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Problem Definition

The problem concerns the design of efficient
rate-based flow control algorithms for virtual-
circuit communication networks where a con-
nection is established by allocating a fixed path,
called session, between the source and the des-
tination. Rate-based flow-control algorithms re-
peatedly adjust the transmission rates of different
sessions in an end-to-end manner with primary
objectives to optimize the network utilization and
achieve some kind of fairness in sharing band-
width between different sessions.

A widely-accepted fairness criterion for flow-
control is max-min fairness which requires that

the rate of a session can be increased only if this
increase does not cause a decrease to any other
session with smaller or equal rate. Once max-
min fairness has been achieved, no session rate
can be increased any further without violating
the above condition or exceeding the bandwidth
capacity of some link. Call max-min rates the
session rates when max-min fairness has been
reached.

Rate-based flow control algorithms perform
rate adjustments through a sequence of opera-
tions in a way that the capacities of network links
are never exceeded. Some of these algorithms,
called conservative [3, 6, 10, 11, 12], employ
operations that gradually increase session rates
until they converge to the max-min rates without
ever performing any rate decreases. On the other
hand, optimistic algorithms, introduced more re-
cently by Afek, Mansour, and Ostfeld [1], allow
for decreases, so that a session’s rate may be
intermediately be larger than its final max-min
rate.

Optimistic algorithms [1, 7] employ a specific
rate adjustment operation, called update opera-
tion (introduced in [1]). The goal of an update
operation is to achieve fairness among a set of
neighboring sessions and optimize the network
utilization in a local basis. More specifically, an
update operation calculates an increase for the
rate of a particular session (the updated session)
for each link the session traverses. The calculated
increase on a particular link is the maximum
possible that respects the max-min fairness condi-
tion between the sessions traversing the link; that
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is, this increase should not cause a decrease to
the rate of any other session traversing the link
with smaller rate than the rate of the updated
session after the increase. Once the maximum
increase on each link has been calculated the
minimum among them is applied to the session’s
rate (let e be the link for which the minimum
increase has been calculated). This causes the
decrease of the rates of those sessions traversing
e which had larger rates than the increased rate
of the updated session to the new rate. Moreover,
the update operation guarantees that all the
capacity of link e is allocated to the sessions
traversing it (so the bandwidth of this link is fully
utilized).

One important performance parameter of
a rate-based flow control algorithm is its
locality which is characterized by the amount
of knowledge the algorithm requires to decide
which session’s rate to update next. Oblivious
algorithms do not assume any knowledge of the
network topology or the current session rates.
Partially oblivious algorithms have access to
session rates but they are unaware of the network
topology, while non-oblivious algorithms require
full knowledge of both the network topology and
the session rates. Another crucial performance
parameter of rate-based flow control algorithms
is the convergence complexity measured as the
maximum number of rate-adjustment operations
performed in any execution until max-min
fairness is achieved.

Key Results

Fatourou, Mavronicolas and Spirakis [7] have
studied the convergence complexity of optimistic
rate-based flow control algorithms under
varying degrees of locality. More specifically,
they have proved lower and upper bounds
on the convergence complexity of oblivious,
partially-oblivious and non-oblivious algorithms.
These bounds are expressed in terms of
n the number of sessions laid out on the
network.

Theorem 1 (Lower Bound for Oblivious
Algorithms, Fatourou, Mavronicolas and Spi-
rakis [7]) Any optimistic, oblivious, rate-
based flow control algorithm requires ˝.n2/

update operations to compute the max-min
rates.

Fatourou, Mavronicolas and Spirakis [7] have
presented algorithm RoundRobin, which ap-
plies update operations to sessions in a round
robin order. Obviously, RoundRobin is obliv-
ious. It has been proved [7] that the conver-
gence complexity of RoundRobin is O(n2).
This shows that the lower bound for oblivious
algorithms is tight.

Theorem 2 (Upper Bound for Oblivious
Algorithms, Fatourou, Mavronicolas and Spi-
rakis [7]) RoundRobin computes the max-
min rates after performing O(n2) update
operations.

RoundRobin belongs to a class of oblivious
algorithms, called Epoch [7]. Each algorithm of
this class repeatedly chooses some permutation
of all session indices and applies update op-
erations on the sessions in the order determined
by this permutation. This is performed n times.
Clearly, Epoch is a class of oblivious algorithms.
It has been proved [7] that each of the algo-
rithms in this class has convergence complexity
O(n2).

Another oblivious algorithm, called
Arbitrary, has been presented in [1]. The
algorithm works in a very simple way by
choosing the next session to be updated in an
arbitrary way, but it requires an exponential
number of update operations to compute the
max-min rates.

Fatourou, Mavronicolas and Spirakis [7] have
proved that partially-oblivious algorithms do
not achieve better convergence complexity than
oblivious algorithms despite the knowledge they
employ.

Theorem 3 (Lower Bound for Partially Obliv-
ious Algorithms, Fatourou, Mavronicolas
and Spirakis [7]) Any optimistic, partially
oblivious, rate-based flow control algorithm
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requires ˝.n2/ update operations to compute
the max-min rates.

Afek, Mansour and Ostfeld [1] have pre-
sented a partially oblivious algorithm, called
GlobalMin. The algorithm chooses as the
session to update next the one with the minimum
rate among all sessions. The convergence
complexity of GlobalMin is O(n2) [1]. This
shows that the lower bound for partially-oblivious
algorithms is tight.

Theorem 4 (Upper Bound for Partially
Oblivious algorithms, Afek, Mansour and Os-
tfeld [1]) GlobalMin computes the max-
min rates after performing O(n2) update
operations.

Another partially-oblivious algorithm, called
LocalMin, is also presented in [1]. The
algorithm chooses to schedule next a session
which has a minimum rate among all the sessions
that share a link with it. LocalMin has time
complexity O(n2).

Fatourou, Mavronicolas and Spirakis [7]
have presented a non-oblivious algorithm,
called Linear, that exhibits linear convergence
complexity. Linear follows the classical
idea [3, 12] of selecting as the next updated
session one of the sessions that traverse the
most congested link in the network. To discover
such a session, Linear requires knowledge
of the network topology and the session
rates.

Theorem 5 (Upper Bound for Non-Oblivious
Algorithms, Fatourou, Mavronicolas and Spi-
rakis [7]) Linear computes the max-min
rates after performing O(n) update opera-
tions.

The convergence complexity of Linear is opti-
mal, since n rate adjustments must be performed
in any execution of an optimistic rate-based flow
control algorithm (assuming that the initial ses-
sion rates are zero). However, this comes at a re-
markable cost in locality which makes Linear
impractical.

Applications

Flow control is the dominant technique used
in most communication networks for prevent-
ing data traffic congestion when the externally
injected transmission load is larger than what
can be handled even with optimal routing. Flow
control is also used to ensure high network uti-
lization and fairness among the different con-
nections. Examples of networking technologies
where flow control techniques have been ex-
tensively employed to achieve these goals are
TCP streams [5] and ATM networks [4]. An
overview of flow control in practice is provided
in [3].

The idea of controlling the rate of a traffic
source originates back to the data networking
protocols of the ANSI Frame Relay Standard.
Rate-based flow control is considered attractive
due to its simplicity and its low hardware require-
ments. It has been chosen by the ATM Forum on
Traffic Management as the best suited technique
for the goals of ABR service [4].

A substantial amount of research work has
been devoted in past to conservative flow control
algorithms [3, 6, 10, 11, 12]. The optimistic
framework has been introduced much later by
Afek et al. [1] as a more suitable approach for real
dynamic networks where decreases of session
rates may be necessary (e.g., for accommodat-
ing the arrival of new sessions). The algorithms
presented in [7] improve upon the original algo-
rithms proposed in [1] in terms of either con-
vergence complexity, or locality, or both. More-
over, they identify that certain classical schedul-
ing techniques, such as round-robin [11], or ad-
justing the rates of sessions traversing one of
the most congested links [3, 12] can be efficient
under the optimistic framework. The first general
lower bounds on the convergence complexity of
rate-based flow control algorithms are also pre-
sented in [7].

The performance of optimistic algorithms has
been theoretically analyzed in terms of an ab-
straction, namely the update operation, which
has been designed to address most of the in-
tricacies encountered by rate-based flow con-
trol algorithms. However, the update operation
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masks low-level implementation details, while it
may incur non-trivial, local computations on the
switches of the network. Fatourou, Mavronico-
las and Spirakis [9] have studied the impact on
the efficiency of optimistic algorithms of local
computations required at network switches in
order to implement the update operation, and
proposed a distributed scheme that implements
a broad class of such algorithms. On a different
avenue, Afek, Mansour and Ostfeld [2] have
proposed a simple flow control scheme, called
Phantom, which employs the idea of consider-
ing an imaginary session on each link [10, 12],
and they have discussed how Phantom can be
applied to ATM networks and networks of TCP
routers.

A broad class of modern distributed appli-
cations (e.g., remote video, multimedia confer-
encing, data visualization, virtual reality, etc.)
exhibit highly differing bandwidth requirements
and need some kind of quality of service guar-
antees. To efficiently support a wide diversity of
applications sharing available bandwidth, a lot
of research work has been devoted on incorpo-
rating priority schemes on current networking
technologies. Priorities offer a basis for model-
ing the diverse resource requirements of modern
distributed applications, and they have been used
to accommodate the needs of network manage-
ment policies, traffic levels, or pricing. The first
efforts for embedding priority issues into max-
min fair, rate-based flow control were performed
in [10, 12]. An extension of the classical the-
ory of max-min fair, rate-based flow control to
accommodate priorities of different sessions has
been presented in [8]. (A number of other pa-
pers addressing similar generalizations of max-
min fairness to account for priorities and utility
have been presented after the original publication
of [8].)

Many modern applications are not based
solely on point-to-point communication but
they rather require multipoint-to-multipoint
transmissions. A max-min fair rate-based flow
control algorithm for multicast networks is
presented in [14]. Max-min fair allocation of
bandwidth in wireless adhoc networks is studied
in [15].

Open Problems

The research work on optimistic, rate-based flow
control algorithms leaves open several interesting
questions. The convergence complexity of the
proposed optimistic algorithms has been ana-
lyzed only for a static set of sessions laid out
on the network. It would be interesting to eval-
uate these algorithms under a dynamic network
setting, and possibly extend the techniques they
employ to efficiently accommodate arriving and
departing sessions.

Although max-min fairness has emerged as
the most frequently praised fairness criterion for
flow control algorithms, achieving it might be
expensive in highly dynamic situations. Afek
et al. [1] have proposed a modified version
of the update operation, called approximate
update, which applies an increase to some
session only if it is larger than some quantity
ı > 0. An approximate optimistic algorithm
uses the approximate update operation
and terminates if no session rate can be
increased by more than •. Obviously such an
algorithm does not necessarily reach max-min
fairness. It has been proved [1] that for some
network topologies every approximate optimistic
algorithm may converge to session rates that
are away from their max-min counterparts
by an exponential factor. The consideration
of other versions of update operation or
different termination conditions might lead to
better max-min fairness approximations and
deserves more study; different choices may also
significantly impact the convergence complexity
of approximate optimistic algorithms. It would be
also interesting to derive trade-off results between
the convergence complexity of such algorithms
and the distance of the terminating rates they
achieve to the max-min rates.

Fairness formulations that naturally approx-
imate the max-min condition have been pro-
posed by Kleinberg et al. [13] as suitable fairness
criteria for certain routing and load balancing ap-
plications. Studying these formulations under the
rate-based flow control setting is an interesting
open problem.
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Problem Definition

Wireless data broadcasting means a set of data
are repeatedly broadcast from a base station to
a mass number of wireless and mobile clients.
If a client wants a specific datum, it will access
onto the broadcasting channel, get the location
(appearance time) of the datum with the help
indices, and wait until the datum has been broad-
cast. The scheduling problem in data broadcast-
ing deals with the design of an efficient permuta-
tion strategy for a client to download a required
subset of data from an multichannel broadcasting
system, with both time and energy constraints.
Here time constraint means the client wants the
minimum downloading time from when it starts
the query until the moment it has successfully
download each piece of datum, while the energy
constraint means the client wants the minimum
switching numbers among channels to reduce
extra battery consumption. Correspondingly, we
can define the scheduling problem formally as
follows:

A client wants to download a group of k

data items D D fd1; d2; : : : ; dkg, each with
different sizes. Those data items are broadcasted
on n different channels C D fc1; c2; : : : ; cng

repeatedly together with many other data items.
Each channel may have different bandwidth and

http://dx.doi.org/10.1007/978-1-4939-2864-4_244
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Scheduling in Data Broadcasting, Fig. 1 Example of possible objective contradiction

broadcast cycle length. Let the time to download
the smallest transmission packet be a unit time,
and the length of di can be represented as li (also
referring as downloading time).

Assume the client knows the locations (chan-
nel id and time offsets) of the required data set
beforehand at the starting time t D 0 (with the
help of indices, which is beyond the scope of
our problem), and the target is how to down-
load k known data from n channels efficiently
with minimum downloading time (we also refer
it as access latency) and minimum switching
numbers.

Unfortunately, the two objectives in this prob-
lem are conflicting to each other. Figure 1 is an
example to illustrate this phenomenon. In Fig. 1,
there are two channels broadcasting 15 data items
repeatedly. Suppose the gray data items f1,2,3,4g
are of the request. The starting point of the client
retrieving process is at t D 0. If we want to
minimize the access latency, the request should
be retrieved in the order of “3 ! 1 ! 4 !

2” which takes only 7 time units but needs 3
switches (shown as Option 1 in Fig. 1). However,
if we want to minimize the switches, the best
retrieving order should be “3 ! 4 ! 2 ! 1”
which needs only 1 switch but takes 12 time units
(shown as Option 2 in Fig. 1). This example ex-
hibits that access latency and number of switches
cannot be minimized at the same time. They are
contradictory factors.

As a consequence, we want to fix one factor
and minimize another objective, and thus have the
following objective:

Objective
We hope to design a data downloading order for
a client to download k data items from n broad-
casting channels, such that the access latency t

is minimized if we restrict the switch number
among channels (denoted as h); otherwise, we
will minimize the number of switches h once the
access latency t is bounded.

Constraints

1. Switch Constraint: Note that if a client is
downloading a data from channel ci at time
t0, then it cannot switch to channel cj , where
j ¤ i , to download another data at time
t0 C 1 due to connection protocols. Thus, we
assume if a client wants to download data from
another channel, it needs at least one time
unit for channel switching. Figure 2 gives a
typical process of data retrieval in multichan-
nel broadcast environments. The query data
set is fd1; d3; d5g, and a user can download
data object d1 and d3 from channel c1 and
then switch to channel c3 at time t D 6

to download data object d5 at time t D 7.
However, after time t D 5, the user cannot
switch from channel c1 to c2 to download data
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straint

d5 at time t D 6. From Fig. 2, we also get that
the bandwidths of different channels are not
necessarily the same. Actually, the bandwidth
of channel c2 is twice as that of c1 or c3, thus
d3 or d5, which take two time slots on c1 or
c3, can be broadcasted in one time unit by c2.

2. Objective Constraint: We have to setup a
reasonable threshold for latency constraint t

and switch constraint h, such that we would
achieve a feasible solution for the correspond-
ing minimized switches and shortest access
latency.

Problem 1 (Scheduling in Data
Broadcasting)

INPUT: The required data subset D D

fd1; d2; : : : ; dkg broadcast on n different
channels with their locations and downloading
time li , a switch constraint h or latency
constraint t .

OUTPUT: A permutation of D such that if start-
ing from time slot zero, a client would achieve
the shortest access latency (with switch thresh-
old h) or the minimum switch numbers (with la-
tency threshold t ) if it follows this permutation
to download each data item sequentially with
switch constraint.

Key Results

Scheduling is an important part in the wireless
data broadcast system. Researchers tend to divide
the scheduling problems into two subproblems.
The first one is the data allocation problem in

the server side, while the other one is the data
retrieval problem in the client size.

With respect to server side scheduling, several
works have been proposed to improve the sys-
tem performance [1–5]. Acharya et al. [1] first
dealt with the data allocation problem for single-
channel environment. He proposed a scheduling
algorithm considering data access frequencies
and allowed frequent accessed data to be broad-
casted more often. Most works concerned multi-
channel environment. For data set with uniform
length, Yee et al. [2] proposed an O.t2m/ time-
complexity dynamic programming algorithm to
find the optimal schedule and also a near optimal
greedy algorithm to reduce the time complex-
ity. For nonuniform lengths case, Ardizzoni et
al. [3] proved that this problem is strong NP-
hard. Ardizzoni et al. [3], Anticaglia et al. [4],
and Kenyon et al. [5] designed algorithms based
on greedy and heuristic strategy.

Also most of the literature discussed the data
allocation problem from server’s point of view;
several works [6–10] considered the data retrieval
scheduling problem from the client’s point of
view. Shi et al. [6] defined the data retrieval
problem in MIMO environment as parallel
data retrieval scheduling with MIMO Antennae
(PADRS-MIMO) and proposed two greedy
heuristics to guarantee minimum switchings
among channels or reduce the downloading
time when the number of antennae in the
mobile devices are limited. Lu et al. [7, 8]
defined the largest number data retrieval (LNDR)
and maximum cost data retrieval (MCDR)
problems and considered the hopping cost.
He also proved that when the hopping cost
cannot be ignored, LNDR is NP-hard and
designed a 1/2-approximation algorithm. Gao
et al. [9, 10] designed a randomized algebraic
algorithm that takes both energy cost and access
time into consideration to schedule the data
retrieval process in multichannel environments.
The algorithm proposed can detect whether a
given data retrieval problem has a solution with
access time t and number of switchings h in
O
�
2k.hnt/O.1/

�
time, where n is the number of

channels and k is the number of requested data
items.
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Scheduling in Data
Broadcasting, Fig. 3
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Hardness Analysis

Define a tuple s D fis; js; ts; t 0
sg to denote the

datum dis , which can be downloaded from
channel cjs

during the time span
�
ts; t 0

s

�
; then

it is clear that a valid data retrieval schedule
is a sequence of k intervals s1; s2; : : : ; sk ,
each tuple corresponds to a distinct data item
in D, and there are no conflicts between
any two of the k tuples. To analyze the NP-
hardness, we then define the decision problem of
MCDR.

Definition 1 (Decision MCDR) Given a data
set D, a channel set C , a time threshold t ,
and a switching threshold h, find a valid data
retrieval schedule to download all the data
in D from C before time t with at most h

switchings.

Theorem 1 MCDR problem is NP-hard.

Proof We use VC �p MCDR to prove this
theorem. Here VC is the decision problem of
vertex cover, say, given a graph G D .V; E/,
we want to find a minimum size vertex subset
VC � V such that for any edge .vi ; vj / 2 E,
either vi 2 VC or vj 2 VC . An instance of
vector cover is: given a graph G D .V; E/ and
integer k, does it have a vertex cover VC with
size k? Then we construct an instance of MCDR
from G and k as follows:

1. For each vertex vi 2 V , define a channel vi .
Define another k channels b1; : : : ; bk . Then
the channel set is C D

˚
v1; : : : ; vjV j; b1; : : : ;

bkg. Totally jV j C k channels. Let ı be the
maximum vertex degree in G, and then each
channel has broadcast cycle length ı C 3.

2. For each edge .vi ; vj / 2 E, define a unit
length data item eij in data set De and ap-
pend it on channel ci and cj (the order can
be arbitrary and starting from the third time
unit).

3. For each channel bi , define a unit length data
item di in data set Dd and allocate it on the
first time unit of channel bi .

4. The data set D D De [Db .

Figure 3 is an example to show how to con-
struct the broadcast system. In this figure, ı D 3,
k D 2, jV j D 4; thus, the channel set should
be fv1; v2; v3; v4; b1; b2g, each having broadcast
length ı C 3 D 6. Each eij represents an edge
.vi ; vj /, and it is clear that if we download all
data items from channel vi , then it means we
cover the edges connecting node vi .

Next, we prove that G has a vertex cover with
size k if and only if there is a valid data retrieval
schedule S such that t D k.ıC3/ and h D 2k�1.

H): If G has a vertex cover VC with size
k, then we can select the corresponding k

channels in fvi jvi 2 VC g to receive all the
data in k cycles. At the beginning of i th cycle
(iteration), the client will visit bi at t D 1, and
hop to some vi 2 VC channel, stay on this
channel till the last time unit of the broadcast
cycle, and then hop to biC1. There are k bi s,
so each iteration client will download one of
them. VC is a vertex cover, so following all
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vi 2 VC we must download every eij . The
length of each broadcast cycle is ı C 3, so
the total access latency is k.ı C 3/. In each
broadcast cycle, the client will switch twice
(except the last cycle), so h D 2k � 1.

(H: Assume MCDR has a valid schedule S

with t D k.ı C 3/ and h D 2k � 1. Let us
consider Db first. There are k bi ’s located at
the first time unit on k different channels. It
means we have to switch at least k� 1 hops to
download Db , and then we only have another
k hops for De , which means we can visit
at most k channels in fvig. At the beginning
of each broadcast cycle, we always stay at
some channel bi to download di , and then
we switch to some vi , and at the end of this
cycle, we have to switch to channel biC1 for
diC1. This means we cannot switch to two
vertex channels within one broadcast cycle,
otherwise we cannot download D D De[Db

in k iterations. Since S is valid, we visit k

vertex channels and download all De data
items, it means these k vertices form a vertex
cover with size k.

This reduction can be done in polynomial
time, and we can conclude that MCDR is NP-
hard.

Randomized Algebraic Algorithm

To solve the above decision problem, we devel-
oped a randomized algebraic algorithm. It can
detect if a given problem has a schedule to down-
load all the requested data before time t and with
at most h channel switchings in O

�
2k.nht/O.1/

�

time, where n is the number of channels and k

is the number of required data items. We also
provide a fixed parameter tractable (FPT) algo-
rithm with computational time O

�
2l .nht/O.1/

�
.

It can determine whether there is a scheduling
to download l data items from D in at most n

time slots and at most h channel switches. Service
provider can adjust n and h freely to fit their own
requirement. We firstly give some preliminaries
and then present our algorithms in detail.

Preliminaries
Here we introduce some notions about group
algebra which are not often used in algorithm
design.

Definition 2 Assume that x1, : : :, xk are vari-
ables in group algebra. Then,

1. A monomial has format x
a1

1 x
a2

2 : : : x
ak

k
.

2. A multilinear monomial is a monomial such
that each variable has degree exactly one. For
example, x3x5x6 is a multilinear monomial,
but x3x2

5x3
6 is not.

3. For a polynomial p.x1; : : : ; xk/, its sum of
product expansion is

P
j pj .x1; : : : ; xk/,

where each pj is a monomial, which has a

format cj x
aj1

1 : : : x
ajk

k
with cj respect to its

coefficient.
4. G2 D .f0; 1g;C; �/ is a field with two ele-

ments f0; 1g and two operations C and �. The
addition operation is under the modular of 2
(mod 2).

5. Zk
2 is the group of binary k-vectors. Let w0

denote the all-zero vector, which is the identity
of Zk

2 , and then for every v 2 Zk
2 , v2 D w0,

v � w0 D v.

The operations between elements in the group
algebra are standard.

Algorithm Description
The basic idea of our algebraic algorithm is that
for each item di 2 D, where D is the query
data set, we create a variable xi to represent it.
Therefore, given D D fd1; d2; : : : ; dkg, we con-
struct a variable set X D fx1; x2; : : : ; xkg. We
then design a circuit Ht;h;n such that a schedule
without conflict will be generated by a multilinear
monomial in the sum of product expansion of the
circuit. The existence of schedules to download
all the data items in D from the multiple channel
set C is converted into the existence of multilin-
ear monomials of Ht;h;n. Replace each variable
by a specified binary vector which can remove all
of the non-multilinear monomials by converting
them to zero. Thus, the data retrieval problem is
transformed into testing if a multivariate polyno-
mial is zero. It is well known that randomized
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algorithms can be used to check if a circuit is
identical to zero in polynomial time. Thus, we
have the following statements.

Lemma 1 There is a polynomial time algorithm
such that given a channel ci , a time interval
Œt1; t2�, and an integer m, it constructs a circuit
of polynomial Pi;t1;t2;m such that for any subset
D0 D fdi1 ; : : : ; dimg � D which has a size
of m and is downloadable in the time inter-
val Œt1; t2� from channel ci , the product expan-
sion of Pi;t1;t2;m contains a multilinear monomial
xi1xi2 : : : xim .

Proof We can use a recursive way to compute the
circuit Pi;t1;t2;m in polynomial time.

1. Pi;t1;t2;0 D 0.
2. Pi;t1;t2;1 D

P
j xj , xj � X , and the corre-

sponding datadj is entirely in the time interval
Œt1; t2� of channel ci .

3. Pi;t1;t2;lC1 D
P

j xj � Pi;t1;t 0

2
;l C Pi;t1;t 0

2
;lC1,

dj starts at time t 0
2C1 and ends before time t2

on channel ci .

When computing Pi;t1;t2;lC1, xj multiplies
Pi;t1;t 0

2
;l is based on the case that dj is down-

loadable from time t 0
2 C 1 to t2 in the final

phase, and the other l data items are download-
able before time t 0

2. The term Pi;t1;t 0

2
;lC1 is the

case that l C 1 items are downloaded before
time t 0

2. Note that the parameter m in Pi;t1;t2;m

controls the total number of data to be down-
loaded.

Definition 3 A subset data items D0 D˚
di1 ; : : : ; dim

�
� D is .i; t; h/-downloadable

if we can download all data items in D0 before
time t , the total number of channel switches is
at most h, and the last downloaded item is from
channel ci .

Lemma 2 Given two integers t and h, there is a
polynomial time algorithm to construct a circuit
of polynomial Fi;t;h;m such that for any .i; t; h/-
downloadable subset D0 D fdi1 ; : : : ; dimg �

D, the product expansion of Fi;t;h;m contains a
multilinear monomial

�
xi1 ; : : : ; xim

�
Y , where Y

is a multilinear monomial which does not include
any variable in X .

Proof We still use a recursive way to construct
the circuit. Some additional variables are
used as needed. Without loss of generality,
we assume the data retrieval process start at
time 0.

1. Fi;t;0;0 D 0.
2. Fi;t;0;1 D Pi;1;t;1 � yi;t;0;1.
3. Fi;t;h0C1;m0C1 D yi;t;h0C1;m0C1;0

�P
t 0<t

Fi;t 0;h0C1;m0 � Pi;t 0C1;t;1

�
C yi;t;h0C1;m0C1;1

�P
j 6Di

P
t 0<t Fi;t 0�1;h0;m0 � Pi;t 0C1;t;1

�
:

Then we can get Lemma 2 immedi-
ately.

The computation of Fi;t;h0C1;m0C1 is based
on two cases, and we use two variables,
yi;t;h0C1;m0C1;0 and yi;t;h0C1;m0C1;1, to mark
them respectively. We now present an algorithm
that involves one layer randomization to
determine if there is a schedule to download
all the data items in D before time t and with at
most h channel switchings.

Theorem 2 There is an O
�
2k.hnt/O.1/

�
time

randomized algorithm to determine if there is a
scheduling to download jDj D k data items
before time t and the number of channel switches
is at most h, where n is the total number of
channels.

Proof By Lemma 2, we can construct a circuit
Ht;h;n D

Pn
iD1 Fi;t;h;k in polynomial time. It is

easy to see there is a scheduling for download-
ing the k data items before time t and with h

channel switches, if and only if the sum product
expansion of Ht;h;n has a multilinear monomial
.x1; : : : ; xk/Y .

We can replace each si by a vector wi D wT
0 C

vT
i , where w0 is the all-zero vector of dimension

k and vi is a binary vector of dimension k with
its i th element being 1 and all other elements
being 0. Assume k D 3, we define the following
operations:
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va�vb D

0

@
a1

a2

a3

1

A�

0

@
b1

b2

b3

1

A D

0

@
.a1 C b1/.mod2/

.a1 C b2/.mod2/

.a1 C b3/.mod2/

1

A

(1)
.va C vb/ � vc D va � vc C vb � vc (2)

By Eqs. 1 and 2, for any k-dimensional binary
vector w0 D w0 C v, we have w02 D w2

0 C

2w0 � v C v2 D w0 C 2.w0 � v/ C w0 D

2.w0 � v/ C 2w0 D 0, because of the coeffi-
cients are in the field of G2. The replacement
xi D wi .i D 1; : : : ; m/ makes all the non-
multilinear monomials become zero. Meanwhile,
all the multilinear monomials remain nonzero.
Hence, it is clear that there is a scheduling to
download all the data items in D before time t

and with at most h channel switchings if and only
if Ht;h;njxi Dwi .iD1;:::;k/ is a nonzero polynomial.
The variables in Y makes it impossible to have
cancelation when adding two identical multilin-
ear monomials, which can be generated from
different paths with variables in fx1; : : : ; xkg. It
is well known that randomized algorithms can be
used to check if a circuit is identical to zero in
polynomial time [11, 12].

The algorithm generates less than 2k

terms during the computing process since
there are at most 2k distinct binary vec-
tors. Therefore, the computational time is
O
�
2k.nht/O.1/

�
.

Example Let H1 D x1x2y1 C x2
2y2 and H2 D

x2
1y1 C x2

2y2. Consider the replacement x1 D

w1 D
�

0
0

�
C
�

1
0

�
and x2 D w2 D

�
0
0

�
C
�

0
1

�
. We

have the following steps of operations.

H1jx1 D w1; x2 D w2

D

  
0

0

!

C

 
1

0

!!  
0

0

!

C

 
0

1

!!

y1

C

  
0

0

!

C

 
0

1

!!2

y2

D

  
0

0

!

C

 
0

1

!

C

 
1

0

!

C

 
1

1

!!

y1

C

  
0

0

!

C

 
0

1

!

C

 
0

1

!

C

 
0

0

!!

y2

D

  
0

0

!

C

 
0

1

!

C

 
1

0

!

C

 
1

1

!!

y1

C

 

2

 
0

0

!

C 2

 
0

1

!!

y2

D

  
0

0

!

C

 
0

1

!

C

 
1

0

!

C

 
1

1

!!

y1 C .0C 0/y2

D

  
0

0

!

C

 
0

1

!

C

 
1

0

!

C

 
1

1

!!

y1 C 0

D

  
0

0

!

C

 
0

1

!

C

 
1

0

!

C

 
1

1

!!

y1

¤ 0

H2jx1 D w1; x2 D w2

D

  
0

0

!

