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Abstract-cuSTINGER, a new graph data structure target
ing NVIDIA GPUs is designed tor streaming graphs that evolve 
over time. cuSTINGER enables algorithm designers greater 
productivity and efficiency for implementing GPU-based an
alytics, relieving programmers of managing memory and data 
placement. In comparison with static graph data structures, 
which may require transferring the entire graph back and 
torth between the device and the host memo ries for each 
update or require reconstruction on the device, cuSTINGER 
only requires transferring the updates themselves; reducing the 
total amount of data transferred. cuSTINGER gives users the 
flexibility, based on application needs, to update the graph one 
edge at a time or through batch updates. cuSTINGER supports 
extremely high update rates, over 1 million updates per second 
for mid-size batched with lOk updates and 10 million updates 
per second tor large batches with millions of updates. 

I. INTRODUCTION 

Dynamic graphs are ubiquitous and are used to represent 
data sets across various application domains. For example, 
dynamic graphs are used for representing the ever-changing 
relationship between players in social networks or for 
representing transactions between entities in financial or 
communication networks. Dynamic networks can also be used 
for representing protein interactions in a biological network. 

Static graph algorithms can be used to analyze dynamic 
graphs. One approach for dynamic graph analytics is to run 
a static graph algorithm after each update to the graph. This 
approach is often computationally expensive and infeasible 
for large graphs. 

Dynamic graph algorithms focus on analyzing graphs 
that are constantly changing. By using some previous state, 
dynamic graph algorithms can typically avoid a full out 
recomputation of the analytic. Because of this, dynamic graph 
algorithms can be orders of magnitude faster than their static 
graph counterparts and can enable online monitoring of the 
network. Lastly, dynamic graph algorithms typically require 
advanced data structures for both the algorithm's data and 
for the graph representation. 

In this paper we present cuSTINGER, the first data 
structure for maintaining dynamic graphs for NVIDIA's 
CUDA supported GPUs. cuSTlNGER manages the allocation 
of memory on the GPU for the dynamic graph alleviating 
the programmer's need to create a dynamic graph data 
structure and allowing the algorithm designer to focus purely 
on the algorithm. cuSTlNGER is a GPU extension of the 
STINGER (see [3], [10]) data structure used for representing 
dynamic graphs. STINGER has enabled the development 
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of a large number of dynamic graph algorithms, including 
online monitoring of betweenness centrality [12], connected 
components [16], and counting and tracking the number 
of triangles [9]. The design of cuSTINGER exploits the 
architecture of the GPU. In this paper, we differentiate 
between the STINGER data structure as defined in STINGER 
[3] and an implementation of STINGER as given by Georgia 
Tech [10] (wh ich we call GT-STINGER). 

cuSTlNGER can by configured at runtime by the program
mer or analyst. These includes enabling certain properties 
within the data structure. This includes adding support for 
weighted or property graphs, where vertices and edges have 
an associated type reflecting a possible role or relationship 
in the network. As the memory on the GPU is a more 
limited resource in comparison with the CPU, cuSTlNGER is 
designed to allow users to control the needed features and the 
total amount of allocated-memory; meeting the application 
and network requirements. While cuSTINGER is designed 
to support streaming graph analytics, it still permits static 
graph algorithms. In this paper, we compare the performance 
of static graph tri angle counting [13] with a cuSTINGER 
implementation. There is a slight reduction in performance 
between these two implementation, where cuSTINGER is 
1 % - 10% slower. This supports our intuition that our new 
data structure works weil with static graph algorithms with 
negligible overhead. 

cuSTlNGER has several different built-in memory allocators 
for controlling the amount of memory allocated for each 
vertex. For example, when cuSTlNGER is used for a static 
graph algorithm it can allocate the exact amount of memory 
required for the static graph. For dynamic graph algorithms 
cuSTINGER can use different allocators that trades memory 
utilization for improved perfonnance. 

