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Abstract—Spectral partitioning (clustering) algorithms use
eigenvectors to solve network analysis problems. The relationship
between numerical accuracy and network mining quality is
insufficiently understood. We show that analyzing numerical
accuracy and network mining quality together leads to an
algorithmic improvement. Specifically, we study spectral par-
titioning using sweep cuts of approximate eigenvectors of the
normalized graph Laplacian. We introduce a novel, theoretically
sound, parameter free stopping criterion for iterative eigensolvers
designed for graph partitioning. On a corpus of social networks,
we validate this stopping criterion by showing the number of
iterations is reduced by a factor of 4.15 on average, and the
conductance is increased by only a factor of 1.24 on average.
Regression analysis of these results shows that the decrease in
the number of iterations needed is greater for problems with a
small spectral gap, thus our stopping criterion helps more on
harder problems. Experiments show that alternative stopping
criteria are insufficient to ensure low conductance partitioning
on real world networks. While our method guarantees partitions
that satisfy the Cheeger Inequality, we find that it typically beats
this guarantee on real world graphs.

I. INTRODUCTION

Large graphs are found in many domains including the
analysis of social networks, document collections, and trans-
portation networks. Finding good partitions of these graphs
is a challenging network mining task. For a recent survey of
the graph partitioning problem see [2]. A tutorial on spectral
clustering for data analysis can be found in [23]. Iterative
methods for network analysis need good stopping criteria to
ensure that a high quality solution is found as quickly as
possible.

In this work we introduce a new stopping criterion for
computing eigenvectors which combines conductance and es-
timates of numerical error. Under the standard assumptions on
eigensolvers, in Theorem 2 of Section III, we analyze eigen-
value accuracy in the context of spectral partitioning to derive a
condition on approximate eigenvectors that provides the same
theoretical guarantees as sweep cuts of the exact eigenvectors.
Section IV shows this new stopping criterion reduces the
number of iterations compared to traditional stopping criteria
on real world networks from the Newman [16] and SNAP [14]
collections. We provide a parameter free convergence criterion
that is theoretically sound and empirically verified.

This work fits into a larger framework of studying how
knowledge of the network mining task can shape our choice of
numerical procedure. It is already common to see the computer
architecture or networking capabilities of a distributed system
shape the choice of numerical algorithm [8]. Some applications
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use numerical solutions such that errors compound, but other
applications use the numerical solution in a way robust to
error. For instance in spectral partitioning, one spends many
cycles computing high accuracy numerical solutions to an
equation only to round the solution vector to binary values.
When designing efficient algorithms, one must consider the
accuracy requirements of the application. This paper shows
that for spectral partitioning the numerical accuracy required
is much lower than that which is typically assumed by users
of these solvers. The default solver accuracy for Matlab’s eigs
is machine e times || A|| which is approximately 1075, This
accuracy is often necessary for many scientific applications,
but is not necessary for this particular network analysis appli-
cation.

The goal of this paper is to understand the effect of
eigensolver accuracy on clustering quality. Stopping criterion
for iterative methods are an important facet of this relationship.
Without a good stopping criterion, an iterative method will
either take too few iterations and fail to solve the problem, or
take too many iterations and waste time. Theorem 2 presents
a stopping criterion with quality guarantee, while Section IV
validates its performance on real world datasets.

Graphs can have multiple partitions of similar quality and
throughout this paper we assume that an application finds any
of them to be sufficient. In this paper we show that, using new
stopping criteria, we can compute approximate eigenvectors
which induce nearly optimal graph paritions. These approx-
imate eigenvectors are computed faster than approximation
using classical stopping criteria based on residual tolerances.
Therefore, we decrease running time while sacrificing little
quality. Many of these insights can generalize to other applica-
tions where a numerical method solves a data mining problem,
such as using personalized pagerank [5] to rank vertices in a
graph, commute times [6] to compute a metric distance on the
vertices, or the heat equation on a graph [3] to construct low
conductance local cuts.

A. Contributions

This paper makes the following contributions:

1) A novel parameter free stopping criterion (Theorem 2)
for spectral partitioning with both theoretical and exper-
imental support.

2) Demonstrations that alternative stopping criteria are too
weak to ensure high quality partitions.



3) Evidence that our method works when restricting to
balanced sweep cuts.

4) Guidance on practical choices for the residual tolerance
parameter of eigensolvers for graph partitioning.

B. Related Work

Many data analysis algorithms are phrased as optimization
problems with numerical solutions [12]. The solution to the
original data analysis problem depends on the accuracy of
the solution to the induced numerical problem, and many
theoretical results quantify the relationship between the exact
solution to the numerical problem and the quality of the solu-
tion to the data analysis problem. However, there is little work
evaluating the quality of a data analysis solution produced
by an approximate solution to the numerical problem. In this
paper, we address this topic for spectral partitioning. Spectral
partitioning is performed in two steps. First, one or more
vectors approximating some eigenvectors of a graph matrix
are computed and then those vectors are used to partition the
graph. The eigenvector computation step is often treated as a
primitive operation without considering the trade-off between
runtime and accuracy. This is the case in [9], which evaluates
the running time and quality, in terms of conductance, of
both spectral and other partitioning algorithms. Pothen et
al. [18], when applying spectral partitioning to distributed
memory sparse matrix computation, recognized the value of
low accuracy solutions. Understanding the relationship be-
tween the error in eigenvalue approximation and the error
in the original data mining problem is important. This work
addresses the effect of the error in the computed eigenvalue
on the quality of the sweep cuts of the computed eigenvector.
Allowing more error in the eigenvector computation improves
runtime performance possibly at the cost of partition quality.
If the partition quality is not too large, trading quality for
performance can be useful, especially for computationally
expensive problems on large datasets.