C

 
1

0

!!2

y1 C

  
0

0
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C

 
0

1

!!2

y2

D

  
0
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C

 
1

0
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1

0
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C

 
0

0
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C

  
0

0
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C

 
0
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C

 
0
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0

0
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0
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y1 C

 

2

 
0

0

!

C 2

 
0

1

!!

y2

D .0C 0/y1 C .0C 0/y2

D 0

H1 is a polynomial that contains a multilinear
monomial. It becomes nonzero after replacement.
H2 is a polynomial that is without multilinear
monomials. It becomes zero after the replace-
ment. If we just down a subset of l data items
in set D, we have the following theorem that
involves two layers of randomization.

Theorem 3 There is an O
�
2l .hnt/O.1/

�
time

randomized algorithm to determine if there is
a scheduling to download l data items from D

in at most t time units and at most h channel
switches.
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Proof By Lemma 2, we can construct a polyno-
mial Ht;h;l D

Pl
iD1 Fi;t;h;l in polynomial time.

Replace each xi with a vector wi D wT
0 C vT

i ,
where w0 is the all-zero vector of dimension l and
vi is a random distinct vector of dimension l . The
replacement xi D wi .i D 1; : : : ; k/ makes all
monomials which has non-multilinear monomial
at x part become zero.

Therefore, there is a scheduling to download
l data items of D before time t and with the
number of switches no more than h if and only if
Ht;h;kjxi Dwi .iD1;:::;k/ is not a zero polynomial
in the field of G2. Assume that the product
expansion of Ht:h;l has a multilinear monomial
.xi1 ; : : : ; xil /Y , where Y is a multilinear
monomial with variables not in x1; : : : ; xk .
For a series of randomly assigned vectors with
dimension l : vj1

; : : : ; vjl
, the probability that

vji
is a linear combination of vj1

; : : : ; vji�1

is at most
2i�1

2l
D

1

2l�iC1
. Therefore, with

probability at most
lP

iD1

1

2l�iC1
, vji

is a linear

combination of vj1
; : : : ; vji�1

for some i � l .
When vji

; : : : ; vjl
are linearly independent,

the product of vj1
; : : : ; vjl

is nonzero. Every
multilinear monomial in the product expansion
has different variables to form Y since it is
determined by a unique path to generate the
polynomial. Therefore, for those random vectors
vi , every multilinear monomial has a chance at
least 1� 3

4
D 1

4
to be nonzero. Therefore, if there

is a solution, Ht;h;kjxi Dwi .i;1;:::;l/ with random
assignment Y is not zero in the field of G2 with
probability at least 1

4
.

After the replacements, it generates less than
2l terms since there are at most 2k different
vectors for a group of Zl

2. The coefficient
of each vector is kept as a polynomial size
circuit. Therefore, the computational time of
our algorithm is O

�
2l .hnt/O.1/

�
, and if we run

it 30 times, the error rate is
�

3
4

�30
< 0:0002.

Applications

Scheduling problem is one of the most funda-
mental problems in combinatorial optimization,

which could model various real-world practical
applications. Especially, scheduling problem at
client hand side would be very useful for data
retrieval problem in wireless data broadcasting
or data streaming environment to reduce energy
consumption and improve query efficiency. Such
problem would also be helpful for parallel query
applications in distributed storage systems.

Open Problems

How to download data items efficiently in
wireless data broadcast environment can usually
be formulized as NP-hard problems with
different constraints, and can be categorized
into two kinds: single channel process and
multiple channel process. The best known
result for the former problem is constant-factor
approximations, while currently there is no
polynomial time approximation scheme (PTAS)
for both of them. The results for this problem is
also helpful for parallel data retrieval problem in
distributed data storage system and cloud system.

Experimental Results

Many literature proposed experimental results for
scheduling problem in data broadcasting. Shi et
al. [6] simulated a base station with n broadcast
channels and 10,000 items, each of size 1KB, and
multiple clients with various requests of data. The
access probability of the database follows Zipf
distribution, n varies from 5 to 30, the number
of antennae varies from 1 to 10, and the size of
a request varies from 10 to 1,000. For each ex-
periment, they generated 100 requests to get the
average access latency and number of switchings
during data retrieval. Lv et al. [7, 8] constructed
two types of broadcast programs: special data
broadcast without channel switching time (SDB)
and general data broadcast with channel switch-
ing time (GDB). In both types of programs, they
simulated a base station with n broadcast chan-
nels; the bandwidth of each channel is 1Mbit/sec.
The database to be broadcasted has N data items,
each of size 512 bytes. The time duration is
denoted by t . The data items of query data set D
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is generated with access probabilities following
the Zipf distribution.

URLs to Code and Data Sets

Shi et al. [6] provided the program for users
to test parameter setting for their own data sets
and available channels (http://theory.utdallas.edu/
dataengineering).
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items according to their color using a limited
size buffer. More precisely the items are to be
processed and arrive one by one. Arriving items
must first be placed into a buffer which can hold
up to k items. Once the buffer is completely
filled, an algorithm has to free space by selecting
one of the items in the buffer for processing and
removing that item from the buffer. After items
stop arriving, the remaining items in the buffer
may be processed in any order. Whenever an item
is processed that has a different color than the
item processed in the step before, this generates
a cost of 1. The objective is to minimize the total
cost.

Metric Space Generalization

This problem can be further generalized. Items,
instead of having a color, correspond to points in
a metric space. A single server must process all
items. In order to process an item, the server has
to move to the corresponding point in the metric
space. At every point, the server has to chose
one of the first k as of yet unprocessed items for
processing and move the server accordingly. The
goal is to minimize the total distance the server
travels.

The uniform metric in which any two points
either have distance 0 or distance 1 from one an-
other corresponds to the original “color sorting”
setting. Other metrics studied include line metrics
and “star” metrics which are the distance metrics
over weighted undirected trees of diameter 2.

Block Operation Setting

Another variant is the so-called block operation
setting. Once again, the input consists of a se-
quence of colored items. The first k items are
placed in a buffer. In each step, an algorithm
selects one of the colors and processes all items of
that color currently stored in the buffer, incurring
a cost of 1. This is called a block operation.
The processed items are removed from the buffer
and replaced with the next items from the input

sequence (if there are any). The goal is once again
to minimize the total cost.

The difference between this block operation
setting and the original setting is most
pronounced for an input sequence consisting
of ` items of a single color. While in the original
setting such a sequence would not produce any
cost, the cost in the block device setting would
be `=k since only k items can be processed per
block operation.

Minor Variants Found in the
Literature

In some cases, there are slight differences in
which these problems are defined in the literature.
Does a cost incur for the first ever processed item
or, similarly, is the first position of the server in
the metric space part of the input or does the algo-
rithm get to chose that position (without incurring
any cost)? Does an item first have to be placed in
the buffer or can the algorithm process an arriving
item directly, thereby bypassing the buffer? Do
we need to remove the remaining items in the
buffer once new items stopped arriving? It turns
out however that these details are inconsequential
for most of the results we are interested in.

Key Results

The main focus of study in the area of schedul-
ing with a reordering buffer has been on online
algorithms. In the online setting, the algorithm’s
decisions have to be based solely on the items
that arrived in the past and must not depend on
items arriving in the future. An online algorithm
is called c-competitive if the cost of the algorithm
is at most c times that of an optimal off-line
solution.

The Online Problem

Deterministic Algorithms
Räcke, Sohler, and Westermann [29] first
introduced the problem for the uniform metric
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and gave a O.log2 k/-competitive online algo-
rithm. After further improvements to O.log k/

[18] and O.log k= log log k/ [6] eventually, an
O.
p

log k/-competitive online algorithms was
designed [2]. This is almost optimal since a
lower bound of ˝.

p
log k= log log k/ is known

[2]. Many of these upper bounds also generalize
from the uniform metric to star metrics.

While the proof techniques for some of these
results differ significantly, the basic idea behind
all the algorithms is the same. As long as the
buffer contains an item of the same color as
the previously processed item, such an item is
processed next. Otherwise, the algorithm has to
pick a different color and performs a color switch
which incurs a cost of 1. In order to decide
which color to switch to, each color is assigned
a “penalty” counter which is initially set to 0
and is reset to 0 whenever the color is selected
for processing. If there is a color with penalty at
least k, then an item with that color is selected
next. Otherwise, an arbitrary color is selected and
the penalty counters for each color are increased
proportional to the number of items of that color
that are stored in the buffer. For the O.

p
log k/-

competitive algorithm, instead of picking an arbi-
trary color, a more sophisticated rule is used.

Randomized Algorithms
Randomized algorithms can achieve much
smaller competitive ratios. The first random-
ized algorithm with a competitive ratio of
O.log log k/ was given for the block operation
model [3]. Shortly afterward, a randomized
algorithm with the same competitive ratio was
presented for the original model [8]. This is best
possible since a matching lower bound is known
[2]. These randomized algorithms are based on
online primal-dual LP schemes [11].

Other Metric Spaces
Apart from the uniform metric, line metrics have
received some attention. After a randomized
O.log2 n/-competitive online algorithm for
n equally spaced points on a line [27], an
improved deterministic O.log n/-competitive
algorithm was given [24]. A deterministic

O.log N log log N /-competitive algorithm for
a line metric with not necessarily equally spaced
points was also given, but here N refers to the
number of items in the input sequence [24].
An easy observation, however, shaves off the
log log N factor and improves the analysis to
show O.log N / competitiveness (Cygan, Mucha,
Private communication, 2011). There is still a
significant gap between this upper bound and the
best known lower bound of about 2.154 [24].

For general metric spaces, a randomized
O.log2 k log n/-competitive online algorithm
is known, where n is the number of points in
the metric space [19]. This result is based on a
deterministic algorithm for trees that is turned
into an algorithm for general metrics by using a
metric embedding [23].

Stochastic Inputs
In a setting where the input is not adversarial
constructed but where the colors of the items
are drawn i.i.d. from an unknown distribution,
a constant competitive ratio is achievable [22].
This result also holds when the colors of the
items are fixed by an adversary but the order
in which the items arrive is random. The proof
is based on the fact that a constant competitive
online algorithm is known for adversarial inputs,
if the online algorithm can use a buffer that is
four times as large as the one used by the optimal
off-line algorithm. In the stochastic input setting,
this difference in buffer size does not lead to
significantly different cost, i.e., the cost of an
optimal algorithm with buffer size k is only by a
constant factor larger than the cost of an optimal
algorithm with buffer size 4k. This is not true for
adversarial inputs [1].

The Off-Line Problem

The reordering buffer problem is NP-hard [5, 12]
for the uniform metric, and the complexity for
line metrics is unknown. Therefore, several pa-
pers focus on approximating the off-line scenario.

A constant factor approximation is known for
the uniform metric [7]. For star metrics, the best
known approximation factor of O.log log k�/ is
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achieved by a randomized algorithm, where �

denotes the ratio of the maximum to the minimum
weight [25]. Both results are based on the intri-
cate rounding of the solution to an LP relaxation
of the corresponding problem.

Bicriteria Approximations
For more general metric spaces, the best ap-
proximation ratios are achieved by bicriteria ap-
proximations, i.e., the approximation algorithm
can make use of more buffer capacity than an
optimal algorithm. For metric spaces given by the
distance metric over a weighted undirected tree,
a bicriteria approximation with approximation
factor 9 to cost and 4 C 1=k to buffer size is
known [10]. Using metric embeddings [23], this
implies a randomized bicriteria approximation
with approximation factor O.log n/ to cost and
O.1/ to buffer size, where n denotes the number
of points in the metric space.

The Maximization Problem
In the maximization version of the problem, the
goal is to maximize the total cost savings that
result from reordering the input sequence. In
terms of an optimal solution, the minimization
and maximization scenario are identical. How-
ever, in terms of approximation, they behave
quite differently in the sense that a c-approximate
solution for the maximization problem usually
has very different cost from a c-approximate
solution for the minimization problem. For the
uniform metric, the first result was an approxima-
tion algorithm with an approximation factor of 20
[28]. This was later improved to a factor of 9 [9].

Online Minimum Makespan
Scheduling

Reordering buffers have also been studied in
connection with other scheduling problems, in
particular online minimum makespan scheduling.
As in the classic problem without reordering,
the input consists of a sequence of jobs with
processing times, and a scheduling algorithm has
to assign the jobs to m parallel machines, with the
objective to minimize the makespan, which is the

time it takes until all jobs are processed. However,
it is not required that each arriving job has to
be assigned immediately to one of the machines.
A reordering buffer can be used to reorder the
input sequence of jobs. At each point in time,
the reordering buffer contains the first k jobs of
the input sequence that have not been assigned so
far. An online scheduling algorithm has to decide
which job to assign to which machine next. Upon
its decision, the corresponding job is removed
from the buffer and assigned to the corresponding
machine, and thereafter the next job in the input
sequence takes its place.

Non-preemptive Scheduling

For non-preemptive scheduling, Englert, Özmen,
and Westermann [20] give, for m identical ma-
chines, a tight bound on the competitive ratio.
Depending on m, the achieved competitive ratio
lies between 4/3 and 1.4659. This optimal ratio is
achieved with a buffer of size of at most d2:5 �

me C 2. They show that larger buffer sizes do
not result in an additional advantage and that a
buffer of size ˝.m/ is necessary to achieve this
competitive ratio. This improves upon an optimal
algorithm for two identical machines [26].

Further, they present several algorithms for
different buffer sizes. In addition, for m uni-
formly related machines, they give a scheduling
algorithm that achieves a competitive ratio of 2
with a reordering buffer of size m.

Subsequently to [20], a variety of related pa-
pers appeared (compare, e.g., [4, 14–16, 21]). For
2 uniformly related machines with speed ratio
s � 1, it is shown that, for any s > 1, a
buffer of size 3 is sufficient to achieve an optimal
competitive ratio, and in the case s � 2, a buffer
of size 2 already allows to achieve an optimal
ratio [15].

Job Migrations
The results of [20] can be generalized to the
problem of online minimum makespan schedul-
ing with job migrations, i.e., where no reordering
buffer is available, but a limited number of job
reassignments may be performed. For m identical
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machines, the same competitive ratio as in [20]
can be achieved [4]. The algorithm uses, for
m � 11, at most 7m migration operations and,
for smaller m, 8m to 10m migration operations.
A number of papers consider similar models
(compare, e.g., [13, 17, 30, 31]).

Preemptive Scheduling

For preemptive scheduling on m identical ma-
chines, tight bounds on the competitive ratio can
be achieved for any m. This bound is 4=3 for even
values of m and slightly lower for odd values
of m [16]. A buffer of size ‚.m/ is sufficient
to achieve this bound, but a buffer of size o.m/

does not reduce the best overall competitive ratio
e=.e � 1/ that is known for the case without
reordering [16].
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Problem Definition

The classic secretary problem, a prime example
of stopping theory, has been studied extensively
in the computer science literature. Consider the
scenario where an employer is interested in hiring
one secretary out of a pool of candidates. The
difficulty is that, although the employer does not
know the utility of a candidate before she is
interviewed, the irrevocable hiring decision for
each candidate has to be made right after the in-
terview and prior to interviewing the subsequent
candidates. The goal is nonetheless to pick the
best candidate or maximize the probability of
achieving this.

Optimization Angle
The above scenario is hopeless from an algo-
rithmic point of view since an adversarial input
makes it impossible to hire the best candidate. We
can take either of two paths to make the problem
tractable: restrict the set of utilities or the arrival
order of candidates. The former path yields, for
instance, the stochastic variant of the problem.
However, we follow the second idea here that
leads to the classic secretary problem. The extra
assumption, then, is that the candidates arrive
in a random error; i.e., although each candidate
may have an arbitrary adversarial utility, every
permutation of the candidates is equally likely to
be the arrival order.

A folklore solution to the problem, often at-
tributed to [3], is to look into the first 1

e
fraction of

the candidates (called the “tuning set”), without
giving them any offers, and then hire the first
candidate with utility more than every one in the
tuning set. It is not difficult to show that this
approach hires the best candidate with probability
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at least 1
e

. Indeed, it is known that this is the best
possible performance.

There are two questions to be answered, once
we extend the problem to multiple secretaries.

1. What subsets of secretaries can be hired to-
gether? The simplest answer is to allow at
most k secretaries to be hired. Alternately, we
can place (several) knapsack and/or matroid
constraints on the feasible set. The former
assigns a cost to each hire – say, the requested
salary – that is to be paid out of a given budget.
The latter permits only those combinations
that form an independent set according to
a given matroid. It is easy to see that both
generalize the cardinality constraint.

2. How do we compute the utility of a set? The
utility of a set can be defined as the sum of
the utilities of individual secretaries in the set.
More generally, a submodular or subadditive
function may be employed to describe the
utility of a set.

We then attempt to hire a feasible set of secre-
taries of maximum expected utility.

Mechanism Design Angle
Mechanism design literature has looked at this
problem from a slightly different angle. In this
setting, the players that arrive in a random order
declare a bid – i.e., how much they value the
item being sold – and then the seller decides who
should get the item (or items) and how much
they should be charged. Such decisions are to be
taken irrevocably as in the optimization problem
discussed above.

The players can play strategically, though,
by declaring higher or lower bids in order to
increase their chances of winning the item or to
reduce the price they pay. In addition, they may
declare their arrival/departure time untruthfully
to achieve a better result. We want to design a
“truthful” auction that precludes such undesirable
outcomes. Although we allow the player to de-
clare any nonnegative bid (if it is in her favor),
we do not let them state an arrival time that is
earlier than their actual one. (Presence intervals

may be overlapping and/or nested.) We say that
a mechanism is value-strategyproof if no player
can benefit from declaring a bid different from
her real value. Similarly the mechanism is called
time-strategyproof if there is no benefit in stating
the arrival/departure times untruthfully. We look
for mechanisms that are both time- and value-
strategyproof.

Key Results

Optimization
Kleinberg [6] studies the multiple-choice gener-
alization where the goal is to hire k candidates,
whose total utility (defined as the sum of the
individual utilities) is maximized. He presents

a tight performance guarantee of 1 C �
�

1p
k

�

for the problem. In the case of k D 1, this is
equivalent to the classic secretary problem. (The
nontrivial direction follows from a construction
where the utilities are hugely different.) Klein-
berg’s algorithm partitions the set of candidates
into two (almost) equal pieces, recursively hires
k
2

secretaries in the first, sets the threshold for the
second piece by looking at the solution to the first
piece, and picks as many as k

2
secretaries in the

second piece who are better than threshold.
Babaioff et al. [1] look at the generalization

where there is a restriction on the set of candi-
dates that can be hired together; the restriction
is in the form of a matroid. They present an
O.log n/ competitive ratio in this case along with
improved bounds when the matroid has a special
form. Their general matroid algorithm partitions
the items into logarithmically many sets of almost
equal utility and focuses (randomly) on one such
set, which reduces the problem into that of maxi-
mizing the cardinality of the solution (solved via
the greedy method).

The case of submodular utilities is discussed
in Bateni et al. [2]: several matroid or knapsack
constraints can be placed on the set of feasible
candidates, and the total utility of a set is com-
puted by a submodular function of the participat-
ing candidates. They provide constant competi-
tive ratios as long as a fixed number of knapsack
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constraints are present. When (a constant number
of) matroid constraints are involved, too, their
performance guarantees grow to O.log2 k/ where
k is the rank of the matroid. They divide the input
into different pieces where at most one secretary
should be picked from each, not losing too much
utility in the process. As a result, the submodular
function collapses to an additive one within each
piece (by taking the marginal values of secretaries
with respect to the current solution). The classic
algorithm is then used inside each piece. The
main idea behind the matroid algorithm is that
we only need to show that, whatever choices
we have already committed to, there are enough
options left that can appropriately augment the
current solution. The argument goes by proving
the existence of a magical solution with k0 secre-
taries any of whose k0

2
-size subsets has significant

contribution (say, at least a 1
log k

fraction of the
optimum) in the submodular function. Had we
known k0, a simple greedy algorithm would have
sufficed to find a solution similar to the magical
set. At the cost of another factor O.log k/, we can
guess k0.

Furthermore, Bateni et al. show that subad-
ditive utility functions make the problem much
more difficult. In particular, they provide match-
ing �.

p
k/ competitive ratios.

Mechanism Design
The Dynkin’s algorithm for the classic secretary
problem can be readily turned into an auction: set
the price after observing the tuning set, and then
sell to anyone with a higher bid. This mechanism
is not truthful, though, since high-bid players
spanning across the time threshold have an in-
centive to declare later arrival time (i.e., after the
threshold); this way, they will win the item but do
not set the price.

Nevertheless, Hajiaghayi et al. [5] show how
one can modify the mechanism slightly to make
it truthful: after the threshold, consider the option
of selling the item to the agent with the highest
bid so far – if she is still present – and charge
her the second-highest bid so far. Their method
achieves constant competitiveness for both effi-
ciency and revenue. Their 1=e competitiveness
for efficiency is best possible since it generalizes

the optimization problem; however, when com-
paring the revenue to that achieved by the Vickrey
auction, their upper bound of 1=e2 for competi-
tiveness fares against a lower bound of 1=e. (It
is possible, they show, to modify the mechanism
slightly to trade efficiency loss for revenue gain;
for instance, simultaneous 4 competitiveness for
both objectives is possible.)

The general idea for the transformation is to
define a “tuning period” where the price is set
for everyone. Then, not only a simple auction-like
mechanism is employed in the “hiring phase” to
obtain a strategyproof mechanism, but also extra
care should be given to the “transition phase”
(from tuning to hiring) so as not to incentivize
untruthful declaration of arrival time for those
whose presence spans the transition. The same
approach can be applied to the multiple-choice
secretary problem to obtain constant-factor com-
petitive mechanisms (for efficiency and revenue),
but this bound is far from the one achieved in the
optimization setting by Kleinberg [6].

Open Problems

Though there has been some improvements on
the matroid case, we still do not know which
cases are hard and admit no constant-factor com-
petitive ratio. For submodular utilities (and sim-
ple cardinality constraints), in particular, there is
a gap between

�
1 � 1

e

�
=.eC1/ algorithmic result

[4] and the 1 � 1
e

�
or 1 � 1p

k

�
target known for

linear utilities.
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Problem Definition

Temperature 1 (also called noncooperative) self-
assembly is a model of the formation of struc-
tures by growing and branching tips. Despite its
ubiquity in nature (in systems such as plants and
mycelium or percolation processes) and apparent
dynamic simplicity, it is one of the least under-
stood models of self-assembly.

This model was introduced in a broader frame-
work called the abstract Tile Assembly Model
(aTAM) [10]. In the aTAM, we consider tile
assembly systems, which are defined by a finite
set T of square or cubic tile types, an initial seed
assembly � (one or more tiles stuck together), and
an integer temperature � D 1; 2; 3; : : :. All tiles,
on each of their sides, have glues with an integer
color and an integer strength.

The dynamics of tile self-assembly starts from
the seed assembly and proceeds one tile at a time,
asynchronously and nondeterministically. A tile
can stick to an existing assembly if it can be
placed so that the sum of the strengths on its
sides matching the existing assembly is at least
the temperature. In the case of temperature 1, this
means that tiles can be placed as soon as one
of their sides matches the existing assembly. At
higher temperatures, we can require that newly
placed tiles match several of their neighbors to
attach.

Ultimately, after a countable (potentially infi-
nite) number of steps, no tile can be added to the
assembly, in which case we call it terminal. Like
in Wang tilings, tiles cannot overlap, be rotated,
or be flipped. However, tiles can have mismatches
with their neighbors (Fig. 1).

Key Results

The first comparison between temperatures 1 and
2 was shown by Rothemund and Winfree [9],
with the motivation of computing and efficiently

Cooperative (τ ≥ 2)Non-cooperative (τ = 1)

Self-Assembly at Temperature 1, Fig. 1 In the non-
cooperative model, tiles can attach as soon as one side
matches the neighborhood
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building arbitrary shapes at the nanoscale. In
this context, the generally accepted definition of
“efficient” is with significantly less tile types than
the size of the output.

Assembling Simple Shapes Efficiently
The first step toward these goals is the program-
ming of simple shapes like squares or trees. At
temperature �2, constructions with Turing ma-
chines can be used to show the following bound:

Theorem 1 (from [9]) The smallest two-
dimensional tileset Tn producing only squares
of size n � n from a single-tile seed is of size

�
�

log n
log log n

�
.

The smallest number of tile types that can
assemble exactly a set of shapes is called the
tile complexity of that set. In the noncooperative
model, the following upper bound is known:

Theorem 2 (from [9]) For all integer n, there is
a tileset Tn, of size 2n � 1, that produces only
squares of size n � n from a single-tile seed.

Whether this upper bound is optimal is still
one of the major open problems of the model,
and little progress has been made since its identi-
fication. The real motivation behind this question
is whether we (or natural systems) can perform
useful computations with this model.

Finding the smallest tileset for assembling an
input shape can also be treated as an optimization
problem: see Adleman et al. [1] for the case of
tree shapes.

The Role of Geometry
A partial answer to this question was found by
Cook, Fu, and Schweller [2], who tried to “fake”
cooperation by blocking the growth of some parts
of the assembly. They introduced two different
ways to do this: removing the planarity constraint
and allowing errors.

In both cases, “faking” cooperation means
producing the same assemblies as a temperature
2 tile assembly systems up to rescaling by a
constant factor.

Three-Dimensional Noncooperative
Self-Assembly
In three dimensions, temperature 1 self-assembly
is able to simulate Turing computations:

Theorem 3 (from [2]) There is a three-
dimensional tileset T such that for all Turing
machine M and input x 2 N, there is a
computable seed assembly �M;x and a tile t 2 T ,
such that all terminal assemblies of .T; �M;x ; 1/

contain t if and only if M accepts input x.

The construction simulates a Turing-universal
cooperative tile assembly system called a zigzag
system, in which rows grow on top of each other,
alternatively to the left and to the right, using
cooperation to copy and update the previous row
(Fig. 2).

The idea is pictured on Fig. 3. A “main”
path grows on each row, building “bridges”
and “blockers” (in blue on Fig. 3) that encode
bits. These bits can be read by the next row:
before reading a bit, the main path (in orange
on Fig. 3) of the row forks into two branches,
respectively probing for a bridge (encoding a 1)
and a blocker (encoding a 0). Exactly one branch
passes through and can accumulate successive
bits in its state, until a full tile has been read.
Then, it rewrites bits encoding the next tile for
the row above.

Allowing Erroneous Blocking
Adapting the mechanism used in the 3D con-
struction to the planar case is widely conjectured
impossible [9], because allowing the “wrong”
branch to grow and collide against a previous

Self-Assembly at Temperature 1, Fig. 2 An example
zigzag system (Figure from [2])
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Self-Assembly at Temperature 1, Fig. 3 Bit selection in 3d

part of the assembly, in Fig. 3, encloses the other
“correct” branch inside a finite portion of the
plane.

However, it becomes possible if we consider
a stochastic assembly schedule, where at each
time step, exactly one tile attaches, and all tiles
that can attach do so with equal probability. If
we repeat the above construction k times con-
secutively, only one needs to succeed. We can
therefore lower the probability of failure of each
bit selection to 2�k :

Theorem 4 (from [2]) For all " > 0 and
all zigzag tile systems T D .T; s; 2/, whose
producible assemblies have size at most some
constant r , there is a planar temperature 1
probabilistic tile assembly system S that sim-
ulates T without error with probability at least
1 � ".

Of course, this construction means that the
number of tile types and scaling factor will in-
crease by a factor depending on " and r .

Simulation up to Rescaling
One of the latest developments of tile assembly
is the notion of intrinsic universality [3, 4, 11], a
notion of simulation by rescaling only between
tile assembly systems.

This idea is useful in particular to compare
different models, because it provides qualitative
properties to check, as opposed to quantitative
properties such as tile complexity. The general
argument is:

• At temperature 2 in two dimensions, there is
a tileset known from [4] to be able to simu-
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Self-Assembly at Temperature 1, Fig. 4 Tile assembly system T (Figure from [7])

late any other tile assembly system, modulo
rescaling.

• However, there is a tile assembly system T
that no tileset in model X (in our case, tem-
perature 1) can simulate without errors.

• Therefore, model X is not as powerful as
planar temperature 2.

This argument was used, for instance, to prove
the first separation result between temperature
2 and the fully general model of temperature
1 [7]:

Theorem 5 (from [7]) There is a planar (tem-
perature 2) tile assembly system T (whose pro-
ductions are pictured on Fig. 4) that no (two- or
three- dimensional) tile assembly system .A; ˛; 1/

can simulate up to rescaling.

The proof uses a combinatorial argument
(called the window movie lemma) to show that if
there were a tile assembly system simulating all
productions of T , then it would also be able to
produce other “illegal” assemblies (see Fig. 5)
that do not represent any of T ’s producible
assemblies.

Important Particular Cases
Noncooperative self-assembly, when restricted to
dimension one, is similar to nondeterministic
finite automata. It is therefore natural to look for
a pumping lemma.

The first result in this direction was proven
by Doty, Patitz, and Summers [5], who intro-
duced the notion of pumpable paths: a path P is
pumpable if it contains a subsegment Pi;iC1;:::;j

that can be repeated arbitrarily many (consec-

utive) times along
���!
Pi Pj while remaining self-

avoiding.

Theorem 6 (from [5]) Let T be a tile assembly
system that assembles exactly one (potentially
infinite) terminal assembly ˛. If any path in
˛, longer than a constant c, is pumpable, then
there are finite families of vectors b1; : : : ; bn,
u1; : : : ; un, and v1; : : : ; vn 2 Z

2, such that:

dom.˛/ D
[

1�i�n

fbi C j ui C kvijj; k 2 Ng

In [5], examples were identified, of paths with
segments that could be repeated, but only finitely
many times due to collisions. The formalization
of these examples was later done by Manuch,
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Self-Assembly at Temperature 1, Fig. 5 Illegal productions, that a temperature 1 system that can simulate all
productions of T must also be able to simulate (Figure modified from [7])

Stacho, and Stoll [6], proving lower bounds
under the hypothesis that no mismatches can
occur.

This approach was then extended by Reif and
Song [8], to show that tile assembly systems
without mismatches have a recursive set of pro-
ductions. However, the decidability of the “no
mismatches” hypothesis is still an open problem.

Applications

Given the successful experimental applications
of tile self-assembly, particularly in the field of
DNA nanotechnologies, it seems natural to try to
implement them: indeed, intuition suggests that
they would make no errors in cooperation tiles.
However, no successful construction of noncoop-
erative experiments has been reported; the reason
might be that ensuring uniqueness of the seed is
impossible, as any two tiles in solution together
might bind, without any of them being bound to
the seed.

