
cuSTINGER: Supporting Dynamic Graph Aigorithms for GPUs

Oded Green, David A. Bader
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, USA

Abstract-cuSTINGER, a new graph data structure target
ing NVIDIA GPUs is designed tor streaming graphs that evolve
over time. cuSTINGER enables algorithm designers greater
productivity and efficiency for implementing GPU-based an
alytics, relieving programmers of managing memory and data
placement. In comparison with static graph data structures,
which may require transferring the entire graph back and
torth between the device and the host memo ries for each
update or require reconstruction on the device, cuSTINGER
only requires transferring the updates themselves; reducing the
total amount of data transferred. cuSTINGER gives users the
flexibility, based on application needs, to update the graph one
edge at a time or through batch updates. cuSTINGER supports
extremely high update rates, over 1 million updates per second
for mid-size batched with lOk updates and 10 million updates
per second tor large batches with millions of updates.

I. INTRODUCTION

Dynamic graphs are ubiquitous and are used to represent
data sets across various application domains. For example,
dynamic graphs are used for representing the ever-changing
relationship between players in social networks or for
representing transactions between entities in financial or
communication networks. Dynamic networks can also be used
for representing protein interactions in a biological network.

Static graph algorithms can be used to analyze dynamic
graphs. One approach for dynamic graph analytics is to run
a static graph algorithm after each update to the graph. This
approach is often computationally expensive and infeasible
for large graphs.

Dynamic graph algorithms focus on analyzing graphs
that are constantly changing. By using some previous state,
dynamic graph algorithms can typically avoid a full out
recomputation of the analytic. Because of this, dynamic graph
algorithms can be orders of magnitude faster than their static
graph counterparts and can enable online monitoring of the
network. Lastly, dynamic graph algorithms typically require
advanced data structures for both the algorithm's data and
for the graph representation.

In this paper we present cuSTINGER, the first data
structure for maintaining dynamic graphs for NVIDIA's
CUDA supported GPUs. cuSTlNGER manages the allocation
of memory on the GPU for the dynamic graph alleviating
the programmer's need to create a dynamic graph data
structure and allowing the algorithm designer to focus purely
on the algorithm. cuSTlNGER is a GPU extension of the
STINGER (see [3], [10]) data structure used for representing
dynamic graphs. STINGER has enabled the development

978-1-5090-3525-0/16/$31 .00 ©2016 IEEE

of a large number of dynamic graph algorithms, including
online monitoring of betweenness centrality [12], connected
components [16], and counting and tracking the number
of triangles [9]. The design of cuSTINGER exploits the
architecture of the GPU. In this paper, we differentiate
between the STINGER data structure as defined in STINGER
[3] and an implementation of STINGER as given by Georgia
Tech [10] (wh ich we call GT-STINGER).

cuSTlNGER can by configured at runtime by the program
mer or analyst. These includes enabling certain properties
within the data structure. This includes adding support for
weighted or property graphs, where vertices and edges have
an associated type reflecting a possible role or relationship
in the network. As the memory on the GPU is a more
limited resource in comparison with the CPU, cuSTlNGER is
designed to allow users to control the needed features and the
total amount of allocated-memory; meeting the application
and network requirements. While cuSTINGER is designed
to support streaming graph analytics, it still permits static
graph algorithms. In this paper, we compare the performance
of static graph tri angle counting [13] with a cuSTINGER
implementation. There is a slight reduction in performance
between these two implementation, where cuSTINGER is
1 % - 10% slower. This supports our intuition that our new
data structure works weil with static graph algorithms with
negligible overhead.

cuSTlNGER has several different built-in memory allocators
for controlling the amount of memory allocated for each
vertex. For example, when cuSTlNGER is used for a static
graph algorithm it can allocate the exact amount of memory
required for the static graph. For dynamic graph algorithms
cuSTINGER can use different allocators that trades memory
utilization for improved perfonnance.

