
J Supercomput (2016) 72:4771–4809
DOI 10.1007/s11227-016-1783-y

HPC node performance and energy modeling
with the co-location of applications

Daniel Dauwe1 · Eric Jonardi1 · Ryan D. Friese1 ·
Sudeep Pasricha1,2 · Anthony A. Maciejewski1 ·
David A. Bader3 · Howard Jay Siegel1,2

Published online: 24 June 2016
© Springer Science+Business Media New York 2016

Abstract Multicore processors have become an integral part of modern large-scale
and high-performance parallel and distributed computing systems. Unfortunately,
applications co-located on multicore processors can suffer from decreased perfor-
mance and increased dynamic energy use as a result of interference in shared resources,
such as memory. As this interference is difficult to characterize, assumptions about
application execution time and energy usage can be misleading in the presence of co-
location. Consequently, it is important to accurately characterize the performance and
energy usage of applications that execute in a co-located manner on these architec-

B Daniel Dauwe
ddauwe@rams.colostate.edu

Eric Jonardi
eric.jonardi@gmail.com

Ryan D. Friese
ryan.friese@rams.colostate.edu

Sudeep Pasricha
sudeep@colostate.edu

Anthony A. Maciejewski
aam@colostate.edu

David A. Bader
bader@cc.gatech.edu

Howard Jay Siegel
hj@colostate.edu

1 Department of Electrical and Computer Engineering, Colorado State University,
Fort Collins, CO, USA

2 Department of Computer Science, Colorado State University, Fort Collins, CO, USA

3 College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1783-y&domain=pdf

4772 D. Dauwe et al.

tures. This work investigates some of the disadvantages of co-location, and presents a
methodology for building models capable of utilizing varying amounts of information
about a target application and its co-located applications to make predictions about
the target application’s execution time and the system’s energy use under arbitrary
co-locations of a wide range of application types. The proposed methodology is val-
idated on three different server class Intel Xeon multicore processors using eleven
applications from two scientific benchmark suites. The model’s utility for scheduling
is also demonstrated in a simulated large-scale high-performance computing environ-
ment through the creation of a co-location aware scheduling heuristic. This heuristic
demonstrates that scheduling using information generated with the proposed model-
ing methodology is capable of making significant improvements over a scheduling
heuristic that is oblivious to co-location interference.

Keywords Performance modeling · Energy modeling · Resource management ·
Memory interference · Application co-location · Benchmarking · Multicore
processors · Scheduling

1 Introduction

There is an inherent trade-off in large-scale computing systems between reducing the
use of system resources by consolidating applications into as few server processor
nodes as possible (to reduce system power), and the performance degradation that
occurs to these applications as a result of sharing system resources with other applica-
tions (e.g., [1,2]). Memory interference caused by multiple applications co-located on
a multicore processor has been shown to negatively impact application performance
(e.g., [3–7]). Specifically, the sharing of system resources such as DRAM and the last-
level cache by co-located applications creates contention and, in many cases, increases
the memory intensity of all applications running on the multicore processor [6]. This
increase in memory intensity results in a corresponding increase in average memory
access time, which ultimately contributes to an increase in the application’s overall
execution time. This increase in execution time is significant and, in some cases, can
be as much as double or triple the execution time of an application as compared to its
baseline execution time, i.e., when unhindered by co-location interference [8].

Multicore processors are pervasive throughout many kinds of computing systems,
but the performance degradation effects caused by co-location interference are most
likely to be prevalent in large-scale server systems and high-performance computers.
This is because in those types of computing systems, executing multiple applications
on multicore processors results in high memory interference and, therefore, causes
performance degradation [9]. Having a methodology that is capable of predicting how
well a system will run in a particular co-location scenario is very useful for such
systems. The results of this work show how the information obtained from accurate
predictions of co-location performance degradation can be integrated into intelligent
application scheduling, and thus lead to system performance improvement due to
better utilization of the hardware. Better utilization of the hardware provides increased
opportunities to reduce power and save energy through server consolidation, while still

123

HPC node performance and energy modeling with the. . . 4773

maintaining quality of service constraints in an improved manner over a co-location
naïve scheduler. This work provides a methodology that can be used to create co-
location aware performance models capable of predicting application execution time
and energy use when single-core applications are co-located with other single-core
applications on a multicore processor in an HPC node.

The methodology for analyzing system performance that is described in this work
is general enough to be applicable to any set of applications running on any multicore
processor. Once application performance information for a particular combination
of multicore processor and target applications has been collected, the methodology
uses machine learning techniques to construct performancemodels characterizing that
information. After they are trained, these models require only a single serial baseline
measurement of parameters for each application running alone in the system. Themod-
els use this serial baseline measurement to make predictions about the performance
degradation from memory interference that will occur when the application is execut-
ing with different types of co-located applications. While it has been shown in [4] that
the degree to which an application’s use of memory resources varies among different
phases throughout the application’s execution, this work illustrates that having such
fine grain information is not always necessary to make accurate predictions.

After describing how the methodology operates, the theory behind the proposed
methodology is validated using real-world data collected on three Intel Xeon server-
classmachines that were set to execute a collection of scientific application workloads,
with some models providing up to 98 % accuracy. In addition to creating and demon-
strating a methodology that is capable of being ported across processor architectures,
this work also provides insight into what memory-use information is most important to
obtain for a set of applications running in a system to predict the impact of co-location
on performance and energy use.

The last portion of this work demonstrates the utility of the proposed modeling
methodology through the creation and analysis of a consolidating slack-based schedul-
ing heuristic that utilizes the execution time prediction models generated from the
proposed modeling methodology to assist in its application co-location decisions.
This “co-location aware” scheduling heuristic is shown in simulated studies to pro-
vide a significant performance improvement over a similar consolidating slack-based
scheduling heuristic that is naïve to the effects of performance degradation caused by
co-location.

Our work makes the following key contributions:

(a) identifies factors that can characterize slowdown during application co-location
scenarios;

(b) proposes a novel methodology to integrate these factors into multi-granularity
and multi-fidelity performance models that can be used to predict application
execution time and energy use under co-location scenarios;

(c) shows that a fine level of detail is not always necessary to achieve reasonable
prediction accuracy;

(d) validates the methodology with real-world data obtained from running co-located
scientific workloads on contemporary Intel Xeon server-scale multicore proces-
sors with up to 12 cores per processor;

123

4774 D. Dauwe et al.

(e) demonstrates through simulation the utility of themodelingmethodology through
the creation of a consolidating slack-based scheduling heuristic that utilizes mod-
els created from the proposedmodelingmethodology for its scheduling decisions.

The rest of the paper is organized as follows. The following section discusses related
work in this area. The modeling methodology is presented in Sect. 3. Section 4 details
the testing environment and data collection used for validating the models. Experi-
mental results that validate the models are examined in Section 5. A demonstration of
the modeling methodology’s utility is shown in Sect. 6. The paper concludes with a
summary of the main contributions in Sect. 7.

2 Related work

2.1 Overview

Several works have explored the effect of co-location on application performance
and energy use in multicore environments and the use of scheduling heuristics for
improving the efficiency of high performance computing. Here, the most relevant
prior works in these areas are briefly summarized.

2.2 The effect of application co-location on performance and energy use

The authors in [3] examine how co-locatingmultiple applications on a singlemulticore
processor affects performance. However, their work focuses on a general examination
of the effects that co-location has on the system as a whole, and does not examine the
effects on specific applications as our work does. This work also does not create co-
location performance models the way that our work does, nor does it discuss modeling
energy use. Our work also discusses a heuristic approach for mapping co-located
processes to processor cores, whereas their analysis only examines a single processor
node, providing a less precise view than our work where we consider an entire system.

The study in [4] provides an excellent review of how the architecture on which an
application is executed can affect the cache use and memory intensity of that appli-
cation. That work, however, does not attempt to make predictions about performance
degradation as we do, but rather it shows the importance of including memory inten-
sity and cache usage information when characterizing performance degradation in the
presence of application co-location.

The work in [10] describes the challenges faced by applications sharing resources,
and a need for the ability to perform precise predictions of performance degradation.
The paper presents its “Bubble-Up” methodology for predicting performance degra-
dation. However, it does not consider the impact of dynamic voltage and frequency
scaling on application performance as we do in our work, and their study does not col-
lect experimental data or characterize the memory interference effects of having more
than two applications co-located, whereas we examine the performance degradation
effects of more than two co-located applications

The authors in [5] present an extension to the “energy roofline” model that explores
the effect of memory intensity (from the perspective of arithmetic intensity) on execu-

123

HPC node performance and energy modeling with the. . . 4775

tion time and power use. The study executes a series of constructed microbenchmarks
on twelve machine architectures and provides an analysis of the performance of the
systems. While that study collects data about performance degradation from mem-
ory interference on a set of real machines, it uses small “microbenchmark” tests on
machines, as opposed to the scientificworkloadswe use.Moreover, theirwork does not
create models to predict execution times or energy use based on memory interference.

Similar to our work, the work in [11] examines creating a portable methodology
using machine learning techniques for predicting application performance degrada-
tion from shared resources. The authors in that paper also incorporate shared resources
beyond the last-level cache. However, incorporating those resources causes the result-
ing model to be complicated, and their model requires the constant monitoring of
a large number of processor performance counters, which can cause system-wide
slowdown for all running applications. In contrast, our methodology needs to collect
performance counter information about each application only a single time, and pro-
vides a better prediction of performance. Additionally, our methodology guarantees
a uniform selection of training data over the possible co-location space (allowing for
more portability), while the work from these authors selects the vast majority of its
training data at random.

A methodology for online estimation of an application’s execution under co-
location is presented as the “Application Slowdown Model” in [7]. Similar to our
work, their work makes predictions of application performance degradation by mon-
itoring processor performance counters. However, their work does not perform any
experiments on how themethodology performs for any actual server class processor as
our work does and, therefore, it is potentially limited in its portability or performance
on actual systems. Additionally, their work limits their proposed models to analyz-
ing the effect of performance degradation on application execution time and does not
attempt to model energy as our work does.

Ourwork in [6]measuresmemory interference from application co-location, and its
impact on system performance and energy use for a single Intel i7 machine. However,
that work does not create models that predict system performance, and the scope is
restricted to only a single consumer class machine.

We acknowledge that work exploring the effect of simultaneous multithreading
(SMT) on application performance is an open and active area of research. Papers such
as [12–14] examine scheduling and resource use of applications executed utilizing
SMT. We chose to focus our study on the interference that applications experience at
an inter-core granularity, and for this study we have turned off SMT to remove the
possibility of application interference in the L1 cache.

2.3 Scheduling heuristics

Examples of prior work in scheduling for large-scale HPC systems have appeared
in [15–18]. In [15], the authors look at the problem of energy-constrained dynamic
allocations of tasks in heterogeneous cluster computing environments, in the presence
of individual task deadlines. The work in [16] proposes power and thermal-aware
scheduling to optimize individual tasks reaching their deadlines. A “utility” metric

123

4776 D. Dauwe et al.

is defined in [17] that is used in combination with several energy-aware scheduling
heuristics to provide a method of resource allocation that can maximize task perfor-
mance while operating under a system energy constraint. The work in [18] examines
energy-aware static resource allocation of a “bag of tasks” in a heterogeneous com-
puting system. However, all these existing techniques in scheduling do not focus on
co-location effects that can significantly impact the validity of scheduling decisions.