Iterative methods can generate solutions to arbitrary approx-
imation factors. Both runtime and solution accuracy increase
with the number of iterations performed. Iterative methods for
solving the eigenvector problem Ax = Ax have been shown
to provide fast approximate solutions [13], [19]. For example,
the implicitly restarted Arnoldi method (IRAM) allows one to
solve for a small number of eigenvalues of a linear operator
A [20]. A function that evaluates the action of A on arbitrary
vectors along with O(n(k +p) + (k +p)*) space is sufficient
to use the method. A practical implementation of the Arnoldi
method, which is commonly used in practice, can be found in
ARPACK [13].

Although eigenvectors produced by these methods are ap-
proximations, the impact of the error of these approximation
techniques on the error of the original data mining solution
has not been sufficiently studied. Eigenvectors of a kernel
matrix can be approximated by the power method with k-
means applied to these approximations to cluster the graph [1].
The k-means objective function is well approximated by such
approximate eigenvectors. The bounds given in [1] depend on
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using the k eigenvectors to partition into k parts and depend
on the kth spectral gap. On the approximate eigenvectors,
k-means is faster and sometimes more accurate in terms
of normalized mutual information compared to using exact
eigenvectors.

Instead of using k-way partitioning, our paper focuses on
partitioning into two clusters based on sweep cuts of a single
approximate eigenvector. Because two way partitioning can be
used recursively to find small communities, this paper focuses
on splitting a graph into two parts. The effects on multilevel
partitioning [10], multiway partitioning, and local methods to
improve the cut are beyond the scope of this work.

Other work focuses on the impact of probabilistic sampling
error on data mining quality. In the context of Gram (kernel)
matrices, Huang et al. [7] study the effect of perturbing
the original data points on the spectral partitioning method.
A similar topic is pursued in [24], where data points are
quantized to reduce bandwidth in a distributed system. This
paper differs by treating the data as correctly observed and
evaluates error in the iterative solver.

In the problem of graph partitioning, multiple good parti-
tions may exist. In a resource constrained environment, one
would like to be able to recover one of these near optimal
partitions while expending as few resources as possible. We
will show that finding vectors which produce these near
optimal partitions is much less expensive than highly accurate
approximations to the eigenvectors.

II. DEFINITION AND NOTATION

Let A denote the adjacency matrix of an undirected graph
with entries a; ; equal to 1 if vertex 4 is adjacent to vertex
7. Use I to represent the identity matrix and 1 to represent
the vector of ones. If D is the diagonal matrix whose entries
are the degrees d; = Ej a;; = Al, then L = D — A is
the combinatorial Laplacian. This paper will focus on the
normalized adjacency matrix A = D= 1/2AD~/2 and the
normalized Laplacian I = I — A. The equation Lx = Xx
is satisfied by pairs A,x which are called the eigenvalue
A € R and eigenvector x € R™. When the matrix is a graph
Laplacian L, all eigenvalues are nonnegative. When the graph
is connected, L has a unique O eigenvalue and we sort the
eigenvalues 0 = Ay < Ay < ...\, and label the associated
eigenvectors qi,qs...q,. Since the graphs are undirected,
there exists an orthonormal basis of eigenvectors. This can be
expressed as the matrix decomposition L = QAQT, where
where QQT = I and A is a diagonal matrix with nonnegative
entries.

For a matrix A and a unit vector x we define two numerical
quantities of interest, the error and the residual. The error of
x with respect to qs is measured as e = ||x — qoqlx|], ie.

the norm of the projection of the vector onto the eigenspace.
The residual r is defined as ||Lx — ux|| where u = xxTTﬁxx
the Rayleigh Quotient of x. The goal of an eigensolver is to
produce an x that satisfies e = 0. Since this cannot be done
exactly, we use the error and residual to evaluate the quality of

a solution. In practice, the error cannot be measured directly,
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and we must rely on theorems relating the residual to the error.
The standard approach, taken in ARPACK, is to iterate until r
is less than a prescribed tolerance chosen by the user.

We measure the quality of a (vertex) cut of the graph using
conductance, which is the surface area to volume ratio of a
subset of vertices in the graph. Let S be a subset of the vertex
set and use S =V \ S to denote set complement. These two
sets are a cut of the graph. Define vol(S) = >, . ga;; as
the total weight of the edges within S. The conductance of a
cut S is thus given by the formula [4]:

Ziesg'gs Qg5
min(vol(S), vol(S))

Sweep cuts of a vector x are cuts of the form S, = {i |
x; > x4 }. Any cut can be expressed as the sweep cut of some
vector such as the vector with a 1 at index i if ¢ € S otherwise
—1. We call the conductance of a vector the conductance of
the minimal sweep cut of that vector: ¢ (x) = min; ¢ (S%).
Thus the graph partitioning problem can be represented as
minimizing ¢ (x) over all x. This work focuses on the spectral
partitioning algorithms that use a sweep cut of the eigenvector
a2 of L to partition the graph.

¢ (5) =

III. EIGENVALUE ACCURACY AND CHEEGER’S
INEQUALITY

Cheeger’s inequality is a commonly used bound that allows
one to guarantee that the small eigenvectors of the graph
Laplacian will reveal low conductance cuts of the graph. In
this section we examine the effects of approximation of the
eigenvector on the guarantee provided by Cheeger’s inequal-
ity. When finding low conductance cuts, one is solving the
problem minxe{ 1,1}" xT Dx This minimization is relaxed to
miny | 1 Té", which is solved by solutions to the generalized
eigenvalue problem Lx = ADx. A change of variables relates
solutions of this generalized eigenvalue problem to solutions
of the eigenvalue problem Lx = px. A pair A,y solves the
generahzed elgenequatlon Ly = XDy, if and only if the pair
A X = 2y solves the eigenequation Lx = Ax. Also, the
vector D2 1 lies in the kernel of L as LDz1 = L1 = 0. With
this change of variables, computational tools for symmetric
eigenvalue problems solve the relaxed minimazation problem.
Cheeger’s Inequality bounds the relaxation error in terms of
the exact eigenvalue \o.