11. RELATED WORK

A. Dynamic Graph Data Structures

The nature of dynamic networks requires that the data
structure used for maintaining the network be flexible enough
to support the insertion and deletions of edges and vertices.
This requirement limits the ability to use data structures
designed for static networks. For example, the Compressed
Sparse Row (CSR) representation, used for both graph
problems and sparse linear algebra problems, compacts the
data into a handful of compressed arrays such that the exact
amount of memory needed for representing the graph is
allocated. The tight bound on memory allocations limits

the use of CSR for dynamic graph algorithms as each
update to the graph would require creating a new CSR
representation, leading to a significant overhead. An adjacency
matrix requires a matrix of IVI x IVI elements. While this
representation over allocates the amount of memory needed to
represent most real-world and sparse networks, it allows for
updating the graph in constant time with relative ease. Linked
lists also offer the flexibility to add and delete elements with
a relative ease while offering tighter memory bounds than
the adjacency matrix. However, finding an element requires
more memory references as this requires a traversal of the
entire Iinked list. This is extremely inefficient given that each
element of a Iinked list may be located in a non-contiguous
space in memory. CSR offers more efficient look ups as the
adjacency Iists are located in contiguous memory.

STINGER [3] is purposely designed for efficient imple
mentations of dynamic graph algorithms. STINGER takes
the best features of an adjacency matrix, Iinked lists, and
CSR, and uses a mix of these methods to give extremely fast
updates while also allowing for the efficient implementation
of various analytics. STINGER uses a blocked Iinked list
data structure that stores multiple edges in each block of the
Iinked list. These are referred to as edge blocks. In the GT
STINGER there is an internal memory manager for allocating
edge blocks to the vertices. By doing so, this implementation
is able to avoid using system calls for memory allocation
and deallocation. Such systems calls can require thousands
of cycIes and may add significant overhead. The edge block
size is a user controlled parameter. A small edge block
size results in the same restrictions of a Iinked list whilst
a large edge block has the same drawback of an adjacency
matrix (over allocating memory without the efficient lookups).
Thus, selecting the edge block size is a compromise between
algorithmic efficiency and storage efficiency and should be
decided based on the application's requirements.

In [10] it is shown that GT-STINGER can ingest several
million updates per second on a single shared-memory system.
In [15], GT-STINGER is compared to several leading graph
databases and Iibraries, incIuding shared and distributed
memory. GT-STINGER is able to outperform these databases
both in terms of update rates and for finding the connected
components for a graph. A distributed version of STINGER,
called DISTINGER, is introduced by Fong et al. [11].
DISTINGER uses a hash-map to decide the compute-node
where a vertex will be stored. While DISTINGER is able to
handle larger graphs due to its distributed nature, incIuding
additional memory, it still suffers from having one centralized
server that is responsible for updating the entire network.

Lastly, LLama [14] offers an alternative data structure for
dynatnic graph algorithms that is based on check-pointing the
network as updates are added. An adjacency list of a vertex
might be split across multiple checkpoints in LLama. This
makes the LLama data structure an unlikely candidate for
the GPU as accessing an edge in each check will cause low
system utilization.

978-1-5090-3525-0/16/$31 .00 ©2016 IEEE 2

B. GPU Graph Analytics and Platforms

In [19], Merrill et al. give the first scalable GPU graph
traversal for NVIDIA's CUDA [1] supported GPU. To improve
the utilization of the GPU, several different travers al strategies
are taken. These strategies take into the account the massive
thread-Ievel parallelism available for CUDA supported GPU
cards. Thus, large vertices are processed differently than
smaller vertices.

Other available graph analytics for the GPU incIude triangle
counting [13], [22], connected components [24], single-source
shortest path [8], betweenness centrality for static graphs [23],
[18], betweenness centrality for dynamic graphs [17], and
community detection [25].

In addition to these implementations, several Iibraries for
static graph analytics for the GPU incIude: Gunrock [27],
[21], BlazeGraph [5], nvGraph [20], GasCL [6], and BelRed
[7]. These libraries offer data scientists simple tools needed
for analyzing data-sets without the need to write complex
GPU code. Gunrock [27] is designed for implementing
graph traversals through the use of a small set of highly
optimized operators which are suitable for a wide range of
applications. BlazeGraph [5] has its own domain-specific
language, called DASL, enabling programmers to implement
advanced analytics with high-level functionality. BeIRed [7]
allows programmers to implement graph based applications
using basic building linear algebra building blocks. GasCL
[6] uses a vertex-centric approach approach with the Gather
Apply-Scatter (GAS) model. In this paper we show that for
static graph analytics, cuSTINGER adds negligible overhead.

