an integer. (right) 7 x 7 adjacency matrix A representation of the graph. A 
has 12 nonzero entries corresponding to the edges in the graph. 

IH. INCIDENCE MATRIX 

An incidence, or edge matrix E , uses the rows to represent 
every edge in the graph and the columns to represent every 
vertex. There are a number of conventions for denoting an 
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edge in an incidence matrix. One such convention is to use 
two incidence matrices 

Eout(k,i) = 1 and 

to indicate that edge k is a connection from i to j (see 
Figure 2). Incidence matrices are useful because they can 
easily represent multi-graphs, hyper-graphs, and multipartite 
graphs. These complex graphs are difficult to capture with an 
adjacency matrix. A multi-graph has multiple edges between 
the same vertices. If there was another edge, k' , from i to j, 
this relationship can be captured in an incidence matrix by 
setting 

Eout(k' , i) = 1 and 

(see Figure 3) [Note: Another convention is to use +1 and 
-1, in wh ich case the resulting matrix multiplication is the 
graph Laplacian.] In a hyper-graph, one edge can connect more 
than two vertices. For example, to denote that edge k has a 
connection from i to j and j' can be accomplished by also 
setting 

(see Figure 3). Furthermore, i, j, and j' can be drawn from 
different cIasses of vertices. E can be used to represent 
multipartite graphs by defining an additional incidence array 
E:n and seting 

Thus, an incidence matrix can be used to represent a graph 
with any set of the following graph properties: directed, 
weighted, multipartite, multi-edge, and/or hyper-edge. 

Eoul1 
out-vertex 

Ein 1 
in-vertex 

234567 234567 
1 • 1 • 
2 . • 
3 • • 

f 
• r • • • 

§ 6 • ~ 6 . 
~ 7 • ~ 7 • 
~ : • ~ : • • • 

10 • 10 • 
11 • 11 • 
12 • 12 • 

Fig. 2. (left) Seven-vertex graph with 12 edges. Each edge is labeled with an 
integer; the vertex labels are the same as in Figure l. (middle) 12 x 7 incidence 
matrix E ou t representing the out-vertices of the graph edges. (right) 12 x 7 
incidence matrix Ein representing the in-vertices of the graph edges. 80th 
E start and Ein have 12 non zero entries corresponding to the edges in the 
graph. 

IV. MATRIX VALUES 

A typical matrix has m rows and n columns of real numbers. 
Such a matrix can be denoted as 

The row and and column indexes of the matrix Aare 

i E I = {I , ... , m} 



out-vertex Eout 1 234567 
E, in-vertex 

m1234567 
1 • 1 • 
2 . 2 • 
3 • • i: • r • • • 5 6 • ~ 6 · 

~ 7 • ~ 7 • 
"0 8 • "0 8 • w 9 • w 9 • 

10 • 10 • 
11 • 11 • 
12 • 12 •• 
13 • 13 • 

Fig. 3. Graph and incidence matrices from Figure 2 with a hyper-edge (edge 
12) and a multi-edge (edge 13). The graph is a hyper-graph because edge 12 
has more than one in-vertex. The graph is a multi-graph because edge 8 and 
edge 13 have the same out- and in-vertex. 

and 
j E J = {l , . . . , n} 

so that any particular value A can be denoted as A( i, j). 
The row and column indices of matrices are natural numbers 
I, J : N. [Note: a specific implementation of these matrices 
might use IEEE 64-bit double-precision floating point numbers 
to represent real numbers, 64-bit unsigned integers to represent 
row and column indices, and the compressed sparse rows 
(CSR) format or the compressed sparse columns (CSC) format 
to store the nonzero values inside the sparse matrix .] 