Open Problems

Aside from understanding the exact geometric
requirements for Turing universality, a number
of open problems have been identified in this
model:

1. From [9]: What is the tile complexity of
squares of size n�n in the planar, temperature
1 model?

A related problem, which has been in the
folklore for some time, is the existence of
a shape of tile complexity arbitrarily smaller
than its Manhattan diameter.

2. From [5]: If T is a tile assembly system
with exactly one terminal assembly, is there a
constant c such that any path longer than c is
pumpable?

3. From [7]: Is there a temperature 1 tile as-
sembly system with a non-recursive set of
productions?

4. From [7]: Is there a single tileset able to sim-
ulate any temperature 1 tile assembly system
up to rescaling, using only noncooperative
bindings?
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Problem Definition

This problem is concerned with the self-assembly
fractal patterns and structures. More specifically,
it deals with discrete self-similar fractals and dif-
ferent notions of them self-assembling from tiles
in the abstract Tile Assembly Model (aTAM) and
derivative models. The self-assembly of fractals
and fractal-like structures is particularly interest-
ing due to their pervasiveness in nature, as well
their complex aperiodic structures which result in
them occupying less dimensional space than the
space they are embedded within.

Using the terminology from [1], we define Ng

as the subset f0; 1; : : : ; g�1g of N, and if A; B �

N
2 and k 2 N, then AC kB D fmC knjm 2 A

and n 2 Bg. We then define discrete self-similar
fractals as follows.

We say that X � N
2 is a discrete self-similar

fractal (or dssf for short) if there exist 1 < g 2 N

and a set f.0; 0/g � G � N
2
g with at least one

point in every row and column, such that X DS1
iD1 Xi , where Xi , the i th stage of X, is defined

by X1 D G and XiC1 D Xi C gi G. We say that
G is the generator of X.

Figure 1 shows, as an example, the first 5

stages of the discrete self-similar fractal known
as the Sierpinski triangle. In this example, G D

f.0; 0/; .1; 0/; .0; 1/g.
In general, we ask whether or not a given dssf

X can self-assemble within a given model.

Variants
The general problem of determining whether or
not a discrete self-similar fractal self-assembles
within a given model has several variants, which
determine the way in which the fractal shape is
represented within a resulting assembly.

1. Weak self-assembly. If a dssf X weakly self-
assembles using a tile set T , then there exists
a subset of tile types B � T such that, in

http://arxiv.org/abs/1111.3097
http://arxiv.org/abs/0906.3251
http://arxiv.org/abs/1304.1679
http://doi.acm.org/10.1145/335305.335358
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Self-Assembly of Fractals, Fig. 1 Example discrete self-similar fractal: the first 5 stages of the Sierpinski triangle

the terminal assembly ˛, for every point p 2
dom ˛ such that p 2 X, the tile type at location
p in ˛ is a type within B , and for every point
p 2 dom ˛ such that p 62 X, the tile type at
location p in ˛ is not within B . That is, the
tile types in the subset B precisely “paint a
picture” of X, while tiles of types not in B may
appear in locations outside of X.

2. Strict self-assembly. If a dssf X strictly self-
assembles, then it weakly self-assembles with
B D T , i.e., the locations that exist in the
domain of the terminal assembly are exactly
those of X.

3. Approximate self-assembly. A dssf X, and
thus a strictly self-assembled version of X, has
fractal dimension (i.e., zeta-dimension [3])
<2, and a weakly self-assembled version has
dimension 2. Since it appears to be difficult if
not impossible to strictly self-assemble many
(or all) dssf’s, it is interesting to consider if an
approximation of a dssf X which retains the
same fractal dimension as X can strictly self-
assemble.

Key Results

Self-assembly of dssf’s has been studied in all of
the above variants and within the aTAM, 2HAM,
and STAM [9]. As previously mentioned, the
complexity of dssf’s makes them interesting to
study since they are infinite, aperiodic structures.

This requires any system in which they self-
assemble to rely on algorithmic self-assembly
(rather than unique tile types hard coded to
each position of the shape), and for this reason
early experimental results even included the
weak self-assembly of the initial few stages
of the Sierpinski triangle [11] as a proof of
concept that DNA-based tile implementations
of the aTAM are capable of algorithmic self-
assembly. Nonetheless, as infinite structures,
dssf’s are more often the focus of theoretical
studies.

Weak Self-Assembly
As seen in [11], it is possible for a very sim-
ple tile set of only 7 tile types to weakly self-
assemble the Sierpinski triangle. This tile set can
essentially be thought of as computing the xor
function on two inputs (i.e., 00 ! 0, 01 ! 1,
10! 1, and 11! 0), with the glues with which
a tile initially binds to an assembly encoding the
input bits and those to which tiles later attach
encoding the output bits.

In [4] it was noted that another characteriza-
tion of the Sierpinski triangle is as the nonzero
residues modulo 2 of Pascal’s triangle. They then
provided a characterization of an infinite class of
dssf’s, known as generalized Sierpinski carpets,
which can be defined as the residues, modulo a
prime number, of the entries in a two-dimensional
matrix generated by a simple recursive equa-
tion. (A well-known example among this class of
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dssf’s is the Sierpinski carpet.) They then proved
that all generalized Sierpinski carpets weakly
self-assemble in the aTAM.

Strict Self-Assembly
Although weak self-assembly of many dssf’s can
be achieved with very simple tile sets, it turns out
that strict self-assembly is an entirely different,
and much more difficult, problem. In fact, in [6]
they proved that it is impossible for the Sierpinski
triangle to strictly self-assemble in the aTAM.
Furthermore, their proof showed that to be the
case regardless of the temperature parameter.
This result was extended in [10] to a proof that
an infinite class of “pinch-point” dssf’s, which
includes the Sierpinski triangle, cannot strictly
self-assemble in the aTAM at any temperature.
Pinch-point fractals are those whose generators
have exactly one point in their topmost row, the
leftmost, and one in their eastmost column, the
bottommost. Yet another extension was provided
in [1], where the authors defined “tree” fractals,
which again include the Sierpinski triangle, as
those with generators which are trees and which
have a single point in their topmost row and a
single point in their rightmost column. They then
proved that, regardless of the temperature or even
of the scale factor, no tree fractal strictly self-
assembles in the aTAM.

Additional results related to strict self-
assembly of dssf’s include the proof in [10]
that in the aTAM at temperature 1 (i.e., systems
with � D 1), it is impossible for any dssf
to self-assemble within a locally deterministic
system (see [12] for a definition of local
determinism), and in [2] it was proven that the
Sierpinski triangle also cannot self-assemble
in the 2-Handed Assembly Model, at any
temperature.

To date, the single positive result related to the
strict self-assembly of a dssf is for an “active”
model of self-assembly, where tiles are allowed to
change the states of their glues during assembly,
called the Signal-passing Tile Assembly Model
(STAM). In [9] they gave a construction prov-
ing that the Sierpinski triangle can self-assemble
within the STAM at temperature 1 and scale
factor 2. By the result of [1], this is impossible

in the aTAM and demonstrates the power of the
active nature of the STAM, as that construction
essentially builds stages of the Sierpinski triangle
in a manner analogous to weak self-assembly,
but then causes the unwanted interior portions to
dissociate and then break apart.

Approximate Self-Assembly
It has been shown that an infinite subset of dssf’s
can weakly self-assemble in the aTAM, while an-
other infinite subset cannot strictly self-assemble.
Recall also that dssf’s have fractal dimension <2,
and since their strictly self-assembled versions
retain their original fractal dimensions, so do
they. However, their weakly self-assembled ver-
sions have dimension 2. Therefore, the question
arises about whether or not some transformation
of a dssf (especially, a dssf which cannot strictly
self-assemble), which visually approximates the
original dssf while retaining its fractal dimension,
can strictly self-assemble in the aTAM.

This question was first answered positively
in [6], where they defined a transformation for
the Sierpinski triangle which they called “fiber-
ing,” and they then gave a construction proving
that the so-called fibered Sierpinski triangle does
strictly self-assemble in the aTAM while main-
taining the Sierpinski triangle’s fractal dimension
of 	1:585. An example can be seen in Fig. 2b,
showing how the fibering consists an additional
row of tiles added to the south and west borders of
each copy of each subsequent stage of the fractal.
In [10] they extended the technique of fibering
to include an infinite subclass of dssf’s (which
again includes the Sierpinski triangle) which they
called “nice” dssf’s. Nice dssf’s are those whose
generators are connected and contain all points on
the west and south boundaries.

While the fibering technique creates visual
approximations of fractals, it results in subse-
quent stages being further and further separated
from each other. To counter this drawback, in
[8] they introduced a technique for fibering the
Sierpinski triangle “in place.” An example can
be seen in Fig. 2c, showing how this version of
fibering only uses space on the interior of each
stage of the fractal, thus allowing the stages to re-
main in the same positions relative to each other.
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Self-Assembly of Fractals, Fig. 2 Various patterns cor-
responding to the Sierpinski triangle. (a) A portion of the
discrete Sierpinski triangle. (b) A portion of the fibered

Sierpinski triangle of [7] (Figure from [7]). (c) A portion
of the in-place fibered Sierpinski triangle of [8] (Figure
from [8])

Furthermore, this technique retains the same frac-
tal dimension as the Sierpinski triangle, and they
showed that it is impossible to use asymptot-
ically less space than their construction while
strictly self-assembling a shape which contains
the Sierpinski triangle as a subset. In [5] this
technique was extended to strictly self-assemble
approximations for every generalized Sierpinski
carpet.

Open Problems

1. Does there exist a discrete self-similar fractal
which can strictly self-assemble in the aTAM,
or conversely, can it be shown that none does?

2. What is the class of discrete self-similar
fractals for which an approximation, such as
fibering or in-place fibering, which maintains
the original fractal dimension, strictly self-
assembles in the aTAM?

URLs to Code and Data Sets

ISU TAS simulation software for the aTAM,
kTAM, and 2HAM (http://self-assembly.net/
wiki/index.php?title=ISU_TAS) and the Fibered
Fractal Tiler for defining discrete self-similar
fractals which can be fibered and generating
the corresponding aTAM tile sets (http://

self-assembly.net/wiki/index.php?title=Fibered_
Fractal_Tiler).
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Problem Definition

Abstract Tile Assembly Model
The abstract Tile Assembly Model (aTAM) [3] is
a mathematical model of self-assembly in which
system components are four-sided Wang tiles
with glue types assigned to each tile edge. Any
pair of glue types are assigned some nonnega-
tive interaction strength denoting how strongly
the pair of glues bind. An aTAM system is an
ordered triplet .T; �; �/ consisting of a set of
tiles T , a positive integer threshold parameter �

called the system’s temperature, and a special
tile � 2 T denoted as the seed tile. Assembly
proceeds by attaching copies of tiles from T to a
growing seed assembly whenever the placement
of a tile on the 2D grid achieves a total strength
of attachment from abutting edges, determined
by the sum of pairwise glue interactions, that
meets or exceeds the temperature parameter � .
The pairwise strength assignment between glues
on tile edges is often restricted to be “linear” in
that identical glue pairs may be assigned arbi-
trary positive values, while non-equal pairs are
required to have interaction strengths of 0. We
denote this restricted version of the model as
the standard aTAM. When this restriction is not
applied, i.e., any pair of glues may be assigned
any positive integer strength, we call the model
the flexible glue aTAM.

Given the aTAM’s model of growth, we may
consider the problem of designing an aTAM sys-
tem which is guaranteed to grow into a target
shape S , given by a set of 2D integer coordinates,
and stop growing. Such systems are guaranteed
to exist for any finite shape S , but solutions will
typically vary in the number of tiles jT j used.
For a given shape S , an interesting problem is
to design a system that assembles S while using
the fewest, or close to the fewest, number of tiles
jT j possible. This fewest possible number of tiles
required for the assembly of a given shape S is
termed the program-size complexity of S .

Problem 1 Let KSA.n/ and K�
SA.n/ denote the

program-size complexity of an n � n square for
the standard aTAM and the flexible glue aTAM,
respectively. What are KSA.n/ and K�

SA.n/?

http://dx.doi.org/10.1007/s00453-012-9691-x
http://dx.doi.org/10.1007/s00453-012-9691-x
http://dx.doi.org/10.1007/s00453-012-9691-x
http://dx.doi.org/10.1371/journal.pbio.0020424
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Problem 2 Let KSA.n; k/ and K�
SA.n; k/ de-

note the program-size complexity of a k � n

rectangle for the standard aTAM and the flexible
glue aTAM, respectively. What are KSA.n; k/

and K�
SA.n; k/?

Problem 3 For an arbitrary given shape S , what
is the program-size complexity of S? Let the
scale-free program size of S be the smallest tile
set system that uniquely builds some scaled-up
version S . Let KSA.S/ and K�

SA.S/ denote the
scale-free program size of S for the standard
aTAM and the flexible glue aTAM, respectively.
What are KSA.S/ and K�

SA.S/?

Key Results

The best known bounds for program-size com-
plexity for squares, rectangles, and general scaled
shapes are presented in this section.

n � n Squares
The efficient self-assembly of n � n squares has
served as a benchmark for self-assembly algo-
rithms within the aTAM and more general tile
assembly models. Within the aTAM, the prob-
lem is well understood up to constant factors.
The first result states a general upper bound for
the program size of self-assembled squares for
general n, which is matched by an information-
theoretic lower bound that holds for almost all
integers n. The precise bounds differ between the
standard and flexible glue models but are tight in
both cases. The lower bound of inequality (1) is
proven in [3] and is based on the Kolmogorov
complexity of the integer n. The lower bound of
(2) is proven in [2] by the same approach. The
upper bound of (1) is proven in [1] and offers
an improvement over the initial upper bound of
O.log n/ from [3]. The O.log n/ result of [3]
is achieved by implementing a key primitive in
tile self-assembly: a binary counter of log n tiles
that grows to length n. The improvement of [1]
is achieved by modifying the counter concept to
work with an optimal, variable base. The upper
bound of (2) is proven in [2] and is obtained
by combining the aTAM counter primitives with

a scheme for efficiently seeding the counter by
extracting bits from the values of the flexible glue
interactions.

Theorem 1 There exist positive constants c1 and
c2 such that for almost all integers n 2 N, the
following inequalities hold. Moreover, the upper
bounds hold for all n 2 N.

c1

log n

log log n
� KSA.n/ � c2

log n

log log n
: (1)

c1

p
log n � K�

SA.n/ � c2

p
log n: (2)

While the above theorem presents a tight un-
derstanding of the program-size complexity for
most self-assembled squares, the information-
theoretic lower bound allows for special values of
n to be assembled with a much smaller program
size. The program size is in fact as small as one
could reasonably hope for. In [3], a tile system
is presented that simulates a Busy Beaver Turing
Machine and assembles correspondingly large
squares for each tile set size. This construction
yields the following theorem implying that the
largest self-assembled square for a given number
of tiles grows faster than any computable func-
tion!

Theorem 2 There exists a positive constant c

such that for infinitely many n, KSA.n/ � cf .n/

for f .n/ any nondecreasing unbounded com-
putable function.

Thin Rectangles
The program size of self-assembled squares and
other thick rectangles is dictated by information-
theoretic bounds which stem from the aTAM’s
ability to simulate arbitrary Turing machines
given enough geometric space to work within.
When this space is cut down, such as in the case
of building a thin k�n rectangle, the program size
is limited by geometric factors. The following
upper and lower bounds are shown in [2] and
represent the best known bounds for thin k � n

rectangles in which k D O.log = log log n/.
The lower bound is achieved by a pigeon-hole
pumping argument on the types of tiles placed,
along with their order of placement, along a
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width k column of the target rectangle. The upper
bound is based on the construction of a general-
base, general-width counter, which generalizes
the binary counter concept of [3].

Theorem 3 There exist positive constants c1 and
c2 such that for any n; k 2 N, the following
inequalities hold.

c1

n1=k

k
�K�

SA.n; k/�KSA.n; k/�c2.n1=kCk/:

Scaled Shapes
The program size of general shapes is difficult
to analyze as it is highly dependent on geomet-
ric features of the target shape. However, if we
consider the assembly of an arbitrarily scaled-
up version of a target shape, these geometric
difficulties can be eliminated and a very general
result can be achieved. The next result from [4]
shows that the scale-free program size of S is
closely related to the Kolmogorov complexity
of S . In particular, the scale-free program-size
complexity of S is a log factor less than the Kol-
mogorov complexity of S for the standard model,
and the scale-free program size complexity of S

is the square root of the Kolmogorov complexity
of S for the flexible glue model. The standard
model result is shown in [4] and is achieved
by encoding a compressed description of S in
a small tile set which is extracted by a set of
tiles simulating a Turing machine that extracts the
pixels of S from this compressed representation.
The need for the scale factor increase of S is to
allow room for the Turing machine simulation. In
fact, the required scale factor is the run time of the
Turing machine that decompresses the optimal
encoding of S . The flexible glue result is achieved
by combining portions of the flexible glue con-
struction for squares [2] with the construction
of [4]. In the following theorem, K.S/ denotes
the Kolmogorov complexity of S with respect to
some fixed universal Turing machine.

Theorem 4 For any shape S , there exist positive
constants c1 and c2 such that

c1

K.S/

log K.S/
� KSA.S/ � c2

K.S/

log K.S/
: (3)

c1

p
K.S/ � K�

SA.S/ � c2

p
K.S/: (4)

Open Problems

A few important open problems in this area are as
follows. In the case of squares, the program size
is well understood as long as the temperature of
the system is at least two. A long-standing open
problem has been to determine the program-size
complexity of n � n squares for temperature-1
self-assembly in which each positive glue force
alone is sufficient to cause a tile attachment. To
date, no known method is able to achieve o.n/

tile complexity at temperature-1 for an n � n

square, but no proof exists that this cannot be
done. With respect to thin k � n rectangles, the
best upper and lower bound have a gap with
respect to variable k. Does there exist a more
efficient rectangle construction, or can a higher
lower bound be derived? Finally, while the scale-
free program-size complexity of general shapes
is well understood, little is known about the
(unscaled) program size of general shapes. What
new tools and geometric classifications can be
developed to analyze and bound this complexity
for general shapes?
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Problem Definition

Self-assembly is an asynchronous, decentralized
process in which particles aggregate to form
superstructures according to localized interac-
tions. The most well-studied models of these
particle systems, e.g., the abstract Tile Assembly
Model of Winfree [11], utilize square-shaped par-
ticles arranged on a lattice by attaching edgewise.

Particles attach to form larger assemblies, and a
pair of assemblies or tiles can attach if they can
translate to a nonoverlapping configuration with
a set of k coincident edges, where k � � , a
parameter of the system called the temperature.

In seeded assembly, individual particles at-
tach to a growing seed assembly. This assem-
bly may begin as a single-tile or a multi-tile
assembly. In unseeded assembly (also called hi-
erarchical [3], two-handed [2], or polyomino [7]
assembly), there is no such restriction. The set
of assemblies to which a single tile cannot attach
(in seeded assembly) or that cannot attach to any
other assembly (in unseeded assembly) are the
terminal assemblies of the system.

Objectives In general, the goal is to design a
system of minimal complexity that assembles
into a unique terminal assembly with a desired
shape or property. In models using square tiles,
this is equivalent to designing a system using the
fewest tile types. When tiles are allowed to be
more general shapes, then the option of trading
tile types for tile complexity becomes available.
The motivation for this work is to understand
how more complex tile shapes can be used to
reduce the number of tile types in a system, and
two benchmark problems regarding the compu-
tational power and efficiency of tile systems are
considered in the context of systems of non-
square tiles:

Problem 1 (Square Assembly)

INPUT: A natural number n.
OUTPUT: A self-assembly system with a unique

terminal assembly consisting of n2 tiles in a
n � n square shape.

Problem 2 (Computational Power) What sys-
tems of non-square tiles are capable of simulating
computation, and to what extent?

Key Results

In general, it is the case that allowing non-square
tiles permits an asymptotic reduction in the
number of tile types, and systems of very
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few non-square tiles are capable of universal
computation. At a high-level, such reductions are
achieved by simulating many tiles via translations
and rotations of a single tile type.

Models
Fu, Patitz, Schweller, and Sheline [6] introduce
two models of general shaped types. The first,
called the geometric Tile Assembly Model
(gTAM), is a model of seeded, translation-only
assembly where tiles are polyomino-shaped –
equivalent to prebuilt assemblies of square tiles.
The second is an unseeded version they call the
Two-Handed Planar Geometric Tile Assembly
Model (2GAM), which has the added restriction
that assemblies can only attach if there exists a
continuous motion bringing the two assemblies
together during which they remain disjoint.
This can be thought of as a restriction that the
assemblies live in the plane and do not make use
of the third dimension to maneuver into place.

Demaine et al. [4] introduce the polygonal
free-body Tile Assembly Model (pfbTAM) in
which tiles may have arbitrary simple polygonal
shapes, attaching edgewise along equal-length
edges. Systems without and without rotation
are both permitted – we note that rotation is
forbidden in the gTAM and 2GAM (as well as
the aTAM).

Efficient Construction
Fu, Patitz, Schweller, and Sheline [6] prove that
both the gTAM and 2GAM allow an asymptotic
reduction in the number of tiles needed to as-
semble an n � n square of tiles. For the gTAM,
they prove that such a square can be assembled
using a temperature-1 system of O.

p
log n/ tile

types, beating the optimal (temperature-2) system
of ˝.log n= log log n/ square tiles by Adleman
et al. [1]. This is a reduction in both the num-
ber of tile types (by a quadratic factor) and
temperature. The temperature reduction is es-
pecially significant, as a lower bound of ˝.n/

for temperature-1 aTAM systems is a widely
believed conjecture [8–10].

For the 2GAM, they reduce the number of tile
types even further, using a temperature-2 system
O.log log n/ tile types to assemble an n � n

square. However, this system comes with the
caveat that system makes use of either a discon-
nected tile shape or a slightly three-dimensional
shape.

Computational Power
Positive results on the computational power
of general shaped tile systems fall into two
categories: Turing universality and bounded-
time computation. Fu, Patitz, Schweller, and
Sheline [6] prove that any Turing machine
computation can be carried out by a temperature-
1 gTAM system. As with the temperature-1
construction of squares, this result is surprising
due to the open conjecture regarding the
computational power of square tile systems at
temperature 1.

Demaine et al. [4] prove that any Turing
machine computation can be carried out by a
temperature-2 pfbTAM system (with rotation)
consisting of a single tile. Their result actually
proves that any aTAM system can be simulated
by such a system, and thus Turing universality is
achieved by simulating aTAM systems carrying
out computation. Combined with the intrinsic
universality result of Doty et al. [5], this result can
be extended to prove that a single temperature-
2 pfbTAM system (with rotation) consisting of
a single tile can carry out any Turing machine
computation, given an appropriate seed assembly
consisting of copies of this tile.

Finally, Demaine et al. also prove that
temperature-3 pfbTAM systems (without
rotation) consisting of a single tile can carry out
simulation of computationally universal cellular
automata for a number of steps limited by the size
of the seed assembly. Specifically, they prove that
n steps can be carried out using a seed assembly
of O.n/ tiles. A loose lower bound is also proved,
namely, that more than three tiles are needed to
carry out any computation.

Applications

The generic ability to reduce the number of tile
types in a system by increasing the geometric
complexity of these tiles extends many other
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constructions in theoretical tile assembly. Addi-
tionally, there may be practical barriers to sys-
tems of many tile types, e.g., additional cost
of manufacturing or longer assembly time due
to heterogenous combinations of many particle
types, that can be reduced or eliminated by re-
placing these systems with systems of fewer,
more complex tile.

Open Problems

Obtaining an upper bound on the number of
steps of a cellular automaton simulable by single-
tile translation-only systems remains open. It is
conjectured that a seed assembly of size n can
only carry out O.n2/ steps.
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Problem Definition

In bin packing games with selfish items, n items
are to be packed into (at most) n bins, where each
item chooses a bin that it wishes to be packed
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into. The cost of an item i of size 0 < si �

1 is defined based on its size and the contents
of its bin. Nash equilibria (NE) are defined as
solutions where there is no item that can change
its choice unilaterally and gain from this change.
Bin packing games were inspired by the well-
known bin packing problem [2]. In this problem,
a set of items, each of size in .0; 1�, is given.
The goal is to partition (or pack) the items into
a minimum number of subsets that are called
bins. Each bin has unit capacity, and the load
of a bin is defined to be the total size of items
packed into it (where the load cannot exceed 1).
The problem is NP-hard in the strong sense, and
thus theoretical research has focused on studying
and developing approximation algorithms, which
allow to design nearly optimal solutions, and on
online algorithms, which receive the items one by
one and must assign each item to a bin immedi-
ately and irrevocably (without any information on
further items).

In a bin packing game, every item is operated
by a selfish player. There are n bins, and the
strategy of a player is the bin that it selects. If
the resulting packing is valid (i.e., the load of
no bin exceeds 1), then the set of items sharing
a bin share its cost proportionally, i.e., let B be
a bin (a subset of items). The cost of i 2 B is

si =

 
P

j 2B

sj

!

. If the resulting packing is invalid,

any item packed into an invalid bin has infinite
cost. We are interested in pure Nash equilibria,
and by the term NE, we refer to such an equilib-
rium. The problem was presented by Bilò [1].

There are several directions which can be
explored. First, one would like to find out if any
bin packing game has an NE. If this is the case,
other kinds of equilibria might be of interest as
well. For a class of games (such that each of
them has an NE), a process of convergence is
defined as follows. The process starts with an
arbitrary configuration, and at each time, an item
that can reduce its cost is selected and moved to
another bin (where the cost of this item will be
smaller than its cost before it is moved). Such a
process can also be seen as local search. Items
are moved one at a time; a single move (for one

item) is called a step. Note that one item can
participate in multiple steps. The questions which
can be asked are whether the process converges
for any initial packing (i.e., reaches a state that
no further step can be applied) and how large
can the number of steps be. As it turns out, any
bin packing game has at least one NE, and the
processes described here always converge [1, 8].
Since it is possible that the process converges
in exponential time, it is of interest to develop
a polynomial time algorithm that computes NE
packings. Such an algorithm for this problem
defined above was designed by Yu and Zhang
[9]. Finally, once the existence of NE packing
has been established, the primary goal becomes
the study of the quality of worst-case equilibria.
This concept is called price of anarchy. For a
given game G (i.e., a set of items which is an
input for bin packing), the price of anarchy of this
game, denoted by POA.G/, is the ratio between
the maximum number of nonempty bins in any
NE packing and the minimum number of bins in
any packing (the number of bins in an optimal
packing, also called the social optimum, denoted
by OP T .G/). The price of stability is similar,
but best-case equilibria are studied, and as Bilò
[1] proved that any game has a social optimum
that is an NE, the price of stability is 1 for any
game.

The price of anarchy (POA) of a class
of games (here, the class of all bin packing
games) is defined to be the supremum POA
over all games in the class. However, as bin
packing is typically studied with respect to
the asymptotic approximation ratio, the POA
for the bin packing class of games is defined,
similarly to the asymptotic approximation ratio,
as lim

M!1
sup

fGWOP T .G/�M g

POA.G/.

Key Results

The POA was studied already in [1], where Bilò
provided the first bounds on it, a lower bound of
8
5

and an upper bound of 5
3

. The quality of NE
solutions was further investigated in [4], where
nearly tight bounds for the PoA were given, an
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upper bound of 1.6428 and a lower bound of
1.6416 (see also [9]). The parametric POA, which
is the POA for subclasses of games where the size
of no item exceeds a given value, was considered
as well [5].

NE packings are related to outputs of the
algorithm First Fit (FF) for bin packing [7]. FF is
in fact an online algorithm that packs each item,
in turn, into a minimum index bin where it fits
(using an empty bin if there is no other option).
It is not difficult to see that every NE is an output
of FF; sort the bins of the NE by non-increasing
loads, and create a list of items according to
the ordering of bins. FF will create exactly the
bins of the original packing. Interestingly, the
POA is significantly smaller than the asymptotic
approximation ratio of FF (which is equal to
1:7 [7]). Note that the PoA is not equal to the
approximation ratio of any natural algorithm for
bin packing.

Some intuition regarding the difference be-
tween the asymptotic approximation ratio of First
Fit and the POA of this class of games can be
shown using a small example. Consider items of
the following sizes (for a sufficiently small " >

0): 1
6
� 2" (small items), 1

3
C " (medium items),

and 1
2
C" (large items). The worst-case examples

for FF are similar to this example, though the
items of the first two types have a number of
different sizes; small items can be slightly smaller
or slightly larger than 1

6
, and medium items can

be slightly smaller or slightly larger than 1
3

. Given
the item types defined above, assume that there
are 6N items of each type (for some positive
integer N ), when FF receives this input (sorted by
non-decreasing size), it creates N bins with six
small items packed into each bin, 3N bins with
two medium items packed into each bin, and the
remaining items are packed into dedicated bins.
This packing is not an NE, as a medium item
reduces its cost from 1

2
to approximately 2

5
if it

joins a large item. Indeed, roughly speaking, if
an NE packing consists of a large number of bins
(compared to an optimal solution), a bin of this
NE packing either has an item whose size exceeds
1
2

or its load cannot be as small as approximately
2
3

. This allows a tighter analysis. Interestingly, in

worst-case examples for the POA, medium items
have sizes that are close to 1

4
instead of 1

3
.

Related Results

Bin packing games, where the cost of an item
is defined differently, were studied. One option
is to assign equal costs to all players (which
are packed together into a valid bin) [3, 6]. A
generalized version where each item has a pos-
itive weight, and costs are based on cost sharing
proportional to the weights of items that share a
bin [3] was studied as well. The weights of items
in the games described above (those of [1, 4])
are equal to their sizes. These are two classes
of games, for which the POA turns out to be of
interest. The POA for the class of games with
equal weights is slightly (strictly) below 1:7, and
in the case of general weights, the POA is equal
to 1:7 [3]. Another topic of interest is the quality
of other kinds of equilibria. Those are strong
equilibria, which are solutions that are also re-
silient to deviations of subsets of items reducing
their costs, and Pareto optimal equilibria, where
the solution is required to be weakly (or strictly)
Pareto optimal, that is, there is no alternative
packing where all items reduce their costs (or a
packing where no item increases its cost and at
least one item reduces it) [3]. For these last kinds
of equilibria, the POA is still above 1:6 (but at
most 1:7).
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Problem Definition

Consider having a set of resources E in a system.
For each e 2 E, let de.�/ be the delay per user

that requests its service, as a function of the total
usage of this resource by all the users. Each such
function is considered to be non�decreasing in
the total usage of the corresponding resource.
Each resource may be represented by a pair of
points: an entry point to the resource and an exit
point from it. So, each resource is represented by
an arc from its entry point to its exit point and the
model associates with this arc the cost (e.g., the
delay as a function of the load of this resource)
that each user has to pay if she is served by this
resource. The entry/exit points of the resources
need not be unique; they may coincide in order
to express the possibility of offering joint service
to users, that consists of a sequence of resources.
Here, denote by V the set of all entry/exit points of
the resources in the system. Any nonempty col-
lection of resources corresponding to a directed
path in G 
 .V; E/ comprises an action in the
system.