11. RELATED WORK 

A. Dynamic Graph Data Structures 

The nature of dynamic networks requires that the data 
structure used for maintaining the network be flexible enough 
to support the insertion and deletions of edges and vertices. 
This requirement limits the ability to use data structures 
designed for static networks. For example, the Compressed 
Sparse Row (CSR) representation, used for both graph 
problems and sparse linear algebra problems, compacts the 
data into a handful of compressed arrays such that the exact 
amount of memory needed for representing the graph is 
allocated. The tight bound on memory allocations limits 



the use of CSR for dynamic graph algorithms as each 
update to the graph would require creating a new CSR 
representation, leading to a significant overhead. An adjacency 
matrix requires a matrix of IVI x IVI elements. While this 
representation over allocates the amount of memory needed to 
represent most real-world and sparse networks, it allows for 
updating the graph in constant time with relative ease. Linked 
lists also offer the flexibility to add and delete elements with 
a relative ease while offering tighter memory bounds than 
the adjacency matrix. However, finding an element requires 
more memory references as this requires a traversal of the 
entire Iinked list. This is extremely inefficient given that each 
element of a Iinked list may be located in a non-contiguous 
space in memory. CSR offers more efficient look ups as the 
adjacency Iists are located in contiguous memory. 

STINGER [3] is purposely designed for efficient imple
mentations of dynamic graph algorithms. STINGER takes 
the best features of an adjacency matrix, Iinked lists, and 
CSR, and uses a mix of these methods to give extremely fast 
updates while also allowing for the efficient implementation 
of various analytics. STINGER uses a blocked Iinked list 
data structure that stores multiple edges in each block of the 
Iinked list. These are referred to as edge blocks. In the GT
STINGER there is an internal memory manager for allocating 
edge blocks to the vertices. By doing so, this implementation 
is able to avoid using system calls for memory allocation 
and deallocation. Such systems calls can require thousands 
of cycIes and may add significant overhead. The edge block 
size is a user controlled parameter. A small edge block 
size results in the same restrictions of a Iinked list whilst 
a large edge block has the same drawback of an adjacency 
matrix (over allocating memory without the efficient lookups). 
Thus, selecting the edge block size is a compromise between 
algorithmic efficiency and storage efficiency and should be 
decided based on the application's requirements. 

In [10] it is shown that GT-STINGER can ingest several 
million updates per second on a single shared-memory system. 
In [15], GT-STINGER is compared to several leading graph 
databases and Iibraries, incIuding shared and distributed
memory. GT-STINGER is able to outperform these databases 
both in terms of update rates and for finding the connected 
components for a graph. A distributed version of STINGER, 
called DISTINGER, is introduced by Fong et al. [11]. 
DISTINGER uses a hash-map to decide the compute-node 
where a vertex will be stored. While DISTINGER is able to 
handle larger graphs due to its distributed nature, incIuding 
additional memory, it still suffers from having one centralized 
server that is responsible for updating the entire network. 

Lastly, LLama [14] offers an alternative data structure for 
dynatnic graph algorithms that is based on check-pointing the 
network as updates are added. An adjacency list of a vertex 
might be split across multiple checkpoints in LLama. This 
makes the LLama data structure an unlikely candidate for 
the GPU as accessing an edge in each check will cause low 
system utilization. 
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B. GPU Graph Analytics and Platforms 

In [19], Merrill et al. give the first scalable GPU graph 
traversal for NVIDIA's CUDA [1] supported GPU. To improve 
the utilization of the GPU, several different travers al strategies 
are taken. These strategies take into the account the massive 
thread-Ievel parallelism available for CUDA supported GPU 
cards. Thus, large vertices are processed differently than 
smaller vertices. 

Other available graph analytics for the GPU incIude triangle 
counting [13], [22], connected components [24], single-source 
shortest path [8], betweenness centrality for static graphs [23], 
[18], betweenness centrality for dynamic graphs [17], and 
community detection [25]. 