111. cuSTINGER

In this section we outline our design and implementation
of cuSTINGER. We discuss data structure considerations as
weil as performance trade-otls. When relevant we compare
our cuSTINGER with GT-STINGER.

A. Structure 0/ Array Vs. Array 0/ Structure

In GT-STINGER, edges are stored in edge blocks, where
each block contains multiple edges. Each edge stores asso
ciated properties such as when that edge was last modified
or its weight. These are stored in a structure; therefore, the
edge block is an array of structures. Such a representation is
not ideal for CUDA supported GPUs as this can increase the
number of memory requests for updating a single field across
multiple threads. A more efficient memory access pattern
for CUDA would be to have the same fields accessed in a
consecutive fashion. As such, in cuSTINGER, we replace the
array of structures with a structure of arrays allowing for a
reduced number of memory requests. An additional benefit
of this modification to the data representation is our ability
to support different allocation modes for using cuSTINGER
(Section III-E).

B. Replacing Edge Blocks with Arrays

In cuSTINGER we replace the use of the list of edge
blocks per vertex with a single adjacency array for each
vertex. In GT-STINGER there is a memory manager that is

TABLE I

N ETWORKS USED I N OUR EXPERI MENTS : 10TH DIMACS GRAPH

IMPLEMENTATION CHALLENG E [4] AND SNAP [2]. lEI REFERS T O

DIRECTED EDGES. NOTE TH AT N ETWORKS ARE ORDER BASED ON THE

NUMBER OF VERTICES (ASCENDI NG ORDER). TIME IS GIVEN IN SECONDS

FOR THE INITl ALlZATlON AN D TRI ANGLE COU NTING. TC-CSR IS THE

EXECUTION TIM E FOR THE TRI ANGLE COU NTING IMPLEME NTATI ON

USING CSR AND TC-cuS FOR THE IMPLEMENTATION USING

c u STlNGE R.

Nam e Network IV I lE I Ref. Init. TC-CSR TC-wS
Type (sec.) (sec.) (sec.)

prcfA uach Powcrl aw l OOk IM 14] 0. 11 0 0. 108 0. 11 0

m1 4b Walshaw 2 15k 3.3M 14] 0.24 0 .240 0.260
coAuthorsDBLP Sod al 299k 1.95M 14] 0.33 0.218 0.242

alllazon060 1 SociaJ 403k 3.38M 12] 0.45 1.1 87 1.253
wcb-BerkStan Wcbcrawl 685k 7.6M 12] 0.8 1 0.706 0.780
audikw l Matri x 943k 76.7M 14] 1.25 4.485 4.682

ldoor Matri x 952k 4S.5M 14] 1.2 1 2.674 2.9 16

as-skiUcr Traee route 1.69M 11.1 M 12] 2. 12 57. 14 59.37
kron_g500-1ogn21 Kronecker 2M 20 1M 14] 3.03 2992.7 2996.5
cit-Pmcnts Citation 3.77M 16.5M 12] 4.83 0.8 14 0.830
soc-LiveJoumall Sodal 4.84M 68 .99M 12] 7.07 8.223 8.767
cage lS Matrix 5. 15M 94M 14] 7. 14 6.544 7.204
rood_ccllInd Road 14M 33M 14] 19.9 7.524 8.58 1

uk-2002 Webcrawl 18.S2M 523M 14] 28 .4 424 .9 43 1.4

responsible for edge block allocation and deallocation from
a pre-allocated global memory pool. Unfortunately, the edge
block approach is not applicable to the GPU architecture. First
of all, edge blocks rnight be located in different places in the
memory system, increasing the number of memory accesses
and reducing the benefits of caching and pre-fetching. Also,
if a small edge block size is used (which is preferable from a
storage perspective), then a GPU's streaming multiprocessor
migh be underutilized as there is not enough work to use a
full GPU warp. To overcome this work utilization issue it is
possible to use large edge blocks. However, this leads to low
storage utilization, which is an already valuable commodity
on the GPU. To avoid the above, we allocate a single array for
each adjacency list. This has the benefit of beuer locality for
edges in the same adjacency list, beUer memory utilization,
and requires only one memory allocation (allowing for a
simpler memory manager).