A matrix of complex numbers 

C = {x + yyC1 : x , y E lR} 

is denoted 
A : Cmxn 

A matrix of integers 

Z= { ... ,- l,O,l , ... } 

is denoted 
A : Z m x n 

A matrix of natural numbers 

N = {1,2, 3, ... } 

is denoted 

Using the above concepts, a matrix is defined as the following 
two-dimensional (2D) mapping 

A : l x J -+§ 

where the indices I , J : Z are finite sets of integers with m 
and n elements, respectively, and 

§ E {lR,Z, N, .. . } 

is a set of scalars. Without loss of generality, matrices can be 
denoted 

A : § m x n 

A vector is a matrix in wh ich either m = 1 or n = 1. A 
column vector is denoted v : §mxl or simply v : §mxl. A 
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row vector can be denoted v : §l x n or simply v : §n . A 
scalar is a single element of a set s E § and has no matrix 
dimensions. 

V. SCALAR OPERATIONS 

Matrix operations are built on top of scalar operations that 
can be used for combining and scaling graph edge weights. 
The primary scalar operations are standard arithmetic addition, 
such as 

1 + 1 = 2 

and arithmetic multiplication, such as 

2x2 = 4 

These scalar operations of addition and multiplication can 
be defined to be a wide variety of functions. To prevent 
confusion with standard arithmetic addition and arithmetic 
multiplication, EB will be used to denote scalar addition and 0 
will be used to denote scalar multiplication. In this notation, 
standard arithmetic addition and arithmetic multiplication of 
real numbers 

a, b, cE lR 

where 

EB=+ and 0= x 

results in 

c= a EB b c= a + b 

and 
c= a 0 b =} c= a x b 

Generalizing EB and 0 to a variety of operations enables a 
wide range of algorithms on scalars of all different types (not 
just real or complex numbers). 

Certain EB and 0 combinations over certain sets of scalars 
are particularly useful because they preserve essential mathe­
matical properties, such as additive commutativity 

a EB b = b EB a 

multiplicative commutativity 

additive associativity 

(a EB b) EB c = a EB (b EB c) 

multiplicative associativity 

(a 0 b) 0 c = a 0 (b 0 c) 

and the distributivity of multiplication over addition 

a 0 (b EBc) = (a 0 b) EB (a 0c) 

The properties of cOlmnutativity, associativity, and dis­
tributivity are extremely useful properties for building graph 
applications because they allow the builder to swap operations 
without changing the result. Example combinations of EB and 



o that preserve scalar conunutativity, associativity, and dis­
tributivity include (but are not limited to) standard arithmetic 

EB==+ a, b, cE lR 

max-plus algebras 

EB== max a, b, cE { - oo U lR} 

max-min algebras 

EB == max 0== min a, b, c E {-oo U lR<o } 

finite (Galois) fields such as GF(2) 

EB == xor 0== and a, b,cE {O,l} 

and power set algebras 

a, b,c c Z 

Other functions that do not preserve the above properties can 
also be defined for EB and 0 . For example, it is often useful 
for EB or 0 to pull in other data, such as vertex indices of a 
graph. 

VI. MATRIX PROPERTIES 

Associativity, distributivity, and commutativity are very 
powerful properties that enable the construction of composable 
graph algorithms (i.e., operations can be reordered with the 
knowledge that the answers will remain unchanged). Compos­
ability makes it easy to build a wide range of graph algorithms 
with just a few functions. Given matrices 

A,B, C E §mxn 

let their elements be specified by 

a = A(i,j) b = B(i,j) c = C(i,j) 

Commutativity, associativity, and distributivity of scalar oper­
ations translates into similar properties on matrix operations 
in the following manner. 

Additive commutativity allows graphs to be swapped and 
combined via matrix element-wise addition (see Figure 4) 
without changing the result 

where matrix element-wise addition is given by 

C(i,j) = A(i,j) EB B(i , j) 

Multiplicative conunutativity allows graphs to be swapped, 
intersected, and scaled via matrix element-wise multiplication 
(see Figure 5) without changing the result 

where matrix element-wise (Hadamard) multiplication is given 
by 

C(i , j) = A(i, j) 0 B(i , j) 
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Additive associativity allows graphs to be combined via ma­
trix element-wise addition in any grouping without changing 
the result 

(a EB b) EBc = a EB (b EBc) =} (A EB B) EB C = A EB (B EB C) 