In contrast to the above prior works, some researchers have proposed slack-based
heuristics to improve system performance. For example, the work in [19–21], and
any of the other numerous works that rely on the backfilling technique first described
in [22], all rely on slack-based heuristics that perform their calculations based on
predictions of application execution time. All these works use application slack to
provide better scheduling around uncertainty, but none of them accounts for the effects
of performance degradation from co-location. As we demonstrate later, slack-based
heuristics that are co-location aware can outperform co-location naïve slack-based
heuristics. Consideration of co-location in the slack calculations of these works could
be used to improve upon the work presented in these papers.

3 Modeling methodology

3.1 Overview

The proposed modeling methodology uses two types of machine learning techniques,
linear modeling and neural networks, for constructing the predictive models. These
techniques have been used in prior related work [10,11], but were limited in attribute
selection and scope. For each machine learning technique, several models of varying
levels of complexity and utilization of application features were built. The models are
designed tomake predictions about the execution time or energy use of one single-core
application co-located with one or more other single-core applications in a multicore
processor. The cores are not multi-tasked.

3.2 Model features

Both the execution time and energy prediction models use up to eight separate fea-
tures of application execution to predict how the target application performance or
energy use is impacted by co-located applications. The eight features were chosen
by performing a principal component analysis (PCA) [23] on the data collected from
multicore processors considered in this work. PCA allows us to observewhich features
were most important to include in the models.

The features selected are a general set that are observable in almost all multicore
processors. The models we construct use various combinations of the features. These
models use different combinations of features, ranging from those that are most-
commonly available to a scheduler to combinations that require detailed information
about the application and may be difficult to obtain on some platforms. The eight
features that we selected after our PCA analysis are shown in Table 1. The table gives
the name of the feature in the first column, and the description of that feature in the

123

HPC node performance and energy modeling with the. . . 4777

Table 1 Model features

Feature name Description of feature

baseExTime Baseline execution time of target application at all P-states

numCoApp Number of co-located applications

coAppMem Sum of co-application memory intensities

targetMem Target application memory intensity

coAppCM/CA Sum of co-application last-level cache misses/cache accesses

coAppCA/NI Sum of co-application last-level cache accesses/instructions

targetCM/CA Target application last-level cache misses/cache accesses

targetCA/NI Target application last-level cache accesses/instructions

Table 2 Model feature sets

Set name Features within set

A baseExTime

B baseExTime, numCoApp

C baseExTime, numCoApp, coAppMem

D baseExTime, numCoApp, coAppMem, targetMem

E baseExTime, numCoApp, coAppMem, targetMem, coAppCM/CA,
coAppCA/NI

F baseExTime, numCoApp, coAppMem, targetMem, coAppCM/CA,
coAppCA/NI, targetCM/CA, targetCA/NI

second column. The “target” application in the table is the one for which slowdown
or increased energy use due to co-location is being predicted. The baseline execution
time is the execution time of the target application without any co-location present. An
application’s memory intensity is defined to be the ratio of an application’s last-level
cache misses to the total number of instructions that the application has executed.
Memory intensity is discussed further in Sect. 4.

3.3 Generality of the models

The features shown in Table 1 can be combined to create models of various complexi-
ties. Themodel feature sets listed in Table 2 represent six possiblemodels, one baseline
model (model “A”) that uses only the baseExTime feature for predictions, and five other
models. For each of the five other models, the resource manger (scheduler) has a cer-
tain amount of baseline information about the system, the target application, and the
other applications co-located on the system. The progression from one model to the
next represents a realistic process where the resource manager progressively obtains
more detailed information about the computing system and its executing applications.

Designing a methodology that provides several models with various levels of
complexity allows a system designer greater freedom to make use of the modeling

123

4778 D. Dauwe et al.

methodology to predict application performance and energy use. Providing a set of
models with a range of complexities allows for a prediction model with a basic feature
set to be usedwhenmore detailed application execution information for applications in
the system is not available. For example, a system designer may not know or have the
ability to measure the performance counter derived information (explained in Sect. 4)
required to create more complicated models, but could have access to adequate appli-
cation information (such as baseExTime and NumCoApp) to use the methodology to
design simpler models that still give reasonable prediction accuracy and benefit from
co-location awareness. If there is no information about the HPC applications, then we
acknowledge that it will be difficult to effectively utilize our methodology.

3.4 Linear modeling technique

To predict the impact of application performance degradation and energy use during
execution under co-location, twelve linear models were developed: a set of six models
for execution time prediction, and a set of six models for energy use prediction. Each
of the six models in each set of models was constructed using the six model feature
sets listed in Table 2. Each linear model is the sum of the products of the utilized
features (denoted fi) and the model coefficients determined during training (denoted
for the execution timemodel as cti and denoted for the energy use model as cei), plus a
constant const . Linear regression is used to calculate the values for the coefficients. A
general linear model for predicting co-located execution time using N features (linear
execution time prediction LETP) takes the form of

LETP =
N∑

i=1

(cti ∗ fi) + const. (1)

The linear prediction of execution time and energy differs only in the objective that
themodels are trained to predict (execution time or energy use). A general linearmodel
for predicting co-located energy use using N features (linear energy use prediction
LEUP) takes the form of

LEUP =
N∑

i=1

(cei ∗ fi) + const. (2)

3.5 Neural network modeling technique

From our observation of application execution in the presence of co-location, we noted
that there are a few instances of nonlinearity in some of the features. This observed
nonlinearity provided the motivation for creating a prediction model using a neural
network that can capture such nonlinearities.

Neural networks are a class of machine learning techniques that can be used for
creating predictive models [24]. The approach attempts to mimic the function of the

123

HPC node performance and energy modeling with the. . . 4779

human brain by defining several “layers of neurons.” Each neuron layer is composed
of some number of individual neurons that take the outputs of the previous layer as
each of their inputs, with the inputs to the first layer of neurons being the features of
the data available in each model (see Tables 1, 2). The final output is the value of
the predicted execution time or energy use that the application will experience under
co-location.

Each neuron operates by multiplying each of its N inputs, xi , by N corresponding
weight parameters, wi , summing these results, and finally evaluating the sum with a
nonlinear function f . The kth neuron in layer j (denoted y jk) operates according to

y jk = f

(
N∑

i=1

xiwi

)
. (3)

The nonlinear function f in Eq. 3 is called the activation function of the neuron,
and attempts to mimic the biological process that occurs during activation of an actual
neuron. Any sigmoidal function will satisfy this activation function, but the hyperbolic
tangent function (tanh) was chosen, in particular, for this work because it allows for
faster convergence when using gradient methods for training the weight parameters
[25]. It is this activation function that allows neural networks to capture nonlinearities
when modeling.

The neural network is trained by adjusting the weight values at each neuron to
minimize an objective function that measures the squared error between the neural
network’s set of predicted values of the training data and the actual values of the data.
Optimalweight valueswere determined using a conjugate gradient because it provides
fast convergence [26]. Two separate neural networks were created for the execution
time and energypredictions, respectively.Aswith the linearmodels, the neural network
execution time prediction models were trained using measured execution time values
of the target application, and the neural network energy use models were trained using
measured energy use values of the target application.

3.6 Model accuracy

All models are evaluated using Mean Percent Error (MPE) and Normalized Root
Mean Squared Error (NRMSE) to offer two different measures for comparing model
predicted values to actual values. Error measurements are only made for the target
application’s execution time or energy use in each test, not for all applications co-
located in the system.

The magnitudes of the actual values within the data vary greatly (e.g., when mod-
eling execution time, actual values could range from as little as 150 s to over 1000
s based on the application that is being executed and the state of co-location of the
applications in the system). Thus, when finding MPE, a calculation of relative error
allows the evaluation of prediction accuracy independent of these magnitudes for each
of the M sample points of data. In the equation, predicted values are denoted p j and
actual values are denoted by a j . MPE is defined as:

123

4780 D. Dauwe et al.

MPE = 100 ∗ 1

M

M∑

j=1

∣∣∣∣
p j − a j

a j

∣∣∣∣ . (4)

NRMSE gives an indication of the variance of the predicted values from the actual
values. For M sample points, NRMSE provides a ratio of Root Mean Squared Error
(an absolute error) and the interval of values that the actual data can take (the largest
actual data value amax minus the smallest actual data value amin). Normalized root
mean squared error is defined as:

NRMSE =

√∑M
j=1(p j−a j)

2

M

amax − amin
. (5)

4 Implementation

4.1 Testing environment

This section describes a testing environment that can be used for themodelingmethod-
ology’s data collection and validation. The testing environment that is described is not
only effective and easy to use for collecting the data, but also easy to replicate and can
be used on a wide variety of multicore processors.

4.1.1 Operating system

One of the objectives of this research was to design a methodology that can be applied
to a wide variety of computing systems. The testing environment was designed to
be portable across many multicore processor architectures to allow for simplicity in
gathering test data and ease of recreating the testing environment for future users of
this work. To ensure accurate data are collected, the testing environment is run from
a “lightweight” command line version of the Ubuntu 14.04 operating system [27]
installed on a USB drive. This minimizes the effect that the operating system has on
application execution. Non-essential OS utilities and kernel daemons were removed
so that the applications being monitored suffer as little interference as possible from
unpredictable events in the OS. Such an environment mimics a large-scale computing
platform meant to execute multiple applications concurrently.

4.1.2 Processor performance counters

Modern multicore processors provide the ability for developers to monitor hardware
events that occur inside a multicore processor during the execution of an application
[28]. Through the use of specialized “performance counters” present in the processor,
it is possible to track the number of occurrences of certain events that take place, such
as the number of instructions executed or last-level cache misses. These performance
counters are architecture dependent, and due to differences among microarchitectures

123

HPC node performance and energy modeling with the. . . 4781

the number and types of performance counters that are available to the system are not
consistent (e.g., differences described in [29–31]). Given the design goal of having
portability for the methodology, interfacing directly with these hardware performance
counters is not a feasible option. Therefore, the testing environment makes use of two
tools to facilitate interactions with the hardware.

The first tool is “Performance Application Programming Interface” (PAPI) [32],
an API that was made specifically to provide portability when accessing performance
counters across different architectures. PAPI has created a general list of more than
100 standard performance counter “presets” that are likely to be present in a modern
processor. PAPI has made it more accessible to interface with these counters across
architectures.

The second tool the testing environment utilizes is theHPC toolkit [33]. This suite of
tools interfaces with PAPI and makes it easier to monitor and collect information from
multiple performance counters in the system. Specifically, HPC toolkit’s “hpcrun-flat”
application profiler is used to collect performance counter information because it is
able to run with very low overhead.

4.1.3 Measuring cache use

From [6], it is known that applications that need to access data frommemorymore often
tend to experience a larger amount of performance degradation due to co-location.
These performance degradations are incorporated into the prediction models by col-
lecting measurements related to these effects. We have found that three hardware
performance counter measurements can be used to collect the information necessary
for deriving the metrics used in our methodology’s models:

(a) number of last-level cache misses an application experiences (LLCM) that repre-
sents the number of times an application must access main memory;

(b) number of instructions the application executes (NI);
(c) total number of last-level cache accesses the application attempts (TCA).