Theorem 1. Cheeger Inequality [15] Let L be the normalized
Laplacian of a connected graph and D be the associated
degree matrix. If X is a vector orthogonal to D=1 such that
Lz = \ow, then y = D~ 3x has a sweep cut S such that

¢ (5) =0 (y) <v2p.

The Cheeger inequality guarantees that exact eigenvectors
provide a sweep cut with conducance less than \/2X;. The
remainder of this section derives a stopping criterion providing
the same guarantee for approximate eigenvectors. As one
iterates a numerical solver, they can compute the conductance
of each iterate. Once a partition with conducance less than
V2, is found, the solver can stop while satisfying the same
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guarantee provided by the exact solution. However, when
running the solver, the true value of Ay is unknown. Thus
one cannot use this as a stopping criterion directly. One way
to create a stopping criterion is to use p as an estimate of A,
then stop when ¢ (y) < /2u; however, this criteria is trivially
satisfied [15], and does not ensure that ¢ (y) < /2\y as
¢ (y) can fall between /2y and v/2),. Section IV-D discusses
further some alternative stopping criteria found to be unreliable
for this problem.

In order to derive a stopping criterion that does guarantee
¢ (y) < v/2)2, we find a lower bound on y/2)\2 computable
from information available to the solver. Both the eigenresid-
ual r and the Rayleigh Quotient ;1 are computable without
knowledge of the true eigenvalue and thus form the inputs to
the stopping criterion. Let 1)(x) = \/2(u — 7).

Theorem 2. Let L be the normalized graph Laplacian of a
connected graph, and x be a unit vector orthogonal to D1
and 1 = xTLx and y = D~ 2x If,u )\2 < |u )\\for all

other eigenvalues )\, then ¢ (y) < /2(p—r) (x) is a
stopping criterion that guarantees o (y ) < v 2)\2

Proof. First the fact that v/2c is an increasing function gives,
for any positive €, u—e < \g implies \/2(u — €) < v/2X2. We
show that r > |u— Ag| directly. Using the eigendecomposition
of L = QAQ7, let z = Q7x. Since x L qi, z1 = 0. From
the hypothesis that | — A2| is minimal, one sees

= 1A= D)zl > Oz = 0 Eo s =

So r > |Aa — |, and p—r < A2. Thus under these conditions
we know that \/2(p — r) < 4/2X2. Since, all terms on the left
hand side are known to the solver at each iteration, this is a
valid stopping criterion. O

(Mg — (Ao — )%

This stopping criterion is the first stopping criterion for
spectral partitioning that does not require the implementation
to specify a chosen parameter value. Unlike standard methods
there is no choice of acceptable error that must be considered
and no choice of tolerance exposed to the user. This simplifies
practical application of this method for network analysis.

The assumption that g is closer to Ao than to any other
eigenvalues implies that r is less than the spectral gap, § =
A2 — Ag, of the matrix. Thus under the standard assumption
that the Ritz value is close enough to the desired eigenvalue,
we have a stopping criterion bounding ¢ (y)!.

When the eigenvalue is computed exactly, this bound
coincides with the original Cheeger inequality. While this
theorem does not imply that further iteration of the eigensolver
will not reduce ¢ (y), it gives a condition under which the
approximate eigenvector satisfies the same guarantee as the
exact eigenvector. The experiments in Section IV-B show for
many graphs, termination according to this new criterion leads
to only a small increase in the conductance of a partition. For

IThis assumption is necessary as can be seen by examining the residual
and Rayleigh quotient of q3



some graphs the partition produced by the lower accuracy ap-
proximate has lower conductance than the partition produced
by the higher accuracy approximation.

A valid concern is that ensuring that one satisfies v/2\ is
too weak of a guarantee for practitioners. We see that the
final partitions are much better than the guarantee. The cycle
and the hypercube show that for some graphs the eigenvectors
achieve a partition with conductance Q(v/2X) [22]. This is the
best guarantee possible for a method applicable to all graphs.
If one knows the graph in question comes from a family where
¢ (G) < f(\) where f(z) is an increasing function, then one
can apply the technique used in this paper by checking if the
conductance of the current iterate is less than f(u—r) < f(A).
Planar Graphs [21] are such a family of graphs. Experiments
in Section IV show that our stopping criterion typically gives
partitions outperforming the guarantee by at least a factor of
A/5.

IV. EXPERIMENTS

Iterative eigensolvers such as IRAM were developed to
solve problems from physics and engineering. These methods
are designed to quickly minimize error and residual. However
when using eigenvectors for graph partitioning, minimizing the
error to the true eigenvectors is less important than finding
a vector x minimizing ¢ (x). This leads to an experiment
showing the conductance of the optimal sweep cut approaches
the minimal value before the eigenresidual is small and that
our approach returns such a vector with a low conductance.