C. Data Layout and Memory Management

In cuSTINGER, we implement an advanced memory man
ager that requires fewer calls to the system memory allocation
and deallocation functions than a naive implementation.
Specifically, numerous adjacency lists are grouped together
into one larger chunk of contiguous memory. This improved
memory manager reduces the time spent in the initialization
phase, by weil over an order of magnitude. Further, updating
the graph also becomes significantly faster.

D. Memory Allocation Modes

While cuSTINGER has been designed for developing
dynarnic graph algorithms for the GPU, it can also be
used for static graph algorithms. As such, cuSTINGER
allows the programmer to select a memory allocation model
that is preferable to the application at hand. cuSTINGER
has memory allocation modes for both static and dynarnic
graphs. For static graph algorithms operating on static graphs,
cuSTINGER can allocate the exact amount of needed memory
- similar to the memory requirements of CSR. This is known
as the exact mode.

978-1-5090-3525-0/16/$31 .00 ©2016 IEEE 3

Aigorithm 1: Pseudo code for updating a cuSTINGER
graph with a set of B edge insertions. Functions followed
by < < < > > > denote a call to a GPU kerne!.

Inputs: cuSt ing - dynamic graph.
Inputs : B - batch o f updates.

C opyHostToDevice(B)
Phase l Update «<»> (cuSting , B , IBI)/1 GPU kerneI

C opyDeviceToHost(B) // Uncompleted edge list
CopyDeviceToHost(DupSB) /I Duplicated inserted edges in B
R emoveDuplicates «<»> (DUpSB) // GPU kernel

/I ReaIIocates memory for aU unique sources vertices of B.
C opyDeviceToH ost(Pointer Adjacen cyList)
CPU-ReallocateMemorY(B , P ointer AdjacencyList)
C opyH ostToDevice (N ewPointer A djacencyList)

/ / Copies entire edge lists for all vertices new edge lists
D eepC opyDeviceToDevice (P ointer EdgeList , N ewPointer
E dgeL ist , B)
Phase2Update «<»> (cuSting, B , B)/1 GPU kerneI

cuSTINGER also has dynarnic graph memory allocation
modes. These trade off storage utilization and the ability
to support updates with as few calls to the system memory
allocation functions. Such calls are relatively expensive in
comparison to the update operation. Users are responsible
for selecting their preferred memory allocation mode as part
of their initial configuration.

E. cuSTlNGER Meta-Data Modes

Current state of the art GPUs have a smaller amount of
memory in comparison with their CPU counterparts. For
example, a single NVIDIA K40 GPU has 12 GBs of memory
and the K80 has 2x 12GBs memory. Currently CPU servers
can support tera-bytes of memory in a single system. As such,
cuSTINGER has several different meta-data modes that can
be used in the initialization. These modes are intended for
different types of applications requiring additional properties
to the graph:

1) Adjacency-only mode - this is a stripped down network
that only stores the adjacency lists and is for unweighted
networks. Conceptually, this is sirnilar to the amount of data
stored in CSR.

2) Vertex weights and edge weights - a user can decide to
assign a weight to vertices or edges. The additional storage
cost is O(V) for vertex weights and O(E) for edge weights.

3) Semantic mode - is intended for analysts that need
to associate additional properties for each vertex or edge.
This includes vertex types, edge types, and time stamps for
when the edge was last modified. time stamps are especially
useful for monitoring temporal networks. Tünestamps were
added to cuSTINGER to support portability with STINGER.
Lastly, semantic mode also allocates memory for vertex and
edge weights. In total , semantic mode increases the memory
footprint by O(V + E).

These modes allow for better control over the amount
of allocated memory. This is especially useful for analytics
and applications that do not require additional data. In GT
STINGER the semantic support is turned on by default and in
fact cannot be removed due to the use of array of structures

rather than structures of arrays. cuSTINGER is able to support
these additional modes partially due to the change made in
its internal representation.