The model features that are derived from these measurements were listed in Sect. 3.
It should be noted that last-level cache misses and accesses are dependent on architec-
ture, and can refer to either the L2 or L3 cache depending on the multicore processor
that is being used. It is also important to note that when collecting test results for
the execution of applications, the values measured in these performance counters can
only represent a sum of the total events of that type that have occurred during the time
the performance counters are monitored, in this case the duration of the application’s
execution.

One notable metric derived from these data is application memory intensity.Mem-
ory intensity is defined to be a ratio of an application’s LLCM to NI. This metric gives
an idea of the rate at which an application needs to go to main memory to fetch data. It
is useful because it shows whether an application’s execution will be more likely to be
memory-bound relative to another application, meaning that its performance depends
more on memory access speed rather than computational speed. Memory intensity
also gives some idea of how much an application tends to access memory. A highly
memory-intensive application is more likely to utilize the shared cache resources more

123

4782 D. Dauwe et al.

and, therefore, it will tend to affect, and be more affected by, the effects of memory
interference from other applications.

4.1.4 Processor performance states (P-states)

Processor performance states (P-states [28]) are a set of discrete voltage and frequency
values in which a multicore processor can operate. P-states utilize dynamic voltage
and frequency scaling (DVFS), supported in all contemporary multicore processors.
DVFS techniques can reduce the dynamic operating power of a multicore processor
to consume less power or to temporarily reduce the operating temperature due to the
multicore processor having exceeded a thermal threshold. However, these benefits
come at the cost of having to throttle the multicore processor speed by decreasing
the clock frequency. This effectively always increases the execution time (and thus
decreases system performance) of any application running on the multicore processor.
The range and number of P-state frequencies that are available in a system are highly
dependent on the architecture of the multicore processor. Processor P-states are likely
to change in high-performance computing systems based on the system’s need to
reduce power or temperature. In this work, this effect is taken into account through
knowledge of the baseline execution time of each application at a given P-state. The
P-state in which each processor is going to be executed is assumed to be known
before execution of the co-located applications. Each P-state has a different baseline
execution time and the P-state of the processor is implicitly an input to each of the
models by virtue of its value of baseline execution time.

4.1.5 Measuring power and energy use

We used aWatts Up? PRO power meter [34] to measure application power and energy
use. The Watts Up? PRO power meter measures instantaneous power use of a target
load at the “wall outlet” level with a sampling rate of once per second. Power values
were recorded at the “wall outlet” level for the system as a whole. The resulting data
then provided a record of the system’s power use over the execution of each application.
The data could also be summed to give the value of the total energy used by the system
during the application’s execution, or averaged to give the average power used by the
system during the application’s execution.

4.2 Data collection and experimental setup

4.2.1 Benchmark applications

The applications run as testing workloads for the model validation were taken from
two scientific benchmark suites. The set of eleven applications considered vary in
the types of computations that they perform and are characterized by a wide spread
of memory intensity values. Table 3 shows the applications examined in this study.
Applications taken from the PARSEC benchmark suite [35] are denoted with (P),
and applications from the NAS benchmark suite [36] are denoted with (N). The table

123

HPC node performance and energy modeling with the. . . 4783

Table 3 Memory intensity
classification

Applications Classification Baseline memory
intensity (LLCM / NI)

canneal (P) Class I 1.84× 10−2

cg (N) Class I 1.56× 10−2

ua (N) Class II 1.63× 10−3

sp (N) Class II 1.50× 10−3

lu (N) Class II 1.11× 10−3

Fluidanimate (P) Class II 8.60× 10−4

Freqmine (P) Class III 3.47× 10−5

Blackscholes (P) Class III 1.88× 10−5

Bodytrack (P) Class IV 8.69× 10−7

ep (N) Class V 6.27× 10−10

Swaptions (P) Class V 4.22× 10−10

also shows each application’s associated baseline memory intensity values, where
baseline memory intensity values are measured when the applications are executed on
a multicore processor by themselves without interference caused by co-location. The
baseline memory intensity values shown for each application in Table 3 are for a single
input size of each application. The impact on baseline memory intensity and baseline
execution time values of different application inputs is assumed to be known by the
system designer prior to execution. Should different application inputs significantly
change the baseline memory intensity or baseline execution time characteristics of an
application, then each input should be treated as a separate application during training.

As shown in Table 3, these applications have been categorized into five memory
intensity classes, denoted “Class I” through “Class V”. Class I applications are the
most memory-intensive applications, meaning that they have the highest number of
last-level cache misses per number of instructions executed and are more memory
bound, while Class V applications are the least memory-intensive, meaning that they
experience fewer last-level cache misses per number of instructions executed, and
their execution is more CPU bound. Categorizing the applications into groups allows
applications from particular groups to be referred to in a more general manner. These
groupings allow for a broader use of the methodology for performance prediction.

Having application class values allows a developer the possibility to be able to use
our modeling methodology even if it is not possible to obtain a detailed measurement
of an application’s memory use. If an estimate of the memory intensity of a particular
application type could bemade based on its historical use, or if an application developer
had prior experience developing similar applications with known characteristics of
memory use, then these applications could be broadly categorized into one of these
memory intensity classes. Having this general classification of an application, the
developer can still gain some insight into the expected performance of the system by
running the model substituting average memory intensity values for that application’s
class in place of its unavailable measured values. A system designer can create more
classes than those we consider, to improve resolution and classification granularity,

123

4784 D. Dauwe et al.

especially if a much larger set of applications is considered. However, for the sake of
brevity in discussion, we restrict the number of classes to five in this work.

It should be noted that the memory intensity values listed in Table 3 are calculated
from baseline measurements for one specific system (Xeon E5-2697v2). The memory
intensity values do not vary widely among the machines tested, thus the application
memory intensity classes are used to represent categories for the Xeon family of
multicore processors considered. It is also important to note that the memory intensity
values among application classes tend to differ by orders of magnitude. This allows
for clearer distinctions to be drawn among application classes.

4.2.2 Multicore processors tested

The specifications of the multicore processors tested during the validation of the
methodology are shown in Table 4. All multicore processors used are from the Intel
Xeon family of multicore processors, with a varying number of available cores (rang-
ing from four to twelve), L3 (last-level) cache sizes, and frequency ranges. Detailed
information about these processors can be found in [29–31].

4.2.3 Model training

Training data were collected from each multicore processor to construct the models
discussed in Sect. 3. The training data for all of themachineswere collected in the form
of execution time, total energy use, and average power values of various co-location
combinations using all eleven applications as target applications co-located with a
subset of four of the applications available in the testing environment. Specifically, cg,
sp, fluidanimate, and ep were used as the applications that were co-located with each
“target” application. Because our preliminary results show thatmorememory intensive
applications tend to have a greater interference effect on co-located applications, we
biased our selection of three of the co-location applications towards more memory
intensive applications. The ep application is also included to represent the effects of
co-location with a more CPU intensive application. This limitation of four co-location
applications was imposed to keep the number of tests that were executed for training
tractable.

When measuring application performance, data are collected for only a single “tar-
get” application during any given co-location test. Initial baseline tests were run that
measured each application’s execution without co-location across six P-state frequen-
cies to determine how each application performed without interference from other

Table 4 Multicore processors used for validation

Intel processor Num. cores L3 cache (MB) Frequency range

Xeon E3-1225v3 4 8 800 MHz–3.20 GHz

Xeon E5649 6 12 1.60–2.53 GHz

Xeon E5-2697v2 12 30 1.20–2.70 GHz

123

HPC node performance and energy modeling with the. . . 4785

Table 5 Training schedule

Multicore
processor

Num.
cores (n)

Frequencies (GHz)
applications

Target
applications

Co-location Num. of
co-locations

Intel Xeon
E3-1225v3

4 3.20, 2.70, 2.20,
1.80, 1.30, 0.80

All eleven
applications

cg, sp,
fluidanimate, ep

1, 2, 3

Intel Xeon
E5649

6 2.53, 2.40, 2.26,
2.00, 1.73, 1.60

All eleven
applications

cg, sp,
fluidanimate, ep

1, 2, 3, 4, 5

Intel Xeon
E5-2697v2

12 2.70, 2.40, 2.10,
1.80, 1.50, 1.20

All eleven
applications

cg, sp,
fluidanimate, ep

1, 3, 5, 7, 9, 11

applications. This baseline test provides a basis of comparison for the effect of co-
location interference on each application. The training data were collected for each
of the eleven target applications by running tests that co-locate each application with
multiple copies of each of the four co-location applicationsmentioned earlier.Multiple
homogeneous copies of each of these co-location application types were simultane-
ously executed with the target application, for each of the number of co-locations
denoted in the “number of co-locations” column shown in Table 5. During training
data collection, if one of the co-located applications finishes before the target appli-
cation then the co-located application is immediately rescheduled to run co-located
with the target application. This allows the target application to spend minimal time
without co-location. Model training and data collection need to occur once per HPC
processor type, per application. Each of these sets of tests was performed once for
each of the six selected P-states on each multicore processor. The P-state frequencies
are shown in Table 5. Each of the columns three to six in the table represent nested
loops in the data collection code of Algorithm 1.

Thus, each attribute that is included as parameters to the data collection increases the
size of the co-location space substantially. For example, the data collected for the third
row of Table 5 are for six different frequencies, eleven different target applications,
a selection of one of four co-located application types, and one of six choices of
the number of copies of the selected co-located application to run with the target
application for a total of 6 × 11 × 4 × 6 = 1584 co-location scenarios.

The “num. of co-locations” column in Table 5 shows the number of addi-
tional applications that were homogeneously co-located with the target application
(i.e., all co-located applications are of the same type). The applications ranged
on each multicore processor from only a single co-located application occupy-
ing one additional core, to co-located applications running on all the multicore
processor’s available cores (i.e., one target application plus n − 1 co-located
applications for a multicore processor that has n cores). Setting up the train-
ing data in this way is an attempt to sample the set of all possible co-locations
for a given machine in a uniform way that minimizes the amount of training
data that is needed to calculate coefficients for the model. For all the co-location
scenarios represented by the three rows in Table 5, we collected experimen-
tal data which we used in Sect. 5 to evaluate the accuracy of our prediction
methods.

123

4786 D. Dauwe et al.

Algorithm 1 Training data collection
1: for each multicore processor do
2: for each P-state frequency do
3: for each target application do
4: for co-located application do
5: for each number of co-locations of co-located application do
6: get_exec_time_of_target()
7: get_system_energy_use_during_target_execution()
8: get_average_power_use_during_target_execution()
9: end for
10: end for
11: end for
12: end for
13: end for

4.2.4 Model testing

Application testing was performed by partitioning the training data described in Sect.
4.2.3 (the co-location scenarios fromTable 5) by repeated random sub-sampling based
on the bootstrapping approach first described in [37]. Thirty percent of the data were
randomly selected and withheld from the training process of each model. After train-
ing, the withheld data were tested using each of the models andmeasured for accuracy.
In this way, each model was tested using data that had not been seen previously dur-
ing training. These withheld data are referred to as the testing data. The partitioning
process was repeated twenty times, each time with a new random selection of points
being withheld from training. The error values from each of these twenty training and
testing partitioned groups were then averaged to determine the overall accuracy of
each model.