A. Experimental Design

While spectral partitioning finds a sweep cut with low
conductance, it does not guarantee the minimum possible
conductance. Therefore, for our experiments, we compute a
baseline eigenvector and partition using the standard approach
of iterating until the residual is within an application deter-
mined tolerance. We use a tolerance of ||Ax — ux|| < 107,
but stop if the number of iterations reaches 800. Let I denote
the corresponding number of eigensolver iterations. The con-
ductance of the sweep cut of this approximate eigenvector is
our baseline conductance ¢z For our experiments, we compare
this standard approach using residual tolerance to our stopping
criterion from Theorem 2. The restart parameter and maximum
number of iterations is chosen manually at 15 to balance time
and memory constraints. For 34 of the graphs, the first time
¢ (x) < 1(x), the hypothesis of Theorem 2 is unsatisfied, but
by taking one more step the number of such graphs drops to
17. Because stopping at the next iteration after ¢ (x) < ¥(x)
has a small impact on the average number of iterations needed
and leads to a large decrease in the average conductance
that we find, we use this iteration, represented by I¢, in our
experiments. ¢¢ represents the conductance of the sweep cut
after I iterations.

We conduct experiments on matrices from the Newman [16]
and the SNAP [14] collections. These include graphs from co-
purchasing, citation, co-authorship, road, autonomous systems,
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and online networks?. Table I includes the size of each graph,
the first 2 eigenvalues, and the eigengap | A2 — A3| to show the
difficulty of the problem instances. From error analysis in [11],
[17] we know that when the small eigenvalues of L are close
together, the eigenvectors are difficult to compute. The graphs
range from the small and well conditioned N/lesmis to the
large and ill conditioned S/web-Google.

For the purpose of experimentation, we compute functions
of each iterate®. These include the conductance ¢, the Rayleigh
quotient 4, and the residual r = ||Az — px/||. Table II shows
these measurements in detail for a single graph. We also show
the lower bound on the Cheeger bound ¢ (z) = /2(u — r)
from Theorem 2. From Theorem 2 we know that if ¢ < ¢
then ¢ < \/ﬁ which means that our partition is within
the guarantee provided by the Cheeger inequality. A dash in
Table II indicates 4 — r < 0 and the stopping criteria cannot
be satisfied.

Because L = I — A, the eigenvalues of L are the same as
one minus the eigenvalues of A with the same eigenvectors.
We solve for the largest eigenvalues of A and then compute
the corresponding smallest eigenvalues of L. This techniques
avoids the need for a linear solver for Lz = b. We also work
with vectors orthogonal to q; = D~'/%1 HD‘1/21||_1 by
iterating with the linear operator M = A— q1q7 . The desired
eigenvalue and eigenvector of the Laplacian correspond to the
largest eigenvalue of M. This improves the performance of the
solver while computing the appropriate Laplacian eigenvalues
and eigenvectors.

B. Summary of Results

Table III compares, for all graphs, our stopping criterion
to the standard criterion of iterating until ||r|| < tol. Values
for each graph are averaged across 10 runs with the last
row showing the average across all graphs. The values in
Table III differ from those seen in Figure 1 because the latter
shows results from individual runs. We can see that stopping
at I results in a conductance less than five times the final
conductance for every graph. On average across all graphs the
conductance resulting from our approach is only 1.24 times
greater and only 0.24 times as many iterations are needed or
a reduction by a factor of 4.15. This is the primary result
of the experiments. Our stopping criteria reduces the number
of iterations significantly without creating a large loss in the
achieved conductance.

Table II shows a sample of iterations in detail for the S/web-
Google graph. Although we show such detailed results for only
one graph, these observations generalize to many of the large
graphs seen in the experiment. Table II also shows that the
approximate eigenvalue p is monotonically decreasing, but the
minimal conductance of a sweep cut is not. We can see many
iterations with yu—r < 0, and few iterations with u—r > 0 and

2We make adjacency matrices symmetric by taking A + AT . Because we
can find connected components faster than solving the eigenequation, we
restrict to the largest connected component of each graph

3Requesting the approximate eigenvector at each step also prompts using
an alternative implementation of IRAM over the standard ARPACK.



TABLE I
SHOWS THE SIZE OF EACH GRAPH ALONG WITH SOME EIGENVALUES.
SMALL VALUES OF A3 — A2 INDICATE DIFFICULT PROBLEMS. GRAPHS
FROM THE NEWMAN AND SNAP COLLECTIONS ARE ABBREVIATED WITH
N AND S, RESPECTIVELY.