F Updates

cuSTINGER supports the following operations to the
graph: edge insertions, edge deletions, vertex insertions,
and vertex deletions. Given the massive parallelism on the
GPU, it is highly recommended that updates be grouped
into batches (as is done in [10]). However, the decision on
the update granularity is typically application driven. For
example, in dynamic graph betweenness centrality [12] the
update-time is negligible in comparison to the computational
requirement, thus, the granularity is not important. However
for dynamic graph algorithms such as triangle counting [9]
and tracking connected components [16] the overhead can
become dominant.

cuSTINGER separates the insertion and deletion processes,
unlike GT-STINGER which can do both of these concurrently.
This is partially due to the increased parallelization of a GPU
and the more complex memory management. By separating
the insertions and deletions, the actual update implementation
is simple. In the following subsections, we discuss these
update processes in additional detail. This discussion focuses
on unweighted and non-semantic graphs for simplicity. For
the next section we assume that a batch of updates, B, consists
of either IBI edge insertions or deletions.

1) Edge insertions: The pseudo code in Aig. 1 depicts the
edge insertion process for cuSTINGER. Initially, the batch
is copied to the device, where cuSTINGER is located. This
is followed by the first phase sweep of the insertion process.
For each edge update b E B , we check if that edge already
exists in the graph (duplicates are typically undesirable). All
non-duplicate edges are inserted, assuming sufficient memory
is available. If there is not enough memory, it is added to an
edge list that requires additional attention. Further, a situation
can arise where there are two updates in the same batch,
b1 , b2 E B that are identical - causing the same edge to be
inserted twice. This is undesirable and cuSTINGER detects
these same-batch duplicates and creates a list of these updates
for further processing.

Lastly, vertices for which adjacency lists are full and cannot
store all the new updates are dealt with by allocating new a
adjacency list. This is done via several memory copies from
the device to the host followed by an additional device kernel
launch. Initially, each of the vertices requiring additional
memory receives a new and larger adjacency list. This is
followed by copying the old adjacency list into the new one.
Finally, the non-completed edges are inserted in a second
phase sweep.

2) Edge deletions: Edge deletions are to some degree
easier than edge insertions. This is due to the nature of the
deletions. An edge deletion will always reduce the amount
of necessary storage; thus, additional memory allocations
and copying are never necessary. Edge deletions are also
implemented using a two-phase algorithm for a given batch.
In the first phase, given a batch of edge deletions, all edges

978-1-5090-3525-0/16/$31 .00 ©2016 IEEE 4

40-'

35 -
U
~ 30-

~ 25-

~ 20 -

ß 15-
'" u
.Q 10-
«

5-

'" ..,'
Vertices (lVI)

" 'v " ", .
,.7

Fig. l. Allocation time for initializing cuSTINGER as a function of the
number of vertices in the initial graph. A linear trendline has been added
that confirms that the initialization time grows linearly with the number of
vertices.

in the batch are located within cuSTINGER and marked as
deleted. In the second phase, the adjacency list is compressed
by taking an edge at the end of a vertex's adjacency list and
replacing it with the deleted edge.

3) Vertex insertions and deletions: Vertex insertions and
deletions can be considered as aseries of edge insertions and
deletions, respectively. For example, if a vertex is deleted so
are all of its adjacency edges. Thus, a vertex update can be
completed using the edge updates operations.

IV. PERFORMANCE ANALYSIS

Our experiments are conducted on an NVIDIA K40 GPU
and an Intel i7-4770K quad-core CPU system. The K40 is
a Kepler based GPU with 15 SMs and 192 SPs per SM,
for a total of 2880 SPs. The K40 has 12GB of GDDR5
memory. The Intel i7-4770K is aHasweIl based processor
running at 3.5 GHz with 8MB L3 cache. This system
has 32GB of DDR3-1600 memory. To test the capability
of cuSTINGER with graph updates we use real world
graphs and networks taken from the 10th DIMACS Graph
Implementation Challenge [4] and [2]. Details of these graphs
can be found in Table I. Finally, to test the throughput rate
of cuSTINGER, we check its ability to handle different batch
update sizes. We use a wide range of batch update sizes,
from a single update and all the way up to batches with ten
million updates (in multiples of tens). The maximal size of
the batch per network is dependent on its initial size. The
batches are created using a random edge generator. Each
experiment, consisting of one graph and one batch size, is
conducted for ten different batches. For all experiments, the
graph is read from a file and loaded onto the GPU, ensuring
that the different batches are applied to the same initial graph.
For each batch, we insert the edges into the graph and then
we remove these edges using cuSTINGER's insertion and
deletion functionality.