Multiplicative associativity allows graphs to be intersected 
and scaled via matrix element-wise multiplication in any 
grouping without changing the result 

(a 0 b) 0 c = a 0 (b 0 c) =} (A 0 B) 0 C = A 0 (B 0 C) 

Element-wise distributivity allows graphs to be intersected 
and/or scaled and then combined or vice versa without chang­
ing the result 

a0 (bEBc) = (a0 b) EB (a0 c) =} A 0 (B EBC) = (A0 B) EB (A0 C) 

Matrix multiply distributivity allows graphs to be trans­
formed via matrix multiply and then combined or vice versa 
without changing the result 

a0 (b EBc) = (a0 b) EB (a0 c) =} A(B EB C) = (AB) EB (AC) 

where matrix multiply 

C = A EB.0 B = AB 

is given by 

I 

C(i , j) = EB A(i, k) 0 B(k ,j) 
k = l 

for matrices with dimensions 

Matrix multiply associativity is another implication of scalar 
distributivity and allows graphs to be transformed via matrix 
multiplication in various orderings without changing the result 

a 0 (b EB c) = (a 0 b) EB (a 0 c) (AB)C = A(BC) 

Matrix multiply conunutativity can be achieved when COln­
bined with the transpose operation 

where the trans po se of a matrix is given by 

AT(j , i) = A(i,j) 

VII. O-ELEMENT: No GRAPH EDGE 

Sparse matrices play an important role in graphs. Many im­
plementations of sparse matrices reduce storage by not storing 
the O-valued elements in the matrix. In adjacency matrices, 
the 0 element is equivalent to no edge from the vertex that is 
represented by the row to the vertex that is represented by the 
column. In incidence matrices, the 0 element is equivalent to 
the edge represented by the row not including the vertex that 
is represented by the column. In most cases, the 0 element is 
standard arithmetic 0, but in other cases it can be a different 
value. Nonstandard 0 values can be helpful when combined 
with different EB and 0 operations. For example, in different 



0 
2 

~ (±J 

7J::\5 
= 

4 7 4 7 5 

A1234567 B1234567 C1234567 

'0 10 '0 2 • 2 •• 
3 3 
4. (±J = 4. 
5 5 
6 6 
7 • 7 • 7 •• 

2 

0 ~ 7J::\5 

(±J 

4 7 4 7 5 

B 1 234567 A 1 234567 C1234567 

'0'0 '0 ~ .. ~ . 2 •• 
3 

4 (±J4. = 4. 
5 5 5 
6 6 6 
7 7 7 

Fig. 4. Illustration of the commutative property of the element-wise addition 
of two graphs and their corresponding adjacency matrix representations. 

0 
2 2 

® 
7J::\5 

= 
7) 4 7 

A1234567 B1234567 C1234567 

'0 10 10 2 • 
3 
4. ® 
5 
6 
7 • 7 • 

2 

0 
2 

7J::\5 
® = 

7) 4 7 

B 1 234567 A 1 234567 C1234567 

'0'0 10 ~ .. ~ . 
4 ® 4. = 
5 5 
6 6 
7 7 

Fig. 5. Illustration of the commutative property of the element-wise multi pli­
cation of two graphs and their corresponding adjacency matrix representations. 

contexts 0 might be + 00, -00, or 0 (empty set). For any value 
of 0, if the 0 element has certain properties with respect to 
scalar EB and 0 , then the sparsity of matrix operations can be 
managed efficiently. These properties are the additive identity 

a EB O= a 

and the multiplicative annihilator 

a 0 0 = 0 

Example combinations of EB and 0 that exhibit the additive 
identity and multiplicative annihilator include 

• standard arithmetic (+. x) on real numbers lR 
• max-plus algebra (max. + ) on real numbers with a de­

fined minimal element {-oo U lR} 
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• min-plus algebra (min. + ) using real numbers with a 
defined maximal element {lR U 00 } 

• max-min algebra (max.min) using non-negative real 
numbers [0, 00) 

• min-max algebra (min.max)] using non-positive real 
numbers (-00, ::; 0] 

• max-min algebra (max.min) using non-positive real num­
bers with a minimal element {-oo U lR<o} 

• min-max algebra (min.max) using non-negative real 
numbers with a maximal element {lR>o U 00 } 

• Galois field (xor.and) over a set of two numbers {O, I} 
• power set (u.n)] on any subset of integers Z 

The above examples are a small selection of the operators 
and sets that are useful for building graph algorithms. Many 
more are possible. The ability to change the scalar values and 
operators while preserving the overall behavior of the graph 
operations is one of the principal benefits of using matrices 
for graph algorithms. 