name V] |E| A1 A2 é
N/dolphins 62 318 0.03952 0.23435 0.19483
N/karate 34 156 0.13227 0.28705 0.15478
N/polbooks 105 882 0.03780 0.17589 0.13809
S/wiki-Vote 8297 103689 0.10055 0.16859 0.06804
N/celegansneural 297 2345 0.19524 0.25629 0.06105
S/p2p-Gnutella04 10879 39994 0.02189 0.08147 0.05958
S/p2p-Gnutella09 8114 26013 0.03515 0.08965 0.05450
N/football 115 1226 0.13680 0.18292 0.04612
S/p2p-Gnutella08 6301 20777 0.04037 0.08103 0.04066
S/p2p-Gnutella05 8846 31839 0.10959 0.14601 0.03642
N/polblogs 1490 19025 0.08144 0.10904 0.02760
S/p2p-Gnutella24 26518 65369 0.06600 0.09155 0.02555
S/p2p-Gnutella30 36682 88328 0.06124 0.08551 0.02427
N/adjnoun 112 850 0.35604 0.37559 0.01955
S/p2p-Gnutella06 8717 31525 0.12074 0.13797 0.01723
S/Oregon-1 11492 46818 0.03290 0.04820 0.01530
S/Oregon-2 11806 65460 0.02919 0.04191 0.01272
S/p2p-Gnutella25 22687 54705 0.02837 0.04100 0.01263
S/as-735 7716 26467 0.03349 0.04254 0.00905
S/soc-Epinions1 75888 508837 0.00479 0.01323 0.00844
S/cit-HepPh 34546 421578 0.01572 0.02300 0.00728
S/as-caida 31379 106762 0.01120 0.01826 0.00706
S/cit-HepTh 27770 352807 0.01839 0.02391 0.00552
N/netscience 1589 5484 0.00303 0.00850 0.00547
N/as-22july06 22963 96872 0.01936 0.02418 0.00482
S/soc-sign-epinions 131828 841372 0.01123 0.01575 0.00452
N/lesmis 77 508 0.08813 0.09222 0.00409
S/ca-AstroPh 18772 396160 0.00629 0.01038 0.00409
S/ca-HepTh 9877 51971 0.00312 0.00718 0.00406
N/hep-th 8361 31502 0.00558 0.00888 0.00330
S/soc-Slashdot0811 77360 905468 0.01247 0.01529 0.00282
S/wiki-Talk 2394385 5021410 0.01680 0.01941 0.00261
S/ca-HepPh 12008 237010 0.00178 0.00400 0.00222
S/email-EuAll 265214 420045 0.00010 0.00213 0.00203
N/cond-mat-2003 31163 240058 0.00427 0.00606 0.00179
S/p2p-Gnutella31 62586 147892 0.05989 0.06141 0.00152
S/soc-Slashdot0902 82168 948464 0.01174 0.01321 0.00147
S/email-Enron 36692 367662 0.00353 0.00454 0.00101
S/ca-CondMat 23133 186936 0.00719 0.00803 0.00084
S/soc-sign-Slashdot081106 77357 516575 0.02105 0.02175 0.00070
S/web-NotreDame 325729 1497134 0.00134 0.00182 0.00048
S/amazon0312 400727 3200440 0.00425 0.00361 0.00064
N/cond-mat-2005 40421 351382 0.00428 0.00484 0.00056
N/astro-ph 16706 242502 0.00328 0.00383 0.00055
S/amazon0302 262111 1234877 0.00029 0.00083 0.00054
S/amazon0601 403394 3387388 0.00036 0.00085 0.00049
S/soc-sign-Slashdot090216 81871 545671 0.01723 0.01769 0.00046
S/soc-sign-Slashdot090221 82144 549202 0.01723 0.01769 0.00046
N/power 4941 13188 0.00027 0.00055 0.00028
S/ca-GrQc 5242 28980 0.00187 0.00206 0.00019
N/cond-mat 16726 95188 0.00718 0.00729 0.00011
S/amazon0505 410236 3356824 0.00070 0.00078 0.00008
S/web-Google 916428 5105039 0.00043 0.00044 0.00001

¢ < 1) so one can check p— 7 > 0 as a preliminary stopping
criterion that is faster to evaluate than ¢. This reduces the
number of times conductance must be evaluated.

Table IV shows the convergence history for the graph
Newman/polbooks, which is co-purchasing Network among
political books. We see that 5 iterations of the ARNOLDI
process gives a good conductance cut ¢ = 0.5250. However,
we see that the numerical accuracy is poor r ~ 0.483. At 10
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TABLE 11
SOME ITERATES OF THE SOLVER ARE SHOWN IN DETAIL FOR THE GRAPH
S/WEB-GOOGLE. BECAUSE THEOREM 2 REQUIRES THAT p — 7 > 0, ¢ IS
NOT SUPPLIED WHEN THIS CONDITION IS NOT MET. WE FIND THAT
p—1r > 01IS A GOOD PROXY FOR THE STOPPING CRITERION ¢ < 1,
WHICH IMPLIES THAT ONE CAN USE THIS TEST IN ORDER TO REDUCE THE
NUMBER OF TIMES THAT ¢ MUST BE COMPUTED.

iter ¢ M V2p P T
20 0.02283  0.00881  0.13276 - 0.01900
30  0.00571  0.00445  0.09435 - 0.01110
40 0.00399  0.00277  0.07438 - 0.00755
50 0.00297 0.00193  0.06209 - 0.00584
60  0.00203  0.00144  0.05372 - 0.00423
70 0.00153 0.00117  0.04837 - 0.00347
80 0.00143  0.00101  0.04493 - 0.00267
90  0.00100  0.00090 0.04248 - 0.00234
110 0.00100 0.00074  0.03859 - 0.00194
120 0.00062  0.00069  0.03703 - 0.00169
130 0.00062  0.00064  0.03579 - 0.00158
140  0.00062  0.00061  0.03483 - 0.00142
160  0.00062  0.00056  0.03339 - 0.00120
170 0.00071  0.00054  0.03288 - 0.00111
250  0.00071  0.00046  0.03030 - 0.00085
260  0.00083  0.00045  0.03006 - 0.00079
620  0.00083  0.00041 0.02878  0.02554  0.00009
630 0.00083  0.00041  0.02877  0.02552  0.00009

iterations the conductance (¢ = 0.4762) matches the optimal
value and the numerical accuracy is still poor » ~ 0.00161.
At 20 iterations the numerical accuracy is high r ~ 10~7. We
can see that between the 5th and 10th iteration, several vertices
move across the sweep cut boundary (setA column), and that
the ordering among the vertices changes (p column which
is the Pearson correlation between the orderings). However,
no vertices cross the sweep cut boundary between the 10th
and 20th iteration despite a change in the ordering (p # 1).
This indicates that cluster structure can be detected before
numerically accurate eigenvectors are computed.