5 Experimental results

5.1 Overview

This section discusses the performance results of each of the twenty-four models.
Altogether there are two sets (one set for execution time predictions, and the other set
for energy use predictions) of 12 models (two classes of modeling techniques—linear,
and neural network—with six variants each, based on the six model feature sets in
Table 2). Each of the feature sets offers a trade-off between prediction accuracy and
model sophistication. Figure 1 shows the execution time prediction accuracy for the
4-core Intel Xeon E3-1225v3, 6-core Intel Xeon E5649, and 12-core Intel Xeon E5-
2697v2 multicore processors. Figure 2 shows the energy use prediction accuracy for
the same three processors. Model prediction accuracy for both the training and testing
data sets presented in both MPE and NRMSE is included for each of the machine
learning techniques.

Each data point in Figs. 1 and 2 represents the average training error or average
testing error from twenty partitions of the data (as discussed in Sect. 4.2.4) for each
particular model. Results for each of the twenty individual partitions are shown as the

123

HPC node performance and energy modeling with the. . . 4787

Fig. 1 Execution time prediction model performance per feature set for each Intel Xeon processor. a, c,
e Show MPE for the performance of training and testing data sets for model feature sets A through F. b,
d, f NRMSE for the performance of training and testing data sets for model feature sets A through F. The
figure shows results for each of the machine learning techniques: linear (blue) and neural networks (green).
Each point on the figure represents an average of twenty different partitions of the data into training and
testing data. Annotations next to points indicate the value of the point. The lighter shaded lines indicate
the performance of each model on individual partitions; the darker shaded lines indicate the average value
across all twenty partitions (color figure online)

lighter shaded lines for each set of models, showing the range of values for each of
the darker shaded average lines. The average values represented by each data point in
Figs. 1 and 2 provide a comparison of each model’s performance across all P-sates on
which each application was executed during the data collection outlined in Sect. 4.2.3.
As can be seen in the figures, the range of values among each partition that was tested
does not vary much (at most 1.5 % for extreme cases). The annotations next to points
represent the average value across the twenty partitions for that model.

In addition to results for each feature set of both machine learning techniques,
Fig. 2 showing energy prediction model results also shows how effective it would be

123

4788 D. Dauwe et al.

Fig. 2 Energy prediction model performance per feature set for each Intel Xeon processor. a, c, e MPE
for the performance of training and testing data sets for model feature sets A through F. b, d, f Show
NRMSE for the performance of training and testing data sets for model feature sets A through F. The figure
shows results for each of the machine learning techniques: linear (blue) and neural networks (green), as
well as a comparison to the results that are obtained by simply multiplying the corresponding feature set
of the neural network execution time prediction for each processor (the results shown in Fig. 1) to each
test’s measured baseline average power value (red).Each point on the figure represents an average of twenty
different partitions of the data into training and testing data. Annotations next to points indicate the value
of the point. The lighter shaded lines indicate the performance of each model on individual partitions; the
darker shaded lines indicate the average value across all twenty partitions (color figure online)

to make power-based predictions about energy use by multiplying an application’s
measured average power use with its predicted execution time under co-location (i.e.,
“avgPower ∗ t imePrediction”). This last set of power-based energy prediction
models is presented to serve as a basis of comparison for the models generated by the
methodology, and does not serve as part of the overall modeling methodology.

The value representing an application’s average power use (avgPower) is baseline
average power, a measured value collected for each application type and for each
processor P-state. This value represents the average amount of power (specified in

123

HPC node performance and energy modeling with the. . . 4789

watts) that the application uses throughout its execution. Similar to the model features
listed in Table 1, baseline average power use is a value that is measured from an
application’s execution without co-location, and is obtained during the collection of
application energy data specified in Sect. 4.2.3.

The predicted execution time value (timePrediction) used for the calculation of
each “avgPower ∗ timePrediction” energy prediction model is generated by the
corresponding neural network execution time prediction model from the methodology
for that particular feature set for that particular processor. For example, if an energy use
prediction for an application running on the 4-core Intel Xeon E3-1225v3 processor
is made using the “avgPower ∗ timePrediction” model feature set “D”, then the
execution time prediction for the calculation would be made using the neural network
model feature set “D” execution time prediction model for the 4-core Intel Xeon E3-
1225v3 processor (the neural network model results that are shown in Fig. 1). The
neural network model was used for execution time predictions because it provides
better accuracy than the linear model, as discussed below.

5.2 Results of linear modeling

5.2.1 Overview

As the linear model feature sets become more advanced (i.e., as the models progress
from using feature set A to feature set F), both the training and testing errors generally
decrease for both the execution time and energy use sets of prediction models for all
three processor types, indicating that the models become increasingly accurate when
using increasingly advanced feature sets. It can be further seen from the lighter shaded
lines showing the performance of individual partitions for both the execution time and
energy prediction models of all three processors that as the model feature sets become
more advanced the variance seen among individual partition results tends to decrease.

The complexity of the sample space makes it challenging for the linear models to
perform well and improve significantly beyond the accuracy of the baseline model
(relative to the improvement demonstrated by the neural network models). As men-
tioned earlier, non-linearity in the data makes predictions with these linear models less
accurate.

5.2.2 Linear execution time modeling

For all threemulticore processors tested, themore advanced linearmodels provide only
a modest improvement in execution time prediction accuracy over the baseline linear
model (model A) when feature information is added to the models. Linear execution
time model results are shown in Fig. 1. The 4-core processor results (Fig. 1a, b) have
a training and testing error that reduces by about 1 % MPE and 0.004 NRMSE from
model A to model F. The 6-core processor (Fig. 1c, d) shows a reduction of about
2.74 % for both training and testing MPE from model A to model F. The 12-core
processor (Fig. 1e, f) shows only about a 1 %MPE improvement from the addition of
more model features from model A to model F. The linear NRMSE variance results

123

4790 D. Dauwe et al.

for the 6-core and 12-core processors follow very similar trends, reducing by about
0.008–0.009 NRMSE for both processor’s training and testing results from model A
to model F.

5.2.3 Linear energy use modeling

In general, the prediction accuracy for the energy use models tends to be lower than
the execution time models, indicated by the models having higher MPE and NRMSE
values. However, they also show a greater increase in accuracy as the models become
more advanced. Linear energy use model results are shown in Fig. 2. The 4-core
processor results (Fig. 2a, b) have training and testing error that reduces by about 3.7
and 4 %MPE, respectively, and a 0.015 NRMSE decrease in training error and 0.016
NRMSE decrease in testing error from model A to model F. The 6-core processor
(Fig. 2c, d) shows a reduction of about 5.01 % MPE and 0.024 NRMSE for training
data and 4.81 % MPE and 0.023 NRMSE for testing data from model A to model F.
The 12-core processor results (Fig. 2e, f) shows a 5.36 % MPE and 0.023 NRMSE
improvement for training data and a 5.12 % MPE and 0.025 NRMSE improvement
for testing data from model A to model F.

It should be noted that even though the linear models for energy use are not able to
outperform the neural network models, they still significantly outperform the energy
calculation made by the “average power multiplied by co-located execution time.”
This is explained in detail in Sect. 5.4.

5.3 Results of neural network modeling

5.3.1 Overview

To allow for a fair comparison, the linear and neural network models use the same
training and testing data partitions. The first observation to note regarding the neural
network models is their clear improvement in prediction accuracy over the linear
models, except for the single case of the execution time prediction model B for the
4-core Intel Xeon E3-1225v3 machine shown in Fig. 1a, b.

The neural network models exhibit similar results to the linear models of the lighter
shaded lines converging with the more advanced feature sets, indicating increased
model accuracy and decreased prediction variability between results. In addition, with
more advanced feature sets, the neural network model results in a closer grouping of
the lighter shaded lines than with the linear models. This implies that the individual
partition results of the neural networkmodels show less deviation from their mean than
the predictions made by the linear models with the same partitions of data, indicating
that the neural networks typically provide more consistent predictions than the linear
models.

5.3.2 Neural network execution time modeling

Predictably, the complex neural network models, which utilize the most information,
perform the best at predicting application execution time.

123

HPC node performance and energy modeling with the. . . 4791

Neural network execution time prediction model results are shown in Fig. 1. The
4-core processor results (Fig. 1a, b) have training and testing error that reduces by
about 7.08 % MPE for training and 5.97 % MPE for testing, and 0.021 NRMSE for
training and 0.018 NRMSE for testing frommodel A to model F. The 6-core processor
(Fig. 1c, d) demonstrates a reduction of about 5.36 % for training MPE and 5.24 %
for testing MPE, and 0.030 NRMSE for training and 0.029 NRMSE for testing from
model A to model F. The 12-core processor (Fig. 1e, f) shows about a 4.7 % MPE
improvement and a 0.021 NRMSE improvement for training error, a 4.57 % MPE
improvement and a 0.022 NRMSE improvement for testing error from the addition of
more model features from model A to model F.

5.3.3 Neural network energy use modeling

The general prediction accuracy for the energy use models tends to have higher error
values than the execution time models. Neural network energy use model results are
shown in Fig. 2. The 4-core processor results (Fig. 2a, b) have training and testing
error that reduces by about 11.34 and 10.55%MPE, respectively, and a 0.046NRMSE
decrease in training error and 0.050 NRMSE decrease in testing error frommodel A to
model F. The 6-core processor (Fig. 2c, d) shows an MPE reduction of about 8.51 %
MPE and 0.055 NRMSE for training data and 8.1 % MPE and 0.045 NRMSE for
testing data frommodel A to model F. The 12-core processor results (Fig. 2e, f) shows
a 9.74 % MPE and 0.046 NRMSE improvement for training data and a 9.43 % MPE
and 0.044 NRMSE improvement for testing data from model A to model F. It should
be noted that the neural network energy prediction models for all three processors
significantly outperform the energy calculation made by “average power multiplied
by co-located execution time.”

5.4 Calculating system energy use from time predictions and average power

The “avgPower ∗ timePrediction” results shown in Fig. 2 (indicated by the red
line in each portion of the figure) demonstrate the benefits associated with using
our proposed energy prediction models (indicated by the blue and green lines in the
figure) as opposed to the more approximate calculation of energy, i.e., using mea-
sured average power multiplied by the execution time prediction. The problem with
these simpler calculations of energy use lies in the necessity of using an applica-
tion’s baseline average power. Even as the execution time prediction in the calculation
becomes more accurate (moving from an execution time model using feature set “A”
to one using feature set “F”), the resulting energy use prediction shows little to no
improvement. An application’s baseline average power use turns out to not be a suf-
ficiently accurate measurement for making energy predictions calculated from power
and execution time. Even if it were possible to make perfectly accurate execution time
predictions, the “avgPower ∗ timePrediction” models could not improve in their
energy use predictions, demonstrating the necessity of using a more sophisticated
modeling methodology, such as the one we propose, for making predictions about
application energy use under the influence of application co-location.