Let N 
 Œn� be a set of users, each willing
to adopt some action in the system. 8i 2 N , let
wi denote user i’s demand (e.g., the flow rate
from a source node to a destination node), while
˘i � 2E n ; is the collection of actions, any of
which would satisfy user i (e.g., alternative routes
from a source to a destination node, if G repre-
sents a communication network). The collection
˘ i is called the action set of user i and each
of its elements contains at least one resource.
Any vector r D .r1; : : : ; rn/ 2 ˘ 
 �n

iD1˘i

is a pure strategies profile, or a configuration
of the users. Any vector of real functions
p D .p1; p2; : : : ; pn/ s.t.8i2 Œn�; pi W˘i! Œ0; 1�

is a probability distribution over the set of allow-
able actions for user i (i.e.,

P
ri 2˘i

pi .ri / D 1),
and is called a mixed strategies profile for the n
users.

A congestion model typically deals with users
of identical demands, and thus, user cost function
depending on the number of users adopting each
action [1, 4, 6]. In this work the more general
case is considered, where a weighted congestion
model is the tuple ..wi /i2N ; .˘i /i2N ; .de/e2E /.
That is, the users are allowed to have different
demands for service from the whole system,
and thus affect the resource delay functions in
a different way, depending on their own weights.
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A weighted congestion game associated with this
model, is a game in strategic form with the set
of users N and user demands .wi /i2N , the action
sets .˘i /i2N and cost functions .�i

ri
/i2N;ri 2˘i

defined as follows: For any configuration r 2 ˘

and 8e 2 E, let 	e.r/ D fi 2 N W e 2 rig be the
set of users exploiting resource e according to r

(called the view of resource e wrt configura-
tion r). The cost �i .r/ of user i for adopting
strategy ri 2 ˘i in a given configuration r is
equal to the cumulative delay �ri

.r/ along this
path:

�i .r/ D �ri
.r/ D

X

e2ri

de.�e.r// (1)

where, 8e 2 E; �e.r/ 

P

i2�e.r/ wi is the load
on resource e wrt the configuration r .

On the other hand, for a mixed strategies
profile p, the expected cost of user i for adopting
strategy ri 2 ˘i is

�i
ri

.p/ D
X

r�i 2˘�i

P.p�i ; r�i /�

X

e2ri

de

�
�e.r�i ˚ ri /

� (2)

where, r�i is a configuration of all the users
except for user i, p�i is the mixed strategies
profile of all users except for i, r�i ˚ ri is the
new configuration with user i choosing strategy
ri , and P.p�i ; r�i / 


Q
j 2N nfig pj .rj / is the

occurrence probability of r�i .

Remark 1 Here notation is abused a little bit and
the model considers the user costs �i

ri
as func-

tions whose exact definition depends on the other
users’ strategies: In the general case of a mixed
strategies profile p, (2) is valid and expresses the
expected cost of user i wrt p, conditioned on the
event that i chooses path ri . If the other users
adopt a pure strategies profile r�i , we get the
special form of (1) that expresses the exact cost
of user i choosing action ri .

A congestion game in which all users are
indistinguishable (i.e., they have the same user
cost functions) and have the same action set, is

called symmetric. When each user’s action set …i

consists of sets of resources that comprise (sim-
ple) paths between a unique origin-destination
pair of nodes .si ; ti / in a network G D .V; E/,
the model refers to a network congestion game.
If additionally all origin-destination pairs of the
users coincide with a unique pair (s, t) one gets
a single commodity network congestion game
and then all users share exactly the same action
set. Observe that a single-commodity network
congestion game is not necessarily symmetric
because the users may have different demands
and thus their cost functions will also differ.

Selfish Behavior
Fix an arbitrary (mixed in general) strategies pro-
file p for a congestion game

�
.wi /i2N ; .˘i /i2N ;

.de/e2E

�
. We say that p is a Nash Equilib-

rium (NE) if and only if 8i 2 N;8ri ; 
i 2

˘i ; pi .ri / > 0) �i
ri

.p/ � �i
�i

.p/: A configu-
ration r 2 ˘ is a Pure Nash Equilibrium (PNE)
if and only if .8i 2 N;8
i 2 ˘i ; �ri

.r/ � ��i

.r�i ˚ 
i / where, r�i ˚ 
i is the same config-
uration with r except for user i that now chooses
action  i.

Key Results

In this section the article deals with the existence
and tractability of PNE in weighted network
congestion games. First, it is shown that it is
not always the case that a PNE exists, even for
a weighted single-commodity network conges-
tion game with only linear and 2-wise linear (e.g.,
the maximum of two linear functions) resource
delays. In contrast, it is well known [1, 6] that any
unweighted (not necessarily single-commodity,
or even network) congestion game has a PNE, for
any kind of nondecreasing delays. It should be
mentioned that the same result has been indepen-
dently proved also by [3].

Lemma 1 There exist instances of weighted
single–commodity network congestion games
with resource delays being either linear or 2–
wise linear functions of the loads, for which there
is no PNE.
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Theorem 2 For any weighted multi–commodity
network congestion game with linear resource
delays, at least one PNE exists and can be com-
puted in pseudo-polynomial time.

Proof Fix an arbitrary network G D .V; E/ with
linear resource/edge delays de.x/ D aex C be ,
e 2 E, ae; be � 0. Let r 2 ˘ be an arbitrary
configuration for the corresponding weighted
multi–commodity congestion game on G. For
the configuration r consider the potential
˚.r/ D C.r/CW.r/, where

C.r/ D
X

e2E

de.�e.r//�e.r/

D
X

e2E

Œae�2
e .r/C be�e.r/�;

and

W.r/ D

nX

iD1

X

e2ri

de.wi /wi

D
X

e2E

X

i2�

e .r/

de.wi /wi

D
X

e2E

X

i2�

e .r/

.aew2
i C bewi /

one concludes that

˚.r 0/ � ˚.r/ D 2wi Œ�
i .r 0/ � �i .r/� ;

Note that the potential is a global system
function whose changes are proportional to self-
ish cost improvements of any user. The global
minima of the potential then correspond to con-
figurations in which no user can improve her
cost acting unilaterally. Therefore, any weighted
multi–commodity network congestion game with
linear resource delays admits a PNE. �

Applications

In [5] many experiments have been conducted for
several classes of pragmatic networks. The ex-
periments show even faster convergence to pure
Nash Equilibria.

Open Problems

The Potential function reported here is polyno-
mial on the loads of the users. It is open whether
one can find a purely combinatorial potential,
which will allow strong polynomial time for
finding Pure Nash equilibria.
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Problem Definition

An algorithm is self-stabilizing if it eventually
manifests correct behavior regardless of initial
state. The general problem is to devise self-
stabilizing solutions for a specified task. The
property of self-stabilization is now known to
be feasible for a variety of tasks in distributed
computing. Self-stabilization is important for dis-
tributed systems and network protocols subject to
transient faults. Self-stabilizing systems automat-
ically recover from faults that corrupt state.

The operational interpretation of self-
stabilization is depicted in Fig. 1. Part (a) of the
figure is an informal presentation of the behavior
of a self-stabilizing system, with time on the x-
axis and some informal measure of correctness
on the y-axis. The curve illustrates a system
trajectory, through a sequence of states, during
execution. At the initial state, the system state
is incorrect; later, the system enters a correct
state, then returns to an incorrect state, and
subsequently stabilizes to an indefinite period
where all states are correct. This period of
stability is disrupted by a transient fault that
moves the system to an incorrect state, after
which the scenario above repeats. Part (b) of the
figure illustrates the scenario in terms of state
predicates. The box represents the predicate
true, which characterizes all possible states.
Predicate C characterizes the correct states of the
system, and L � C depicts the closed legitimacy
predicate. Reaching a state in L corresponds to
entering a period of stability in part (a). Given an
algorithm A with this type of behavior, it is said
that A self-stabilizes to L; when L is implicitly
understood, the statement is simplified to: A is
self-stabilizing.

Problem [3]. The first setting for self-
stabilization posed by Dijkstra is a ring of n
processes numbered 0 through n � 1. Let the

state of process i be denoted by xŒi �. Communi-
cation is unidirectional in the ring using a shared
state model. An atomic step of process i can be
expressed by a guarded assignment of the form
g.xŒi � 1�; xŒi �/ ! xŒi � WD f .xŒi � 1�; xŒi �/.
Here,� is subtraction modulo n, so that xŒi � 1�

is the state of the previous process in the ring with
respect to process i. The guard g is a boolean
expression; if g.xŒi � 1�; xŒi �/ is true, then
process i is said to be privileged (or enabled).
Thus in one atomic step, privileged process
i reads the state of the previous process and
computes a new state. Execution scheduling is
controlled by a central daemon, which fairly
chooses one among all enabled processes to
take the next step. The problem is to devise g
and f so that, regardless of initial states of xŒi �,
0 � i < n, eventually there is one privilege and
every process enjoys a privilege infinitely often.

Complexity Metrics
The complexity of self-stabilization is evaluated
by measuring the resource needed for conver-
gence from an arbitrary initial state. Most promi-
nent in the literature of self-stabilization are met-
rics for worst-case time of convergence and space
required by an algorithm solving the given task.
Additionally, for reactive self-stabilizing algo-
rithms, metrics are evaluated for the stable behav-
ior of the algorithm, that is, starting from a le-
gitimate state, and compared to non-stabilizing
algorithms, to measure costs of self-stabilization.

Key Results

Composition
Many self-stabilizing protocols have a layered
construction. Let fAi g

m�1
iD0 be a set programs

with the property that for every state variable x,
if program Ai writes x, then no program Aj, for
j > i , writes x. Programs in fAj g

m�1
j DiC1 may

read variables written by Ai, that is, they use
the output of Ai as input. Fair composition of
programs B and C, written B Œ � C , assumes fair
scheduling of steps of B and C. Let Xj be the set
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Self-Stabilization, Fig. 1
Self-stabilization
trajectories

a b

of variables read by Aj and possibly written by
fAi g

j �1
iD0 .

Theorem 1 (Fair Composition [4]) Suppose Ai

is self-stabilizing to Li under the assumption that
all variables in Xi remain constant throughout
any execution; then A0 Œ � A1Œ � � � � Œ � Am�1 self-
stabilizes to fLi g

m�1
iD0 .

Fair composition with a layered set fAi g
m�1
iD0

corresponds to sequential composition of phases
in a distributed algorithm. For instance, let
B be a self-stabilizing algorithm for mutual
exclusion in a network that assumes the existence
of a rooted, spanning tree and let algorithm
C be a self-stabilizing algorithm to construct
a rooted spanning tree in a connected network;
then B Œ � C is a self-stabilizing mutual exclusion
algorithm for a connected network.

Synchronization Tasks
One question related to the problem posed in sec-
tion “Problem Definition” is whether or not there
can be a uniform solution, where all processes
have identical algorithms. Dijkstra’s result for the
unidirectional ring is a semi-uniform solution (all
but one process have the same algorithm), using
n states per process. The state of each process is
a counter: process 0 increments the counter mod-
ulo k, where k � n suffices for convergence; the
other processes copy the counter of the preceding
process in the ring. At a legitimate state, each
time process 0 increments the counter, the result-
ing value is different from all other counters in

the ring. This ring algorithm turns out to be self-
stabilizing for the distributed daemon (any subset
of privileged processes may execute in parallel)
when k > n. Subsequent results have established
that mutual exclusion on a unidirection ring is
�.1/ space per process with a non-uniform solu-
tion. Deterministic uniform solutions to this task
are generally impossible, with the exceptional
case where n is and prime. Randomized uniform
solutions are known for arbitrary n, using O.lg ˛/

space where ˛ is the smallest number that does
not divide n. Some lower bounds on space for
uniform solutions are derived in [7]. Time com-
plexity of Dijkstra’s algorithm is O(n2) rounds,
and some randomized solutions have been shown
to have expected O(n2) convergence time.

Dijkstra also presented a solution to mutual
exclusion for a linear array of processes, using
O(1) space per process [3]. This result was later
generalized to a rooted tree of processes, but
with mutual exclusion relaxed to having one
privilege along any path from root to leaf. Sub-
sequent research built on this theme, showing
how tasks for distributed wave computations have
self-stabilizing solutions. Tasks of phase syn-
chronization and clock synchronization have also
been solved. See reference [9] for an example of
self-stabilizing mutual exclusion in a multipro-
cessor shared memory model.

Graph Algorithms
Communication networks are commonly
represented with graph models and the need
for distributed graph algorithms that tolerate
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transient faults motivates study of such tasks.
Specific results in this area include self-
stabilizing algorithms for spanning trees, center-
finding, matching, planarity testing, coloring,
finding independent sets, and so forth. Generally,
all graph tasks can be solved by self-stabilizing
algorithms: tasks that have network topology and
possibly related factors, such as edge weights,
for input, and define outputs to be a function of
the inputs, can be solved by general methods for
self-stabilization. These general methods require
considerable space and time resource, and may
also use stronger model assumptions than needed
for specific tasks, for instance unique process
identifiers and an assumed bound on network
diameter. Therefore research continues on graph
algorithms.

One discovery emerging from research on
self-stabilizing graph algorithms is the difference
between algorithms that terminate and those that
continuously change state, even after outputs
are stable. Consider the task of constructing
a spanning tree rooted at process r. Some
algorithms self-stabilize to the property that,
for every p ¤ r , the variable up refers to p’s
parent in the spanning tree and the state remains
unchanged. Other algorithms are self-stabilizing
protocols for token circulation with the side-
effect that the circulation route of the token
establishes a spanning tree. The former type
of algorithm has O.lg n/ space per process,
whereas the latter has O.lg ı/ where ı is the
degree (number of neighbors) of a process. This
difference was formalized in the notion of silent
algorithms, which eventually stop changing any
communication value; it was shown in [5] for
the link register model that silent algorithms for
many graph tasks have ˝.lg n/ space.

Transformation
The simple presentation of [3] is enabled by the
abstract computation model, which hides details
of communication, program control, and atom-
icity. Self-stabilization becomes more compli-
cated when considering conventional architec-
tures that have messages, buffers, and program
counters. A natural question is how to transform
or refine self-stabilizing algorithms expressed in

abstract models to concrete models closer to
practice. As an example, consider the problem
of transforming algorithms written for the cen-
tral daemon to the distributed daemon model.
This transformation can be reduced to finding
a self-stabilizing token-passing algorithm for the
distributed daemon model such that, eventually,
no two neighboring processes concurrently have
a token; multiple tokens can increase the effi-
ciency of the transformation.

General Methods
The general problem of constructing a self-
stabilizing algorithm for an input nonreactive task
can be solved using standard tools of distributed
computing: snapshot, broadcast, system reset,
and synchronization tasks are building blocks
so that the global state can be continuously
validated (in some fortunate cases L can be
locally checked and corrected). These building
blocks have self-stabilizing solutions, enabling
the general approach.

Fault Tolerance
The connection between self-stabilization and
transient faults is implicit in the definition. Self-
stabilization is also applicable in executions that
asynchronously change inputs, silently crash and
restart, and perturb communication [10]. One
objection to the mechanism of self-stabilization,
particularly when general methods are applied, is
that a small transient fault can lead to a system-
wide correction. This problem has been inves-
tigated, for example in [8], where it is shown
how convergence can be optimized for a limited
number of faults. Self-stabilization has also been
combined with other types of failure tolerance,
though this is not always possible: the task of
counting the number of processes in a ring has
no self-stabilizing solution in the shared state
model if a process may crash [1], unless a failure
detector is provided.

Applications

Many network protocols are self-stabilizing
by the following simple strategy: periodically,
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they discard current data and regenerate it
from trusted information sources. This idea
does not work in purely asynchronous systems;
the availability of real-time clocks enables
the simple strategy. Similarly, watchdogs with
hardware clocks can provide an effective basis for
self-stabilization [6].
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Problem Definition

Semi-supervised learning [1, 4, 5, 8, 12] refers to
the problem of using a large unlabeled data set U

together with a given labeled data set L in order
to generate prediction rules that are more accurate
on new data than would have been achieved using
just L alone. Semi-supervised learning is moti-
vated by the fact that in many settings (e.g., doc-
ument classification, image classification, speech
recognition), unlabeled data is plentiful but la-
beled data is more limited or expensive, e.g., due
to the need for human labelers. Therefore, one
would like to make use of the unlabeled data if
possible.

The general idea behind semi-supervised
learning is that unlabeled data, while missing
the labels, nonetheless often contains useful
information. As an example, suppose one
believes the correct decision boundary for
some classification problem should be a linear
separator that separates most of the data by a
large margin. By observing enough unlabeled
data to estimate the probability mass near to any
given linear separator, one could in principle then
discard separators in advance that slice through
dense regions and instead focus attention on just

http://dx.doi.org/10.1007/978-1-4939-2864-4_88
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those that indeed separate most of the distribution
by a large margin. This is the high-level idea
behind semi-supervised SVMs. Alternatively,
suppose data objects can be described by two
different “kinds” of features, and one believes
that each kind should be sufficient to produce an
accurate classifier. Then one might want to train
a pair of classifiers and use unlabeled data for
which one classifier is confident but the other
is not to bootstrap, labeling such examples with
the confident classifier and then feeding them as
training data to the less-confident classifier. This
is the high-level idea behind Co-Training. Or, if
one believes “similar examples should generally
have the same label,” one might construct a
graph with an edge between examples that are
sufficiently similar and aim for a classifier that
is correct on the labeled data and has a small cut
value on the unlabeled data; this is the high-level
idea behind graph-based methods. (These will
all be discussed in more detail later.) General
surveys of semi-supervised learning appear in
[5, 12].

A Formal Framework
We now present a formal model for analyzing
semi-supervised learning due to Balcan and
Blum [1]. This model was developed to provide
a unified explanation for a wide range of
semi-supervised learning algorithms including
the semi-supervised SVMs, Co-Training, and
graph-based methods mentioned above. Before
describing it, however, we first describe the
classic PAC and agnostic learning models for
supervised learning that this model builds on.

In the PAC and agnostic learning models, data
is assumed to be drawn iid from some fixed but
initially unknown distribution D over an instance
space X and labeled by some unknown target
function c� W X ! f0; 1g. The error of some
hypothesis function h is defined as err.h/ D

Prx�DŒh.x/ ¤ c�.x/�. In the PAC model (also
known as the realizable case), we assume that c�

is a member of some known class of functions C,
and we say that an algorithm PAC-learns C if for
any given �; ı > 0, with probability � 1 � ı, it
produces a hypothesis h such that err.h/ � �.
In the agnostic case, we do not assume that

c� 2 C and instead aim to achieve error close
to inff 2C Œerr.f /�.

The PAC and agnostic learning models in
essence assume that one’s prior beliefs about the
target be described in terms of a class of func-
tions C. In order to capture the reasoning used
in semi-supervised learning, however, we need to
also describe beliefs about the relation between
the target function and the data distribution. This
is done in the model of Balcan and Blum [1] via
a notion of compatibility  between a hypothesis
h and a distribution D. Formally,  maps pairs
.h; D/ to Œ0; 1� with .h; D/ D 1 meaning that
h is highly compatible with D and .h; D/ D 0

meaning that h is very incompatible with D. The
quantity 1�.h; D/ is called the unlabeled error
rate of h and denoted errunl.h/. Note that for 

to be useful, it must be estimatable from a finite
sample; to this end,  is further required to be
an expectation over individual examples. That is,
overloading notation for convenience, we require
.h; D/ D Ex�DŒ.h; x/�, where  W C � X !
Œ0; 1�. As with the class C, one can either assume
that the target is fully compatible (errunl.c

�/ D

0) or instead aim to do well as a function of
how compatible the target is. The case that we
assume c� 2 C and errunl.c

�/ D 0 is termed the
“doubly realizable case.” The concept class C and
compatibility notion  are both viewed as known.

Examples
Suppose we believe the target should separate
most data by a large margin � . We can represent
this belief by defining .h; x/ D 0 if x is within
distance � of the decision boundary of h and
.h; x/ D 1 otherwise. In this case, errunl.h/ will
denote the probability mass of D within distance
� of h’s decision boundary. Alternatively, if we
do not wish to commit to a specific value of � ,
we could define .h; x/ to be a smooth function
of the distance of x to the separator defined
by h. As a very different example, in co-training
(described in more detail below), we assume each
example can be described using two “views”
that each are sufficient for classification, that is,
there exist c�

1 ; c�
2 such that for each example

x D hx1; x2i, we have c�
1 .x1/ D c�

2 .x2/. We
can represent this belief by defining a hypothesis
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h D hh1; h2i to be compatible with an example
hx1; x2i if h1.x1/ D h2.x2/ and incompatible
otherwise; errunl.h/ is then the probability mass
of examples, under D, where the two halves of h

disagree.

Intuition
In this framework, the way that unlabeled data
helps in learning can be intuitively described as
follows. Suppose one is given a concept class C
(such as linear separators) and a compatibility
notion  (such as penalizing h for points within
distance � of the decision boundary). Suppose
also that one believes c� 2 C (or at least is close)
and that errunl.c

�/ D 0 (or at least is small).
Then, unlabeled data can help by allowing one to
estimate the unlabeled error rate of all h 2 C,
thereby in principle reducing the search space
from C (all linear separators) down to just the
subset of C that is highly compatible with D. The
key challenge is how this can be done efficiently
(in theory, in practice, or both) for natural notions
of compatibility, as well as identifying types of
compatibility that data in important problems can
be expected to satisfy.

Key Results

The following, from [1], illustrate formally how
unlabeled data can help in this model. Fix some
concept class C and compatibility notion . Given
a labeled sample L, define cerr.h/ to be the frac-
tion of mistakes of h on L. Given an unlabeled
sample U , define .h; U / D Ex�U Œ.h; x/� and
define cerrunl.h/ D 1 � .h; U /. That is, cerr.h/

and cerrunl.h/ are the empirical error rate and
unlabeled error rate of h, respectively. Finally,
given ˛ > 0, define CD;�.˛/ to be the set of
functions f 2 C such that errunl.f / � ˛.

Theorem 1 ([1]) If c� 2 C then with probability
at least 1� ı, for a random labeled set L and un-
labeled set U , the h 2 C that optimizes cerrunl.h/

subject to cerr.h/ D 0 will have err.h/ � � for

jU j �
2

�2

	
ln jCj C ln

4

ı



;

jLj �
1

�

	
ln jCD;�.errunl.c

�/C 2�/j C ln
2

ı



:

Equivalently, for jU j satisfying the above bound,
for any jLj, with probability at least 1 � ı, the
h 2 C that optimizes cerrunl.h/ subject to cerr.h/ D

0 has

err.h/�
1

jLj

	
ln jCD;�.errunl.c

�/C2�/jCln
2

ı



:

One can view Theorem 1 as bounding the number
of labeled examples needed to learn well as a
function of the “helpfulness” of the distribution
D with respect to , for sufficiently large U .
Namely, a helpful distribution is one in which
CD;�.˛/ is small for ˛ slightly larger than the
compatibility of the true target function, so we
do not need much labeled data to identify a good
function among those in CD;�.˛/.

For infinite hypothesis classes, one needs to
consider both the complexity of the class C and
the complexity of the compatibility notion .
Specifically, given h 2 C, define h.x/ D

.h; x/ and let VCdim..C// denote the VC-
dimension of the set fhjh 2 Cg. A sample
complexity bound from [1] based on �-cover size
is the following.

Theorem 2 ([1]) Assume c� 2 C and let p be
the size of the smallest set of functions H such
that every function in CD;�.errunl.c

�/ C �=3/ is
�=6-close to some function in H . Then jU j D

O
�

maxŒVCdim.C/;VCdim.�.C//�

�2 ln 1
�
C 1

�2 ln 2
ı

�
and

jLj D O
�

1
�

ln p
ı

�
is sufficient to identify a

function f 2 C of error at most � with probability
at least 1 � ı.

Finally, for the general (agnostic) case that c� 62

C, we can define a regularizer based on empirical
unlabeled error rates, and then get good bounds
for optimizing a combination of the empirical
labeled error and the regularization term. Specif-
ically, for a hypothesis h, define ON .h/ to be the
number of ways of partitioning the first jLj points
in U using ff 2 C Wcerrunl.f / �cerrunl.h/g. Then
we have
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Theorem 3 ([1]) With probability at least 1 � ı,
the hypothesis

h D arg min
h02C

Œcerr.h0/CR.h0/�; where

R.h0/ D

q
24 ln. ON .h0//

jLj
;

satisfies

err.h/ � min
h02C

�
err.h0/CR.h0/

�
C 5

q
ln.8=ı/

jLj
:

Co-Training
Co-Training is a semi-supervised learning
method due to [4] for settings in which examples
can be thought of as having two “views,” that is,
two distinct types of information. For example,
in classifying webpages (e.g., into student home
page, faculty member home page, course home
page, etc.), one could use the words on the page
itself, but one could also use information from
links pointing to that page [4]. Or, in classifying
visual images, one might have two cameras or
even two different filters or preprocessing steps
on images from the same camera [9]. Or, in
understanding video, one can use visual images
and spoken dialogue [7]. In such settings, one
can think of an example x as a pair x D hx1; x2i.
The idea of Co-Training is that if each view is in
principle enough to achieve a good classification
by itself, but each provides somewhat different
information, then one can hope to improve
performance using unlabeled data. Specifically,
in Co-Training, one maintains two hypotheses,
one for each view (e.g., a hypothesis that
classifies webpages based on the text on the page
itself and one that classifies webpages based on
information from links pointing to the page). A
hypothesis pair h D hh1; h2i is compatible with
an example hx1; x2i if h1.x1/ D h2.x2/ and is
incompatible otherwise. So the unlabeled error
rate of a hypothesis (pair) h D hh1; h2i is the
probability mass of examples hx1; x2i on which
the two parts of h disagree.

In practice, there are two primary ways that
this notion of compatibility is used to learn from
a small amount of labeled data and a large
amount of unlabeled data. The first is iterative

co-training, introduced in [4]. In iterative co-
training, a small labeled sample L is used
to produce predictors for each view that are
confident in some part of their respective input
spaces and not confident in other parts. Then, the
algorithm searches through the (large) unlabeled
set U to find examples x D hx1; x2i for which
one classifier is confident and the other is not.
These examples are labeled by the confident
classifier and handed to the less-confident
classifier to improve its predictor. The other
primary method is to optimize a global objective
that combines accuracy over the labeled sample
L with agreement over the unlabeled sample
U . That is, one searches for the hypothesis
pair h that minimizes cerr.h/ C �cerrunl.h/ for
some regularization parameter � [6, 10]. This is
generally a non-convex optimization problem,
and so various heuristics are typically applied to
perform the optimization.

Theoretically, the guarantees for Co-Training
are strongest when the data satisfies indepen-
dence given the label (with some probability p, a
random positive example hx1; x2i is drawn from
DC

1 �DC
2 , and with probability 1� p, a random

negative example is drawn from D�
1 �D�

2 ) and in
the realizable case (there exist targets c�

1 ; c�
2 2 C

such that all examples hx1; x2i in the support
of the distribution satisfy c�

1 .x1/ D c�
2 .x2/).

Specifically, two key results are

Theorem 4 ([4]) Any class C that is efficiently
PAC-learnable from random classification noise
is efficiently learnable from unlabeled data alone
in the realizable Co-Training setting, if data satis-
fies independence given the label and one is given
an initial weakly useful predictor h1.x1/.

Here, h is a weakly useful predictor of a function
f if for some � > 1=poly.n/ we have both (a)
Prx�DŒh.x/ D 1� � � and (b) Prx�DŒf .x/ D

1jh.x/ D 1� � Prx�DŒf .x/ D 1�C�. Theorem 4
implies that if one is able to use a small labeled
sample to produce an initial hypothesis that gives
a slight “edge” in predicting the target beyond
just the overall class probabilities, then under
independence given the label one can boost that
to a high-accuracy predictor from just unlabeled
data.
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Furthermore, ignoring computation time,
under independence given the label, any class
of finite VC-dimension is learnable from a
single labeled example. In the case of linear
separators, this can be done computationally
efficiently.

Theorem 5 ([1]) Any class C of finite VC-
dimension is learnable from polynomially
many unlabeled examples and a single
labeled example if D satisfies independence
given the label. Furthermore, for linear
separators this can be done in polynomial
time.

Semi-supervised SVMs
Semi-supervised SVMs (also called transductive
SVMs) [8, 11] aim to find a linear separator
that separates both the labeled sample L and
the unlabeled sample U by the largest possible
margin. That is, one wants to find a separator
such that for � as large as possible, all labeled
examples are on the correct side of the separator
by distance at least � and all unlabeled examples
are on some side of the separator by distance
at least � . In practice, one combines a large-
margin objective with a hinge-loss penalty for
labeled examples that fail to satisfy the condition,
and a “hat-loss” penalty for unlabeled examples
that fail to satisfy the condition. Formally, the
goal is to minimize c1wT wC c2

P
.xi ;yi /2L ˛i C

c3

P
xj 2U ˇj subject to .wT xi /yi � 1 � ˛i for

all .xi ; yi / 2 L and .wT xj / Qyj � 1 � ˇj for all
xj 2 U (and ˛i ; ˇj � 0), where yi 2 f�1; 1g

is the (known) label of xi 2 L and Qyj 2 f�1; 1g

is a variable representing the algorithm’s guess
of the label of xj 2 U . While the optimization
problem is NP-hard, a number of heuristics have
been developed. For example, Joachims [8] uses
an iterative labeling heuristic to approximately
optimize the objective. Semi-supervised SVMs
have been shown to achieve high accuracy in
a number of text classification domains where
unlabeled data is plentiful [8].