VIII. MATRIX GRAPH OPERATIONS 

The main benefit of a matrix approach to graphs is the 
ability to perform a wide range of graph operations on diverse 
types of graphs with a small number of matrix operations. 
These core matrix operations and some example graph oper­
ations they support are as follows 

• building a sparse matrix [rom row, column, and value 
tripies, wh ich corresponds to constructing a graph from 
a set of out-vertices, in-vertices, and edge weights 

• extracting the row, column, and value tuples correspond­
ing to the non zero elements in a sparse matrix, wh ich 
corresponds to extracting graph edges from the matrix 
representation of a graph 

• transposing the rows and the columns of a sparse matrix, 
which is equivalent to swapping the out-vertices and the 
in-vertices of a graph 

• using matrix multiplication to perforrn single-source 
breadth-first search, multisource breadth-first search, and 
weighted breadth-first search on a graph 

• extracting a sub-matrix from a larger matrix is equivalent 
to selecting a sub-graph from a larger graph 

• assigning a matrix to a set of indices in a larger matrix 
inserts a sub-graph into a graph 

• using element-wise addition of matrices and element­
wise multiplication of matrices to perform graph union 
and intersection along with edge weight scaling and 
combining 

The above collection of functions has been shown to be useful 
for implementing a wide range of graph algorithms. These 
functions strike a balance between providing enough functions 
to be useful to application builders while being few enough 
that they can be implemented effectively. 

A. Building a Matrix: Edge List to Graph 

Graph data can often be represented as tripies of vectors i, 
j, and v corresponding to the non zero elements in the sparse 



matrix. Constructing an mx n sparse matrix from vector tripies 
can be denoted 

C §m x n (i,j, v , EB) 

where 

are alll element vectors. The optional EB operation defines how 
multiple entries with the same row and column are handled. 

B. Extracting Tupies: Graph to Vertex List 

Extracting the non zero tuples from a sparse matrix can be 
denoted mathematically as 

(i,j, v) = A 

C. Transpose: Swap Out-Vertices and ln-Vertices 

D. Matrix Multiplication: Breadth-First-Search, and Adja­
cency Matrix Construction 

Matrix multiplication is the most important matrix opera­
tion and can be used to implement a wide range of graph 
algorithms. Examples inc1ude finding the nearest neighbors of 
a vertex (see Figure 7) and constructing an adjacency matrix 
[rom an incidence matrix (see Figure 8). In its most common 
form, matrix multiplication using standard arithmetic addition 
and multiplication is given by 

C = AB 

or more explicitly 

1 

C(i,j) = 2:: A(i, k)B(k,j) 
k=l 

Swapping the rows and columns of a sparse matrix is a where 
common tool for changing the direction of vertices in a graph B : lRlxn 
(see Figure 6). The transpose is denoted as 

or more explicitly 

C(j, i) A(i,j) 

where A : § mxn and C : § n x m 

Transpose also can be implemented using tripies as fol1ows 

(i,j, v) = A 

C = §n x m (j , i, v) 

A 1 2 3 4 5 6 7 
1 • • 
2 • • x 

Q) 3 • t 

5 
Q) 4. • :;-
::; 5 • 0 

6 • 
7 • • • 

X1 
in-vertex 

2 3 4 5 6 7 

• 
x 2 . 
Q) 3 • • • t 

5 
Q) 4. • :;-
::; 5 
0 • • 

6 • • 
7 • 

Fig. 6. Transposing the adjacency matrix of a graph switches the directions 
of its edges. 
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Matrix multiplication has many important variants that inc1ude 
non-arithmetic addition and multiplication 

C = A EB.® B 

where 

and the notation EB.® makes explicit that EB and ® can be 
other functions. 