The convergence behavior in terms of conductance is not
monotonic, which indicates that the conductance should be
evaluated throughout the iterations. Table V shows the iteration
details for the Newman/polblogs graph. We see that the
optimal cut is found after 10 minor iterations of the Arnoldi
process. After applying an additional 10 minor iterations,
we see an increase in conductance*. One can improve the
performance of a solver by checking the conductance at each
step and taking the minimum.

~
~

C. Effect of Eigengap

We perform regression analysis on the experimental results.
We know from standard error analysis that e < V2 g [11], [17].
This error bound tells us that the difficulty of an eigenproblem
is controlled by the eigengap §. Thus we focus on the
dependence of our method on the eigengap J. Regression

analysis of iterratio Ie and phiratio, ‘z’—i, as a function of

b IC b
gap, 0 is shown in Figure 1. One can see that there is a linear
relationship between log ¢ and f,—g showing that as the problem

gets harder our stopping criterion saves more iterations. Based

4This matches the final conductance of ARPACK with a tolerance of 1015,



TABLE III
IMPROVEMENT SHOWN FOR EACH GRAPH AVERAGED OVER 10 RUNS. THE
COLUMNS ARE THE GRAPH NAME, ITERATIONS UNTIL ¢ < ), ITERATIONS
UNTIL 7 < tol, RATIO OF ¢ (x¢) T0 ¢ (x!F), THE CONDUCTANCE
FOUND WHEN 7 < tol, AND THE RESIDUAL UPON EARLY TERMINATION.
THIS TABLE SHOWS THE GRAPHS WHERE OUR CONVERGENCE CRITERION
WAS REACHED WITHIN THE MAXIMUM NUMBER OF ITERATIONS.

iife]

Graph 1o Ir Fye oy Residual
N/adjnoun 10.0 420 1.0515 0.4615 0.0407
N/as-22july06 17.0 132.0 1.7490 0.0298 0.0363
N/astro-ph 54.5 3155 1.2273 0.0046 0.0031
N/celegansneural 10.0 245 1.1272 0.2258 0.0345
N/cond-mat 43.0 487.5 0.9184 0.0152 0.0072
N/cond-mat-2003 67.0 2255 1.0948 0.0064 0.0041
N/cond-mat-2005 59.0 329.5 1.1051 0.0064 0.0041
N/dolphins 14,5 20.0 1.0000 0.0682 0.0011
N/football 10.0 295 1.1107 0.1207 0.0254
N/hep-th 46.0 187.0 1.0331 0.0250 0.0067
N/karate 10.0  15.0 1.0000 0.1515 0.0049
N/lesmis 1.5 31.0 09916 0.1526 0.0187
N/netscience 46.5 108.5 1.1571 0.0048 0.0022
N/polblogs 120 30.0 0.7371 0.1250 0.0220
N/polbooks 145 20.0 0.9973 0.0476 0.0027
N/power 236.5 785.5 0.9240 0.0025 0.0003
S/Oregon-1 145 835 1.3502 0.0685 0.0372
S/Oregon-2 145 875 13659 0.0489 0.0379
S/amazon0302 233.5 493.0 1.0324 0.0008 0.0003
S/amazon0312 103.0 800.0 1.2125 0.0018 0.0017
S/amazon0505 147.0 800.0 1.0702 0.0011 0.0007
S/amazon0601 229.5 641.5 1.0724 0.0006 0.0004
S/as-735 1.5 950 13674 0.0651 0.0531
S/as-caida 30.5 1155 1.0527 0.0302 0.0121
S/ca-AstroPh 375 1245 1.1896 0.0102 0.0069
S/ca-CondMat 41.0 155.0 1.1845 0.0109 0.0063
S/ca-GrQc 60.0 199.0 1.4333 0.0025 0.0028
S/ca-HepPh 62.0 138.5 1.2651 0.0024 0.0019
S/ca-HepTh 585 168.5 1.7388 0.0036 0.0029
S/cit-HepPh 21.5  89.0 1.3945 0.0357 0.0250
S/cit-HepTh 18.5 143.0 1.6112 0.0312 0.0267
S/email-Enron 58.0 188.0 1.0037 0.0045 0.0029
S/email-EuAll 158.0 259.0 1.0000 0.0001 0.0001
S/p2p-Gnutella04 17.5 33.0 1.0000 0.0455 0.0124
S/p2p-Gnutella05 10.0 505 1.2796 0.1500 0.0857
S/p2p-Gnutella06 10.0  49.0 1.0991 0.2222 0.0947
S/p2p-Gnutella08 125 465 1.2493 0.0500 0.0486
S/p2p-Gnutella09 150 39.0 1.0000 0.0429 0.0205
S/p2p-Gnutella24 10.0 555 1.7662 0.1000 0.0875
S/p2p-Gnutella25 135 61.0 1.5241 0.0435 0.0511
S/p2p-Gnutella30 10.0 70.0 1.3673 0.1000 0.0762
S/p2p-Gnutella31 10.0 1420 1.0657 0.1111 0.0878
S/soc-Epinions1 49.5 122.0 1.2661 0.0061 0.0050
S/soc-Slashdot0811 18.5 1435 2.2980 0.0135 0.0305
S/soc-Slashdot0902 12.5 1555 4.0594 0.0119 0.0477
S/soc-sign-Slashdot081106  21.5 131.0 1.8164 0.0238 0.0295
S/soc-sign-Slashdot090216  25.0 1245 1.5721 0.0192 0.0178
S/soc-sign-Slashdot090221  25.5 121.0 1.2030 0.0192 0.0157
S/soc-sign-epinions 32.0 155.0 1.5445 0.0138 0.0132
S/web-Google 278.0 800.0 0.9728 0.0007 0.0004
S/wiki-Talk 13.5 156.5 2.0337 0.0321 0.0650
S/wiki-Vote 10.0  30.5 1.0000 0.1250 0.0580
Average 49.1 189.4 1.2432 0.0557 0.0246
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TABLE IV
THE COMBINATORIAL STRUCTURE IS REVEALED FASTER THAN
NUMERICAL STRUCTURE.