123

4792 D. Dauwe et al.

Unfortunately an application’s baseline average power is the only fair power mea-
surement that can be used for this energy calculation without making the resulting
model at least as complex as usingmodels fromour proposedmethodology.Any power
measurement that could be used to more accurately predict energy use would require
either average powermeasurements directly measuring the effects of co-location on an
application’s average power, or powermeasurements thatwould require amore sophis-
ticated modeling strategy to be used effectively for energy calculation. In either case,
trying tomore accurately predict energyusewhenusingpower and execution timemea-
surements would not be effective without the creation of a more sophisticated model.

Another interesting effect causedby the inaccuracyof the averagepower by timecal-
culation is observed when the execution timemodel increases in accuracy (moving left
to right frommodelA tomodel F) for each processor type shown inFig. 2.Both training
and testing MPE actually increase when using the “avgPower ∗ t imePrediction”
energy use calculation. This is because the execution time prediction models used
for the t imePrediction value are making more accurate execution time predictions,
and thus causing the energy use calculations to make more precise predictions of an
inaccurate energy use value. That is, the model is making more accurate predictions
of “avgPower ∗ t imePrediction,” but because the use of baseline average power
produces results that are inherently inaccurate; the MPE increases as the execution
time predictions incorporate more features.

The reason that all three processors’ NRMSE values of “avgPower ∗
timePrediction” decrease as the predicted execution time value of the model
becomes more accurate is because the calculation of NRMSE starts as a calculation
of an absolute error (root mean squared error) that is then normalized to the range of
the aggregate whole of the actual data (as shown in Eq. 5), whereas MPE is a relative
error that is normalized to the actual energy use value at each data point. Because
of this, small changes in these larger energy use predictions produce larger effects in
NRMSE than it does in MPE where these larger predictions are each normalized by
larger data values.

A more detailed analysis of these model results shows that the predictions made
with the “avgPower ∗ timePrediction” models tend to have the most variation
in prediction accuracy for co-locations that produce higher values of energy use.
Consequently, as the execution time predictions improve from models using feature
set “A” to models using feature set “F,” the energy use data that have higher values
experience the most improvement in its prediction accuracy. The model predictions
are inherently inaccurate because of their reliance on baseline average power. Because
the predictions of high valued data were the most inaccurate, the improvement in these
predictions was the most significant.

5.5 Model accuracy

The illustrations in Figs. 3 and 4 provide a more detailed view of the accuracy of
the predictions made by the most accurate execution time prediction model and the
most accurate energy use model created for the 6-core Intel Xeon E5649 machine.
Each of the icons in Figs. 3a and 4a, respectively, represents the distribution of each

123

HPC node performance and energy modeling with the. . . 4793

Fig. 3 a Distributions of each application’s execution time. b The accuracy of the neural network model
using feature set F predicting execution time for each application, on the 6-core Intel Xeon E5649 machine

application’s measured execution time and energy use data. The icons in Figs. 3b
and 4b, respectively, represent the distribution of error for the predictions of each
application’s measured execution time and energy use data. The larger width across
each icon indicates a higher density of data points.

Figure 3a shows a detailed view of each application’s execution time distribution
on a 6-core Intel Xeon E5649 machine. The 120 points inside each application’s dis-
tribution mark the specific execution time values measured for each test run of the
application. Figure 3b shows a detailed view of the performance of the neural network
model using feature set F (the most accurate model) on the execution time data shown
in Fig. 3a. Distributions of the percent error between the model’s execution time pre-
dictions and the application’s actual execution times are shown for each application.
The lines across each distribution represent the distribution’s median (dashed line)
and upper and lower quartiles (dotted lines). Figure 3 demonstrates that the model’s
predictions are typically accurate (their error is close to zero), that about half of the
model’s predictions are ±2% from the actual execution time values, and that nearly
all the predictions are within 5% of the actual execution time values.

123

4794 D. Dauwe et al.

Fig. 4 a Distributions of each application’s energy use. b The accuracy of the neural network model using
feature set F predicting energy use for each application, on the 6-core Intel Xeon E5649 machine

The energy use prediction model results of the data shown in Fig. 4 are very similar
to those of the execution time prediction model from Fig. 3. Each of the distributions
shown in Fig. 4a shows a detailed view of each application’s energy use distribution on
a 6-core Intel Xeon E5649 machine, with the 120 points in each distribution marking
specific energy use values of each respective application. Figure 4b shows a detailed
view of the performance of the neural network model using feature set F (the most
accurate model) on the energy use data shown in Fig. 4a. Distributions of the percent
error between themodel’s predictions of energyuse and the actual energyuse are shown
for each application. The lines across each distribution represent the distribution’s
median (dashed line) and upper and lower quartiles (dotted lines). Again, the figure
shows a low error in model prediction accuracy for the majority of the data points.
About half of themodel’s predictions are approximately±2.5% from the actual energy
use values, and nearly all the predictions are within about 7 % of the actual values.

Not surprisingly, by comparing the distributions of energyuse shown inFig. 4a to the
distributions of execution time shown in Fig. 3a, it can be seen that the distributions are

123

HPC node performance and energy modeling with the. . . 4795

fairly correlated. However, as discussed in Sect. 5.4, this correlation does not result in
accurate energy use predictions when simply multiplying execution time and baseline
power.

6 Prediction model utility

6.1 Overview

Predictions made about HPC system node performance are only useful if they can be
shown to provide some benefit to the system. This section specifically demonstrates
an example of the value of our modeling methodology’s execution time prediction
models when applied to scheduling compute node resources in a simulated 500-node
homogeneous HPC system composed of system nodes with 4-core Intel Xeon E3-
1225v3 processors. It is shown that, due to the impact of co-location interference
on execution performance, scheduling with our proposed methodology can provide
significant improvements in overall system performance.

6.2 Simulator

We designed a simulator to provide a comparison between a scheduling heuristic that
is naïve to the effects of memory interference from co-location, and a heuristic that is
aware of memory interference by utilizing the proposed modeling methodology. The
simulator is event based, with the ability to simulate execution of multiple applications
on large-scale HPC platforms.While the simulator is capable of simulating large-scale
HPC platforms comprising any multicore processor type that application performance
data have been collected for, we limit its use in this study to the 4-core Intel Xeon
E3-1225v3 processor.

The simulator is also capable of modeling the effects of memory interference due
to co-location on individual nodes through the use of “memory interference events.”
At a memory interference event, applications experience a delay in their execution,
resulting in an increase in their execution times that is dependent on their specific
co-location scenario (i.e., which application types are running on the other cores of
the processor). The amount of execution time increase experienced by a particular
application for a given co-location scenario was determined empirically from the
data collection on the 4-core Intel Xeon E3-1225v3 processor, as discussed later in
Sect. 6.3.

6.3 Data collection

Toensure that the simulatedHPCenvironmentwould be able to simulatememory inter-
ference from co-location as accurately as possible, additional data collection beyond
what was described in Sect. 4.2 was needed. That is, an exhaustive set of data for all
possible co-location combinations of the applications used for simulation was col-
lected on a real machine for these experiments to ensure accurate simulation-based

123

4796 D. Dauwe et al.

analysis. This complete set of data ensured a more accurate estimation of the real-
world execution time for all the applications co-located on a multicore processor in
the system. Because it would be prohibitively time consuming to collect application
execution time information for all possible application co-locations for all the eleven
applications used for validating the methodology (the applications listed in Table 3),
the work for this simulated study considers only a subset of these applications (cg, sp,
fluidanimate, and ep, described in Sect. 4.2.1).

All data collection was performed using the same testing environment described in
Sect. 4.1. All data were collected at the lowest numbered P-state (highest performance
P-state) of the 4-core Intel Xeon E3-1225v3 machine. The data used for the simulator
were collected as a series of nested loops specifying the applications to be run on each
core, as outlined in Algorithm 2.

The three processor cores that execute the co-located applications need to include an
“IDLE application” in addition to the four application types cg, sp, fluidanimate, and
ep to allow for application scheduling situations where no applications are scheduled
on a particular core. This gave a total of 4 × 5 × 5 × 5 = 500 co-location scenarios
for which data were collected. The exhaustive data collection described above was
performed ten times. An average of each data point out of the ten sets of collected data
was used for the simulation experiments.

Algorithm 2 Simulator data collection
1: for each multicore “targetApp” in {cg, sp, fluidanimate, ep} do
2: for each multicore “coApp1” in {IDLE, cg, sp, fluidanimate, ep} do
3: for each multicore “coApp2” in {IDLE, cg, sp, fluidanimate, ep} do
4: for each multicore “coApp3” in {IDLE, cg, sp, fluidanimate, ep} do
5: get_exec_time_of_target()
6: end for
7: end for
8: end for
9: end for

6.4 Task simulation

Simulated instances of applications are referred to as tasks. Tasks can be any of the
four application types, cg, sp, fluidanimate, and ep, and upon arrival, each task’s type
is selected according to a uniform random distribution. This makes the number of
each application type arriving into the system for scheduling equally likely. Assump-
tions made about the simulated behavior of systems with task deadlines are based on
our active collaborations with DoD and ORNL where we are researching scheduling
strategies for their HPC platforms. We have found that in almost all oversubscribed
scenarios, dropping tasks is acceptable and task deadlines are always defined based
on the arrival time of a task [38,39].

For a given task i , the arrival time of that task into the system is defined as TAi , and
is determined using a Poisson process. The first task to arrive into the system arrives
at time zero (TA0 = 0), and all subsequent tasks arrive according to the previous
task’s arrival time (TAi−1) plus an exponential random variable Ti ∼ Exp(λ) with an

123

HPC node performance and energy modeling with the. . . 4797

expected arrival rate of E[Ti] = 1
λ
. Tasks arriving in this manner allow for flexibility

in adjusting the subscription level of the system by only having to modify a single
parameter λ. Task arrival time is given by

TAi = TAi−1 + Ti . (6)

Tasks that do not complete execution by their deadlines are removed from the
system. The deadline of any given task i is denoted TDi , and is generated using the
task’s arrival time TAi and baseline execution time. Baseline Execution Time is defined
in Sect. 3.3 and denoted here as the variable ETB . Task deadlines take a uniform
random value over an interval [a, b] giving TDi = Ui (a, b), with a defined as task
arrival time plus a parameter β multiplied by baseline execution time, i.e.,

a = TAi + βETB . (7)

The end of the interval of the uniform random variable, b, is defined as task arrival
time plus a parameter γ multiplied by baseline execution time, i.e.,

b = TAi + γ ETB . (8)

For all experiments shown, β = 1.2 and γ = 2.0, thus making a task’s deadline equal
to the task’s arrival time plus a random value between 1.2 ∗ ETB and 2.0 ∗ ETB . The
task deadline for this work is

TDi = TAi + U(1.2, 2.0) ∗ ETB . (9)

6.5 Scheduling heuristics

6.5.1 Overview

The goal of our scheduling heuristics is to maximize the number of tasks that com-
plete by their deadlines. We simulate the behavior of two consolidating slack-based
scheduling heuristics, one that is naïve to the effects of memory interference from
application co-location (co-location naïve) and another that is aware of the effects
of memory interference due to application co-location (co-location aware). These
heuristics are utilized during simulated scheduling events that map tasks to processor
cores. Scheduling events occur every time tasks arrive to the system, or processor
cores become free. Consolidation-based schedulers attempt to maximize the number
of cores that are executing tasks in each multicore processor node before powering up
additional system nodes. Consolidation-based scheduling has been shown to provide
benefits for HPC systems by minimizing the number of processor nodes that need to
be active during a system’s execution and, therefore, reducing the power needs and
potentially increasing the energy efficiency of the system (e.g., [1,2]). We use a con-
solidation approach for our sample use of co-location in scheduling, and are aware

123

4798 D. Dauwe et al.

that there are trade-offs between the consolidation approach and an approach where
tasks are distributed throughout the system.