Graph-Based Methods
Graph-based methods [3, 13] can be viewed
as a (transductive) semi-supervised version of

nearest-neighbor learning. In these methods, one
creates a graph with a vertex for each example in
L [ U and an edge between two examples x; x0

if they are deemed to be sufficiently “similar” (or
with edge weights based on how similar they are
deemed to be). Similarity can be directly based
on distance between the examples in the input
space or given by some provided kernel function
k.x; x0/. Given the labels for the examples in L,
one then finds a “most compatible” labeling for
the examples in U , based on the belief that similar
examples will typically have the same label.
Specifically, in the mincut approach of [3], the
labeling h produced is the cut of least total weight
subject to agreeing with the known labels on
examples in L or equivalently the cut that agrees
with L minimizing

P
eD.x;x0/ wejh.x/ � h.x0/j.

In the algorithm of [13], in order to produce
a smoother solution, the algorithm instead
views the graph as an electrical network,
finding the cut agreeing with L that minimizesP

eD.x;x0/ we.h.x/ � h.x0//2.

Open Problems

There are a number of open problems in
developing computationally efficient semi-
supervised learning algorithms. For example,
can one extend the algorithm of Theorem 5
for Co-Training with linear separators to
weaker conditions than independence given
the label, while maintaining computational
efficiency? (Note: A number of weaker
conditions are known to produce good sam-
ple bounds if computational considerations
are ignored [2].) More broadly, can one
develop efficient algorithms for other classes
or notions of compatibility that meet the
cover-based sample complexity bounds of
Theorem 2? Additional open problems are given
in [1].
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Problem Definition

The (balanced) separator problem asks for a cut
of minimum (edge)-weight in a graph, such that
the two shores of the cut have approximately
equal (node)-weight.

Formally, given an undirected graph G D

.V; E/, with a nonnegative edge-weight function
c W E ! RC, a nonnegative node-weight func-
tion 
 W V ! RC, and a constant b � 1=2, a cut
.S W V nS/ is said to be b -balanced, or a .b; 1�b/

-separator, if b
.V / � 
.S/ � .1 � b/
.V /

.where 
.S/ stands for
P

v2S 
.v/ /.

Problem 1 (b-balanced separator)
INPUT: Edge- and node-weighted graph G D

.V; E; c; 
/, constant b � 1=2.
OUTPUT: A b-balanced cut .S W V n S/. Goal:
minimize the edge weight c.ı.S//.

Closely related is the product sparsest cut prob-
lem.

Problem 2 ((Product) Sparsest cut)
INPUT: Edge- and node-weighted graph G D

.V; E; c; 
/.
OUTPUT: A cut .S W V nS/ minimizing the ratio-
cost .

c
.ı.S///=.
.S/
.V n S//.

Problem 2 is the most general version of spars-
est cut solved by Leighton and Rao. Setting all
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node weights are equal to 1 leads to the uniform
version, Problem 3.

Problem 3 ((Uniform) Sparsest cut)
INPUT: Edge-weighted graph G D .V; E; c/.
OUTPUT: A cut .S W V nS/ minimizing the ratio-
cost .c.ı.S///=.jS jjV n S j/:

Sparsest cut arises as the (integral version of
the) linear programming dual of concurrent mul-
ticommodity flow (Problem 4). An instance of
a multicommodity flow problem is defined on
an edge-weighted graph by specifying for each
of k commodities a source si 2 V , a sink ti 2

V , and a demand Di. A feasible solution to the
multicommodity flow problem defines for each
commodity a flow function on E, thus routing
a certain amount of flow from si to ti. The edge
weights represent capacities, and for each edge
e, a capacity constraint is enforced: the sum of
all commodities’ flows through e is at most the
capacity c.e/.

Problem 4 (Concurrent multicommodity flow)
INPUT: Edge-weighted graph G D .V; E; c/,
commodities .s1; t1; D1/; : : : .sk ; tk ; Dk/.
OUTPUT: A multicommodity flow that routes
fDi units of commodity i from si to ti for each i
simultaneously, without violating the capacity of
any edge. Goal: maximize f.

Problem 4 can be solved in polynomial
time by linear programming, and approx-
imated arbitrarily well by several more
efficient combinatorial algorithms (section
“Implementation”). The maximum value f
for which there exists a multicommod-
ity flow is called the max-flow of the in-
stance. The min-cut is the minimum ratio
.c.ı.S///=.D.S; V n S//, where D.S; V n S/ DP

i Wjfsi ;ti g\S jD1 Di . This dual interpretation
motivates the most general version of the
problem, the nonuniform sparsest cut (Prob-
lem 5).

Problem 5 ((Nonuniform) Sparsest cut)
INPUT: Edge-weighted graph G D .V; E; c/,
commodities .s1; t1; D1/; : : : .sk ; tk ; Dk/.

OUTPUT: A min-cut .S W V n S/, that is, a cut of
minimum ratio-cost .c.ı.S///=.D.S; V n S//.

(Most literature focuses on either the uniform or
the general nonuniform version, and both of these
two versions are sometimes referred to as just the
“sparsest cut” problem.)

Key Results

Even when all (edge- and node-) weights are
equal to 1, finding a minimum-weight b-balanced
cut is NP-hard (for b D 1=2, the problem
becomes graph bisection). Leighton and
Rao [23, 24] give a pseudo-approximation
algorithm for the general problem.

Theorem 1 There is a polynomial-time
algorithm that, given a weighted graph G D

.V; E; c; 
/, b � 1=2 and b0 < minfb; 1=3g,
finds a b0-balanced cut of weight O..log n/=.b�

b0// times the weight of the minimum b-balanced
cut.

The algorithm solves the sparsest cut problem
on the given graph, puts aside the smaller-weight
shore of the cut, and recurses on the larger-weight
shore until both shores of the sparsest cut found
have weight at most .1�b0/
.G/. Now the larger-
weight shore of the last iteration’s sparsest cut is
returned as one shore of the balanced cut, and ev-
erything else as the other shore. Since the sparsest
cut problem is itself NP-hard, Leighton and Rao
first required an approximation algorithm for this
problem.

Theorem 2 There is a polynomial-time
algorithm with approximation ratio O.log p/

for product sparsest cut (Problem 2), where
p denotes the number of nonzero-weight nodes in
the graph.

This algorithm follows immediately from Theo-
rem 3.

Theorem 3 There is a polynomial-time algo-
rithm that finds a cut .S W V n S/ with ratio-cost
.c.ı.S///=.
.S/
.V nS// 2 O.f log p/, where
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f is the max-flow for the product multicommodity
flow and p the number of nodes with nonzero
weight.

The proof of Theorem 3 is based on solving
a linear programming formulation of the multi-
commodity flow problem and using the solution
to construct a sparse cut.

Related Results
Shahrokhi and Matula [27] gave a max-flow min-
cut theorem for a special case of the multicom-
modity flow problem and used a similar LP-
based approach to prove their result. An O.log n/

upper bound for arbitrary demands was proved by
Aumann and Rabani [6] and Linial et al. [26]. In
both cases, the solution to the dual of the mul-
ticommodity flow linear program is interpreted
as a finite metric and embedded into `1 with
distortion O.log n/, using an embedding due to
Bourgain [10]. The resulting `1 metric is a convex
combination of cut metrics, from which a cut can
be extracted with sparsity ratio at least as good as
that of the combination.

Arora et al. [5] gave an O.
p

log n/ pseudo-
approximation algorithm for (uniform or product-
weight) balanced separators, based on a semidefi-
nite programming relaxation. For the nonuniform
version, the best bound is O.

p
log n log log n/

due to Arora et al. [4]. Khot and Vishnoi [18]
showed that, for the nonuniform version of the
problem, the semidefinite relaxation of [5] has
an integrality gap of at least .log log n/1=6�ı

for any ı > 0, and further, assuming their
Unique Games Conjecture, that it is NP-hard
to (pseudo)-approximate the balanced separator
problem to within any constant factor. The SDP
integrality gap was strengthened to ˝.log log n/

by Krauthgamer and Rabani [20]. Devanur
et al. [11] show an ˝.log log n/ integrality gap
for the SDP formulation even in the uniform
case.

Implementation
The bottleneck in the balanced separator algo-
rithm is solving the multicommodity flow linear
program. There exists a substantial amount of
work on fast approximate solutions to such linear

programs [19, 22, 25]. In most of the follow-
ing results, the algorithm produces a .1 C �/-
approximation, and its hidden constant depends
on ��2. Garg and Könemann [15], Fleischer [14]
and Karakostas [16] gave efficient approximation
schemes for multicommodity flow and related
problems, with running times QO..kCm/m/ [15]
and QO.m2/ [14, 16]. Benczúr and Karger [7] gave
an O.log n/ approximation to sparsest cut based
on randomized minimum cut and running in time
QO.n2/. The current fastest O.log n/ sparsest cut

(balanced separator) approximation is based on
a primal-dual approach to semidefinite program-
ming due to Arora and Kale [3], and runs in time
O.m C n3=2/. QO.m C n3=2/, respectively). The
same paper gives an O.

p
log n/ approximation in

time O.n2/. QO.n2/, respectively), improving on
a previous QO.n2/ algorithm of Arora et al. [2].
If an O.log2 n/ approximation is sufficient, then
sparsest cut can be solved in time QO.n3=2/, and
balanced separator in time QO.mC n3=2/ [17].

Applications

Many problems can be solved by using a bal-
anced separator or sparsest cut algorithm as a sub-
routine. The approximation ratio of the resulting
algorithm typically depends directly on the ra-
tio of the underlying subroutine. In most cases,
the graph is recursively split into pieces of bal-
anced size. In addition to the O.log n/ approxi-
mation factor required by the balanced separator
algorithm, this leads to another O.log n/ factor
due to the recursion depth. Even et al. [12] im-
proved many results based on balanced separators
by using spreading metrics, reducing the ap-
proximation guarantee to O.log n log log n/ from
O.log2 n/.

Some applications are listed here; where no
reference is given, and for further examples,
see [24].

• Minimum cut linear arrangement and mini-
mum feedback arc set. One single algorithm
provides an O.log2 n/ approximation for both
of these problems.
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• Minimum chordal graph completion and elim-
ination orderings [1]. Elimination orderings
are useful for solving sparse symmetric linear
systems. The O.log2 n/ approximation algo-
rithm of [1] for chordal graph completion has
been improved to O.log n log log n/ by Even
et al. [12].

• Balanced node cuts. The cost of a balanced
cut may be measured in terms of the weight of
nodes removed from the graph. The balanced
separator algorithm can be easily extended to
this node-weighted case.

• VLSI layout. Bhatt and Leighton [8] stud-
ied several optimization problems in VLSI
layout. Recursive partitioning by a balanced
separator algorithm leads to polylogarithmic
approximation algorithms for crossing num-
ber, minimum layout area and other problems.

• Treewidth and pathwidth. Bodlaender et al. [9]
showed how to approximate treewidth within
O.log n/ and pathwidth within O.log2 n/ by
using balanced node separators.

• Bisection. Feige and Krauthgamer [13] gave
an O.˛ log n/ approximation for the minimum
bisection, using any ’-approximation algo-
rithm for sparsest cut.

Experimental Results

Lang and Rao [21] compared a variant of the
sparsest cut algorithm from [24] to methods used
in graph decomposition for VLSI design.

Cross-References

� Fractional Packing and Covering Problems
�Minimum Bisection
� Sparsest Cut
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Further details and pointers to additional results
may be found in the survey [28].
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Problem Definition

The problem is to detect specific patterns in
string and patterns in string pairs for discov-
ery of sequence and spatial motifs in membrane
proteins. A spatial interaction motif of residue
pair X -Y is defined as a pattern in which a
character or residue of type X is found interact-
ing with a residue of type Y on two strings or
sequences (Fig. 1a). We define a sequence pair
XY k as a pattern in which a residue of type Y

is found at the k-th position from a residue of
type X along a single sequence (Fig. 1b). The
propensity P.X; Y / of residue pairing XY is
P.X; Y / D fobs.X;Y /

EŒf .X;Y /�
; where fobs.X; Y / is the

observed count of XY patterns and EŒf .X; Y /�

is the expected count of XY patterns according
to some random null model. We define a motif
as a residue pair with propensity >1.0 (or greater
than some other predefined limit) and statistically
significant.
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Sequence and Spatial Motif Discovery in Short Se-
quence Fragments, Fig. 1 Examples of spatial and
sequence patterns. (a) Two X -Y spatial patterns on in-
teracting sequences. (b) An XY 3 sequence pattern

The null model for calculating EŒf .X; Y /� is
critical for motif detection. For short sequence
fragments, the null model for spatial motif de-
tection cannot be the 2 distribution as was used
in [13], since the assumption of Gaussian distri-
bution is not valid for short sequences. The null
model for sequence motif detection cannot be the
binomial distribution as was used in [4,10], since
the assumption of drawing from a universal pop-
ulation with replacement is unrealistic for short
sequence fragments. Instead, we use a combina-
torial model called the permutation model more
effective for discoveries of motifs [5–7]. This null
model is similar for both pair types: the residues
within each sequence are exhaustively and in-
dependently permuted without replacement, and
each permutation occurs with equal probabil-
ity. This model has been called the internally
random model [6]. This permutation model is
further extended to positional null model to cor-
rect position-specific bias in residue distributions
[6].

Objective. Our task is to determine explicit for-
mulas to calculate EŒf .X; Y /� for each pair type
under different conditions. Explicit probability
distributions for f .X; Y / can also be found for
many special cases, which will allow for the
calculation of statistical significance p-values.
These formulas can also be used to study whole
datasets of short sequences.

Key Results

Spatial Motifs by Permutation Model

Expectation for Interacting Residues of the
Same Type
For cases in which X is the same as Y (i.e.,
X -X pairs), let x1 be the number of residues
of type X in the first sequence, x2 the number
of residues of type X in the second sequence,
and l the common length of the sequence pair.
The probability PXX .i/ of exactly i D f .X; X/

number of X -X contacts follows a hypergeomet-
ric distribution: PXX .i/ D

�
x1

i

��
l�x1

x2�i

�
=
�

l
x2

�
: Its

expectation EŒf .X; X/� is then:

EŒf .X; X/� D
x1x2

l
:

Expectation for Interacting Residues of
Different Types
When X ¤ Y , the number of X -Y contacts in the
permutation model for one sequence pair is the
sum of two dependent hypergeometric variables,
one variable for type X residues in the first
sequence s1 and type Y in the second sequence
s2, and another variable for type Y residues in
s1 and type X in s2. The expected number of
X -Y contacts EŒf .X; Y /� is the sum of the two
expected values EŒf .X; Y jX 2 s1; Y 2 s2/� C

EŒf .X; Y jY 2 s1; X 2 s2/�:

EŒf .X; Y /� D
x1y2

l
C

y1x2

l
;

where x1 and x2 are the numbers of residues of
type X in the first and second sequence, respec-
tively, y1 and y2 are the numbers of residues of
type Y in the first and second sequence, respec-
tively, and l is the length of the sequence pair.

Significance of Spatial Motifs
To calculate the statistical significance in the
form of p-value of interacting residues of the
same type, two-tailed p-values can be calcu-
lated using the hypergeometric distribution for a
dataset of sequence pairs.

For interacting residues of different types, the
formula to determine the p-value for a specific
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observed number of X -Y contacts is more com-
plex because of the dependency. We define a
3-element multinomial function M.a; b; c/ 


aŠ
bŠcŠ.a�b�c/Š

, where M.a; b; c/ D 0 if a�b�c <

0. This represents the number of distinct permuta-
tions, without replacement, in a multiset of size a

containing three different types of elements, with

number count b, c, and a � b � c of each of the
three element types.

The probability P.h; i; j; k/ of inter-sequence
matches, namely, the probability of h X -X con-
tacts, i X -Y contacts, j Y -X contacts, and k Y -
Y contacts occurring in a random permutation is
(Fig. 2)

P.h; i; j; k/ D
M.x1; h; i/ �M.y1; j; k/ �M.l � x1 � y1; x2 � h � j; y2 � i � k/

M.l; x2; y2/
:

The marginal probability PXY .m/ that there are
a total of i C j D m X -Y contacts is

PXY .m/ D

x1X

hD0

x1�hX

iD0

y1�
.m�i/X

kD0

P.h; i; m � i; k/:

There are x1 possible values for h, one for each
residue of type X on sequence 1; x1 � h possible
values for i , once h has been determined; and
y1 � j D y1 � .m � i/ possible values for k,
once i has been determined. The i number of X -
Y contacts plus the m�i number of Y -X contacts
will sum to the m number of contacts desired.

This closed-form formula allows calculation
of p-values analytically. The running time is
O.l4/, due to the presence of 3 summations
and lŠ in the summand. For short sequences, the
computing cost is not prohibitive.

Sequences of Different Lengths
The requirement for interacting sequences to be
of the same length may be relaxed by introducing
a 21st “dummy” amino acid type. All unpaired
residues in the longer member of a sequence
pair will be paired to this extra amino acid type,
and our standard method can be applied to de-
termine the propensity of unpaired amino acids
(i.e., residues paired with the “dummy” amino
acid type).

Sequence Motifs by Permutation Model
The propensity P.X; Y jk/ for the XY k pattern
of two ordered intrasequence residues of type

X and type Y that are k positions away on
the same sequence (Fig. 1b) is P.X; Y jk/ D
fobs.X;Y jk/
EŒf .X;Y jk/�

; where fobs.X; Y jk/ is the observed
count of XY k patterns, and EŒf .X; Y jk/� is the
expected count of XY k patterns.

Expectation of XY k and XXk Two-Residue
Motifs
We can regard f .X; Y jk/ as the sum of identical
Bernoulli variables ft .X; Y jk/, each of which
equals 1 if one of the x number of residues of
type X occurs at position t in the sequence and
one of the y number of residues of type Y occurs

l

x1

y1

l−x1−y1

h

i

x1−h−i

j

k

y1−j−k

x2−h−j

y2−i−k

Sequence and Spatial Motif Discovery in Short Se-
quence Fragments, Fig. 2 Division of residues in spa-
tial motif analysis when X ¤ Y . White = X , black = Y ,
gray = “neither” X or Y
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at position t C k or equals 0 otherwise. Since an
XY k pattern cannot occur if t > l � k, we con-
cern ourselves only with the first l � k positions.
We have: EŒft .X; Y jk/� D PŒft .X; Y jk/ D

1� D x
l
� y

.l�1/
if t � l�k: There are l�k such

identical variables, and their expectations may be
summed as

EŒf .X; Y jk/� D .l � k/
xy

l.l � 1/
; (1)

where l is the length of the sequence, x is the
number of residues of type X , and y is the
number of residues of type Y .

For XXk patterns, the expectation is calcu-
lated as

EŒf .X; X jk/� D .l � k/
x.x � 1/

l.l � 1/
; (2)

as there will be x � 1 residues available to place
the second X residue at position t C k after the
first X residue is placed at t . Although these
Bernoulli random variables are dependent (i.e.,
the placement of one XY k pattern will affect the
probability of another XY k pattern), their expec-
tations may be summed, because expectation is a
linear operator.

Significance of XY k and XXk Two-Residue
Sequence Motifs
To calculate statistical significance p-values, sev-
eral formulas have been derived to determine
PXY k.i/, the probability of the occurrence of i D

f .X; Y jk/ XY k patterns for different k values.

1. Sequence motifs when k D 1. We have

PXY1.i/ D

�
l�y

x

��
x
i

��
l�x
y�i

�

lŠ
xŠyŠ.l�x�y/Š

D

�
x
i

��
l�x
y�i

�

�
l
y

� ; and

PXX1.i/ D

�
l�xC1

x�i

��
x�1

i

�

�
l
x

� ;

with the convention that
�

n
r

�
D 0 if n < r .

2. Sequence motifs with residues of different
types and if x � 2 or y � 2.
• If either x D 1 or y D 1, we have

PXY k.1/ D .l � k/
xy

l.l � 1/
:

For i D 0, we have simply PXY k.0/ D

1 � PXY k.1/:

• If x D 2 or y D 2, the probability of two
XY k patterns is

PXY k.2/ D

h�
l�k

2

�
� .l � 2k/

i

l.l�1/.l�2/.l�3/
x.x�1/y.y�1/

:

We also have for the probabilities of ex-
actly one XY k pattern or zero pattern:

PXY k.1/ D EŒf .XY k/� � 2PXY k.2/ and

PXY k.0/ D 1 � ŒPXY k.1/C PXY k.2/�:

3. Sequence motifs with residues of the same
type if x � 3.
• If x D 2, the probability of one XXk

pattern is

PXXk.1/ D EŒf .XXk/� D .l�k/
x.x � 1/

l.l � 1/
;

The probability of no XXk pattern is

PXXk.0/ D 1 � PXXk.1/:

• If x D 3, the probability of exactly two
XXk patterns is

PXXk.2/ D
l � 2k
�

l
x

� ;

4. Sequence motifs with k > 1, x > 2, and
y > 2. When k > 1, x > 2, and y > 2, the
analytical formulas for PXY k.i/ become very
complicated. However, when the sequences in
the dataset used are short, it is possible to
fully enumerate all permutations of a sequence
and calculate PXY k.i/ and p-values exactly,
as shown by Senes et al. [11]. Because x and
y are usually small in short sequences, the
computation time needed for motif analysis of
short sequences is not prohibitive.
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Sequence and Spatial Motif Discovery in Short Se-
quence Fragments, Fig. 3 Example of a multi-residue
sequence pattern as described in the text. This pattern
contains five specified residues in a span of ten residues.
Here, X0, X1, X2, X3, and X4 are specified amino acid
types, and the corresponding k values are counted as the
distance from the first position of the sequence (i.e., the
position occupied by X0). Thus, k1 D 2, k2 D 3,
k3 D 6, and k4 D 9. All other residues (in white) are
unspecified and may be any amino acid type. This pattern
is written as (X0, X1, X2, X3, X4 j 2, 3, 6, 9)

Propensity of Multi-residue Sequence Motifs
We now discuss the expected number EŒf .X0;

X1; X2; : : : ; Xnjk1; k2; : : : ; kn/� of a specific pat-
tern containing nC1 residues placed in a contigu-
ous subsequence of kn C 1 residues (kn � n).
Here Xi is the residue type of the i -th fixed
residue in the pattern and ki is the position of this
residue from the 0-th residue (k0 D 0). Positions
not specified by ki can be any residue type.
For example, the pattern .A; L; Y j2; 4/ is written
as AL2Y4 and represents AxLxY. A graphic
example is shown in Fig. 3. Many examples of
these multi-residue sequence motifs in proteins
have been discovered, including the GxGxxG
NADH binding motif [1] and the RSxSxP 14-3-3
binding motif [14].

The expected value can be calculated as:

EŒf .X0; X1; X2; : : : ; Xnjk1; k2; : : : ; kn/�

D .l � kn/

Qn
iD0 Œxi � #.I.Xi //�

lŠ
.l�n�1/Š

;
(3)

where xi is the number of residues of type Xi , l

is the length of the sequence, and #.I.Xi // is the
number of times residue type Xi appears in the
“subpattern” fX0; X1; X2; : : : ; Xi�1g.

Remark
The above discussions are for determining motifs
in a single short sequence or sequence pair. This
can be extended so analysis can be performed

a b
Sequence 1

Sequence 2

Sequence 3

Sequence 4

1 2 3 4 5 6

t

Sequence and Spatial Motif Discovery in Short Se-
quence Fragments, Fig. 4 Difference between (a) a
permutation null model for sequence motif analysis and
(b) a position-dependent null model. In both cases, only
residues of the same shade are permuted with each other.
In (a), residues are permuted only within each sequence
individually, while in (b), residues are permuted across
sequences but only within their specified position t

on a dataset of multiple short sequences to attain
sufficient statistical significance. This has the
advantage of capturing within-sequence relation-
ships on a scale large enough to obtain reliable
p-values. Details can be found in [6].

Spatial Motifs by Positional Null Model
When there are significant biases in residue pref-
erences for certain positions in a sequence known
a priori, e.g., the enrichment of aromatic residues
at either end of a transmembrane ˛-helix or ˇ-
strand [12], these single-residue biases may con-
found two-residue propensities. The positional
null model should be used for motif detection
in such cases [6]. Instead of permuting residues
across all positions within individual sequences,
we permute residues across all sequences in a
dataset within specific positions (Fig. 4).

Expectation and Significance of Interacting
Residue Pairs
We allocate residues into regions, which do not
overlap. Regions may have different lengths
along the sequences. Interacting regions within a
sequence pair are assumed to have equal length.
If a residue in region r interacts with a residue
in region s on a spatially adjacent sequence
fragment, all residues in region r in the dataset
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must only interact with residues in region s. For
example, for interacting antiparallel ˇ-strands,
we divide each strand into three regions, the N-
terminal, central core, and C-terminal regions,
and all interacting strand pairs into two spatial
pair types, N-terminal with C-terminal and core
with core. We require that no core residue interact
with an N-terminal or C-terminal residue.

The null model for position-dependent spa-
tial motifs differs depending on whether paired
residues are from the same region (r D s) or
different regions (r ¤ s), and whether the residue
types in the pair are the same (X D Y ) or
different (X ¤ Y ).

1. When r D s and X D Y . The expected value
of X -X pairs in region r is

E.X; X jrr/ D

�
xr

2

�

�
nr

2

� �
nr

2
D

xr .xr � 1/

2.nr � 1/
;

where nr is the number of residues in region r .
The probability PXX jrr .i/ of i X -X interact-
ing pairs in region r in the dataset for p-values
calculation calculated is

PXX jrr .i/ D
M. nr

2
; i; xr � 2i/ � 2xr �2i

�
nr

xr

� ;

where the 3-element multinomial function
M.a; b; c/ is as defined before.

2. When r D s and X ¤ Y . The expected value
when X ¤ Y is

E.XY jrr/ D
xryr�

nr

2

� �
nr

2
D

xryr

nr � 1
:

The probability P.i; j; k/ of each combination
of i , j , and k pairs of type X -Y , X -X , and
Y -Y interactions, respectively, is

P.i; j; k/ D
M. nr

2
; i; j; k; xr � i � 2j; yr � i � 2k/ � 2xr Cyr �i�2j �2k

M.nr ; xr ; yr /
;

where the 6-variable multinomial function
M.a;b;c; d; e;f /
 aŠ

bŠcŠdŠeŠf Š.a�b�c�d�e�f /Š
:

The probability PXY jrr .i/ of i X -Y pairs in
the dataset is then

PXY jrr .i/ D

xr �i
2X

j D0

yr �i
2X

kD0

P.i; j; k/:

3. When r ¤ s. We distinguish Xr , a residue of
type X occurring in region r in one sequence,
and Xs , a residue of type X occurring in
region s in the other sequence. Thus, an X -
Y pair, which we define as an Xr � Ys pair, is
different from a Y -X pair, which is Yr � Xs .
Because there is a one-to-one correspondence
between residues in region r and region s,
nr D ns is the total number of r � s pairs.

In order for exactly i X -Y pairs to occur,
i Xr residues must be drawn from a possible
xr residues of type X to match i Ys residues

drawn from a possible ys residues of type
Y . This can be modeled with a simple
hypergeometric distribution. The expected
value can be calculated as

E.XY jrs/ D
xrys

nr

:

The PXY jrs.i/ of i X -Y pairs is

PXY jrs.i/ D

�
xr

i

��
nr �xr

ys�i

�

�
nr

ys

� :

Expectation and Significance of Sequence
Motifs
We define the positional residue frequency xt as
the number of residues of type X occupying the
t -th position of all sequences in the dataset. If
sequences of different lengths are represented in
the dataset, it is necessary to normalize t to be
within an appropriate range Œ1; l�, to approximate
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an average or predetermined sequence length of
l :

t D d
l.tobs � 0:5/

lobs
e;

where tobs 2 f1; 2; 3; � � � ; lobsg is the actual po-
sition of the residue within its sequence, lobs is
the actual length of the sequence, dxe represents
the ceiling function, equal to the lowest integer
greater than or equal to x, and the 0.5 factor is
a correction for continuity to round to the next
integer. This ensures that 1 � t � l , no residues
are removed from the model by truncation, and
each position t will be represented by nearly the
same number of residues.

For sequence motif, we use the model of
permutation within each position in a sequence
with replacement across all sequences. Although
all other null models in this study rely on permu-
tation without replacement, this model is based
on datasets of multiple sequences instead of indi-
vidual sequences, and the approximation of sam-
pling without replacement will not be problem-
atic once a sufficiently large sample of sequences
is assembled.

1. XY k motif at position t . When t � 1�k, the
probability of an XY k pattern at position t is

P.X; Y jk; t/ D
xt

nt

�
ytCk

ntCk

;

where xt is the number of residues of type X

in position t on all sequences, yt is the number
of residues of type Y in position t , and nt

is the number of all residues of all types in
position t . This null model can be represented
as a binomial distribution.

The expected frequency of XY k patterns at
position t is

EŒf .X; Y jk; t/� D nt � P.X; Y jk; t/:

The probability of i XY k patterns at position
t in the dataset is

PXY kjt .i/ D

 
nt

i

!

P.X; Y jk; t/i

Œ1 � P.X; Y jk; t/�nt �i :

Note that the probability that an XY k pat-
tern appears at position t is 0 if t > l � k, as
an XY k pattern would span across the end of
a sequence of length l .

2. XY k motif at any arbitrary position. To
calculate the dataset-wide probability of an
XY k pattern at any arbitrary position of the
sequence, we average P.X; Y jk; t/ over all
l � k possible positions:

P.X; Y jk/ D
1

l � k

l�kX

tD1

P.X; Y jk; t/:

This can similarly be represented as a bino-
mial distribution with probability distribution
function: PXY k.i/ D

�
nk

i

�
P.X; Y jk/i Œ1 �

P.X; Y jk/�nk�i ; where nk is the number of all
pairs of all residue types k residues apart in the
dataset. The expected value is

EŒf .X; Y jk/� D nk � P.X; Y jk/:

Unlike the situation where only one position
t is concerned, this distribution represents the
sum of dependent Bernoulli variables. Meth-
ods of accounting for this dependence can be
found in Robin et al. [10].

Applications

Several spatial and sequence motifs have been
discovered using the approach discussed here
[5–7]. The estimated propensities have also been
used to develop empirical potential function for
prediction of oligomerization stated [8], protein-
protein interaction interfaces [3, 8], engineering
of thermal resistance [2], and in predicting struc-
tures of ˇ-barrel membrane proteins [9].

Open Problems

General analytical formulas for calculating prob-
abilities of two-residue and multi-residue motifs
under the permutation model are unknown.
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Problem Definition

One of the key steps in a VLSI design flow
is technology mapping that converts a Boolean
network of technology-independent logic gates
and D-flipflops (FFs) into an equivalent one com-
prised of cells from a technology library [1, 4].
Technology mapping can be formulated as a
covering problem where logic gates are covered
by cells from the technology library. For ease
of discussion, it is assumed that the cell library
contains only one cell, a K-input lookup table
(K-LUT) with one unit of delay. A K-LUT can
implement any Boolean function with up to K

inputs as is the case in field-programmable gate
arrays (FPGAs) [1, 3].