A. Initialization

Table I shows the time it takes to initialize a cuSTINGER
structure on the GPu. This includes the memory allocation
time for each of the adjacency lists, initializing the internal
data structure properties on both the host and the device, and
transferring of data between the host and the device. Fig. 1
depicts the allocation time for cuSTINGER as a function of
the number of vertices in the graph. The solid curve denotes

the linear rate at which the allocation time is a function of the
number of vertices. This curve shows a correlation between
the initialization time and the number of vertices in the static
graph.

B. Update Rate

One of the main design goals of cuSTINGER is to ensure
that it is possible to update the graph at high rates such
that the update process itself does not become the bottleneck
for a streaming algorithm. To measure cuSTINGER's ability
to process updates, we measure the number of updates per
second that cuSTINGER can handle - this is the same metric
used to measure the update capability of GT-STINGER [10].
Fig. 2 depicts the updates per second rate that cuSTINGER
can achieve as a function of the batch size. The upper
subfigure depicts the throughput rate for edge insertions whilst
the bottom subfigure depicts the rate for edge deletions.

1) Small Batch-Sizes: The update rate for both insertions
and deletions is similar for small batch sizes. cuSTINGER
achieves roughly 15k updates per second when the size of the
batch is a single update. This rate is approximately the same
across all test-graphs. For such small batches, there are several
performance restrictions. The first restriction is the kernel
launch overhead which can take several microseconds and
dominates the execution time for small batches. The second
performance restriction is the need to copy the update from the
host to the device. Lastly, the GPU is simply underutilized as
there is only one update to process - this utilizes a single GPU
thread-block and a single GPU streaming multi-processor out
of the many available. Therefore, it is not overly surprising
the throughput rate increases by almost a factor of 10 and
100 as the batch size increases to 10 and 100 edges per
batch, respectively. As the batch sizes increase beyond 1000
updates, these factors become less dominant and the time
spent updating the graph becomes more important.

2) Edge Insertions - Large Batches: As the batch size
continues to increase, the likelihood of an edge insertion not
having space in a pre-existing adjacency list also increases.
When this occurs, a new adjacency list needs to be allocated
and the old adjacency list is copied to the new list. This adds
overhead. In Fig. 2, there are several networks that have a
"performance dip" for batches of lOk and lOOk updates. In all
these cases, updates have caused a scenario where at least one
vertex requires a new adjacency list. In the current version
of cuSTINGER, the update process requires several memory
copies from the device to the host in addition to initialization
of some auxiliary data structures. While these memory copies
are not overly demanding, in comparison with the time spent
updating the network they are expensive. In future work we
will look into optimizing this process.

Nonetheless, for most networks cuSTINGER is able to keep
an update rate of over 1 million updates per-second for larger
batches and in some cases an update over 10 million updates
per-second. Note, for several of the networks the batch size
is close to 50% of the size of the graph - wh ich means that
due to the update, the graph increases its size by as much as
50%. While such an experiment offers performance insights,

978-1-5090-3525-0/16/$31 .00 ©2016 IEEE 5

Batch Size

H cit-Patents 3- l;. kron_gSOO-logn2l c> c> as-skitter
H coAuthorsDBLP H cagelS 9-9 uk-2002

Fig. 2. cuSTINGER's update rate as a function of the batch size - higher
rates are desirable. Top subfigure depicts the rate for edge insertions and
the bottom subfigure for edge deletions. For sm all batch sizes, the update
rate is limited by the kernel launch overhead.

for most dynamic networks we don't expect an update rate
that will change the graph by that amount.