Both the co-location naïve and co-location aware heuristics use ameasure of a task’s
slack for making scheduling decisions. Task slack is a prediction of the time a task
has remaining between when it is expected to finish and its deadline. The task slack
calculation is used to ensure that a task will have enough time to completely execute
under a given co-location scenario, and this calculation differs between a co-location
naïve heuristic and a co-location aware heuristic. The task slack is defined in detail
in Sect. 6.5.2. It is the goal of all scheduling heuristics used for these experiments to
create schedules that maximize the number of tasks that meet their deadlines, while
consolidating tasks as much as possible.

6.5.2 Task slack

Calculating task slack provides an estimate of the amount of time that is available
between when a task is expected to be completed and its deadline. Because predictions
of task execution time are necessary for calculations of task slack, it is to be expected
that a better prediction of task execution time would produce a better prediction of
task slack and, consequently, allow any slack-based scheduling heuristics dependent
on task execution times to produce better task schedules.

For some task i in the simulated system, co-location naïve slack, SCNi , is calculated
as the task’s deadline (TDi defined in Sect. 6.4) minus the task’s co-location naïve
predicted time of completion, TCNi , calculated as the task’s baseline execution time
(defined in Sect. 3.3) plus the simulated current time (CT). Thus, the co-location naïve
slack equation is

SCNi = TDi − TCNi . (10)

The major difference between the equations for calculating co-location naïve and
co-location aware task slack is that, instead of using the value of the task’s baseline
execution time for predicting a task’s execution time, the co-location aware slack
calculation uses a prediction of the co-location aware time at which a task will be
completed, denoted TCAi . Before a task begins executing and has been assigned to a
processor node, the initial value of TCAi is equal to the current time of the simulator
(CT) plus the task’s baseline execution time value. After the task’s initial completion
time has been calculated, the co-location aware slack for each task i , denoted SCAi , is
calculated as the task’s deadline (TDi) minus the task’s co-location aware completion
time prediction (TCAi), i.e.,

SCAi = TDi − TCAi . (11)

However, after the scheduling heuristic has assigned the task to a processor core,
the time at which the task will be completed changes due to its co-location with other
applications, and the value of TCAi must be recalculated. The prediction of a target
task’s completion time after being co-located with other tasks is challenging because

123

HPC node performance and energy modeling with the. . . 4799

(a) the interference, a target taskwill experience during its execution,will change over
time as either the tasks that it is co-located with finish executing, or as new tasks
arriving into the system are co-located with the target task during its execution;

(b) the target task itself will cause interference with the other tasks it is co-located
with, increasing their execution time, and thereby changing the duration of each
task’s interference effects on the target task, making the execution time prediction
harder.

The first problem can be solved by having the scheduling heuristic recalculate
a task’s slack value at every scheduling event (when tasks arrive into the system, or
processor cores become free), thus ensuring that the slack value is up-to-date whenever
the value needs to be used for scheduling. The second problem of finding an accurate
prediction (as far as an underlying execution time prediction model will allow) for all
tasks co-located on a multicore processor node despite there being a continuous com-
plex interaction among them is solved through the iterative approximation algorithm
shown in the pseudo-code in Algorithm3.

Algorithm 3 takes a set of tasks co-located on a processor, denotedT, and calculates
the predicted completion time of all tasks in the set. Each task in the set of co-located
tasks presented to the algorithm may be in various states of progress through their
execution, and will have previous predictions of their completion times recorded from
earlier in their execution that will be used in the algorithm.

Algorithm 3 Predicted time to task completion under current co-location (TCAi)
1: inputs: a set T of the tasks co-located on the same processor node
2: outputs: a set T′ of tasks with predicted completion times
3: let I S = CT
4: while the size of T > 0 do
5: let I E be the earliest task completion time value in T
6: for each task t in T do
7: calculate PU I of t under co-location T
8: TCAi = TCAi + PU I ∗ (I E − I S)

9: end for
10: for each task t in T do
11: if I E + 1 ≥ TCAi then
12: add t to T′
13: remove t from T
14: end if
15: end for
16: I S = I E
17: end while
18: return T′

The algorithm starts by recording the simulator’s current time in the variable I S
that stores the start time of the current co-location interval. The co-location interval
is defined as the largest interval of time that the co-located tasks in the processor are
guaranteed not to change. For example, if two tasks, A and B, are co-located on a
processor, then each of these tasks will have a previously predicted completion time
calculated earlier in the simulation. Let the predicted completion time of task A be
CT +5 and that of task B be CT +10. Then for this scenario, the co-location interval

123

4800 D. Dauwe et al.

is from CT to CT +5 which is the interval during which these tasks are guaranteed to
be executing co-located together. As another scenario, consider a task C that arrives
and is co-located with tasks A and B with task C having a completion time of CT +4.
In this scenario, the co-location interval will be from CT to CT + 4.

The calculation of predicted unit interference PUI is where our methodology’s
execution time predictionmodels are utilized. The predicted value of a task’s execution
time under co-location is denoted ETC . After the execution time prediction has been
made by the prediction model, the task’s baseline execution time (ETB) is subtracted
from this value and then divided by the task’s baseline execution time. This gives the
increase in execution time a task experiences during a one second unit of execution
for a particular co-location scenario. Thus, PUI is

PUI = ETC − ETB
ETB

. (12)

The general procedure for calculating each task’s completion time occurs in the
while loop starting on line 4. An iteration of this while loop starts by finding the end
of the current co-location interval, I E (line 5). Next, the for loop on line 6 updates
the completion times of each task in T by first calculating the task’s PU I according
to Eq. 12, then multiplying this value by the value of the current co-location interval
(I E − I S), and finally adding it to the task’s last predicted completion time (lines
6–8). After each task’s completion time has been updated for the current iteration of
thewhile loop, the for loop on line 10 removes tasks fromTwith predicted completion
timeswithin 1 s after the end time of the co-location interval (necessary for establishing
which tasks will be in the next co-location interval), and puts them in the set T′. The
algorithm then updates the co-location interval start time of the next iteration of the
while loop to be the current interval’s end time (line 16). The algorithm continues
iterating through the while loop until all tasks have been removed from T, indicating
that completion time predictions have been made for all tasks co-located on the node,
and returns the set T′ of tasks with updated completion times. After the predictions of
completion time under the current co-location scenario have been completed for each
task in the processor node, the co-location aware slack for each task i is calculated as
defined earlier in Eq. 11.

The neural networkmodel F for the 4-core Intel XeonE5-1225v3 system (themodel
used for execution time predictions in this simulated study) is trained just once, using
the entire set of data collected as specified in Sect. 4.2.3. The accuracy of this execution
time prediction model has a training performance MPE of 2.50% when trained with
the full set of training data.

6.5.3 Co-location naïve scheduling heuristic

The co-location naïve scheduling heuristic is shown in Algorithm 4, and takes as input
the set of “unmapped tasks” U that are a set of tasks that have arrived into the system
but have not yet been scheduled to a processor core, and the list N of processor nodes
with available cores. The algorithm returns a mapping of a subset of the tasks in U to
a subset of the nodes in N.

123

HPC node performance and energy modeling with the. . . 4801

Algorithm 4 starts by sorting tasks in U from least slack to most slack according
to their slack values calculated with Eq. 10, then stores these values in the list U′, and
initializes the boolean variable N A, which indicates if a node is available, to false
(line 3–4). Next, the algorithm enters the outer for loop that iterates over each task ui
in U′ (line 5). Because the list is sorted according to slack, the tasks that are closest to
their deadlines and most in need of scheduling get considered for scheduling first. At
the beginning of each iteration of the outer for loop, the set of nodes N is sorted from
the node with the least number of available cores to the node with the most number
of available cores, and stored in N′. It is this list N′ that is subsequently iterated over
in the inner for loop (lines 6–7). Allowing the nodes to be iterated over in this way
encourages consolidation. In line 8, the co-location naïve slack SCNi is calculated
for task ui if it were to be scheduled on node n j . If the calculated slack prediction
is greater than zero, then N A is set to true, the available node n j is recorded to the
variable that stores the node with available slack NW AS, and the algorithm breaks
from the inner loop, otherwise it checks the next processor node (lines 9–12). Once the
inner for loop is complete, if there was a node available, then task ui is scheduled onto
the node recorded in NW AS, otherwise the algorithm moves on the next unmapped
task (lines 15–16). After the outer for loop has iterated through all the unmapped tasks,
the algorithm is complete.

Algorithm 4 Co-location naïve consolidating slack-based scheduling heuristic
1: inputs: unmapped tasks U, nodes with available cores N
2: outputs: a mapping of a subset of U to a subset of N
3: let U′ be a sorted list of tasks U from least slack to most slack
4: initialize N A = False
5: for each task ui in U′ with i = 1 to the size of U′ do
6: let N′ be a sorted list of nodes N from least to most number of available cores
7: for each node n j in N′ with j = 1 to the size of N′ do
8: calculate co-location naïve slack, SCNi , for task ui on node n j
9: if SCNi > 0 then // ui can be completed on node n j
10: N A = True
11: NW AS = n j
12: break
13: end if
14: end for
15: if N A then // it is predicted that task ui can be completed
16: assign ui to execute on node NW AS
17: end if
18: end for

6.5.4 Co-location aware scheduling heuristic

The co-location aware scheduling heuristic operates similarly to the co-location naïve
scheduling heuristic shown in Algorithm 4. The only difference between the co-
location aware heuristic and the co-location naïve heuristic is the scope and calculation
of task slack (lines 8–9 of Algorithm 4). The co-location aware heuristic uses the slack
calculation of Eq. 11 for its task slack predictions, as opposed to the co-location naïve

123

4802 D. Dauwe et al.

heuristic’s use of Eq. 10. In addition, the co-location aware scheduling heuristic is
aware of the other tasks already executing on the node n j and calculates co-location
aware slack, SCAi , for all the tasks on the node, not just the unmapped task ui . When
the algorithm checks the slack for all tasks in the node, it is not only checking to see if
the unmapped task ui will be able to finish executing when subjected to node n j ’s co-
location, but also checking to make sure that placing ui on the node will not produce
so much interference that it could make the co-located applications already executing
on node n j miss their deadlines. For the co-location aware scheduling heuristic, the
conditional statement checking the boolean value of N A would look similar to line 15
of Algorithm 4 of the co-location naïve heuristic. However, a value of N A = true for
the co-location aware heuristic indicates that not only can the task ui be completed,
but also the task ui can be mapped to the node without causing any missed deadlines.