One of the most common uses of matrix multiplication is 
to construct an adjacency matrix from an incidence matrix 
representation of a graph. For a graph with out-vertex inci­
dence matrix E out and in-vertex incidence matrix Ein, the 
corresponding adjacency matrix can be computed by 

where the individual values in A can be computed via 

A(i,j) = EBEJut(i, k) ® Ein(k , j) 
k 

At 
out-vertex 

Av 2 3 4 5 6 7 V 

• 

~ ~ 
2 . 

~I 3 • • • 
5 ~ 4 • • 

S 5 • • 
6 • • 
7 • 

Fig. 7. (Jeft) Breadth-first search of a graph starting at vertex 4 and traversing 
to vertices 1 and 3. (right) Matrix-vector multiplication of the adjacency matrix 
of a graph performs the equivalent operation. 



Eill12 m67 

1 • E:u1 12 3 4~9101112 2 
3 

in-venex 

A1234567 
1 •• 1 • • 

111 ; ~ 4~=~~==4 Eb.@ ~ 7 JIL 
~ 5 ~ 5 

6 
7 L-___ ----"~ 

1§ L 
~ : 

10 
11 

6 
7 L-..!....!.-"------' 

12 l.....-''--l-.L---' 

Fig. 8. Construction of an adjacency matrix of a graph from its incidence 
matrices via matrix-matrix multiply. The entry A(4, 3) is obtained by 
combining the row vector EJut (4, k) with the column vector Ein(k, 3) via 

12 
matrix-matrix product A(4, 3) = EI1 EJut (4, k) Q9 Ein (k , 3). 

k = l 

E. Extract: Selecting Sub-graphs 

Selecting sub-graphs is a very COlmnon graph operation (see 
Figure 9). This operation is performed by selecting out-vertices 
(row) and in-vertices (columns) from a matrix A : § m xn 

C = A(i,j) 

or more explicitly 

C(i,j) = A(i(i) , j(j)) 

where i E {I, ... , mc }, j E {I, ... , nc }, i : Imc , and j : Jmc 
select specific sets of rows and columns in a specific order. 
The resulting matrix C : § m c X n c can be larger or smaller 
than the input matrix A. This operation can also be used to 
replicate and/or permute rows and columns in a matrix. 

Extraction can also be implemented with matrix multiplica-
tion as 

C = S(i) A ST(j) 

where S(i) and Sm are selection matrices given by 

S(i) =§mc xm({l , ... ,mc},i, l) 

Sm = § n c xn( {I, .. . , nc},j, 1) 

in-vertex 
A(ij ) 1 2 3 4 5 6 7 

1 • • 
2 • • x 

Q) 3 • t 

5 
Q) 4. • :;-
:J 5 • 0 

6 • 
7 • • • 

Fig. 9. Selection of a 4-vertex sub-graph from the adjacency matrix via 
selecting subsets of rows and columns i = j = {I , 2, 4, 7} . 

F. Assign: Modifying Sub-Graphs 

Modifying sub-graphs is a very common graph operation. 
This operation is performed by selecting out-vertices (row) and 
in-vertices (columns) from a matrix C : §m xn and assigning 
new values to them from another sparse matrix , A : §m A xnA 

C(i,j) = A 

978-1-5090-3525-0/16/$31 .00 ©2016 IEEE 

or more explicitly 

C(i(i),j(j)) = A(i,j) 

where i E {I, ... , mA}, j E {I , ... , nA}, i : Im A and j : Jn A 

select specific sets of rows and columns. 