In addition to these implementations, several Iibraries for 
static graph analytics for the GPU incIude: Gunrock [27], 
[21], BlazeGraph [5], nvGraph [20], GasCL [6], and BelRed 
[7]. These libraries offer data scientists simple tools needed 
for analyzing data-sets without the need to write complex 
GPU code. Gunrock [27] is designed for implementing 
graph traversals through the use of a small set of highly 
optimized operators which are suitable for a wide range of 
applications. BlazeGraph [5] has its own domain-specific 
language, called DASL, enabling programmers to implement 
advanced analytics with high-level functionality. BeIRed [7] 
allows programmers to implement graph based applications 
using basic building linear algebra building blocks. GasCL 
[6] uses a vertex-centric approach approach with the Gather
Apply-Scatter (GAS) model. In this paper we show that for 
static graph analytics, cuSTINGER adds negligible overhead. 

111. cuSTINGER 

In this section we outline our design and implementation 
of cuSTINGER. We discuss data structure considerations as 
weil as performance trade-otls. When relevant we compare 
our cuSTINGER with GT-STINGER. 

A. Structure 0/ Array Vs. Array 0/ Structure 

In GT-STINGER, edges are stored in edge blocks, where 
each block contains multiple edges. Each edge stores asso
ciated properties such as when that edge was last modified 
or its weight. These are stored in a structure; therefore, the 
edge block is an array of structures. Such a representation is 
not ideal for CUDA supported GPUs as this can increase the 
number of memory requests for updating a single field across 
multiple threads. A more efficient memory access pattern 
for CUDA would be to have the same fields accessed in a 
consecutive fashion. As such, in cuSTINGER, we replace the 
array of structures with a structure of arrays allowing for a 
reduced number of memory requests. An additional benefit 
of this modification to the data representation is our ability 
to support different allocation modes for using cuSTINGER 
(Section III-E). 

B. Replacing Edge Blocks with Arrays 

In cuSTINGER we replace the use of the list of edge 
blocks per vertex with a single adjacency array for each 
vertex. In GT-STINGER there is a memory manager that is 



TABLE I 

N ETWORKS USED I N OUR EXPERI MENTS : 10TH DIMACS GRAPH 

IMPLEMENTATION CHALLENG E [4] AND SNAP [2]. lEI REFERS T O 

DIRECTED EDGES. NOTE TH AT N ETWORKS ARE ORDER BASED ON THE 

NUMBER OF VERTICES ( ASCENDI NG ORDER). TIME IS GIVEN IN SECONDS 

FOR THE INITl ALlZATlON AN D TRI ANGLE COU NTING. TC-CSR IS THE 

EXECUTION TIM E FOR THE TRI ANGLE COU NTING IMPLEME NTATI ON 

USING CSR AND TC-cuS FOR THE IMPLEMENTATION USING 

c u STlNGE R. 

Nam e Network IV I lE I Ref. Init. TC-CSR TC-wS 
Type (sec.) (sec.) (sec.) 

prcfA uach Powcrl aw l OOk IM 14] 0. 11 0 0. 108 0. 11 0 

m1 4b Walshaw 2 15k 3.3M 14] 0.24 0 .240 0.260 
coAuthorsDBLP Sod al 299k 1.95M 14] 0.33 0.218 0.242 

alllazon060 1 SociaJ 403k 3.38M 12] 0.45 1.1 87 1.253 
wcb-BerkStan Wcbcrawl 685k 7.6M 12] 0.8 1 0.706 0.780 
audikw l Matri x 943k 76.7M 14] 1.25 4.485 4.682 

ldoor Matri x 952k 4S.5M 14] 1.2 1 2.674 2.9 16 

as-skiUcr Traee route 1.69M 11.1 M 12] 2. 12 57. 14 59.37 
kron_g500-1ogn21 Kronecker 2M 20 1M 14] 3.03 2992.7 2996.5 
cit-Pmcnts Citation 3.77M 16.5M 12] 4.83 0.8 14 0.830 
soc-LiveJoumall Sodal 4.84M 68 .99M 12] 7.07 8.223 8.767 
cage lS Matrix 5. 15M 94M 14] 7. 14 6.544 7.204 
rood_ccllInd Road 14M 33M 14] 19.9 7.524 8.58 1 