6.5.5 Perfect prediction scheduling heuristic

A third scheduling heuristic that we consider in our study demonstrates co-location
aware scheduling with perfect prediction (perfect pred) of application interference.
As the name suggests, the “perfect prediction” scheduler shows how the co-location
aware scheduling heuristic would behave if the modeling methodology was capable of
perfectly predicting an application’s execution time under any co-location situation.
The “perfect prediction” scheduler makes its scheduling decisions using the same
scheduling procedure as the co-location aware scheduling heuristic outlined above in
Sect. 6.5.4, except that instead of using our proposed co-location interferencemodeling
methodology for its prediction of a task’s increased execution time under co-location,
its execution on a simulator allows it to predict the future execution time values under
co-location obtained after profiling on a real system. Therefore, a task’s execution
time and slack under co-location are “predicted” perfectly accurately for the purposes
of scheduling.

It is not possible for such a scheduler to exist outside of a controlled simulation, but
it is shown here for the purposes of providing an upper bound on what is achievable for
any consolidation-based co-location aware heuristic. The difference in performance
between the co-location aware scheduling heuristic using “perfect prediction” and the
co-location aware heuristic using the proposed modeling methodology for its predic-
tions gives an indication of how often tasks miss their deadlines due to inaccurate
predictions, instead of environmental factors of the computing system.

6.6 System measurements

6.6.1 Overview

We use four different measures for comparing the heuristics in the system: system
performance, core utilization, node utilization, and core utilization of active nodes
(each defined in the following sections). Each measure gives a different view of how
the heuristics behave during system simulation, and allows for a detailed analysis of
the system.

123

HPC node performance and energy modeling with the. . . 4803

6.6.2 System performance measure

After a simulation has completed, each task will be in one of three states.

(a) completed The task was scheduled to a processor core and successfully completed
at or before its deadline.

(b) missed deadline The task was scheduled to a processor core, but was unable to be
completed before its deadline. This outcome occurs when a scheduling heuristic
makes a mistake in its assumption about a task’s execution time (for instance, the
task experiences longer execution times due to co-location interference). When a
task misses its deadline, it is removed from its processor core at its deadline time.

(c) unassigned When the number of arrived tasks in the system exceeds the number
of available cores (either physically available cores, or cores that a scheduling
heuristic determines can be used without causing missed deadlines), then the task
is put in a queue of arrived tasks waiting to be scheduled. If the task is unable to be
scheduled before its deadline, then at the time of its deadline the task is removed
from the system and labeled as “unassigned.”

The goal of this scheduler is to complete asmany tasks by their deadlines as possible,
thus reducing the number of tasks that miss their deadlines or are not executed at all.
The overall system performance using a particular scheduling heuristic is determined
by measuring the number of tasks that meet their deadlines at the end of system
simulation.

6.6.3 Core utilization measure

A system core is considered active if it is executing a task. The core utilization CU
at a particular instant of the system’s simulation is calculated from the ratio of the
system’s active cores (AC) to the system’s total cores (TC), i.e.,

CU = AC

TC
. (13)

6.6.4 Node utilization measure

A system node is considered active if it has at least one active core. The system’s node
utilization NU is a measure of the percentage of active nodes in the system (nodes
with at least one task is running on the node). Node utilization is calculated simply as
a ratio of the number of nodes with at least one active core (active nodes denoted AN)
to the total number of nodes in the system (denoted TN), i.e.,

NU = AN

TN
. (14)

6.6.5 Core utilization of active nodes measure

The core utilization of active nodes (CUAN) is a system measure that examines how
consolidated tasks are in the system by examining how “full” active nodes are in the

123

4804 D. Dauwe et al.

system. If the tasks in the system are consolidated, then the value of CUAN is high,
and if the tasks in the system are spread out across processor nodes, then the value
of CUAN is low. The CUAN metric is calculated as the sum over all active nodes in
the system of the number of active cores in each active node ACINi divided by the
total number of cores in that active node TCINi . This sum is then divided by the total
number of active nodes (AN), i.e.,

CUAN =
∑AN

i=1
ACINi
TCINi

AN
. (15)

Because the simulated HPC system used in this study is homogeneous with each node
consisting of a 4-core processor, TC I Ni will always be equal to four in this system.

6.7 Experimental setup

Simulations were performed at two different task subscription levels. The total number
of tasks that arrive at the simulated system for each subscription level remains a
constant value of 8000 tasks in each simulation. This way, the only difference between
simulations in one subscription level and another is the 1

λ
values associated with the

expected arrival times of the tasks (described in Sect. 6.4). The subscriptions levels
are defined as oversubscribed with 1

λ
= 0.1 and undersubscribed with 1

λ
= 0.25. The

oversubscribed system has tasks arriving to the system at a higher rate than the system
can execute them.

The subscription levels provide a good range of situations in which an HPC system
could be operating. The resulting performance of each of the scheduling heuristics
for each of these subscriptions levels provides a good assessment of when the system
benefits from a co-location aware scheduling heuristic.

After the arrival pattern and deadlines of the tasks are determined according to
Sect. 6.4 for each of the subscription levels, the 500 node system is simulated with
each of the three scheduling heuristics described in Sect. 6.5 (co-location naïve, co-
location aware, and “perfect prediction”) for a total of six simulated system scenarios.

6.8 Experimental results

Simulation results for demonstrating the utility of the modeling methodology are
shown in Figs. 5 and 6 for each of the subscription levels discussed in the exper-
imental setup from Sect. 6.7. The most important result from the simulation is its
demonstration of the utility of our co-location interference modeling methodology.
For both subscription levels, the heuristic performance results shown in Figs. 5a and
6a indicate that the co-location aware heuristic is able to complete more tasks than
the co-location naïve heuristic by avoiding missing task deadlines, while at the same
time, performing competitively with the perfect prediction heuristic.

The performance of the “perfect prediction” heuristic in Figs. 5a and 6a further
demonstrates how many of the tasks fail to be completed because of a missed dead-
line (due to an inaccurate execution time prediction) or fail to be completed because

123

HPC node performance and energy modeling with the. . . 4805

Fig. 5 Simulation results of an oversubscribed 500 node homogeneous system comprised 4-core IntelXeon
E3-1225v3 processors. a Scheduling heuristic performance. b Node utilization of the simulated system. c
Core utilization of the simulated system. dCore utilization of active nodes (CUAN) of the simulated system.
In (a), the purple bar shows the percentage of total tasks completed, the brown bar shows the percentage
of total tasks that missed their deadlines, and the green bar shows the percentage of tasks that were left
unassigned. In (b, c, d) the red line indicates the naïve heuristic utilizations, the green line indicates the
co-location aware heuristic utilizations, and the blue line indicates the perfect prediction utilizations (color
figure online)

they are not able to be scheduled in the system. As expected, the co-location aware
scheduling heuristic with “perfect prediction” does not have a single task that misses
its deadline for either of the two task subscription levels. However, even for the “perfect
prediction” scheduling heuristic, tasks that are executed in an oversubscribed system
(shown in Fig. 5a) are sometimes unassigned, indicating that it would never be possi-
ble to complete more than approximately 78% of the tasks that arrive to the system.
Given this upper bound on performance, our co-location aware scheduling heuristic
performs very well. In both subscription level scenarios where we use our co-location
aware scheduling heuristic, the number of completed tasks for our heuristic comes
within 3% of the heuristic with “perfect prediction.”

It can be observed from the results for the three utilization metrics of each heuris-
tic shown in Figs. 5 and 6 that there is a trade-off for each heuristic between the
subscription level of the tasks in the simulated system and each heuristic’s ability to

123

4806 D. Dauwe et al.

Fig. 6 Simulation results of an undersubscribed 500 node homogeneous system comprised 4-core Intel
Xeon E3-1225v3 processors. a Scheduling heuristic performance. b Node utilization of the simulated
system. c Core utilization of the simulated system. d Core utilization of active nodes (CUAN) of the
simulated system. In (a), the purple bar shows the percentage of total tasks completed, the brown bar
shows the percentage of total tasks that missed their deadlines, and the green bar shows the percentage of
tasks that were left unassigned. In (b, c, d) the red line indicates the naïve heuristic utilizations, the green
line indicates the co-location aware heuristic utilizations, and the blue line indicates the perfect prediction
utilizations (color figure online)

consolidate tasks in the system. For both subscription levels, the co-location aware
heuristic provides worse consolidation than the co-location naïve heuristic. This is
to be expected because the co-location aware heuristic specifically leaves processor
cores idle if scheduling tasks to those cores would cause other tasks in the system
to miss their deadlines. By examining the oversubscribed system in Fig. 5b, c, d, it
can be observed that the co-location naïve heuristic aggressively consolidates tasks in
the system because the node utilization, core utilization, and core utilization of active
nodes (CUAN) are all close to 100 % for the majority of the system simulation. In
contrast, the co-location aware heuristic still takes advantage of all the nodes in the
system (node utilization is still at 100 %), but is more selective about its use of cores
and, therefore, has core utilization, and CUAN values that peak at about 90 % and
do not remain constant throughout the simulation. Similar conclusions can be drawn
from the results for the undersubscribed system shown in Fig. 6. In this system, the

123

HPC node performance and energy modeling with the. . . 4807

co-location naïve heuristic still has the highest levels of core utilization and CUAN,
but has a lower node utilization, indicating that it is more aggressively consolidating
tasks in the system due to its inability to foresee the potential problems that arise when
tasks are co-located on the same multicore processor.

7 Conclusions

We proposed a modeling methodology that predicts application execution time and
energy use when under co-location interference effects caused by resource sharing
among cores in a multicore processor. The methodology is general enough to be
applied to any multicore processor and set of applications. To validate our methodol-
ogy, its effectiveness was demonstrated by applying it to three server class Intel Xeon
multicore processors with up to 12 cores, executing real data workloads from two
scientific benchmark suites. After validation, the utility that such prediction models
can provide was demonstrated by creating a scheduling heuristic that takes advantage
of the proposed modeling methodology for its scheduling decisions.

Specifically, this work used machine learning techniques to make predictions about
application performance degradation due to contention in shared cache and main
memory resources when multiple applications were co-located on the same multi-
core processor. While simpler linear models do not provide a significant increase in
prediction accuracy from the addition of application memory use information, the
results from Figs. 1 and 2 show that neural networks can provide very accurate pre-
dictions of application execution time and energy use. For the neural network model,
when using only a subset of the application features, it is still able to produce fairly
accurate performance predictions. Using all the features, the neural network achieved
a very small MPE of 2 % and an NRMSE of around 0.01 on all processors tested.
Considering that performance degradation due to co-location can extend an applica-
tion’s execution time quite significantly, even a model with access to only a limited
set of model features may be able to provide good enough predictions to improve the
performance of schedulers in HPC systems.

Applying our methodology to create models for a large-scale simulated system
enabled us to examine the benefit of a co-location aware scheduling heuristic that can
provide substantial performance improvement in a simulated homogeneous 500 node
system. Although the experiments in Sect. 6 were only performed for a homogeneous
system of 4-core nodes, it is reasonable to expect that the benefits demonstrated can be
replicated in either a homogeneous or heterogeneous system that includes processor
nodes with more cores. Not only is the interference from co-location that applications
experience likely to be greater in machines with more cores, but also the results shown
in Fig. 1 indicate that for the more advanced feature sets the prediction models tend
to perform even better for the 6-core and 12-core systems than they do for the 4-core
system used for those experiments.