iter  stop resid I ¢ |S| p setA
5 8 0.048826 0.04177  0.05250 55 - -
10 0 0.0016126  0.03781 0.04762 52 0.80038 3
20 0 7.8948e-07  0.03780  0.04762 52 0.90443 0
TABLE V
CONDUCTANCE CAN INCREASE WITH ADDITIONAL ITERATIONS
iter  stop resid I ¢ |S| p setA
5 0 0.14468 0.15164  0.09436 687 - -
10 0 0.03402 0.09225 0.08490 664  0.57271 73
20 0 0.00173 0.08144  0.12500 4 0.57252 561
30 0 8.4846e-07  0.08144  0.12500 4 0.57286 0

on the lack of a linear relationship between log ¢ and i—i there
is no evidence to suggest that our method loses approximation
quality on harder problems.

D. Alternative Stopping Criteria

An alternative approach to stopping criteria comes from
examining changes in the objective function. A common
approach in data mining is to stop when the objective function
stops decreasing between iterations. This comes from an idea
that changes in the objective function are monotonically de-
creasing in magnitude. This strategy works for some machine
learning problems and appears to be a good convergence crite-
ria, however in this case ¢ (x*) can stall out. More precisely,
for some iteration i, ¢ (x') — ¢ (x™!) = 0 while there exists
a j much larger than i such that ¢ (x7) < ¢ (x*). Therefore,

R? =0.242

coe ff=—0.400
intercept =1.691
RMSE=2.387

[iterratio]

log(gap)

[phiratio]

-8 -6
log(gap)

Fig. 1. Results for individual runs on each graph, not averaged, are plotted.
The iteration savings %, shown on top, increase as the gap decreases and
o]

the loss in conductance
oF

decreases.

, shown on bottom, does not increase as the gap



| conductance
- residnorm
107 |
10 ™
.
.
\\
107° S
I le
10°
500 1000 1500 2000 2500 3000 3500
iterations

Fig. 2. The decrease in conductance and residual for SNAP/web-Notre-Dame
is shown. The first flat region of the conductance curve (marked A) indicate
where one would stop based on ¢ (xl) —¢ (xi""l) = 0. This shows that
stopping when the objective function stops decreasing does not achieve low
conductance partitions for this problem. Using our criterion and stopping at
I iterations does achieve a low conductance cut.

stopping when the conductance stops improving yields large
loss in conductance. This occurs for ill conditioned problems
such as the SNAP/Web-Notre-Dame graph as illustrated in
Figure 2.

E. Balance

The theorems used in this paper do not guarantee the
existence of balanced cuts, which are favored in applications.
One can form a multi-way partition by recursively constructing
2-way partitions until reaching sufficiently small parts. If the
smaller part of the 2-way partition contains more than pn
vertices for large enough 0 < p < 1/2, this creates a balanced,
low depth recursion tree. In order to understand the effects of
our stopping criterion on choosing a balanced cut we make
a similar comparison as Section IV-B while restricting to
balanced cuts. We introduce the notation ¢P as the best sweep
cut which contains at least p percent of the vertices on each
side. Table VI shows the minimum, maximum, and mean taken
over all graphs, of the best sweep cut of the final iterate ¢%,
the best balanced sweep cut of the final iterate ¢}, and the
ratio between the conductance of the best balanced sweep
cut of the Io-th iterate ¢. The value of ¢% and ¢} for
each graph is denoted ¢ and ¢ in Table III. For balanced
cuts, the increase in conductance due to our stopping criterion
is on average less than a factor of 1.3 and for over half
the graphs our method finds the same conductance, which
suggests that our methods works well in practice even with
a balance condition. In contrast, for half the graphs, the ratio
of conductance between the best cut and the best balanced cut
for the final iteration is at least 4.5. In other words, the cost of
restricting to a balanced cut exceeds the cost due to the novel
stopping criterion.

31

TABLE VI
THE EFFECT OF RESTRICTING TO BALANCED CUTS IS SHOWN. THE MAX,
MEAN, AND MIN ARE TAKEN OVER ALL GRAPHS. (i)};o REPRESENTS THE
CONDUCTANCE OF THE BEST CUT OF THE FINAL COMPUTED
EIGENVECTOR WITH AT LEAST 1% VERTICES ON EACH SIDE. d)lcg
REPRESENTS THE CONDUCTANCE OF THE BEST BALANCED CUT ACHIEVED
WITH OUR STOPPING CRITERION.

0 10 [Zed [
min 0.0001 0.0017 0.4111 1.0000
median  0.0455  0.2080 1.0000 4.5926
mean 0.0736  0.2732 1.2557 36.829
max 0.6133  0.8245 5.0514 1001

V. CONCLUSIONS

This work fits into a larger context of understanding the con-
nection between numerical accuracy of solvers and network
analysis quality. We measure the solver accuracy using the
norm of the residual vector and the network analysis quality as
the conductance of the resulting partition. We show that by an-
alyzing of both measures, one can rigorously derive improved
parameter free stopping criterion. This stopping criterion is
empirically validated on real world networks. The result of
our analysis is a large reduction in the number of iterations
used to solve this network analysis problem with iterative
methods. This leads to faster methods for large problems.
Understanding the relationship between the numerical method
and the network analysis method leads to an algorithmic
improvement. We demonstrate this improvement on real world
networks and using an advanced eigensolver. Empirically,
simpler convergence criteria based on intuition do not achieve
factor of two approximations to the prior work.