Figure 1 shows an example of technology
mapping. The original network in (1) with three
FFs and four gates is covered by three 3-input
cones as indicated in (2). The corresponding

http://dx.doi.org/10.1016/j.jmb.2011.07.054
http://dx.doi.org/10.1073/pnas.0902169106
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Sequential Circuit
Technology Mapping,
Fig. 1 Technology
mapping: (1) original
network, (2) covering, (3)
mapping solution

(1) (2) (3)

ba

i

O

z

yx

ba

i

O

z

yx

ba

O

LUT
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Sequential Circuit
Technology Mapping,
Fig. 2 Retiming and
mapping: (1) retiming and
covering, (2) mapping
solution, (3) retimed
solution
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LUT

(3)

ba

O

LUT

(1)

ba

i

O

z

yx

mapping solution using 3-LUTs is shown in (3).
Note that gate i is covered by two cones so it will
be replicated. The mapping solution has a cycle
time (or clock period) of two units, which is the
maximum number of LUTs on all paths without
FFs.

Retiming relocates FFs in a network by mov-
ing FFs across logic nodes backward or forward
[5]. Retiming does not alter the functionality of a
network. Figure 2 (1) shows the network obtained
from the one in Fig. 1 (1) by moving the FFs
at the output of gates y and i to their inputs. It
can now be covered with just one 3-input cone
as indicated in (1). The corresponding mapping
solution shown in (2) is better in both cycle
time and area than the one in Fig. 1 (3) obtained
without retiming.

A K-bounded network is one in which each
gate has at most K inputs. The sequential

circuit technology mapping problem can
be defined as follows: Given a K-bounded
Boolean network N and a target cycle time
�, find a mapping solution with a cycle time
of �, assuming FFs can be relocated using
retiming.

Key Results

The first polynomial time algorithm for the prob-
lem was proposed in [9, 10]. An improved algo-
rithm was proposed in [2] to reduce runtime. Both
algorithms are based on min-cost flow computa-
tion.

In [8], an efficient algorithm was proposed to
take advantage of the fact that K is a small integer
usually between 3 and 6. The algorithm is based
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Sequential Circuit
Technology Mapping,
Fig. 3 Cut enumeration
procedure

FindAllCuts(N, K )

foreach node v in N do C(v) ⇐ {{v 0}}

while (new cuts discovered ) do

foreach node v in N do C(v) ⇐ merge (C(u1),....,C(ut))

on enumerating all K-input cones for each gate
and will be described next.

Cut Enumeration

A Boolean network can be represented as an
edge-weighted directed graph where the nodes
denote logic gates and primary inputs/outputs.
There is a directed edge .u; v/ with weight d if
u, after going through d FFs, drives v.

A cone for a node can be captured by a cut
consisting of inputs to the cone. An element
in a cut for v consists of the driving node u
and the total weight d on the paths from u to
v, denoted by ud . If u can reach v on several
paths with different FF counts, u will appear
in the cut multiple times with different d s. For
the cone for ´ in Fig. 2 (2), the corresponding
cut is f´1; a1; b1g. A cut of size K is called a
K-cut.

Let .ui ; v/, where i D 1; : : :; t , be all input
edges to v in N . Further assume the weight
of .ui ; v/ is di and C.ui / is a set of K-cuts
for ui . Let merge(C.u1/; : : :; C.ut /) denote the
following set operation:

ffv0gg [ fc
d1

1 [ � � � [ c
dt
t jc1 2 .u1/; : : : ; ct

2 C.ut /; jc
d1

1 [ � � � [ c
dt
t j � Kg

where c
di

i D fu
dCdi jud 2 cig for i D 1; : : :; t . It

is obvious that merge.C.u1/; : : : ; C.ut // is a set
of K-cuts for v.

If the network N does not contain cycles,
the K-cuts of all nodes can be determined us-
ing the merge operation in a topological order
starting from the PIs. For general networks, Fig. 3
outlines the iterative cut computation procedure
proposed in [8].

Figure 4 depicts the iterations in enumerating
the 3-cuts for the network in Fig. 1 (1) where
cuts are merged in the order i , x, y, ´, and o.
At the beginning, every node has a trivial cut
formed by itself (Row 0). Row 1 shows the new
cuts discovered in the first iteration. In second
iteration, two more cuts are discovered (for x).
After that, further merging does not yield any new
cut and the procedure stops.

Lemma 1 After at most Kn iterations, the cut
enumeration procedure will find all the K-cuts
for every node in N .

Techniques have been proposed to speed up
the procedure [8]. For practical networks, the
cut enumeration procedure typically converges in
just a few iterations.

Label Computation

After obtaining all K-cuts, the cuts are evaluated
based on sequential arrival times (or l-values),
which is an extension of traditional arrival times,
to consider the effect of retiming [7, 9].

The labeling procedure tries to find a label for
each node as outlined in Fig. 5, where wv denotes
the weight of the shortest paths from PIs to
node v.

Figure 6 shows the iterations for label compu-
tation for the network in Fig. 1 (1), assuming that
the target cycle time � D 1 and the nodes are
evaluated in the order of i , x, y, ´, and o. In the
table, the current label as well as a corresponding
cut for each node is listed. In this example, after
the first iteration, none of the labels will change
and the procedure stops.

It can be shown that the labeling procedure
will stop after at most n.n � 1/ iterations [10].
The following lemma relates labels to mapping:
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Iter a B I x y z o
0 

1 

2 

{b0}{a0} {i0} {x 0} {y 0} {z 0} {o0}

{a0} {i 1,z 1}

{a1,z 1} {a0,b0,z 0}

{i 0,b0,z0} {x 0,y1}

{i 1,z1,b1}

{a1,z1,b1}

{i 1,z1,y1}

{a1,z1,y1}

{z 0}

{i1 ,x 1,y2}

{a1 ,x 1,y2}

Sequential Circuit Technology Mapping, Fig. 4 Cut enumeration example

Sequential Circuit
Technology Mapping,
Fig. 5 Label computation
procedure

FindMinLabels( N)

foreach node v in N do l(v) ⇐ −wv⋅f

while (there are label updates) do

foreach node v in N do

l(v) ⇐ minc∈C(v) {max{l(u) − d ⋅ f +1 | ud ∈ c}}

if v is a primary output and l (v) >f, return failure

return success

iter a B I x y z o
0 

1 

{b0}:0{a0}:0 {i0}:0 {x0}:-1 {y 0}:0 {z0}:-1 {o0}:-1

{a0}:1 {a1,z 1}:0 {a0,b0,z 0}:1 {z 0}:0 {a1,z1,b1}:0

Sequential Circuit Technology Mapping, Fig. 6 Label computation example

Lemma 2 N has a mapping solution with cycle
time � iff the labeling procedure returns “suc-
cess.”

Mapping Solution Generation

Once the labels for all nodes are computed suc-
cessfully, a mapping solution can be constructed
starting from primary outputs. At each node v, the
procedure selects the cut that realizes the label of

the node and then moves on to select a cut for
u if ud is in the cut selected for v. On the edge
from u to v, d FFs are inserted. For the network in
Fig. 1 (1), the mapping solution generated based
on the labels found in Fig. 6 is exactly the one in
Fig. 2 (2).

To obtain a mapping solution with the target
cycle time �, v will be retimed by a value of
dl.v/=�e � 1. For the network in Fig. 1 (1), the
final mapping solution after retiming is shown in
Fig. 2 (3) which has a cycle time of 1.
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Applications

The algorithm can be used to map a technology-
independent Boolean network to a network
consisting of cells from a target technology
library. The concepts and framework are
generally enough to be adapted to study other
circuit optimizations such as sequential circuit
clustering and sequential circuit restructuring [6].
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Problem Definition

Short History
The k-set agreement problem is a paradigm of
coordination problems. Defined in the setting
of systems made up of processes prone to fail-
ures, it is a simple generalization of the con-
sensus problem (that corresponds to the case
k D 1). That problem was introduced in 1993
by Chaudhuri [2] to investigate how the num-
ber of choices (k) allowed for the processes is
related to the maximum number of processes
that can crash. (After it has crashed, a process
executes no more steps: a crash is a premature
halting.)

Definition
Let S be a system made up of n processes where
up to t can crash and where each process has an
input value (called a proposed value). The prob-
lem is defined by the three following properties
(i.e., any algorithm that solves that problem has
to satisfy these properties):

1. Termination. Every nonfaulty process decides
a value.

2. Validity. A decided value is a proposed value.
3. Agreement. At most k different values are

decided.

http://dx.doi.org/10.1007/978-1-4939-2864-4_70
http://dx.doi.org/10.1007/978-1-4939-2864-4_71
http://dx.doi.org/10.1007/978-1-4939-2864-4_148
http://dx.doi.org/10.1007/978-1-4939-2864-4_420
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The Trivial Case
It is easy to see that this problem can be trivially
solved if the upper bound on the number of
process failures t is smaller than the allowed
number of choices k, also called the coordi-
nation degree. (The trivial solution consists in
having t C 1 predetermined processes that send
their proposed values to all the processes, and
a process deciding the first value it ever re-
ceives.) So, k � t is implicitly assumed in the
following.

Key Results

Key Results in Synchronous Systems

The Synchronous Model
In this computation model, each execution
consists of a sequence of rounds. These are
identified by the successive integers 1; 2; etc. For
the processes, the current round number appears
as a global variable whose global progress entails
their own local progress.

During a round, a process first broadcasts
a message, then receives messages, and finally
executes local computation. The fundamental
synchrony property the a synchronous system
provides the processes with is the following:
a message sent during a round r is received
by its destination process during the very same
round r. If during a round, a process crashes
while sending a message, an arbitrary subset (not
known in advance) of the processes receive that
message.

Main Results
The k-set agreement problem can always be
solved in a synchronous system. The main result
is for the minimal number of rounds (Rt) that are
needed for the nonfaulty processes to decide in
the worst-case scenario (this scenario is when
exactly k processes crash in each round). It
was shown in [3] that Rt D b

t
k
c C 1. A very

simple algorithm that meets this lower bound is
described in Fig. 1.

Although failures do occur, they are rare in
practice. Let f denote the number of processes

that crash in a given run, 0 � f � t . We
are interested in synchronous algorithms that
terminate in at most Rt rounds when t processes
crash in the current run, but that allow the
nonfaulty processes to decide in far fewer rounds
when there are few failures. Such algorithms are
called early-deciding algorithms. It was shown
in [4] that, in the presence of f process crashes,
any early-deciding k-set agreement algorithm
has runs in which no process decides before
the round Rf D min.bf

k
c C 2; b t

k
c C 1/. This

lower bound shows an inherent tradeoff linking
the coordination degree k, the maximum number
of process failures t, the actual number of process
failures f, and the best time complexity that can
be achieved. Early-deciding k-set agreement
algorithms for the synchronous model can be
found in [4, 12].

Other Failure Models
In the send omission failure model, a process is
faulty if it crashes or forgets to send messages.
In the general omission failure model, a process
is faulty if it crashes, forgets to send messages,
or forgets to receive messages. (A send omission
failure models the failure of an output buffer,
while a receive omission failure models the fail-
ure of an input buffer.) These failure models were
introduced in [11].

The notion of strong termination for set
agreement problems was introduced in [13].
Intuitively, that property requires that as many
processes as possible decide. Let a good process
be a process that neither crashes nor commits
receive omission failures. A set agreement
algorithm is strongly terminating if it forces all
the good processes to decide. (Only the processes
that crash during the execution of the algorithm,
or that do not receive enough messages, can be
prevented from deciding.)

An early-deciding k-set agreement algorithm
for the general omission failure model was
described in [13]. That algorithm, which requires
t < n=2, directs a good process to decide and
stop in at most Rf D min.bf

k
c C 2; b t

k
c C 1/

rounds. Moreover, a process that is not a good
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Set Agreement, Fig. 1
A simple k-set agreement
synchronous algorithm
(code for pi)

process executes at most Rf .not good//

min.df
k
e C 2; b t

k
c C 1/ rounds.

As Rf is a lower bound for the number of
rounds in the crash failure model, the previous
algorithm shows that Rf is also a lower bound
for the nonfaulty processes to decide in the more
severe general omission failure model. Proving
that Rf .not good/ is an upper bound for the
number of rounds that a nongood process has to
execute remains an open problem.

It was shown in [13] that, for a given
coordination degree k, t < k

kC1
n is an upper

bound on the number of process failures when
one wants to solve the k-set agreement problem
in a synchronous system prone to process general
omission failures. A k-set agreement algorithm
that meets this bound was described in [13].
That algorithm requires the processes execute
R D t C 2 � k rounds to decide. Proving (or
disproving) that R is a lower bound when
t < k

kC1
n is an open problem. Designing an

early-deciding k-set agreement algorithm for
t < k

kC1
n and k > 1 is another problem that

remains open.

Key Results in Asynchronous Systems

Impossibility
A fundamental result of distributed computing
is the impossibility to design a deterministic al-
gorithm that solves the k-set agreement problem
in asynchronous systems when k � t [1, 7, 15].
Compared with the impossibility of solving asyn-
chronous consensus despite one process crash,
that impossibility is based on deep combinato-
rial arguments. This impossibility has opened

new research directions for the connection be-
tween distributed computing and topology. This
topology approach has allowed the discovery of
links relating asynchronous k-set agreement with
other distributed computing problems such as the
renaming problem [5].

Circumventing the Impossibility
Several approaches have been investigated to cir-
cumvent the previous impossibility. These ap-
proaches are the same as those that have been
used to circumvent the impossibility of asyn-
chronous consensus despite process crashes.

One approach consists in replacing the “de-
terministic algorithm” by a “randomized algo-
rithm.” In that case, the termination property
becomes “the probability for a correct process
to decide tends to 1 when the number of rounds
tends to C1:” That approach was investigated
in [9].

Another approach that has been proposed is
based on failure detectors. Roughly speaking,
a failure detector provides each process with a list
of processes suspected to have crashed. As an ex-
ample, the class of failure detectors denoted ÞSx

includes all the failure detectors such that, after
some finite (but unknown) time, (1) any list con-
tains the crashed processes and (2) there is a set
Q of x processes such that Q contains one correct
process and that correct process is no longer
suspected by the processes of Q (let us observe
that correct processes can be suspected intermit-
tently or even forever). Tight bounds for the k-
set agreement problem in asynchronous systems
equipped with such failure detectors, conjectured
in [9], were proved in [6]. More precisely, such



Set Agreement 1959

S

a failure detector class allows the k-set agreement
problem to be solved for k � t � x C 2 [9], and
cannot solve it when k < t � x C 2 [6].

Another approach that has been investigated is
the combination of failure detectors and condi-
tions [8]. A condition is a set of input vectors, and
each input vector has one entry per process. The
entries of the input vector associated with a run
contain the values proposed by the processes in
that run. Basically, such an approach guarantees
that the nonfaulty processes always decide when
the actual input vector belongs to the condition
the k-set algorithm has been instantiated with.

Applications

The set agreement problem was introduced
to study how the number of failures and
the synchronization degree are related in an
asynchronous system; hence, it is mainly
a theoretical problem. That problem is used as
a canonical problem when one is interested in
asynchronous computability in the presence of
failures. Nevertheless, one can imagine practical
problems the solutions of which are based on
the set agreement problem (e.g., allocating
a small shareable resources – such as broadcast
frequencies – in a network).

Cross-References

�Asynchronous Consensus Impossibility
� Failure Detectors
�Renaming
�Topology Approach in Distributed Computing

Recommended Reading

1. Borowsky E, Gafni E (1993) Generalized FLP impos-
sibility results for t-resilient asynchronous computa-
tions. In: Proceedings of the 25th ACM symposium
on theory of computation, California, pp 91–100

2. Chaudhuri S (1993) More choices allow more faults:
set consensus problems in totally asynchronous sys-
tems. Inf Comput 105:132–158

3. Chaudhuri S, Herlihy M, Lynch N, Tuttle M (2000)
Tight bounds for k set agreement. J ACM 47(5):912–
943

4. Gafni E, Guerraoui R, Pochon B (2005) From a
static impossibility to an adaptive lower bound: the
complexity of early deciding set agreement. In: Pro-
ceedings of the 37th ACM symposium on theory of
computing (STOC 2005). ACM, New York, pp 714–
722

5. Gafni E, Rajsbaum S, Herlihy M (2006) Subconsen-
sus tasks: renaming is weaker than set agreement. In:
Proceedings of the 20th international symposium on
distributed computing (DISC’06). LNCS, vol 4167.
Springer, Berlin, pp 329–338

6. Herlihy MP, Penso LD (2005) Tight bounds for k
set agreement with limited scope accuracy failure
detectors. Distrib Comput 18(2):157–166

7. Herlihy MP, Shavit N (1999) The topological
structure of asynchronous computability. J ACM
46(6):858–923

8. Mostefaoui A, Rajsbaum S, Raynal M (2005) The
combined power of conditions and failure detectors to
solve asynchronous set agreement. In: Proceedings of
the 24th ACM symposium on principles of distributed
computing (PODC’05). ACM, New York, pp 179–
188

9. Mostefaoui A, Raynal M (2000) k set agreement with
limited scope accuracy failure detectors. In: Proceed-
ings of the 19th ACM symposium on principles of
distributed computing. ACM, New York, pp 143–152

10. Mostefaoui A, Raynal M (2001) Randomized set
agreement. In: Proceedings of the 13th ACM sym-
posium on parallel algorithms and architectures
(SPAA’01), Hersonissos (Crete). ACM, New York,
pp 291–297

11. Perry KJ, Toueg S (1986) Distributed agreement in
the presence of processor and communication faults.
IEEE Trans Softw Eng SE-12(3):477–482

12. Raipin Parvedy P, Raynal M, Travers C (2005) Early-
stopping k-set agreement in synchronous systems
prone to any number of process crashes. In: Proceed-
ings of the 8th international conference on parallel
computing technologies (PaCT’05). LNCS, vol 3606.
Springer, Berlin, pp 49–58

13. Raipin Parvedy P, Raynal M, Travers C (2006)
Strongly-terminating early-stopping k-set agreement
in synchronous systems with general omission fail-
ures. In: Proceedings of the 13th colloquium on struc-
tural information and communication complexity
(SIROCCO’06). LNCS, vol 4056. Springer, Berlin,
pp 182–196

14. Raynal M, Travers C (2006) Synchronous set agree-
ment: a concise guided tour (including a new algo-
rithm and a list of open problems). In: Proceedings
of the 12th international IEEE pacific rim dependable
computing symposium (PRDC’2006). IEEE Com-
puter Society, Los Alamitos, pp 267–274

15. Saks M, Zaharoglou F (2000) Wait-free k-set agree-
ment is impossible: the topology of public knowl-
edge. SIAM J Comput 29(5):1449–1483

http://dx.doi.org/10.1007/978-1-4939-2864-4_36
http://dx.doi.org/10.1007/978-1-4939-2864-4_140
http://dx.doi.org/10.1007/978-1-4939-2864-4_342
http://dx.doi.org/10.1007/978-1-4939-2864-4_424


1960 Set Cover with Almost Consecutive Ones

Set Cover with Almost Consecutive
Ones

Michael Dom
Department of Mathematics and Computer
Science, University of Jena, Jena, Germany

Keywords

Hitting set

Years and Authors of Summarized
Original Work

2004; Mecke, Wagner

Problem Definition

The SET COVER problem has as input a set R of
m items, a set C of n subsets of R and a weight
function wWC ! Q. The task is to choose a sub-
set C 0 � C of minimum weight whose union
contains all items of R.

The sets R and C can be represented by an
m � n binary matrix A that consists of a row for
every item in R and a column for every subset of R
in C, where an entry ai;j is 1 iff the ith item in R
is part of the jth subset in C. Therefore, the SET

COVER problem can be formulated as follows.

Input: An m � n binary matrix A and a weight
function w on the columns of A.
Task: Select some columns of A with minimum
weight such that the submatrix A0 of A that is
induced by these columns has at least one 1 in
every row.

While SET COVER is NP-hard in general [4], it
can be solved in polynomial time on instances
whose columns can be permuted in such a way
that in every row the ones appear consecutively,
that is, on instances that have the consecutive
ones property (C1P). (The C1P can be defined
symmetrically for columns; this article focuses
on rows. SET COVER on instances with the C1P
can be solved in polynomial time, e.g., with
a linear programming approach, because the cor-

responding coefficient matrices are totally uni-
modular (see [9]).

Motivated by problems arising from railway
optimization, Mecke and Wagner [7] consider the
case of SET COVER instances that have “almost
the C1P”. Having almost the C1P means that the
corresponding matrices are similar to matrices
that have been generated by starting with a matrix
that has the C1P and replacing randomly a certain
percentage of the 1’s by 0’s [7]. For Ruf and
Schöbel [8], in contrast, having almost the C1P
means that the average number of blocks of
consecutive 1’s per row is much smaller than the
number of columns of the matrix. This entry will
also mention some of their results.

Notation
Given an instance (A, w) of SET COVER, let R
denote the row set of A and C its column set.
A column cj covers a row ri, denoted by ri 2 cj ,
if ai;j D 1.

A binary matrix has the strong C1P if (without
any column permutation) the 1’s appear consecu-
tively in every row. A block of consecutive 1’s is
a maximal sequence of consecutive 1’s in a row. It
is possible to determine in linear time if a matrix
has the C1P, and if so, to compute a column
permutation that yields the strong C1P [2, 3, 6].
However, note that it is NP-hard to permute the
columns of a binary matrix such that the number
of blocks of consecutive 1’s in the resulting ma-
trix is minimized [1, 4, 5].

A data reduction rule transforms in polyno-
mial time a given instance I of an optimization
problem into an instance I0 of the same problem
such that jI 0j < jI j and the optimal solution for I0

has the same value (e.g., weight) as the optimal
solution for I. Given a set of data reduction rules,
to reduce a problem instance means to repeatedly
apply the rules until no rule is applicable; the
resulting instance is called reduced.

Key Results

Data Reduction Rules
For SET COVER there exist well-known data
reduction rules:
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Row domination rule: If there are two rows
ri1 ; ri2 2 R with 8c 2 C W ri1 2 cimpliesri2 2 c,
then ri2 is dominated by ri1 . Remove row ri2

from A.
Column domination rule: If there are two

columns cj1
; cj2
2 C with w.cj1

/ � w.cj2
/ and

8r 2 RW r 2 cj1
implies r 2 cj2

, then cj1
is

dominated by cj2
. Remove cj1

from A.
In addition to these two rules, a column

cj1
2 C can also be dominated by a subset

C 0 � C of the columns instead of a single
column: If there is a subset C 0 � C with
w.cj1

/ �
P

c2C 0 w.c/ and 8r 2 RW r 2 cj1

implies .9c 2 C 0W r 2 c/, then remove cj1

from A. Unfortunately, it is NP-hard to find
a dominating subset C 0 for a given set cj1

. Mecke
and Wagner [7], therefore, present a restricted
variant of this generalized column domination
rule.

For every row r 2 R, let cmin.r/ be a column
in C that covers r and has minimum weight under
this property. For two columns cj1

; cj2
2 C , de-

fine X.cj1
; cj2

/ WD fcmin.r/ j r 2 cj1
^ r … cj2

g.
The new data reduction rule then reads as follows.

Advanced column domination rule: If
there are two columns cj1

; cj2
2 C and a row

that is covered by both cj1
and cj2

, and if
w.cj1

/ � w.cj2
/C

P
c2X.cj1

;cj2
/ w.c/, then cj1

is dominated by fcj2
g [X.cj1

; cj2
/. Remove cj1

from A.

Theorem 1 ([7]) A matrix A can be reduced in
O(Nn) time with respect to the column domina-
tion rule, in O(Nm) time with respect to the row
domination rule, and in O(Nmn) time with respect
to all three data reduction rules described above,
when N is the number of 1’s in A.

In the databases used by Ruf and Schöbel [8],
matrices are represented by the column indices
of the first and last 1’s of its blocks of consec-
utive 1’s. For such matrix representations, a fast
data reduction rule is presented [8], which elim-
inates “unnecessary” columns and which, in the
implementations, replaces the column domina-
tion rule. The new rule is faster than the column
domination rule (a matrix can be reduced in
O(mn) time with respect to the new rule), but not

as powerful: Reducing a matrix A with the new
rule can result in a matrix that has more columns
than the matrix resulting from reducing A with
the column domination rule.

Algorithms
Mecke and Wagner [7] present an algorithm that
solves SET COVER by enumerating all feasible
solutions.

Given a row ri of A, a partial solution for the
rows r1; : : : ; ri is a subset C 0 � C of the columns
of A such that for each row rj with j 2 f1; : : : ; ig

there is a column in C0 that covers row rj.
The main idea of the algorithm is to find an

optimal solution by iterating over the rows of A
and updating in every step a data structure S that
keeps all partial solutions for the rows considered
so far. More exactly, in every iteration step the
algorithm considers the first row of A and updates
the data structure S accordingly. Thereafter, the
first row of A is deleted. The following code
shows the algorithm.

1 Repeat m times: f
2 for every partial solution C0 in S that does not

cover the first row of A: f
3 for every column c of A that covers the first row

of A: f
4 Add fcg [ C 0 to S; g
5 Delete C0 from S; g
6 Delete the first row of A; g

This straightforward enumerative algorithm
could create a set S of exponential size.
Therefore, the data reduction rules presented
above are used to delete after each iteration
step partial solutions that are not needed any
more. To this end, a matrix B is associated
with the set S, where every row corresponds
to a row of A and every column corresponds to
a partial solution in S–an entry bi;j of B is 1 iff
the jth partial solution of B contains a column
of A that covers the row ri. The algorithm

uses the matrix C WD

�
A B

0 : : : 0 1 : : : 1

�
, which

is updated together with S in every iteration
step. (The last row of C allows to distinguish the
columns belonging to A from those belonging
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to B.) Line 6 of the code shown above is replaced
by the following two lines:

6 Delete the first row of the matrix C;
7 Reduce the matrix C and update S accordingly;g

At the end of the algorithm, S contains exactly
one solution, and this solution is optimal. More-
over, if the SET COVER instance is nicely struc-
tured, the algorithm has polynomial running time:

Theorem 2 ([7]) If A has the strong C1P, is
reduced, and its rows are sorted in lexicographic
order, then the algorithm has a running time
of O(M3n) where M is the maximum number of 1’s
per row and per column.

Theorem 3 ([7]) If the distance between the first
and the last 1 in every column is at most k, then
at any time throughout the algorithm the number
of columns in the matrix B is O(2kn), and the
running time is O(22k kmn2).

Ruf and Schöbel [8] present a branch and bound
algorithm for SET COVER instances that have
a small average number of blocks of consecu-
tive 1’s per row.

The algorithm considers in each step a row ri

of the current matrix (which has been reduced
with data reduction rules before) and branches
into bli cases, where bli is the number of blocks
of consecutive 1’s in ri. In each case, one block
of consecutive 1’s in row ri is selected, and
the 1’s of all other blocks in this row are replaced
by 0’s. Thereafter, a lower and an upper bound
on the weight of the solution for each resulting
instance is computed. If a lower bound differs by
a factor of more than 1C �, for a given constant ",
from the best upper bound achieved so far, the
corresponding instance is subjected to further
branchings. Finally, the best upper bound that
was found is returned.

In each branching step, the bli instances that
are newly generated are “closer” to have the
(strong) C1P than the instance from which they
descend. If an instance has the C1P, the lower
and upper bound can easily be computed by
exactly solving the problem. Otherwise, standard
heuristics are used.

Applications

SET COVER instances occur e.g., in railway op-
timization, where the task is to determine where
new railway stations should be built. Each row
then corresponds to an existing settlement, and
each column corresponds to a location on the
existing trackage where a railway station could
be build. A column c covers a row r, if the
settlement corresponding to r lies within a given
radius around the location corresponding to c.

If the railway network consisted of one
straight line rail track only, the corresponding
SET COVER instance would have the C1P;
instances arising from real world data are close
to have the C1P [7, 8].

Experimental Results

Mecke and Wagner [7] make experiments on real-
world instances as described in the Applications
section and on instances that have been generated
by starting with a matrix that has the C1P and
replacing randomly a certain percentage of the 1’s
by 0’s. The real-world data consists of a railway
graph with 8,200 nodes and 8,700 edges, and
30,000 settlements. The generated instances con-
sist of 50–50,000 rows with 10–200 1’s per row.
Up to 20 % of the 1’s are replaced by 0’s.

In the real-world instances, the data reduction
rules decrease the number of 1’s to between 1 %
and 25 % of the original number of 1’s with-
out and to between 0.2 % and 2.5 % with the
advanced column reduction rule. In the case of
generated instances that have the C1P, the number
of 1’s is decreased to about 2 % without and
to 0.5 % with the advanced column reduction
rule. In instances with 20 % perturbation, the
number of 1’s is decreased to 67 % without and
to 20 % with the advanced column reduction rule.

The enumerative algorithm has a running time
that is almost linear for real-world instances and
most generated instances. Only in the case of
generated instances with 20 % perturbation, the
running time is quadratic.

Ruf and Schöbel [8] consider three instance
types: real-world instances, instances arising
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from Steiner triple systems, and randomly gener-
ated instances. The latter have a size of 100 � 100

and contain either 1–5 blocks of consecutive 1’s
in each row, each one consisting of between
one and nine 1’s, or they are generated with
a probability of 3 % or 5 % for any entry to be 1.

The data reduction rules used by Ruf and
Schöbel turn out to be powerful for the real-world
instances (reducing the matrix size from about
1;100 � 3;100 to 100 � 800 in average), whereas
for all other instance types the sizes could not be
reduced noticeably.

The branch and bound algorithm could solve
almost all real-world instances up to optimality
within a time of less than a second up to one hour.
In all cases where an optimal solution has been
found, the first generated subproblem had already
provided a lower bound equal to the weight of the
optimal solution.
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Problem Definition

The study of the parameterized complexity of
problems on directed graphs has been hitherto
relatively unexplored. Usually the directed ver-
sion of the problems require significantly differ-
ent and more involved ideas than the ones for
the undirected version. Furthermore, for directed
graphs there are no known algorithmic meta-
techniques: for example, there is no known al-
gorithmic analogue of the Graph Minor Theory
of Robertson and Seymour for directed graphs.
As a result, the fixed-parameter tractability status
of the directed versions of several fundamental
problems such as Multiway Cut, Multicut, Feed-
back Vertex Set, etc., was open for a long time.
The problem of Feedback Vertex Set best illus-
trates this gulf between undirected and directed
graphs with respect to parameterized complexity.
In this problem, we are given a graph and the
question is whether there exists a set of size at
most k whose deletion makes the graph acyclic.
The undirected version was known to be FPT

http://dx.doi.org/10.1007/978-1-4939-2864-4_175
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since 1984 [10]. However, the directed version
was a long-standing open problem until it was
shown to be FPT in 2008 [1].