Acknowledgments The authors thank Mark Oxley for his valuable comments on this research. This work
was supported by the National Science Foundation (NSF) under Grant Numbers CNS-0905339, CCF-
1252500, CCF-1302693, ACI-1339745, and an NSF Graduate Research Fellowship. Any opinion, findings,
and conclusions or recommendations expressed in thismaterial are those of the authors anddonot necessarily

123

4808 D. Dauwe et al.

reflect the views of the NSF. The authors thank Hewlett Packard (HP) of Fort Collins for providing us some
of the machines used for testing. Pacific Northwest National Laboratory is operated by Batelle for the
U.S. Department of Energy under contract DE-AC0576RL01830. A preliminary version of portions of this
work appeared in [40]. The additions to this work include creating an additional set of models for energy
use prediction, validating the execution time and energy use prediction models on an additional multicore
processor, and creating and analyzing a co-location aware scheduling heuristic that utilizes prediction
models generated by our modeling methodology for making intelligent co-location decisions.

References

1. Verma A, Ahuja P, Neogi A (2008) Power-aware dynamic placement of HPC applications. In: 22nd
Annual International Conference on Supercomputing (ICS ’08), pp 175–184

2. ZhuQ, Zhu J, Agrawal G (2010) Power-aware consolidation of scientific workflows in virtualized envi-
ronments. In: ACM/IEEE International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC ’10), pp 1–12

3. Tang L, Mars J, Vachharajani N, Hundt R, Soffa M (2011) The impact of memory subsystem resource
sharingondatacenter applications. In: 38thAnnual International SymposiumonComputerArchitecture
(ISCA ’11), pp 283–294

4. Sandberg A, Sembrant A, Hagersten E, Black-Schaffer D (2013) Modeling performance variation due
to cache sharing. In: IEEE 19th International Symposium onHigh Performance Computer Architecture
(HPCA ’13), pp 155–166

5. Choi J, Dukhan M, Liu X, Vuduc R (2014) Algorithmic time, energy, and power on candidate HPC
compute building blocks. In: IEEE 28th International Parallel and Distributed Processing Symposium
(IPDPS ’14), pp 447–457

6. DauweD, Friese R, Pasricha S,Maciejewski AA,KoenigGA, Siegel HJ (2014)Modeling the effects on
power and performance frommemory interference of co-located applications in multicore systems. In:
The 2014 International Conference on Parallel andDistributed ProcessingTechniques andApplications
(PDPTA ’14), pp 3–9

7. Subramanian L, Seshadri V, Ghosh A, Khan S, Mutlu O (2015) The application slowdown model:
quantifying and controlling the impact of inter-application interference at shared caches and main
memory. In: 48th International Symposium on Microarchitecture (MICRO-48 ’15), pp 62–75

8. Merkel A, Stoess J, Bellosa F (2010) Resource-conscious scheduling for energy efficiency onmulticore
processors. In: 5th European Conference on Computer Systems (EuroSys ’10), pp 153–166

9. Luque C, Moreto M, Cazorla FJ, Gioiosa R, Buyuktosunoglu A, Valero M (2012) CPU accounting for
multicore processors. IEEE Trans Comput 61(2):251–264

10. Mars J, Tang, L, Hundt R, Skadron K, Soffa M (2011) Bubble-up: increasing utilization in modern
warehouse scale computers via sensible co-locations. In: IEEE/ACM 44th International Symposium
on Microarchitecture (MICRO ’11), pp 248–259

11. Dwyer T, Fedorova A, Blagodurov S, Roth M, Gaud F, Pei J (2013) A practical method for esti-
mating performance degradation on multicore processors, and its application to HPC workloads. In:
ACM/IEEE International Conference on High Performance Computing, Networking, Storage and
Analysis (SC ’12), pp 83:1–83:11

12. Cazorla FJ, Ramirez A, Valero M, Fernandez E (2004) Dynamically controlled resource allocation
in SMT processors. In: 37th International Symposium on Microarchitecture (MICRO-37 ’04), pp
171–182

13. De Vuyst M, Kumar R, Tullsen DM (2006) Exploiting unbalanced thread scheduling for energy and
performance on a CMP of SMT processors. In: IEEE 20th International Parallel and Distributed
Processing Symposium (IPDPS ’06), pp 10–20

14. Feliu J, Sahuquillo J, Petit S, Duato J (2015) Addressing fairness in SMT multicores with a progress-
aware scheduler. In: IEEE 29th International Parallel and Distributed Processing Symposium (IPDPS
’15), pp 187–196

15. Young BD, Apodaca J, Briceño LD, Smith J, Pasricha S, Maciejewski AA, Siegel HJ, Khemka B,
Bahirat S, Ramirez A, Zou Y (2013) Deadline and energy constrained dynamic resource allocation in
a heterogeneous computing environment. J Supercomput 63(2):326–347

16. Al-QawasmehAM, Pasricha S,Maciejewski AA, Siegel HJ (2015) Power and thermal-aware workload
allocation in heterogeneous data centers. IEEE Trans Comput 64(2):477–491

123

HPC node performance and energy modeling with the. . . 4809

17. Khemka B, Friese R, Pasricha S, Maciejewski AA, Siegel HJ, Koenig GA, Powers S, Hilton M,
Rambharos R, Poole S (2015) Utility maximizing dynamic resource management in an oversubscribed
energy-constrained heterogeneous computing system. Sustain Comput Inf Syst 5:14–30

18. Oxley M, Pasricha S, Maciejewski AA, Siegel HJ, Apodaca J, Young D, Briceño L, Smith J, Bahirat S,
Khemka B, Ramirez A, Zou Y (2015)Makespan and energy robust stochastic static resource allocation
of bags-of-tasks to a heterogeneous computing system. IEEE Trans Parallel Distrib Syst 2791–2805

19. Talby D, Feitelson DG (1999) Supporting priorities and improving utilization of the IBM SP scheduler
using slack-based backfilling. In: 13th International Parallel Processing Symposium (IPPS ’99), pp
513–517

20. Sadhasivam S, Nagaveni N, Jayarani R, Ram RV (2009) Design and implementation of an efficient
two-level scheduler for cloud computing environment. In: International Conference on Advances in
Recent Technologies in Communication and Computing (ARTCom ’09), pp 884–886

21. Utrera G, Corbalan J, Labarta J (2014) Scheduling parallel jobs on multicore clusters using CPU
oversubscription. J Supercomput 68(3):1113–1140

22. Lifka DA (1995) The ANL/IBM SP scheduling system. In: Job scheduling strategies for parallel
processing, pp 295–303

23. Jolliffe I (2002) Principal component analysis. Wiley, Hoboken, NJ
24. Chong EK, Zak SH (2013) An introduction to optimization. Wiley, Hoboken, NJ
25. LeCun YA, Bottou L, Orr GB, Müller K (2012) “Efficient backprop”, neural networks: tricks of the

trade. Springer, New York
26. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York, NY
27. Ubuntu 14 Release Notes. https://wiki.ubuntu.com/TrustyTahr/ReleaseNotes. Accessed Jan 2016
28. Intel 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes

1,2A,2B,2C,3A,3B,3C and 3D, Technical Report 2015. http://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.
Accessed Jan 2016

29. Intel Xeon E3-1225v3 Processor http://ark.intel.com/products/75461/. Accessed Jan 2016
30. Intel Xeon E5649 Processor http://ark.intel.com/products/52581/. Accessed Jan 2016
31. Intel Xeon E5-2697v2 Processor http://ark.intel.com/products/75283/. Accessed Jan 2016
32. Performance application programming interface http://icl.cs.utk.edu/papi/. Accessed Jan 2016
33. HPCToolkit http://hpctoolkit.org/. Accessed Jan 2016
34. Watts Up? Plug Load Meters https://www.wattsupmeters.com/secure/products.php?pn=0. Accessed

Jan 2016
35. PARSEC Benchmark Suite http://parsec.cs.princeton.edu/. Accessed Jan 2016
36. NAS Parallel Benchmarks http://www.nas.nasa.gov/publications/npb.html. Accessed Jan 2016
37. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press, New York, NY
38. Khemka B, Friese R, Pasricha S, Maciejewski AA, Siegel HJ, Koenig GA, Powers S, HiltonM, Ramb-

haros R, Wright M, Poole S (2015) Comparison of energy-constrained resource allocation heuristics
under different task management environments. In: The 2015 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2015), pp 3–12

39. KhemkaB, FrieseR, BricenoLD, SiegelHJ,MaciejewskiAA,KoenigGA,Groer C,OkonskiG,Hilton
MM, Rambharos R, Poole S (2015) Utility functions and resource management in an oversubscribed
heterogeneous computing environment. IEEE Trans Comput 64(8):2394–2407

40. Dauwe D, Jonardi E, Friese R, Pasricha S, Maciejewski AA, Bader DA, Siegel HJ (2015) A method-
ology for co-location aware application performance modeling in multicore computing. In: 17th
Workshop on Advances on Parallel and Distributed Computing Models (APDCM ’15), pp 434–443

123

https://wiki.ubuntu.com/TrustyTahr/ReleaseNotes
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462
http://ark.intel.com/products/75461/
http://ark.intel.com/products/52581/
http://ark.intel.com/products/75283/
http://icl.cs.utk.edu/papi/
http://hpctoolkit.org/
https://www.wattsupmeters.com/secure/products.php?pn=0
http://parsec.cs.princeton.edu/
http://www.nas.nasa.gov/publications/npb.html

	HPC node performance and energy modeling with the co-location of applications
	Abstract
	1 Introduction
	2 Related work
	2.1 Overview
	2.2 The effect of application co-location on performance and energy use
	2.3 Scheduling heuristics

	3 Modeling methodology
	3.1 Overview
	3.2 Model features
	3.3 Generality of the models
	3.4 Linear modeling technique
	3.5 Neural network modeling technique
	3.6 Model accuracy

	4 Implementation
	4.1 Testing environment
	4.1.1 Operating system
	4.1.2 Processor performance counters
	4.1.3 Measuring cache use
	4.1.4 Processor performance states (P-states)
	4.1.5 Measuring power and energy use

	4.2 Data collection and experimental setup
	4.2.1 Benchmark applications
	4.2.2 Multicore processors tested
	4.2.3 Model training
	4.2.4 Model testing

	5 Experimental results
	5.1 Overview
	5.2 Results of linear modeling
	5.2.1 Overview
	5.2.2 Linear execution time modeling
	5.2.3 Linear energy use modeling

	5.3 Results of neural network modeling
	5.3.1 Overview
	5.3.2 Neural network execution time modeling
	5.3.3 Neural network energy use modeling

	5.4 Calculating system energy use from time predictions and average power
	5.5 Model accuracy

	6 Prediction model utility
	6.1 Overview
	6.2 Simulator
	6.3 Data collection
	6.4 Task simulation
	6.5 Scheduling heuristics
	6.5.1 Overview
	6.5.2 Task slack
	6.5.3 Co-location naïve scheduling heuristic
	6.5.4 Co-location aware scheduling heuristic
	6.5.5 Perfect prediction scheduling heuristic

	6.6 System measurements
	6.6.1 Overview
	6.6.2 System performance measure
	6.6.3 Core utilization measure
	6.6.4 Node utilization measure
	6.6.5 Core utilization of active nodes measure

	6.7 Experimental setup
	6.8 Experimental results

	7 Conclusions
	Acknowledgments
	References