G. Element-Wise Addition and Element-Wise Multiplication: 
Combining Graphs, lntersecting Graphs, and Scaling Graphs 

Combining graphs along with adding their edge weights 
can be accomplished by adding together their sparse matrix 
representations 

C = A EB B 

where A, B, C : §m xn or more explicitly 

C(i , j) = A(i,j) EB B(i , j) 

where i E {I, ... , m}, and j E {I , ... , n} . 
Intersecting graphs along with scaling their edge weights 

can be accomplished by element-wise multiplication of their 
sparse matrix representations 

C = A ® B 

where A , B, C : §m xn or more explicitly 

C(i, j) = A(i ,j) ® B(i , j) 

where i E {I, ... , m}, and j E {I , .. . , n}. 

IX. PERFORMANCE 

A standard such as the GraphBLAS can only be effective if 
it does not impose unnecessary overhead on the computations 
it performs. One test of the overhead is to compare the 
GraphBLAS implementation to other standard sparse matrix 
libraries. Figure 10 shows the performance of one prototype 
GraphBLAS implementation compared to a state-of-the art 
GPU graph Iibrary (Gunrock) [Wang et al 2016]. 

The dataset used are random undirected Kronecker graphs 
with edge factor 32 and scale factor ranging from 16 to 21. 
Each experiment conducts a BFS starting from a high degree 
node in the graph. The GraphBLAS performance of sparse 
matrix - sparse vector multiplication is similar to Gunrock 
BFS performance. The similarity in performance indicates that 
the GraphBLAS is not introducing a high overhead. Each 
experiment is launched on these graphs from node 0 except 
on the scale 19 graph, which is launched from node 1. The 
runtime is an average of 10 runs to reduce variance. 

We ran all experiments in this paper on a Linux work­
station with 2x 3.50 GHz Intel 4-core E5-2637 v2 Xeon 
CPUs, 256 GB of main memory, and an NVIDIA K40c 
GPU with 12 GB on-board memory. The GPU programs 
were compiled with NVIDIA's nvcc compiler (version 7.5.17) 
using the -03 optimization level. The C code was compiled 
using gcc 4.8.5 . All results ignore transfer time (from disk­
to-memory and CPU-to-GPU). The Gunrock code was exe­
cuted using the cOlmnand-line configuration --undirected 
--traversal-mode=l --iteration-num=10. 
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Fig. 10. Sparse matrix times sparse vector performance for a prototype 
GraphBLAS implementation as compared to an optimized GPU graph library 
(Gunrock) performing BFS in a similar manner. 

Figure 11 shows the overhead of a second prototype Graph­
BLAS implementation, the GraphBLAS Template Library 
(GBTL)[Zhang et al 2016].We measured the GraphBLAS API 
overhead using the GraphBLAS Template Library (GBTL) on 
a machine with an Intel i5-4670k processor and a GTX660 
CUDA-capable graphics card. The overhead results reflect the 
difference in runtime, in terms of percentages, between the 
CUDA backend of GBTL invoked using GraphBLAS API and 
the direct calling of underlying implementation. We obtain 
the numbers by averaging the overhead of 16 runs on Erd6s­
Renyi random graphs generated using the same dimension and 
sparsity. The code is compiled using the - 02 optimization 
level on version 7.5.18 of the CUDA toolkit with gcc 4.9.3. 
The results indicate that the overhead of the GraphBLAS is 
small compared to the underlying math being performed. 
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Fig. 11. Percentage overhead of the GraphBLAS Template Library prototype 
implementation on six different GraphBLAS operations. 

X. CONCLUSIONS 

Matrices are a powerful tool for representing and manipulat­
ing graphs. Adjacency matrices represent directed-weighted­
graphs with each row and column in the matrix representing 
a vertex and the values representing the weights of the edges. 
Incidence matrices represent directed-weighted-multi-hyper­
graphs with each row representing an edge and each column 
representing a vertex. Perhaps the most important aspects 
of matrix-based graphs are the mathematical properties of 

978-1-5090-3525-0/16/$31 .00 ©2016 IEEE 

commutatIVIty, aSSOCIatlVlty, and distributivity. These proper­
ties allow a very small number of matrix operations to be 
used to construct a large number of graphs. These properties 
of the matrix are determined by the element-wise properties 
of addition and multiplication on the values in the matrix. 
The GraphBLAS allows these matrix properties to be readily 
applied to graphs in a low-overhead manner. 
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