uk-2002 Webcrawl 18.S2M 523M 14] 28 .4 424 .9 43 1.4 

responsible for edge block allocation and deallocation from 
a pre-allocated global memory pool. Unfortunately, the edge 
block approach is not applicable to the GPU architecture. First 
of all, edge blocks rnight be located in different places in the 
memory system, increasing the number of memory accesses 
and reducing the benefits of caching and pre-fetching. Also, 
if a small edge block size is used (which is preferable from a 
storage perspective), then a GPU's streaming multiprocessor 
migh be underutilized as there is not enough work to use a 
full GPU warp. To overcome this work utilization issue it is 
possible to use large edge blocks. However, this leads to low 
storage utilization, which is an already valuable commodity 
on the GPU. To avoid the above, we allocate a single array for 
each adjacency list. This has the benefit of beuer locality for 
edges in the same adjacency list, beUer memory utilization, 
and requires only one memory allocation (allowing for a 
simpler memory manager). 

C. Data Layout and Memory Management 

In cuSTINGER, we implement an advanced memory man
ager that requires fewer calls to the system memory allocation 
and deallocation functions than a naive implementation. 
Specifically, numerous adjacency lists are grouped together 
into one larger chunk of contiguous memory. This improved 
memory manager reduces the time spent in the initialization 
phase, by weil over an order of magnitude. Further, updating 
the graph also becomes significantly faster. 

D. Memory Allocation Modes 

While cuSTINGER has been designed for developing 
dynarnic graph algorithms for the GPU, it can also be 
used for static graph algorithms. As such, cuSTINGER 
allows the programmer to select a memory allocation model 
that is preferable to the application at hand. cuSTINGER 
has memory allocation modes for both static and dynarnic 
graphs. For static graph algorithms operating on static graphs, 
cuSTINGER can allocate the exact amount of needed memory 
- similar to the memory requirements of CSR. This is known 
as the exact mode. 
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Aigorithm 1: Pseudo code for updating a cuSTINGER 
graph with a set of B edge insertions. Functions followed 
by < < < > > > denote a call to a GPU kerne!. 

Inputs: cuSt ing - dynamic graph. 
Inputs : B - batch o f updates. 

C opyHostToDevice(B ) 
Phase l Update «<»> (cuSting , B , IBI)/1 GPU kerneI 

C opyDeviceToHost(B ) // Uncompleted edge list 
CopyDeviceToHost(DupSB) /I Duplicated inserted edges in B 
R emoveDuplicates «<»> (DUpSB ) // GPU kernel 

/I ReaIIocates memory for aU unique sources vertices of B. 
C opyDeviceToH ost(Pointer Adjacen cyList ) 
CPU-ReallocateMemorY(B , P ointer AdjacencyList) 
C opyH ostToDevice (N ewPointer A djacencyList ) 

/ / Copies entire edge lists for all vertices new edge lists 
D eepC opyDeviceToDevice ( P ointer EdgeList , N ewPointer
E dgeL ist , B ) 
Phase2Update «<»> (cuSting, B , B)/1 GPU kerneI 

cuSTINGER also has dynarnic graph memory allocation 
modes. These trade off storage utilization and the ability 
to support updates with as few calls to the system memory 
allocation functions. Such calls are relatively expensive in 
comparison to the update operation. Users are responsible 
for selecting their preferred memory allocation mode as part 
of their initial configuration. 

E. cuSTlNGER Meta-Data Modes 

Current state of the art GPUs have a smaller amount of 
memory in comparison with their CPU counterparts. For 
example, a single NVIDIA K40 GPU has 12 GBs of memory 
and the K80 has 2x 12GBs memory. Currently CPU servers 
can support tera-bytes of memory in a single system. As such, 
cuSTINGER has several different meta-data modes that can 
be used in the initialization. These modes are intended for 
different types of applications requiring additional properties 
to the graph: 

1) Adjacency-only mode - this is a stripped down network 
that only stores the adjacency lists and is for unweighted 
networks. Conceptually, this is sirnilar to the amount of data 
stored in CSR. 