3) Edge Deletions - Large Batches: Unlike edge insertions
that may require additional memory allocations, edge dele
tions do not. Edge deletions only remove existing edges from
the graph. In this current version of cuSTINGER, empty edge
lists are not reclaimed or deallocated when all the edges of
a vertex have been removed, and thus there are not any calls
to the memory management. This allows for more efficient
processing and consistent performance for edge deletions (in
comparison with edge insertions). This is depicted in Fig. 2
where the deletion is consistent across for all graphs given a
specific batch and batch size. Notice that there is very little
variance across these experiments. In fact, the error bars are
barely visible for deletions, whilst they are visible for edge
insertions. Lastly, given large enough batch sizes, greater
than lOk updates per batch, cuSTINGER supports almost 20
million edge deletions per second.

C. Triangle Counting

In this section, we take the popular tri angle counting metric,
which is part of clustering coefficients [28], [26], and check
its performance using cuSTINGER. We consider the GPU
algorithm from [13] which counts triangles in static graphs
and port the implementation to cuSTINGER. While this is a
static graph algorithm and not a dynamic graph algorithm for
which cuSTINGER was designed, we show that cuSTINGER
also offers good performance for static graph algorithms.

Table I has the execution time for both the original
implementation (denoted as TC-CSR) as weIl as the new
cuSTINGER implementation (denoted as TC-cuS). Both

algorithms output the same and correct number of triangles.
From a performance perspective, there is a slight reduction
in performance between these two implementation, where
cuSTINGER is 1 %-10% slower. This supports our intuition
that our new data structure can also replace other static graph
representations for the GPU.

V. CONCLUSIONS

In this paper we present cuSTINGER, the first dynamic
graph data structure for the GPU. cuSTINGER manages the
graph data structure on the GPU, allowing programmers to
focus on algorithm development rather than complex data
management and movement. cuSTINGER supports several
different meta-data modes with run-time parameters. These
modes allow controlling the amount of allocated memory on
the GPU device, including restricting the amount of memory
to be similar to that required by a CSR representation or full
semantic support (as found in STINGER). Given the limited
amount of storage available on the GPU this is crucial.

cuSTINGER supports extremely high update rates, from
15k updates per second with the graph being updated one
edge at a time and weil over 10 million updates per second
when the batches are large (with over lOOk updates per
batch). And while cuSTINGER was designed with dynamic
graph algorithms in mind, it can also be used for static
graph algorithms. To benchmark cuSTINGER performance in
comparison with CSR, we take a triangle counting algorithm
originally implemented in CSR and port it to cuSTINGER.
We showed that cuSTINGER performs within 10% of the
original implementation.

Lastly, our goal is to improve on the current restrictions and
overheads imposed by memory allocation. For future work
on cuSTINGER we will look for an alternative approach for
memory management for larger graphs and improved memory
reclamation.

ACKNOWLEDGMENTS

The work depicted in this paper was partially sponsored
by Defense Advanced Research Projects Agency (DARPA)
under agreement #HROO 11-13-2-0001. The content, views and
conclusions presented in this document do not necessarily
reflect the position or the policy of DARPA or the U.S.
Government, no official endorsement should be inferred.
Distribution Statement A: "Approved for public release;
distribution is unlimited." This work was also partially
sponsored by NSF Grant ACI-1339745 (XScala).

R EFERENCES

[1] "NVIDIA CUDA Programming Guide," 2011.
[2] Stanford Network Analysis Package, 2012 (accessed April 2012).

[Online]. Available: http://snap.stanford.edu/dataJ
[3] D. Bader, J. Berry, A. Amos-Binks, D. Chavarrfa-Miranda, C. Hastings,

K. Madduri , and S. Poulos, "STINGER: Spatio-Temporal Interaction
Networks and Graphs (STING) Extensible Representation," Georgia
Institute of Technology, Tech. Rep. , 2009.

[4] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, E ds., Graph
Partitioning and Graph Clustering. 10th DIMACS Implementation
Challenge Workshop, sero Contemporary Mathematics, no. 588, 2013.

978-1-5090-3525-0/16/$31 .00 ©2016 IEEE 6

[5] BlazeGraph, .. https://www.blazegraph.com/ ... 2015.
[6] S. Che, "GASCL: A vertex-centric graph model for GPUs," in IEEE

High Peiformance Embedded Computing Workshop (HPEC), 2014.
[7] S. Che, B. M. Beckmann, and S. K. Reinhardt, "Belred: Constructing

GPGPU graph applications with software building blocks," in IEEE
High Peiformance Embedded Computing (HPEC) , 2014.