This paper draws the following quantitative conclusions.

1) Our stopping criterion for spectral partitioning leads to
a 4.15 fold decrease in iteration with only a 1.24 fold
increase in resulting conductance.

A practical choice for the residual tolerance parameter of
eigensolvers for low conductance partitioning is 107
Alternative stopping criteria fail to ensure high quality
solutions, as shown on the S/web-Google graph.

When imposing a balance condition of 10% on the cuts,
stopping using our criterion increases the conductance
by a factor of 1.4 on average compared to using the high
fidelity eigenvectors.

Analyzing the performance of our method as a function
of spectral gap ¢ indicates that our method reduces cost
more on harder problems.

2)
3)

4)

)

By analyzing the numerical accuracy of iterative methods
along with the network analysis objective function, we are
able to gain new insights. This opens new questions about
the relationship to multiway cuts and higher dimensional
techniques.

When applying the proof of ¥ < /2\,, one must ensure
| — A2| = min;|p — A;|. While we show empirically that
stopping when ¢ < 1 provides low conductance cuts, the
proof used in the guarantee does not apply without that



hypothesis. For some difficult problems this condition is not
ensured by the IRAM solver. Further study of approximating
arbitrary linear combinations of the low energy eigenvectors
will deepen our understanding of these techniques.

ACKNOWLEDGMENTS

The authors thank Geoffrey D. Sanders for helpful com-
ments. This work is supported in part by the National Defense
Science and Engineering Graduate Fellowship and by Defense
Advanced Research Projects Agency (DARPA) under agree-
ment #HR0011-13-2-0001 (DARPA PERFECT). The content,
views and conclusions presented in this document do not
necessarily reflect the position or the policy of DARPA or the
U.S. Government, no official endorsement should be inferred.

REFERENCES

[1] Christos Boutsidis, Alex Gittens, and Anju Kambandur.  Spectral
clustering via the power method - provably. In Proceedings of The 32nd
International Conference on Machine Learning, pages 40-48, 2015.
Aydin Bulug, Henning Meyerhenke, Ilya Safro, Peter Sanders, and
Christian Schulz. Recent advances in graph partitioning. CoRR,
abs/1311.3144, 2013.

Fan Chung and Olivia Simpson. Computing heat kernel pagerank and
a local clustering algorithm. arXiv preprint arXiv:1503.03155, 2015.
Fan RK Chung. Spectral graph theory, volume 92. American Mathe-
matical Soc., 1997.

Gianna M. Del Corso, Antonio Gulli, and Francesco Romani. Fast
pagerank computation via a sparse linear system. Internet Math.,
2(3):251-273, 2005.

Peter G. Doyle and J. Laurie Snell. Random walks and electric networks,
volume 22. Carus Mathematical Monographs, Mathematical Association
of America, Washington, DC, 1984.

Ling Huang, Donghui Yan, Nina Taft, and Michael I. Jordan. Spectral
clustering with perturbed data. In Advances in Neural Information
Processing Systems 21, pages 705-712. Curran Associates, Inc., 2008.
U Kang, Brendan Meeder, Evangelos E. Papalexakis, and Christos
Faloutsos. Heigen: Spectral analysis for billion-scale graphs. [EEE
Transactions on Knowledge and Data Engineering, 26(2):350-362,
2014.

Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good,
bad and spectral. Journal of the ACM (JACM), 51(3):497-515, 2004.

[2]

[7]

[8]

[9]

32

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]
[20]

[21]

[22]
(23]

[24]

George Karypis and Vipin Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM J. Sci. Comput.,
20(1):359-392, 1998.

Tosio Kato. On the upper and lower bounds of eigenvalues. Journal of
the Physical Society of Japan, 4(4-6):334-339, 1949.

Efi Kokiopoulou, Jie Chen, and Yousef Saad. Trace optimization and
eigenproblems in dimension reduction methods. Numerical Linear
Algebra with Applications, 18(3):565-602, 2011.

Richard Lehoucq and Daniel Sorensen. Deflation techniques for an
implicitly restarted Arnoldi iteration. SIAM Journal on Matrix Analysis
and Applications, 17(4):789-821, 1996.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

Milena Mihail. Conductance and convergence of Markov chains-a
combinatorial treatment of expanders. In 30th Annual Symposium on
Foundations of Computer Science, volume 89, pages 526-531, 1989.
Mark  Newman. Newman  Datasets. http://www-
personal.umich.edu/ mejn/netdata/, April 2013.

Beresford N. Parlett. The Symmetric Eigenvalue Problem. Society for
Industrial and Applied Mathematics, 1998.

Alex Pothen, Horst D Simon, and Kang-Pu Liou. Partitioning sparse
matrices with eigenvectors of graphs. SIAM Journal on Matrix Analysis
and Applications, 11(3):430-452, 1990.

Yousef Saad. Numerical Methods for Large Eigenvalue Problems:
Revised Edition, volume 66. Siam, 2011.

Daniel. C. Sorensen. Implicitly restarted Arnoldi/Lanczos methods for
large scale eigenvalue calculations. Hampton, VA, 1995.

Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works:
Planar graphs and finite element meshes. In Proceedings., 37th Annual
Symposium on Foundations of Computer Science., pages 96—105. IEEE,
1996.

Luca Trevisan. Lecture notes on expansion, sparsest cut, and spectral
graph theory. University of California, Berkeley, 2014.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and
computing, 17(4):395-416, 2007.

Donghui Yan, Ling Huang, and Michael 1. Jordan. Fast approximate
spectral clustering. In Proceedings of the 15th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages
907-916, 2009.