2) Vertex weights and edge weights - a user can decide to 
assign a weight to vertices or edges. The additional storage 
cost is O(V) for vertex weights and O(E) for edge weights. 

3) Semantic mode - is intended for analysts that need 
to associate additional properties for each vertex or edge. 
This includes vertex types, edge types, and time stamps for 
when the edge was last modified. time stamps are especially 
useful for monitoring temporal networks. Tünestamps were 
added to cuSTINGER to support portability with STINGER. 
Lastly, semantic mode also allocates memory for vertex and 
edge weights. In total , semantic mode increases the memory 
footprint by O(V + E). 

These modes allow for better control over the amount 
of allocated memory. This is especially useful for analytics 
and applications that do not require additional data. In GT
STINGER the semantic support is turned on by default and in 
fact cannot be removed due to the use of array of structures 



rather than structures of arrays. cuSTINGER is able to support 
these additional modes partially due to the change made in 
its internal representation. 

F Updates 

cuSTINGER supports the following operations to the 
graph: edge insertions, edge deletions, vertex insertions, 
and vertex deletions. Given the massive parallelism on the 
GPU, it is highly recommended that updates be grouped 
into batches (as is done in [10]). However, the decision on 
the update granularity is typically application driven. For 
example, in dynamic graph betweenness centrality [12] the 
update-time is negligible in comparison to the computational 
requirement, thus, the granularity is not important. However 
for dynamic graph algorithms such as triangle counting [9] 
and tracking connected components [16] the overhead can 
become dominant. 

cuSTINGER separates the insertion and deletion processes, 
unlike GT-STINGER which can do both of these concurrently. 
This is partially due to the increased parallelization of a GPU 
and the more complex memory management. By separating 
the insertions and deletions, the actual update implementation 
is simple. In the following subsections, we discuss these 
update processes in additional detail. This discussion focuses 
on unweighted and non-semantic graphs for simplicity. For 
the next section we assume that a batch of updates, B, consists 
of either IBI edge insertions or deletions. 

1) Edge insertions: The pseudo code in Aig. 1 depicts the 
edge insertion process for cuSTINGER. Initially, the batch 
is copied to the device, where cuSTINGER is located. This 
is followed by the first phase sweep of the insertion process. 
For each edge update b E B , we check if that edge already 
exists in the graph (duplicates are typically undesirable). All 
non-duplicate edges are inserted, assuming sufficient memory 
is available. If there is not enough memory, it is added to an 
edge list that requires additional attention. Further, a situation 
can arise where there are two updates in the same batch, 
b1 , b2 E B that are identical - causing the same edge to be 
inserted twice. This is undesirable and cuSTINGER detects 
these same-batch duplicates and creates a list of these updates 
for further processing. 

Lastly, vertices for which adjacency lists are full and cannot 
store all the new updates are dealt with by allocating new a 
adjacency list. This is done via several memory copies from 
the device to the host followed by an additional device kernel 
launch. Initially, each of the vertices requiring additional 
memory receives a new and larger adjacency list. This is 
followed by copying the old adjacency list into the new one. 
Finally, the non-completed edges are inserted in a second 
phase sweep. 

2) Edge deletions: Edge deletions are to some degree 
easier than edge insertions. This is due to the nature of the 
deletions. An edge deletion will always reduce the amount 
of necessary storage; thus, additional memory allocations 
and copying are never necessary. Edge deletions are also 
implemented using a two-phase algorithm for a given batch. 
In the first phase, given a batch of edge deletions, all edges 
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Fig. l. Allocation time for initializing cuSTINGER as a function of the 
number of vertices in the initial graph. A linear trendline has been added 
that confirms that the initialization time grows linearly with the number of 
vertices. 

in the batch are located within cuSTINGER and marked as 
deleted. In the second phase, the adjacency list is compressed 
by taking an edge at the end of a vertex's adjacency list and 
replacing it with the deleted edge. 