[8] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, "Work-efficient
parallel GPU methods for single-source shortest paths," in 28th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2014, pp. 349-359.

[9] D. Ediger., K . Jiang, J. Riedy, and D. Bader, "Massive Streaming
Data Analytics: A Case Study with Clustering Coefficients," in
IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010, pp. 1- 8.

[10] D. Ediger, R. McColl, J. Riedy, and D. Bader, "STINGER: High
Performance Data Structure for Streaming Graphs," in IEEE High
Performance Embedded Computing Workshop (HPEC 2012), Waltham ,
MA, 2012, pp. 1- 5.

[11] G. Feng, X. Meng, and K. Ammar, "DISTINGER: A distributed graph
data structure for massive dynamic graph processing," in IEEE Int'l
Conf. on Big Data (Big Data), 2015, pp. 1814-1822.

[12] O. Green, R. McColl , and D. Bader, " A Fast Algorithm For Streaming
Betweenness Centrality ," in 4th ASE/IEEE International Conference
on Social Computing (SociaICom), 2012.

[13] O. Green, P. Yalamanchili , and L. Munguia, " Fast triangle counting
on the GPU," in IEEE Fourth Workshop on Irregular Applications:
Architectures and Algori/hms, 2014, pp. 1- 8.

[14] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, "LLAMA:
Efficient graph analytics using large multiversioned arrays," in 31st
IEEE Int'l Conf. on Data Engineering (ICDE), 2015, pp. 363-374.

[15] R. McColl , D. Ediger, J. Poovey, D. Campbell , and D. Bader, "A
performance evaluation of open source graph databases," in ACM
Workshop on Parallel Programming for Analytics Applications (PPAA),
2014, pp. 11- 18.

[16] R. McColl , O. Green, and D. Bader. , "Parallel Streaming Connected
Components Using Parent-Neighbor Subgraphs," in IEEE International
Conference on High P erformance Computing, 2013.

[17] A. McLaughlin and D. Bader, "Revisiting edge and node parallelism
for dynamic GPU graph analytics;' in IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW) , 2014, pp.
1396- 1406.

[18] --, "Scalable and high performance betweenness centrality on the
GPU," in ACM/IEEE Conference on Supercomputing, 2014, pp. 572-
583.

[19] D. Merrill , M. Garland, and A. Grimshaw, "Scalable GPU graph
traversal," in ACM SIGPLAN symposium on Principles and Practice
of Parallel Programming, 2012, pp. 117- 128.

[20] NVIDIA, "nvGraph," 2016.
[21] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens, "Multi-GPU graph

analytics," arXiv preprint arXiv:I504.04804, 2015.
[22] A. Polak, "Counting triangles in large graphs on GPU," arXiv preprint

arXiv:1503.00576, 2015.
[23] A. E. Sariyüce, K. Kaya, E. Saule, and Ü. V. <;atalyürek, "Betweenness

Centrality on GPUs and Heterogeneous Architectures," in 6th Workshop
on General Purpose Processor Using Graphics Processing Uni/so
ACM, 2013, pp. 76-85.

[24] J. Soman, K. Kishore, and P. Narayanan, "A fast GPU algorithm for
graph connectivity," 2010.

[25] J. Soman and A. Narang, "Fast community detection algorithm with
GPUs and multicore architectures," in IEEE International Parallel &
Distributed Processing Symposium (IPDPS) , 2011 , pp. 568- 579.

[26] T. Schank and D. Wagner, "Finding, Counting and Listing All Triangles
in Large Graphs, an Experimental Study," in Experimental & Efficient
Algori/hms. Springer, 2005, pp. 606-609.

[27] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel , and J. D. Owens,
"Gunrock: A high-performance graph processing library on the GPU,"
in ACM SIGPLAN Notices, vol. 50, no. 8. ACM, 2015, pp. 265- 266.

[28] D. J. Watts and S. H. Strogatz, "Collective Dynamics of 'Small-World'
Networks," Nature , vol. 393, no. 6684, pp. 440-442, 1998.