The framework of shadowless solutions aims
to bridge this gap by providing an important first
step in designing FPT algorithms for a general
class of transversal problems on directed graphs.
In undirected graphs, the framework of shad-
owless solutions was introduced in [9] and has
since been used in [4, 6, 7]. It was adapted and
generalized to directed graphs in [2, 3] for the
following general class of problems:

Finding an F-transversal for some T -
connected F
Input: A directed graph G D .V; E/, a
positive integer k, a set T � V , and a set
F D fF1; F2; : : : ; Fqg of subgraphs such
that F is T -connected, i.e., 8 i 2 Œq� each
vertex of Fi can reach some vertex of T by
a walk completely contained in GŒFi � and is
reachable from some vertex of T by a walk
completely contained in GŒFi �.
Parameter: k

Question: Is there an F-transversal W �

V with jW j � k, i.e., a set W such that
Fi \W ¤ ; for every i 2 Œq�?

The collection F is implicitly defined in a
problem-specific way and need not be given ex-
plicitly in the input. In fact, it is possible that F is
exponentially large. The shadow of a solution X

is the set of vertices that are disconnected from
T (in either direction) after the removal of X .
More formally, the reverse shadow of X is given
by rT .X/ D fv W X is a v ! T separatorg.
Similarly, the forward shadow of X is given by
fT .X/ D fv W X is a T ! v separatorg. The
shadow of X is given by the union of its reverse
and forward shadows, i.e., shadow.X/ D r.X/[

f .X/. A set X is said to be shadowless if its
shadow is empty.

The aim is to ensure first that there is a so-
lution whose shadow is empty, as finding such a
shadowless solution can be a significantly easier
task.

Key Results

For the F-transversal problem defined above, [2]
shows how to invoke the technique of random
sampling of important separators and obtain a set
Z which is disjoint from a minimum solution X

and covers its shadow.

Theorem 1 (randomized covering of the
shadow) Let T � V.G/. There is an algorithm
RandomSet.G; T; k/ that runs in 4k � nO.1/

time and returns a set Z � V.G/ such that
for any set F of T -connected subgraphs, if
there exists an F-transversal of size � k, then
the following holds with probability 2�2O.k/

:
there is an F-transversal X of size � k such
that

1. X \Z D ; and
2. Z covers the shadow of X , i.e., r.X/ [

f .X/ � Z.

The set F is not an input of the algorithm
described by Theorem 1: the set Z constructed in
the above theorem works for every T -connected
set F of subgraphs. Therefore, issues related to
the representation of F do not arise. Theorem 1
can be derandomized using the theory of split-
ters [11]:

Theorem 2 (deterministic covering of the
shadow) Let T � V.G/. We can construct a
set fZ1; Z2; : : : ; Ztg with t D 22O.k/

� log2 n

in time 22O.k/
� nO.1/ such that for any set F of

T -connected, if there exists an F-transversal of
size � k, then there is an F-transversal X of
size � k such that for at least one 1 � i � t we
have

1. X \Zi D ; and
2. Zi covers the shadow of X , i.e., r.X/ [

f .X/ � Zi .

Consider one such set Zi for some 1 � i �

22O.k/
� log2 n. Since this set Zi is disjoint from

a minimum solution X , it can be removed from
the graph. However, we need to remember the
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structure that the set Zi imposed on the prob-
lem. This structure is problem specific, and the
reduced (equivalent) instance is obtained on a
supergraph of G n Zi via the torso operation. It
can be shown that the original instance G has
a solution if and only if the reduced instance
has a shadowless solution. Therefore, one can
focus on the simpler task of finding a shadowless
solution or more precisely, finding any solution
under the guarantee that a shadowless solution
exists.

Applications

The first FPT algorithms for the Directed Mul-
tiway Cut problem [3] and the Directed Subset
Feedback Vertex Set problem [2] were obtained
via the framework of shadowless solutions.

Directed Multiway Cut
In the Directed Multiway Cut problem, given
a directed graph G D .V; E/, an integer k,
and a set of terminals T D ft1; t2; : : : ; tpg, the
objective is to find whether there exists a set
X � V.G/ of size at most k such that G n X

has no ti ! tj path for any 1 � i ¤ j � p.
Let F be the set of all paths between pairs of
(distinct) terminals. Then it is easy to show that
F is T -connected, and the problem of finding an
F-transversal is exactly the same as the Directed
Multiway Cut problem. It is shown in [3] that
a shadowless solution of Directed Multiway Cut
is also a solution of the underlying undirected
instance of Multiway Cut, which is known to
be FPT [8] parameterized by k. Combining with
Theorem 2, this gives an FPT algorithm for the
Directed Multiway Cut problem.

Directed Subset Feedback Vertex Set
In the Directed Subset Feedback Vertex Set prob-
lem, given a directed graph G D .V; E/, an
integer k, and a set S � V.G/, the objective
is to find whether there exists a set X � V.G/

of size at most k such that G n X has no S -
cycles, i.e., cycles containing at least one vertex
of S . The special case when S D V.G/ is the
Directed Feedback Vertex Set problem. Let F be

the set of all S -cycles and T be a solution of
size k C 1 (which can be obtained via iterative
compression). Then it is easy to show that F is
T -connected, and the problem of finding an F-
transversal is exactly the same as the Directed
Subset Feedback Vertex Set problem. It is shown
in [2] that a shadowless solution of Directed
Subset Feedback Vertex Set can be found in FPT
time. Combining with Theorem 2, this gives an
FPT algorithm for the Directed Subset Feedback
Vertex Set problem. This generalizes the FPT
algorithm for Directed Feedback Vertex Set [1].

Open Problems

The two main open problems which fit within
the framework of “Finding an F-transversal for
some T -connected F” are Directed Multicut and
Directed Odd Cycle Transversal. Unfortunately,
the structure of shadowless solutions is not yet
understood well enough to be able to find them in
FPT time.

Directed Multicut
In the Directed Multicut problem, given
a directed graph G D .V; E/, an inte-
ger k, and a set of terminal pairs T D

f.s1; t1/; .s2; t2/; : : : ; .sp; tp/g, the objective is
to find whether there exists a set X � V.G/ of
size at most k such that G n X has no si ! ti
path for any 1 � i � p. Let F be the union of
set of all si ! ti paths for 1 � i � p. Then it
is easy to show that F is T -connected, and the
problem of finding an F-transversal is exactly
the same as the Directed Multicut problem. It is
known [9] that Directed Multicut parameterized
by k is W[1]-hard. However, for the special case
of p D 2 terminal pairs, the problem can be
reduced to Directed Multiway Cut and is hence
FPT parameterized by k [3]. The complexity for
p D 3 parameterized by k is an important open
problem. With respect to the bigger parameter
p C k, the problem is known [5] to be FPT on
directed acyclic graphs. However, this algorithm
heavily uses the properties of a topological
ordering, and the complexity parameterized by
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p C k on general graphs is another important
open problem.

Directed Odd Cycle Transversal
In the Directed Odd Cycle Transversal problem,
given a directed graph G D .V; E/ and an
integer k, the objective is to find whether there
exists a set X � V.G/ of size at most k

such that G n X has no cycle of odd length.
Let F be the set of all odd cycles in G and
T be a solution of size k C 1 (which can be
obtained via iterative compression [12]). Then it
is easy to show that F is T -connected, and the
problem of finding an F-transversal is exactly
the same as the Directed Odd Cycle Transversal
problem. The complexity parameterized by k is
open. Moreover, it is known that Directed Odd
Cycle Transversal problem generalizes the Di-
rected Feedback Vertex Set problem [1] and the
Undirected Odd Cycle Transversal problem [12].
Hence, an FPT algorithm for Directed Odd Cycle
Transversal would have to generalize the ideas
used to obtain FPT algorithms for these two
problems.
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Problem Definition

The problem is concerned with scheduling dy-
namically arriving jobs in the scenario when the
processing requirements of jobs are unknown to
the scheduler. The lack of knowledge of how
long a job will take to execute is a particularly
attractive assumption in real systems where such
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information might be difficult or impossible to
obtain. The goal is to schedule jobs to provide
good quality of service to the users. In particular
the goal is to design algorithms that have good
average performance and are also fair in the sense
that no subset of users experiences substantially
worse performance than others.

Notations

Let J D f1; 2; : : : ; ng denote the set of jobs in
the input instance. Each job j is characterized by
its release time rj and its processing requirement
pj . In the online setting, job j is revealed to the
scheduler only at time rj . A further restriction
is the non-clairvoyant setting, where only the
existence of job j is revealed at rj , in particular
the scheduler does not know pj until the job
meets its processing requirement and leaves the
system. Given a schedule, the completion time
cj of a job is the earliest time at which job j

receives pj amount of service. The flow time fj

of j is defined as cj � rj . The stretch of a job
is defined as the ratio of its flow time divided by
its size. Stretch is also referred to as normalized
flow time or slowdown and is a natural measure
of fairness as it measures the waiting time of a job
per unit of service received. A schedule is said to
be preemptive, if a job can be interrupted arbitrar-
ily, and its execution can be resumed later from
the point of interruption without any penalty. It
is well known that preemption is necessary to
obtain reasonable guarantees for flow time even
in the offline setting [6].

Recall that the online shortest remaining pro-
cessing time (SRPT) algorithm that at any time
works on the job with the least remaining pro-
cessing is optimum for minimizing average flow
time. However, a common critique of SRPT is
that it may lead to starvation of jobs, where some
jobs may be delayed indefinitely. For example,
consider the sequence where a job of size 3
arrives at time t D 0 and one job of size 1 arrives
every unit of time starting t D 1 for a long time.
Under SRPT, the size 3 job will be delayed until
the size 1 jobs stop arriving. On the other hand,
if the goal is to minimize the maximum flow

time, then it is easily seen that first in first out
(FIFO) is the optimum algorithm. However, FIFO
can perform very poorly with respect to average
flow time (e.g., many small jobs could be stuck
behind a very large job that arrived just earlier). A
natural way to balance both the average and worst
case performance is to consider the `p norms of
flow time and stretch, where the `p norm of the

sequence x1; : : : ; xn is defined as

�
P

i

x
p
i

�1=p

.

The shortest elapsed time first (SETF) is a
non-clairvoyant algorithm that at any time works
on the job that has received the least amount of
service thus far. This is a natural way to favor
short jobs given the lack of knowledge of job
sizes. In fact, SETF is the continuous version of
the multilevel feedback (MLF) algorithm. Unfor-
tunately, SETF (or any other deterministic non-
clairvoyant algorithm) performs poorly in the
framework of competitive analysis, where an al-
gorithm is called c-competitive if for every input
instance, its performance is no worse than c times
that of the optimum offline (clairvoyant) solution
for that instance [7]. However, competitive anal-
ysis can be overly pessimistic in its guarantee.
A way around this problem was proposed by
Kalyanasundaram and Pruhs [5] who allowed
the online scheduler a slightly faster processor
to make up for its lack of knowledge of future
arrivals and job sizes. Formally, an algorithm Alg
is said to be s-speed, c-speed competitive where
c is the worst case ratio over all instance I ,
of Algs.I /=Opt1.I /, where Algs is the value of
solution produced by Alg when given an s-speed
processor, and Opt1 is the optimum value using a
speed 1 processor. Typically the most interesting
results are those where c is small and s D .1C �/

for any arbitrary � > 0.

Key Results

In their seminal paper [5], Kalyanasundaram and
Pruhs showed the following.

Theorem 1 ([5]) SETF is a .1C �/-speed, .1C

1=�/-competitive non-clairvoyant algorithm for
minimizing the average flow time on a single
machine with preemptions.
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For minimizing the average stretch, Muthukr-
ishnan, Rajaraman, Shaheen, and Gehrke [6]
considered the clairvoyant setting and showed
that SRPT is 2-competitive for a single machine
and 14-competitive for multiple machines. The
non-clairvoyant setting was consider by Bansal,
Dhamdhere, Konemann, and Sinha [7]. They
showed that

Theorem 2 ([1]) SETF is a .1 C �/-speed,
0.log2 P /-competitive for minimizing average
stretch, where P is the ratio of the maximum to
minimum job size. On the other hand, even with
O.1/-speed, any non-clairvoyant algorithm is
at least �.log P /-competitive. Interestingly, in
terms of n, any non-clairvoyant algorithm must
be �.n/-competitive even with O.1/-speedup.
Moreover, SETF is O.n/-competitive (even
without extra speedup). For the special case
when all jobs arrive at time 0, SETF is optimum
up to constant factors. It is O.log P /-competitive
(without any extra speedup). Moreover, any non-
clairvoyant must be �.log P /-competitive even
with factor O.1/-speedup.

The key idea of the above result was a con-
nection between SETF and SRPT. First, at the
expense of .1 C �/-speedup, it can be seen that
SETF is no worse than MLF where the thresholds
are powers of .1 C �/. Second, the behavior of
MLF on an instance I can be related to the
behavior of shortest job first (SJF) algorithm
on another instance I 0 that is obtained from/by
dividing each job into logarithmically many jobs
with geometrically increasing sizes. Finally, the
performance of SJF is related to SRPT using
another .1C �/ factor speedup.

Bansal and Pruhs [2] considered the problem
of minimizing the `p norms of flow time and
stretch on a single machine. They showed the
following.

Theorem 3 ([2]) In the clairvoyant setting,
SRPT and SJF are .1 C �/-speed, O.1=�/-
competitive for minimizing the `p norms of
both flow time and stretch. On the other hand,
for 1 < p < 1, no online algorithm
(possibly clairvoyant) can be O.1/-competitive
for minimizing `p norms of stretch or flow time

without speedup. In particular, any randomized
online algorithm is at least �.n.p�1/=3p2

/-
competitive for `p norms of stretch and is at least
�.n.p�1/=p.3p�1//-competitive for `p norms of
flow time.

The above lower bounds are somewhat sur-
prising, since SRPT and FIFO are optimum for
the case p D 1 and p D1 for flow time.

Bansal and Pruhs [2] also consider the non-
clairvoyant case.

Theorem 4 ([2]) In the non-clairvoyant setting,
SETF is .1C�/-speed, O.1=�2C2=p/-competitive
for minimizing the `p norms of flow time.
For minimizing `p norms of stretch, SETF
is .1 C �/-speed, O.1=�3C1=p � log1C1=p P /-
competitive

Finally, Bansal and Pruhs also consider round
robin (RR) or processor sharing that at any time
splits the processor equally among the unfinished
jobs. RR is considered to be an ideal fair strategy
since it treats all unfinished jobs equally. How-
ever, they show that

Theorem 5 For any p � 1, there is an � > 0

such that even with a .1 C �/ times faster pro-
cessor, RR is not no.1/-competitive for minimizing
the `p norms of flow time. In particular, for
� < 1=2p, RR is .1 C �/-speed, �.n.1�2�p/=p/-
competitive. For `p norms of stretch, RR is �.n/-
competitive as is in fact any randomized non-
clairvoyant algorithm.

The results above have been extended in a
couple of directions. Bansal and Pruhs [3] extend
these results to weighted `p norms of flow time
and stretch. Chekuri, Khanna, Kumar, and Goel
[4] have extended these results to the multiple
machines case. Their algorithms are particularly
elegant: Each job is assigned to some machine at
random, and all jobs at a particular machine are
processed using SRPT or SETF (as applicable).

Applications

SETF and its variants such as MLF are widely
used in operating systems [9,10]. Note that SETF
is not really practical since each job could be
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preempted infinitely often. However, variants
of SETF with fewer preemptions are quite
popular.

Open Problems

It would be interesting to explore other notions
of fairness in the dynamic scheduling setting.
In particular, it would be interesting to consider
algorithms that are both fair and have a good
average performance.

An immediate open problem is whether the
gap between O.log2 P / and �.log P / can be
closed for minimizing the average stretch in the
non-clairvoyant setting.
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Problem Definition

Consider the route-planning task for passengers
of scheduled public transportation. Here, the run-
ning example is that of a train system, but the
discussion applies equally to bus, light-rail and
similar systems. More precisely, the task is to
construct a timetable information system that,
based upon the detailed schedules of all trains,
provides passengers with good itineraries, includ-
ing the transfer between different trains.

Solutions to this problem consist of a model
of the situation (e.g., can queries specify a limit
on the number of transfers?), an algorithmic
approach, its mathematical analysis (does it
always return the best solution? Is it guaranteed
to work fast in all settings?), and an evaluation
in the real world (Can travelers actually use the
produced itineraries? Is an implementation fast
enough on current computers and real data?).
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Key Results

The problem is discussed in detail in a recent
survey article [6].

Modeling
In a simplistic model, it is assumed that a transfer
between trains does not take time. A more real-
istic model specifies a certain minimum transfer
time per station. Furthermore, the objective of the
optimization problem needs to be defined. Should
the itinerary be as fast as possible, or as cheap
as possible, or induce the least possible trans-
fers? There are different ways to resolve this as
surveyed in [6], all originating in multi-objective
optimization, like resource constraints or Pareto-
optimal solutions. From a practical point of view,
the preferences of a traveler are usually difficult
to model mathematically, and one might want to
let the user choose the best option among a set of
reasonable itineraries himself. For example, one
can compute all itineraries that are not inferior to
some other itinerary in all considered aspects. As
it turns out, in real timetables the number of such
itineraries is not too big, such that this approach
is computationally feasible and useful for the
traveler [5]. Additionally, the fare structure of
most railways is fairly complicated [4], mainly
because fares usually are not additive, i.e., are not
the sum of fares of the parts of a trip.

Algorithmic Models
The current literature establishes two main ideas
how to transform the situation into a shortest path
problem on a graph. As an example, consider
the simplistic modeling where transfer takes no
time, and where queries specify starting time and
station to ask for an itinerary that achieves the
earliest arrival time at the destination.

In the time-expanded model [11], every arrival
and departure event of the timetable is a vertex of
the directed graph. The arcs of the graph repre-
sent consecutive events at one station, and direct
train connections. The length of an arc is given
by the time difference of its end vertices. Let s
be the vertex at the source station whose time is
directly after the starting time. Now, a shortest

path from s to any vertex of the destination station
is an optimal itinerary.

In the time-dependent model [3, 7, 9, 10],
the vertices model stations, and the arcs stand
for the existence of a direct (non-stop) train
connection. Instead of edge length, the arcs are
labeled with edge-traversal functions that give the
arrival time at the end of the arc in dependence
on the time a passenger starts at the beginning of
the arc, reflecting the times when trains actually
run. To solve this time-dependent shortest path
problem, a modification of Dijkstra’s algorithm
can be used. Further exploiting the structure of
this situation, the graph can be represented in
a way that allows constant time evaluation of the
link traversal functions [3]. To cope with more re-
alistic transfer models, a more complicated graph
can be used.

Additionally, many of the speed-up techniques
for shortest path computations can be applied to
the resulting graph queries.

Applications

The main application are timetable information
systems for scheduled transit (buses, trains, etc.).
This extends to route planning where trips in
such systems are allowed, as for example in
the setting of fine-grained traffic simulation to
compute fastest itineraries [2].

Open Problems

Improve computation speed, in particular for
fully integrated timetables and the multi-criteria
case. Extend the problem to the dynamic case,
where the current real situation is reflected,
i.e., delayed or canceled trains, and otherwise
temporarily changed timetables are reflected.

Experimental Results

In the cited literature, experimental results usu-
ally are part of the contribution [2, 4, 5, 6, 7,
8, 9, 10, 11]. The time-dependent approach can
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be significantly faster than the time-expanded
approach. In particular for the simplistic models
speed-ups in the range 10–45 are observed [8,
10]. For more detailed models, the performance
of the two approaches becomes comparable [6].
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Problem Definition

This problem is to find shortest paths in planar
graphs with general edge weights. It is known that
shortest paths exist only in graphs that contain
no negative weight cycles. Therefore, algorithms
that work in this case must deal with the presence
of negative cycles, i.e., they must be able to detect
negative cycles.

In general graphs, the best known algorithm,
the Bellman-Ford algorithm, runs in time O(mn)
on graphs with n nodes and m edges, while algo-
rithms on graphs with no negative weight edges
run much faster. For example, Dijkstra’s algo-
rithm implemented with the Fibonacchi heap runs
in time O.m C n log n/, and, in case of integer
weights Thorup’s algorithm runs in linear time.
Goldberg [5] also presented an O.m

p
n log L/-

time algorithm where L denotes the absolute
value of the most negative edge weights. Note
that his algorithm is weakly polynomial.

Notations
Given a directed graph G D .V; E/ and a weight
function wWE ! R on its directed edges, a dis-
tance labeling for a source node s is a function
d WV ! R such that d.v/ is the minimum length
over all s-to-v paths, where the length of path P
is
P

e2P w.e/.

Problem 1 (Single-Source-Shortest-Path)
INPUT: A directed graph G D .V; E/, weight
function wWE ! R, source node s 2 V .
OUTPUT: If G does not contain negative length
cycles, output a distance labeling d for source
node s. Otherwise, report that the graph contains
some negative length cycle.

The algorithm by Fakcharoenphol and Rao [4]
deals with the case when G is planar. They gave
an O.n log3 n/-time algorithm, improving on an
O.n3=2/-time algorithm by Lipton, Rose, and
Tarjan [9] and an O.n4=3 log nL/-time algorithm
by Henzinger, Klein, Rao, and Subramanian [6].

Their algorithm, as in all previous algorithms,
uses a recursive decomposition and constructs
a data structure called a dense distance graph,
which shall be defined next.

A decomposition of a graph is a set of subsets
P1; P2; : : : ; Pk (not necessarily disjoint) such
that the union of all the sets is V and for all
e D .u; v/ 2 E, there is a unique Pi that contains
e. A node v is a border node of a set Pi if v 2 Pi

and there exists an edge e D .v; x/ where x 62 Pi .
The subgraph induced on a subset Pi is referred to
as a piece of the decomposition.

The algorithm works with a recursive decom-
position where at each level, a piece with n nodes
and r border nodes is divided into two subpieces
such that each subpiece has no more than 2n=3

nodes and at most 2r=3 C c
p

n border nodes,
for some constant c. In this recursive context,
a border node of a subpiece is defined to be any
border node of the original piece or any new
border node introduced by the decomposition of
the current piece.

With this recursive decomposition, the level
of a decomposition can be defined in the nat-
ural way, with the entire graph being the only
piece in the level 0 decomposition, the pieces
of the decomposition of the entire graph being
the level 1 pieces in the decomposition, and
so on.

For each piece of the decomposition, the all-
pair shortest path distances between all its bor-
der nodes along paths that lie entirely inside
the piece are recursively computed. These all-
pair distances form the edge set of a non-planar
graph representing shortest paths between border
nodes. The dense distance graph of the planar
graph is the union of these graphs over all the
levels.

Using the dense distance graph, the shortest
distance queries between pairs of nodes can be
answered.

Problem 2 (Shortest-Path-Distance-Data-
Structure)
INPUT: A directed graph G D .V; E/, weight
function wWE ! R, source node s 2 V .
OUTPUT: If G does not contain negative length
cycles, output a data structure that support dis-
tance queries between pairs of nodes. Other-
wise, report that the graph contains some negative
length cycle.
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The algorithm of Fakcharoenphol and Rao re-
lies heavily on planarity, i.e., it exploits proper-
ties regarding how shortest paths on each piece
intersect. Therefore, unlike previous algorithms
that require only that the graph can be recur-
sively decomposed with small numbers of border
nodes [10], their algorithm also requires that each
piece has a nice embedding.

Given an embedding of the piece, a hole is
a bounded face where all adjacent nodes are bor-
der nodes. Ideally, one would hope that there is
a planar embedding of any piece in the recursive
decomposition where all the border nodes are
on a single face and are circularly ordered, i.e.,
there is no holes in each piece. Although this is
not always true, the algorithm works with any
decomposition with a constant number of holes
in each piece. This decomposition can be found in
O.n log n/ time using the simple cycle separator
algorithm by Miller [12].

Key Results

Theorem 1 Given a recursive decomposition of
a planar graph such that each piece of the de-
composition contains at most a constant number
of holes, there is an algorithm that constructs the
dense distance graph is O.n log3 n/ time.

Given the procedure that constructs the dense dis-
tance graph, the shortest paths from a source s can
be computed by first adding s as a border node
in every piece of the decomposition, computing
the dense distance graph, and then extending the
distances into all internal nodes on every piece.
This can be done in time O.n log3 n/.

Theorem 2 The single-source shortest path
problem for an n-node planar graph with
negative weight edges can be solved in time
O.n log3 n/.

The dense distance graph can be used to answer
distance queries between pairs of nodes.

Theorem 3 Given the dense distance graph, the
shortest distance between any pair of nodes can
be found in O.

p
n log2 n/ time.

It can also be used as a dynamic data structure
that answers shortest path queries and allows
edge cost updates.

Theorem 4 For planar graphs with only non-
negative weight edges, there is a dynamic data
structure that supports distance queries and
update operations that change edge weights in
amortized O.n2=3 log7=3 n/ time per operation.
For planar graph with negative weight edges,
there is a dynamic data structures that supports
the same set of operations in amortized
O.n4=5 log13=5 n/ time per operation.

Note that the dynamic data structure does not
support edge insertions and deletions, since these
operations might destroy the recursive decompo-
sition.

Applications

The shortest path problem has long been studied
and continues to find applications in diverse ar-
eas. There are a many problems that reduce to
the shortest path problem where negative weight
edges are required, for example the minimum-
mean length directed circuit. For planar graphs,
the problem has wide application even when the
underlying graph is a grid. For example, there
are recent image segmentation approaches that
use negative cycle detection [2, 3]. Some of other
applications for planar graphs include separator
algorithms [13] and multi-source multi-sink flow
algorithms [11].

Open Problems

Klein [8] gives a technique that improves the
running time of the construction of the dense dis-
tance graph to O.n log2 n/ when all edge weights
are non-negative; this also reduces the amor-
tized running time for the dynamic case down to
O.n2=3 log5=3 n/. Also, for planar graphs with no
negative weight edges, Cabello [1] gives a faster
algorithm for computing the shortest distances
between k pairs of nodes. However, the problem
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for improving the bound of O.n log3 n/ for find-
ing shortest paths in planar graphs with general
edge weights remains opened.

It is not known how to handle edge inser-
tions and deletions in the dynamic data structure.
A new data structure might be needed instead of
the dense distance graph, because the dense dis-
tance graph is determined by the decomposition.
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Problem Definition

A point lattice is the set of all integer linear
combinations

L.b1; : : : ; bn/ D

(
nX

iD1

xi bi W x1; : : : ; xn 2 Z

)

of n linearly independent vectors b1; : : : ; bn2 R
m

in m-dimensional Euclidean space. For compu-
tational purposes, the lattice vectors b1; : : : ; bn

are often assumed to have integer (or rational)
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entries, so that the lattice can be represented
by an integer matrix B D Œb1; : : : ; bn� 2 Z

m�n

(called basis) having the generating vectors as
columns. Using matrix notation, lattice points
in L.B/ can be conveniently represented as Bx
where x is an integer vector. The integers m and
n are called the dimension and rank of the lattice
respectively. Notice that any lattice admits mul-
tiple bases, but they all have the same rank and
dimension.

The main computational problems on lattices
are the Shortest Vector Problem, which asks
to find the shortest nonzero vector in a given
lattice, and the Closest Vector Problem, which
asks to find the lattice point closest to a given
target. Both problems can be defined with
respect to any norm, but the Euclidean norm

kvk D
qP

i v2
i is the most common. Other

norms typically found in computer science
applications are the `1 norm kvk1 D

P
i jvi j

and the max norm kvk1 D maxi jvi j. This entry
focuses on the Euclidean norm.

Since no efficient algorithm is known to solve
SVP and CVP exactly in arbitrary high dimen-
sion, the problems are usually defined in their
approximation version, where the approximation
factor � � 1 can be a function of the dimension
or rank of the lattice.

Definition 1 (Shortest Vector Problem, SVP”)
Given a lattice L.B/, find a nonzero lattice
vector Bx (where x 2 Z

n n f0g) such that
kBxk � � � kByk for any y 2 Z

n n f0g.

Definition 2 (Closest Vector Problem, CVP”)
Given a lattice L.B/ and a target point t, find
a lattice vector Bx (where x 2 Z

n) such that
kBx � tk � � � kBy � tk for any y 2 Z

n.

Lattices have been investigated by mathemati-
cians for centuries in the equivalent language of
quadratic forms, and are the main object of study
in the geometry of numbers, a field initiated by
Minkowski as a bridge between geometry and
number theory. For a mathematical introduction
to lattices see [3]. The reader is referred to [6, 12]
for an introduction to lattices with an emphasis
on computational and algorithmic issues.

Key Results

The problem of finding an efficient (polynomial
time) solution to SVP� for lattices in arbitrary
dimension was first solved by the celebrated
lattice reduction algorithm of Lenstra, Lenstra
and Lovász [11], commonly known as the LLL
algorithm.

Theorem 1 There is a polynomial time algo-
rithm to solve SVP� for � D .2=

p
3/n, where n

is the rank of the input lattice.

The LLL algorithm achieves more than just find-
ing a relatively short lattice vector: it finds a so-
called reduced basis for the input lattice, i.e.,
an entire basis of relatively short lattice vectors.
Shortly after the discovery of the LLL algorithm,
Babai [2] showed that reduced bases can be used
to efficiently solve CVP� as well within similar
approximation factors.

Corollary 1 There is a polynomial time algo-
rithm to solve CVP� for � D O.2=

p
3/n, where

n is the rank of the input lattice.

The reader is referred to the original pa-
pers [2, 11] and [12, chap. 2] for details.
Introductory presentations of the LLL algorithm
can also be found in many other texts, e.g., [5,
chap. 16] and [15, chap. 27]. It is interesting to
note that CVP is at least as hard as SVP (see
[12, chap 2]) in the sense that any algorithm that
solves CVP� can be efficiently adapted to solve
SVP� within the same approximation factor.