3) Vertex insertions and deletions: Vertex insertions and 
deletions can be considered as aseries of edge insertions and 
deletions, respectively. For example, if a vertex is deleted so 
are all of its adjacency edges. Thus, a vertex update can be 
completed using the edge updates operations. 

IV. PERFORMANCE ANALYSIS 

Our experiments are conducted on an NVIDIA K40 GPU 
and an Intel i7-4770K quad-core CPU system. The K40 is 
a Kepler based GPU with 15 SMs and 192 SPs per SM, 
for a total of 2880 SPs. The K40 has 12GB of GDDR5 
memory. The Intel i7-4770K is aHasweIl based processor 
running at 3.5 GHz with 8MB L3 cache. This system 
has 32GB of DDR3-1600 memory. To test the capability 
of cuSTINGER with graph updates we use real world 
graphs and networks taken from the 10th DIMACS Graph 
Implementation Challenge [4] and [2]. Details of these graphs 
can be found in Table I. Finally, to test the throughput rate 
of cuSTINGER, we check its ability to handle different batch 
update sizes. We use a wide range of batch update sizes, 
from a single update and all the way up to batches with ten 
million updates (in multiples of tens). The maximal size of 
the batch per network is dependent on its initial size. The 
batches are created using a random edge generator. Each 
experiment, consisting of one graph and one batch size, is 
conducted for ten different batches. For all experiments, the 
graph is read from a file and loaded onto the GPU, ensuring 
that the different batches are applied to the same initial graph. 
For each batch, we insert the edges into the graph and then 
we remove these edges using cuSTINGER's insertion and 
deletion functionality. 

A. Initialization 

Table I shows the time it takes to initialize a cuSTINGER 
structure on the GPu. This includes the memory allocation 
time for each of the adjacency lists, initializing the internal 
data structure properties on both the host and the device, and 
transferring of data between the host and the device. Fig. 1 
depicts the allocation time for cuSTINGER as a function of 
the number of vertices in the graph. The solid curve denotes 



the linear rate at which the allocation time is a function of the 
number of vertices. This curve shows a correlation between 
the initialization time and the number of vertices in the static 
graph. 

B. Update Rate 

One of the main design goals of cuSTINGER is to ensure 
that it is possible to update the graph at high rates such 
that the update process itself does not become the bottleneck 
for a streaming algorithm. To measure cuSTINGER's ability 
to process updates, we measure the number of updates per 
second that cuSTINGER can handle - this is the same metric 
used to measure the update capability of GT-STINGER [10]. 
Fig. 2 depicts the updates per second rate that cuSTINGER 
can achieve as a function of the batch size. The upper 
subfigure depicts the throughput rate for edge insertions whilst 
the bottom subfigure depicts the rate for edge deletions. 

1) Small Batch-Sizes: The update rate for both insertions 
and deletions is similar for small batch sizes. cuSTINGER 
achieves roughly 15k updates per second when the size of the 
batch is a single update. This rate is approximately the same 
across all test-graphs. For such small batches, there are several 
performance restrictions. The first restriction is the kernel 
launch overhead which can take several microseconds and 
dominates the execution time for small batches. The second 
performance restriction is the need to copy the update from the 
host to the device. Lastly, the GPU is simply underutilized as 
there is only one update to process - this utilizes a single GPU 
thread-block and a single GPU streaming multi-processor out 
of the many available. Therefore, it is not overly surprising 
the throughput rate increases by almost a factor of 10 and 
100 as the batch size increases to 10 and 100 edges per 
batch, respectively. As the batch sizes increase beyond 1000 
updates, these factors become less dominant and the time 
spent updating the graph becomes more important. 

2) Edge Insertions - Large Batches: As the batch size 
continues to increase, the likelihood of an edge insertion not 
having space in a pre-existing adjacency list also increases. 
When this occurs, a new adjacency list needs to be allocated 
and the old adjacency list is copied to the new list. This adds 
overhead. In Fig. 2, there are several networks that have a 
"performance dip" for batches of lOk and lOOk updates. In all 
these cases, updates have caused a scenario where at least one 
vertex requires a new adjacency list. In the current version 
of cuSTINGER, the update process requires several memory 
copies from the device to the host in addition to initialization 
of some auxiliary data structures. While these memory copies 
are not overly demanding, in comparison with the time spent 
updating the network they are expensive. In future work we 
will look into optimizing this process. 

Nonetheless, for most networks cuSTINGER is able to keep 
an update rate of over 1 million updates per-second for larger 
batches and in some cases an update over 10 million updates 
per-second. Note, for several of the networks the batch size 
is close to 50% of the size of the graph - wh ich means that 
due to the update, the graph increases its size by as much as 
50%. While such an experiment offers performance insights, 
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Fig. 2. cuSTINGER's update rate as a function of the batch size - higher 
rates are desirable. Top subfigure depicts the rate for edge insertions and 
the bottom subfigure for edge deletions. For sm all batch sizes, the update 
rate is limited by the kernel launch overhead. 

for most dynamic networks we don't expect an update rate 
that will change the graph by that amount. 

3) Edge Deletions - Large Batches: Unlike edge insertions 
that may require additional memory allocations, edge dele
tions do not. Edge deletions only remove existing edges from 
the graph. In this current version of cuSTINGER, empty edge 
lists are not reclaimed or deallocated when all the edges of 
a vertex have been removed, and thus there are not any calls 
to the memory management. This allows for more efficient 
processing and consistent performance for edge deletions (in 
comparison with edge insertions). This is depicted in Fig. 2 
where the deletion is consistent across for all graphs given a 
specific batch and batch size. Notice that there is very little 
variance across these experiments. In fact, the error bars are 
barely visible for deletions, whilst they are visible for edge 
insertions. Lastly, given large enough batch sizes, greater 
than lOk updates per batch, cuSTINGER supports almost 20 
million edge deletions per second. 

C. Triangle Counting 

In this section, we take the popular tri angle counting metric, 
which is part of clustering coefficients [28], [26], and check 
its performance using cuSTINGER. We consider the GPU 
algorithm from [13] which counts triangles in static graphs 
and port the implementation to cuSTINGER. While this is a 
static graph algorithm and not a dynamic graph algorithm for 
which cuSTINGER was designed, we show that cuSTINGER 
also offers good performance for static graph algorithms. 

Table I has the execution time for both the original 
implementation (denoted as TC-CSR) as weIl as the new 
cuSTINGER implementation (denoted as TC-cuS). Both 



algorithms output the same and correct number of triangles. 
From a performance perspective, there is a slight reduction 
in performance between these two implementation, where 
cuSTINGER is 1 %-10% slower. This supports our intuition 
that our new data structure can also replace other static graph 
representations for the GPU. 

V. CONCLUSIONS 

In this paper we present cuSTINGER, the first dynamic 
graph data structure for the GPU. cuSTINGER manages the 
graph data structure on the GPU, allowing programmers to 
focus on algorithm development rather than complex data 
management and movement. cuSTINGER supports several 
different meta-data modes with run-time parameters. These 
modes allow controlling the amount of allocated memory on 
the GPU device, including restricting the amount of memory 
to be similar to that required by a CSR representation or full 
semantic support (as found in STINGER). Given the limited 
amount of storage available on the GPU this is crucial. 

cuSTINGER supports extremely high update rates, from 
15k updates per second with the graph being updated one 
edge at a time and weil over 10 million updates per second 
when the batches are large (with over lOOk updates per 
batch). And while cuSTINGER was designed with dynamic 
graph algorithms in mind, it can also be used for static 
graph algorithms. To benchmark cuSTINGER performance in 
comparison with CSR, we take a triangle counting algorithm 
originally implemented in CSR and port it to cuSTINGER. 
We showed that cuSTINGER performs within 10% of the 
original implementation. 

Lastly, our goal is to improve on the current restrictions and 
overheads imposed by memory allocation. For future work 
on cuSTINGER we will look for an alternative approach for 
memory management for larger graphs and improved memory 
reclamation. 
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