Both SVP� and CVP� are known to be NP-
hard in their exact (� D 1) or even approximate
versions for small values of ”, e.g., constant ”

independent of the dimension. (See [13, chaps. 3
and 4] and [4, 10] for the most recent results.) So,
no efficient algorithm is likely to exist to solve
the problems exactly in arbitrary dimension. For
any fixed dimension n, both SVP and CVP can be
solved exactly in polynomial time using an algo-
rithm of Kannan [9]. However, the dependency
of the running time on the lattice dimension is
nO.n/. Using randomization, exact SVP can be
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solved probabilistically in 2O.n/ time and space
using the sieving algorithm of Ajtai, Kumar and
Sivakumar [1].

As for approximate solutions, the LLL lattice
reduction algorithm has been improved both in
terms of running time and approximation guaran-
tee. (See [14] and references therein.) Currently,
the best (randomized) polynomial time approxi-
mation algorithm achieves approximation factor
� D 2O.n log log n= log n/.

Applications

Despite the large (exponential in n) approxima-
tion factor, the LLL algorithm has found numer-
ous applications and lead to the solution of many
algorithmic problems in computer science. The
number and variety of applications is too large
to give a comprehensive list. Some of the most
representative applications in different areas of
computer science are mentioned below.

The first motivating applications of lattice
basis reduction were the solution of integer
programs with a fixed number of variables
and the factorization of polynomials with
rationals coefficients. (See [11, 8], and [15,
chap. 16].) Other classic applications are the
solution of random instances of low-density
subset-sum problems, breaking (truncated)
linear congruential pseudorandom generators,
simultaneous Diophantine approximation, and
the disproof of Mertens’ conjecture. (See [8] and
[5, chap. 17].)

More recently, lattice basis reduction has been
extensively used to solve many problems in crypt-
analysis and coding theory, including breaking
several variants of the RSA cryptosystem and the
DSA digital signature algorithm, finding small
solutions to modular equations, and list decoding
of CRT (Chinese Reminder Theorem) codes. The
reader is referred to [7, 13] for a survey of recent
applications, mostly in the area of cryptanalysis.

One last class of applications of lattice prob-
lems is the design of cryptographic functions
(e.g., collision resistant hash functions, public
key encryption schemes, etc.) based on the appar-

ent intractability of solving SVP� within small
approximation factors. The reader is referred to
[12, chap. 8] and [13] for a survey of such appli-
cations, and further pointers to relevant literature.
One distinguishing feature of many such lattice
based cryptographic functions is that they can be
proved to be hard to break on the average, based
on a worst-case intractability assumption about
the underlying lattice problem.

Open Problems

The main open problems in the computational
study of lattices is to determine the complexity of
approximate SVP� and CVP� for approximation
factors � D nc polynomial in the rank of the
lattice. Specifically,

• Are there polynomial time algorithm that
solve SVP� or CVP� for polynomial factors
� D nc? (Finding such algorithms even for
very large exponent c would be a major
breakthrough in computer science.)

• Is there an � > 0 such that approximating
SVP� or CVP� to within � D n� is NP-
hard? (The strongest known inapproximability
results [4] are for factors of the form
nO.1= log log n/ which grow faster than any
poly-logarithmic function, but slower than
any polynomial.)

There is theoretical evidence that for large
polynomials factors � D nc , SVP� and CVP� are
not NP-hard. Specifically, both problems belong
to complexity class coAM for approximation fac-
tor � D O.

p
n= log n/. (See [12, chap. 9].) So,

the problems cannot be NP-hard within such
factors unless the polynomial hierarchy PH col-
lapses.

URL to Code

The LLL lattice reduction algorithm is imple-
mented in most library and packages for compu-
tational algebra, e.g.,
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• GAP (http://www.gap-system.org)
• LiDIA (http://www.cdc.informatik.tu-darmstadt.

de/TI/LiDIA/)
• Magma (http://magma.maths.usyd.edu.au/

magma/)
• Maple (http://www.maplesoft.com/)
• Mathematica (http://www.wolfram.com/

products/mathematica/index.html)
• NTL (http://shoup.net/ntl/).

NTL also includes an implementation of Block
Korkine-Zolotarev reduction that has been exten-
sively used for cryptanalysis applications.
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Similarity Between Compressed Strings, Table 1 Various scoring metrics

Metric Match Mismatch Indel Indel of k characters

Longest common subsequence 1 0 0 0

Levenshtein distance 0 1 1 k

Weighted edit distance 0 • � k	

Affine gap penalty 1 �ı �� � 	 �� � k	

Problem Definition

The problem of computing similarity between
two strings is concerned with comparing two
strings using some scoring metric. There exist
various scoring metrics and a popular one is
the Levenshtein distance (or edit distance) met-
ric. The standard solution for the Levenshtein
distance metric was proposed by Wagner and
Fischer [13], which is based on dynamic pro-
gramming. Other widely used scoring metrics
are the longest common subsequence metric, the
weighted edit distance metric, and the affine gap
penalty metric. The affine gap penalty metric is
the most general, and it is a quite complicated
metric to deal with. Table 1 shows the differences
between the four metrics.

The problem considered in this entry is the
similarity between two compressed strings. This
problem is concerned with efficiently comput-
ing similarity without decompressing two strings.
The compressions used for this problem in the
literature are run-length encoding and Lempel-
Ziv (LZ) compression [14].

Run-Length Encoding
A string S is run-length encoded if it is described
as an ordered sequence of pairs (�; i ), often de-
noted “� i”, each consisting of an alphabet sym-
bol, � , and an integer, i. Each pair corresponds to
a run in S, consisting of i consecutive occurrences
of � . For example, the string aaabbbbaccccbb
can be encoded a3b4a1c4b2 or, equivalently,
.a; 3/.b; 4/.a; 1/.c; 4/.b; 2/. Let A and B be two
strings with lengths n and m, respectively. Let A0

and B0 be the run-length encoded strings of A and
B, and n0 and m0 be the lengths of A0 and B0,
respectively.

Problem 1
INPUT: Two run-length encoded strings A0 and B0,
a scoring metric d.
OUTPUT: The similarity between A0 and B0

using d.

LZ Compression
Let X and Y be two strings with length O(n).
Let X0 and Y0 be the LZ compressed strings of X
and Y, respectively. Then the lengths of X0 and Y0

are O.hn= log n/, where h � 1 is the entropy of
strings X and Y.

Problem 2
INPUT: Two LZ compressed strings X0 and Y0,
a scoring metric d.
OUTPUT: The similarity between X0 and Y0

using d.

Block Computation
To compute similarity between compressed
strings efficiently, one can use a block
computation method. Dynamic programming
tables are divided into submatrices, which are
called “blocks”. For run-length encoded strings,
a block is a submatrix made up of two runs – one
of A and one of B. For LZ compressed strings,
a block is a submatrix made up of two phrases –
one phrase from each string. See [5] for more
details. Then, blocks are computed from left to
right and from top to bottom. For each block,
only the bottom row and the rightmost column
are computed. Figure 1 shows an example of
block computation.

Key Results

The problem of computing similarity of two
run-length encoded strings, A0 and B0, has been
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Similarity Between
Compressed Strings,
Fig. 1 Dynamic
programming table for
strings ar cpbt and
asbqcu is divided into 9
blocks. For one of the
blocks, e.g., B, only the
bottom row C and the
rightmost column D are
computed from E and F

studied for various scoring metrics. Bunke and
Csirik [4] presented the first solution to Problem
1 using the longest common subsequence metric.
The algorithm is based on block computation of
the dynamic programming table.

Theorem 1 (Bunke and Csirik [4]) A longest
common subsequence of run-length encoded
strings A0 and B0 can be computed in O.nm0

Cn0m/ time.

For the Levenshtein distance metric, Arbell, Lan-
dau, and Mitchell [2] and Mäkinen, Navarro,
and Ukkonen [10] presented O.nm0 C n0m/ time
algorithms, independently. These algorithms are
extensions of the algorithm of Bunke and Csirik.

Theorem 2 (Arbell, Landau, and Mitchell
[2], Mäkinen, Navarro, and Ukkonen [10])
The Levenshtein distance between run-length
encoded strings A0 and B0 can be computed in
O.nm0 C n0m/ time.

For the weighted edit distance metric, Crochemore,
Landau, and Ziv-Ukelson [6] and Mäkinen,
Navarro, and Ukkonen [11] gave O.nm0 C n0m/

time algorithms using techniques completely
different from each other. The algorithm of
Crochemore, Landau, and Ziv-Ukelson [6] is
based on the technique which is used in the
LZ compressed pattern matching algorithm [6],
and the algorithm of Mäkinen, Navarro, and
Ukkonen [11] is an extension of the algorithm for
the Levenshtein distance metric.

Theorem 3 (Crochemore, Landau, and Ziv-
Ukelson [6] Mäkinen, Navarro, and Ukko-
nen [11]) The weighted edit distance between

run-length encoded strings A0 and B0 can be
computed in O.nm0 C n0m/ time.

For the affine gap penalty metric, Kim, Amir,
Landau, and Park [8] gave an O.nm0 C n0m/

time algorithm. To compute similarity in this
metric efficiently, the problem is converted into
a path problem on a directed acyclic graph and
some properties of maximum paths in this graph
are used. It is not necessary to build the graph ex-
plicitly since they came up with new recurrences
using the properties of the graph.

Theorem 4 (Kim, Amir, Landau, and Park
[8]) The similarity between run-length encoded
strings A0 and B0 in the affine gap penalty
metric can be computed in O.nm0 C n0m/

time.

The above results show that comparison of run-
length encoded strings using the longest common
subsequence metric is successfully extended to
more general scoring metrics.

For the longest common subsequence
metric, there exist improved algorithms.
Apostolico, Landau, and Skiena [1] gave an
O.n0m0 log.n0m0// time algorithm. This algo-
rithm is based on tracing specific optimal paths.

Theorem 5 (Apostolico, Landau, and Skiena
[1]) A longest common subsequence of run-
length encoded strings A0 and B0 can be computed
in O.n0m0 log.n0 Cm0// time.

Mitchell [12] obtained an O..d C n0 Cm0/

log.d C n0 Cm0// time algorithm, where d is
the number of matches of compressed characters.
This algorithm is based on computing geometric
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shortest paths using special convex distance
functions.

Theorem 6 (Mitchell [12]) A longest common
subsequence of run-length encoded strings A0

and B0 can be computed in O..d C n0 Cm0/

log.d C n0 Cm0// time, where d is the number
of matches of compressed characters.

Mäkinen, Navarro, and Ukkonen [11] conjec-
tured an O.n0m0/ time algorithm on average
under the assumption that the lengths of
the runs are equally distributed in both
strings.

Conjecture 1 (Mäkinen, Navarro, and Ukko-
nen [11]) A longest common subsequence of
run-length encoded strings A0 and B0 can be
computed in O.n0m0/ time on average.

For Problem 2, Crochemore, Landau, and Ziv-
Ukelson [6] presented a solution using the addi-
tive gap penalty metric. The additive gap penalty
metric consists of 1 for match, �• for mismatch,
and �� for indel, which is almost the same as the
weighted edit distance metric.

Theorem 7 (Crochemore, Landau, and Ziv-
Ukelson [6]) The similarity between LZ com-
pressed strings X0 and Y0 in the additive gap
penalty metric can be computed in O.hn2= log n/

time, where h � 1 is the entropy of strings X
and Y.

Applications

Run-length encoding serves as a popular image
compression technique, since many classes
of images (e.g., binary images in facsimile
transmission or for use in optical character
recognition) typically contain large patches
of identically-valued pixels. Approximate
matching on images can be a useful tool to
handle distortions. Even a one-dimensional
compressed approximate matching algorithm
would be useful to speed up two-dimensional
approximate matching allowing mismatches and
even rotations [3, 7, 9].

Open Problems

The worst-case complexity of the problem is not
fully understood. For the longest common sub-
sequence metric, there exist some results whose
time complexities are better than O.nm0 C n0m/

to compute the similarity of two run-length en-
coded strings [1, 11, 12]. It remains open to
extend these results to the Levenshtein distance
metric, the weighted edit distance metric and the
affine gap penalty metric.

In addition, for the longest common subse-
quence metric, it is an open problem to prove
Conjecture 1.
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Problem Definition

A spanner is a sparse subgraph of a given undi-
rected graph that preserves approximate distance
between each pair of vertices. More precisely,

a t -spanner of a graph G D .V; E/ is a sub-
graph .V; ES /; ES � E such that, for any pair
of vertices, their distance in the subgraph is at
most t times their distance in the original graph,
where t is called the stretch factor. The spanners
were defined formally by Peleg and Schäffer [15]
though the associated notion was used implicitly
by Awerbuch [3] in the context of network syn-
chronizers.

Computing t -spanner of smallest size for a
given graph is a well-motivated combinatorial
problem with many applications. However, com-
puting t -spanner of smallest size for a graph
is NP-hard. In fact, for t > 2, it is NP-hard
[11] even to approximate the smallest size of t -
spanner of a graph with ratio O.2.1�	/ ln n/ for
any � > 0. Having realized this fact, researchers
have pursued another direction which is quite
interesting and useful. Let S t

G be the size of the
sparsest t -spanner of a graph G, and let S t

n be the
maximum value of S t

G over all possible graphs on
n vertices. Does there exist a polynomial time al-
gorithm which computes, for any weighted graph
and parameter t , its t -spanner of size O.S t

n/?
Such an algorithm would be the best one can hope
for given the hardness of the original t -spanner
problem. Naturally, the question arises as to how
large can S t

n be ? A 43-year-old girth lower
bound conjecture by Erdös [13] implies that there
are graphs on n vertices whose 2k� as well as
.2k � 1/-spanner will require �.n1C1=k/ edges.
This conjecture has been proved for k D 1; 2; 3;

and 5. Note that a .2k � 1/-spanner is also a 2k-
spanner, and the lower bound on the size is the
same for both 2k-spanner and .2k � 1/-spanner.
So the objective is to design an algorithm that,
for any weighted graph on n vertices, computes a
.2k � 1/-spanner of O.n1C1=k/ size. Needless to
say, one would like to design the fastest algorithm
for this problem, and the most ambitious aim
would be to achieve the linear time complexity.

Key Results

The key results of this entry are two very simple
algorithms which compute a .2k � 1/-spanner of
a given weighted graph G D .V; E/. Let n and m
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denote, respectively, the number of vertices and
edges of G. The first algorithm, due to Althöfer
et al. [2], is based on a greedy strategy and runs
in O.mn1C1=k/ time. The second algorithm [6]
is based on a very local approach and runs in
an expected O.m/ time. To start with, consider
the following simple observation. Suppose there
is a subset ES � E that ensures the following
proposition for every edge .x; y/ 2 EnES .

Pt .x; y/ : the vertices x and y are connected
in the subgraph .V; ES / by a path consisting
of at most t edges, and the weight of each
edge on this path is not more than that of the
edge .x; y/.

It follows easily that the subgraph .V; ES / will
be a t -spanner of G. The two algorithms for
computing .2k � 1/-spanner eventually compute
such set ES based on two completely different
approaches.

Algorithm I
This algorithm selects edges for spanner in a
greedy fashion and is similar to Kruskal’s algo-
rithm for computing a minimum spanning tree.
The edges of the graph are processed in the
increasing order of their weights. To begin with,
the spanner ES D ;; and the algorithm adds
edges to it gradually. The decision as to whether
an edge, say .u; v/, has to be added (or not) to ES

is made as follows:

If the distance between u and v in the subgraph
induced by the current spanner edges ES is more
than t � weight.u; v/, then add the edge .u; v/ to
ES ; otherwise, discard the edge.

It follows that Pt .x; y/ would hold for each
edge of E missing in ES , and so at the end, the
subgraph .V; ES / will be a t -spanner. A well-
known result in elementary graph theory states
that a graph with more than n1C1=k edges must
have a cycle of length at most 2k. It follows
from the above algorithm that the length of any
cycle in the subgraph .V; ES / has to be at least
t C 1. Hence, for t D 2k � 1, the number of
edges in the subgraph .V; ES / will be less than
n1C1=k . Thus, the algorithm I described above

computes a .2k � 1/-spanner of size O.n1C1=k/,
which is indeed optimal based on the lower bound
mentioned earlier.

A simple O.mn1C1=k/ implementation of al-
gorithm I follows based on Dijkstra’s algorithm.
Cohen [10] and later Thorup and Zwick [19]
designed algorithms for .2k�1/-spanner with an
improved running time of O.kmn1C1=k/. These
algorithms relied on several calls to Dijkstra’s
single-source Shortest path algorithm for dis-
tance computation and therefore were far from
achieving linear time. On the other hand, since
a spanner must approximate all-pairs distances in
a graph, it appears difficult to compute a spanner
by avoiding explicit distance information. Some-
what surprisingly, algorithm II, described in the
following section, avoids any sort of distance
computation and achieves expected linear time.

Algorithm II
This algorithm employs a novel clustering based
on a very local approach and establishes the
following result for the spanner problem:

Given a weighted graph G D .V; E/ and an
integer k > 1, a spanner of .2k � 1/ stretch and
O.kn1C1=k/ size can be computed in expected
O.km/ time.

The algorithm executes in O.k/ rounds, and
in each round it essentially explores adjacency
list of each vertex to prune dispensable edges. As
a testimony of its simplicity, we will present the
entire algorithm for 3-spanner and its analysis in
the following section. The algorithm can be easily
adapted in other computational models (parallel,
external memory, distributed) with nearly optimal
performance (see [6] for more details).

Computing a 3-Spanner in Linear Time
To meet the size constraint of a 3-spanner, a
vertex, on an average, contributes

p
n edges to

the spanner. So the vertices with degree O.
p

n/

are easy to handle since all their edges can be
selected in the spanner. For vertices with higher
degree, a clustering (groupings) scheme is em-
ployed to tackle this problem which has its basis
in dominating sets.
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To begin with, there is a set of edges E 0 initial-
ized to E and empty spanner ES . The algorithm
processes the edges E 0, moves some of them to
the spanner ES ; and discards the remaining ones.
It does so in the following two phases:

1. Forming the clusters
A sample R � V is chosen by picking each
vertex independently with probability 1p

n
.

The clusters will be formed around these
sampled vertices. Initially, the clusters are
ffugju 2 Rg. Each u 2 R is called the
center of its cluster. Each unsampled vertex
v 2 V �R is processed as follows:
(a) If v is not adjacent to any sampled vertex,

then every edge incident on v is moved to
ES .

(b) If v is adjacent to one or more sam-
pled vertices, let N .v;R/ be the sam-
pled neighbor that is nearest (Ties can
be broken arbitrarily. However, it helps
conceptually to assume that all weights
are distinct) to v. The edge .v;N .v;R//

along with every edge that is incident on
v with weight less than this edge is moved
to ES . The vertex v is added to the cluster
centered at N .v;R/.

As a last step of the first phase, all those edges
.u; v/ from E 0 where u and v are not sampled
and belong to the same cluster are discarded.

Let V 0 be the set of vertices corresponding
to the endpoints of the edges E 0 left after the
first phase. It follows that each vertex from V 0

is either a sampled vertex or adjacent to some
sampled vertex, and step 1(b) has partitioned
V 0 into disjoint clusters each centered around
some sampled vertex. Also note that, as a
consequence of the last step, each edge of
the set E 0 is an intercluster edge. The graph
.V 0; E 0/, and the corresponding clustering of
V 0; is passed onto the following (second)
phase.

2. Joining vertices with their neighboring clus-
ters
Each vertex v of graph .V 0; E 0/ is processed
as follows. Let E 0.v; c/ be the edges from the
set E 0 incident on v from a cluster c. For each
cluster c neighboring to v, the least-weight

edge from E 0.v; c/ is moved to ES ; and the
remaining edges are discarded.

The number of edges added to the spanner
ES during the algorithm described above can be
bounded as follows. Note that the sample set R
is formed by picking each vertex randomly in-
dependently with probability 1p

n
. It thus follows

from elementary probability that for each vertex
v 2 V , the expected number of incident edges
with weight less than that of .v;N .v;R// is at
most

p
n. Thus, the expected number of edges

contributed to the spanner by each vertex in the
first phase of the algorithm is at most

p
n. The

number of edges added to the spanner in the
second phase is O.njRj/. Since the expected size
of the sample R is

p
n, therefore, the expected

number of edges added to the spanner in the
second phase is at most n3=2. Hence, the expected
size of the spanner ES at the end of the algorithm
described above is at most 2n3=2. The algorithm
is repeated if the size of the spanner exceeds
3n3=2. It follows using Markov’s inequality that
the expected number of such repetitions will be
O.1/.

We now establish that ES is a 3-spanner. Note
that for every edge .u; v/ … ES , the vertices u; v

belong to some cluster in the first phase. There
are two cases now.

Case 1 : (u and v belong to the same cluster)

Let u and v belong to the cluster centered at
x 2 R. It follows from the first phase of the
algorithm that there is a 2-edge path u � x � v

in the spanner with each edge not heavier than
the edge .u; v/. (This provides a justification for
discarding all intracluster edges at the end of the
first phase.)

Case 2 : (u and v belong to different clusters)

Clearly, the edge .u; v/ was removed from E 0

during phase 2, and suppose it was removed
while processing the vertex u. Let v belong to the
cluster centered at x 2 R:

In the beginning of the second phase,
let .u; v0/ 2 E 0 be the least-weight edge
among all the edges incident on u from the
vertices of the cluster centered at x. So it
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must be that weight.u; v0/ � weight.u; v/.
The processing of vertex u during the second
phase of our algorithm ensures that the edge
.u; v0/ gets added to ES . Hence, there is a
path …uv D u � v0 � x � v between u and
v in the spanner ES , and its weight can be
bounded as weight.…uv/ D weight.u; v0/ C

weight.v0; x/ C weight.x; v/. Since .v0; x/

and .v; x/ were chosen in the first phase, it
follows that weight.v0; x/ � weight.u; v0/

and weight.x; v/ � weight.u; v/. It follows
that the spanner .V; ES / has stretch 3. Moreover,
both phases of the algorithm can be executed in
O.m/ time using elementary data structures and
bucket sorting.

The algorithm for computing a .2k � 1/-
spanner executes k iterations where each iteration
is similar to the first phase of the 3-spanner algo-
rithm. For details and formal proofs, the reader
may refer to [6].

Other Related Works
The notion of a spanner has been generalized in
the past by many researchers.

Additive Spanners
A t -spanner as defined above approximates pair-
wise distances with multiplicative error and can
be called a multiplicative spanner. In an analo-
gous manner, one can define spanners that ap-
proximate pairwise distances with additive error.
Such a spanner is called an additive spanner, and
the corresponding error is called surplus. Aing-
worth et al. [1] presented the first additive spanner
of size O.n3=2 log n/ with surplus 2. Baswana
et al. [7] presented a construction of O.n4=3/-
size additive spanner with surplus 6. Recently,
Chechik [9] presented a construction of O.n7=5/-
size additive spanner with surplus 4. It is a major
open problem if there exists any sparser additive
spanner.

.˛; ˇ/-Spanner
Elkin and Peleg [12] introduced the notion of
.˛; ˇ/-spanner for unweighted graphs, which can
be viewed as a hybrid of multiplicative and ad-
ditive spanners. An .˛; ˇ/-spanner is a subgraph
such that the distance between any pair of ver-

tices u; v 2 V in this subgraph is bounded
by ˛ı.u; v/ C ˇ, where ı.u; v/ is the distance
between u and v in the original graph. Elkin
and Peleg showed that an .1 C �; ˇ/-spanner of
size O.ˇn1Cı/, for arbitrarily small �; ı > 0,
can be computed at the expense of sufficiently
large surplus ˇ. Recently, Thorup and Zwick [20]
introduced a spanner where the additive error is
sublinear in terms of the distance being approxi-
mated.

Other interesting variants of spanner include
distance preserver proposed by Bollobás et al. [8]
and lightweight spanner proposed by Awerbuch
et al. [4]. A subgraph is said to be a d -preserver
if it preserves exact distances for each pair of
vertices which are separated by distance at least
d . A lightweight spanner tries to minimize the
number of edges as well as the total edge weight.
A lightness parameter is defined for a subgraph
as the ratio of total weight of all its edges and
the weight of the minimum spanning tree of the
graph. Awerbuch et al. [4] showed that for any
weighted graph and integer k > 1, there exists
a polynomially constructible O.k/-spanner with
O.k�n1C1=k/ edges and O.k�n1=k/ lightness,
where � D log.d iameter/.

In addition to the above work on the gener-
alization of spanners, a lot of work has also been
done on computing spanners for special classes of
graphs, e.g., chordal graphs, unweighted graphs,
and Euclidean graphs. For chordal graphs, Peleg
and Schäffer [15] designed an algorithm that
computes a 2-spanner of size O.n3=2/ and a
3-spanner of size O.n log n/. For unweighted
graphs, Halperin and Zwick [14] gave an O.m/

time algorithm for this problem. Salowe [18]
presented an algorithm for computing a .1C �/-
spanner of a d -dimensional complete Euclidean
graph in O.n log nC n

�d / time. However, none of
the algorithms for these special classes of graphs
seem to extend to general weighted undirected
graphs.

Applications

Spanners are quite useful in various applica-
tions in the area of distributed systems and
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communication networks. In these applications,
spanners appear as the underlying graph
structure. In order to build compact routing
tables [17], many existing routing schemes
use the edges of a sparse spanner for routing
messages. In distributed systems, spanners play
an important role in designing synchronizers.
Awerbuch [3] and Peleg and Ullman [16] showed
that the quality of a spanner (in terms of stretch
factor and the number of spanner edges) is very
closely related to the time and communication
complexity of any synchronizer for the network.
The spanners have also been used implicitly in
a number of algorithms for computing all-pairs
approximate shortest paths [5, 10, 19, 21]. For a
number of other applications, please refer to the
papers [2, 3, 15, 17].

Open Problems

The running time as well as the size of the .2k �

1/-spanner computed by the algorithm described
above are away from their respective worst-case
lower bounds by a factor of k. For any constant
value of k, both these parameters are optimal.
However, for the extreme value of k, that is,
for k D log n, there is deviation by a factor of
log n. Is it possible to get rid of this multiplicative
factor of k from the running time of the algorithm
and/or the size of the .2k�1/-spanner computed?
It seems that a more careful analysis coupled with
advanced probabilistic tools might be useful in
this direction.
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Introduction

We have a two-sided market, one side is a set U

of men, the other side is a set V of women. The
first part of the input also contains the mutually
acceptable man-woman pairs E. This makes up
a bipartite graph G.U [ V , E). The second part
of the input contains the preference lists of each
person, that is a weak order (may contain ties) on
his/her acceptable pairs.

A matching is a set of mutually disjoint ac-
ceptable man-woman pairs. Given a matching M ,
a man m and a woman w form a blocking pair, if
they are an acceptable pair but are not partners
in M , and they both prefer each other to their
partner, or have no partner in M . That is either
w is unmatched in M or w prefers m to her M -
partner, and either m is unmatched in M or m

prefers w to his M -partner. A matching M is
stable if there are no blocking pairs.

We consider a two-sided market under incom-
plete preference lists with ties (SMTI), where the
goal is to find a maximum size stable matching
(MAX-SMTI).

Problem Definition

Problem 1 (MAX-SMTI)

INPUT: Set U of men, and set V of women and
each person’s preference list.

OUTPUT: A stable matching of maximum
size.

Input format A list of an agent a consists of
pairs .a1; p1/, .a2; p2/; : : :; .ad ; pd /, where ai

are the acceptable persons from the other gender
and 1 � pi � max.jU j; jV j/ are integers with
ordering p1 � p2 � � � � � pd . Agent a strictly
prefers ai to aj if pi > pj and is indifferent
between ai and aj if pi D pj . Moreover women
needs a black-box procedure, which on input ai

outputs in constant time pi (we assume that this
procedure is also a part of the input). The size of
the input is the number of agents plus the total
length of the lists.

Definition of approximation ratios A goodness
measure of an approximation algorithm A for a
maximization problem is defined as follows: the
approximation ratio of A is max{opt(I //A.I /}
over all instances I , where opt(I / and A.I /

are the size of the optimal and the algorithm’s
solution on instance I , respectively.

Short history It was shown in [4] that finding
the optimal solution is NP-hard; moreover, it
is APX-hard [3]. The original Deferred Accep-
tance Algorithm of Gale and Shapley gives a 2-
approximation; the first approximation algorithm
with a strictly better ratio was presented in [5],
where the approximation ratio was 15/8. This was
improved in [6] to a 5/3-approximation and later
in [9] to a 3/2-approximation; this latter algorithm
had nonlinear running time. Recently in [10] and
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in [7], linear time 3/2-approximation algorithms
were given.

Key Results

A simple variation of the famous Deferred
Acceptance Algorithm of Gale and Shapley
is presented; which also runs in linear time
and gives a 3/2-approximation for the problem
MAX-SMTI. This algorithm is local; no central
agent or knowledge about the global input is
needed.

Algorithm

Preliminary Definitions and Concepts for the
Algorithm
During the algorithm, the agents may have dif-
ferent statuses, and some Boolean properties de-
scribed below, and also varying actual prefer-
ences.

A status of a man can be either a lad or a
bachelor or an old bachelor. A man can be
active or inactive. A man is active, if he is not
an old bachelor and he is not engaged (i.e.,
he has actually no partner). A man can also be
uncertain, described later. Initially every man is
an active lad.

A status of a woman can be either maiden
or engaged. An engaged woman is flighty, if
her fiancé is uncertain. Initially every woman is
maiden.

The actual preferences a man m is described
as follows. If women w1 and w2 are indifferent
on m’s list, and w1 is maiden but w2 is engaged,
then m prefers maiden w1 to engaged w2. An
engaged lad is uncertain if his list contains
a woman he prefers to his actual fiancée (this
can happen, if there were two maidens with the
same highest priority on m’s list, and m became
engaged to one of them).

The actual preferences a woman w is described
as follows. If there are two men, m1 and m2

with the same priority in w’s list, and m1 is
a lad, but m2 is a bachelor, then w prefers
bachelor m2 to lad m1. If w is flighty, then
she prefers a man who is not uncertain, to a

man who is uncertain (regardless of her original
preferences).

The Algorithm

While there exists an active man m, he pro-
poses to his favorite woman w. If w accepts
his proposal, they become engaged. If w
rejects him, m deletes w from his list and
remain active.
When a woman w gets a new proposal from
man m, she accepts this proposal if she
(actually) prefers m to her current fiancé.
Otherwise she rejects m.
If w accepted m, then she rejects her previ-
ous fiancé, if there was one (breaks off her
engagement), and becomes engaged to m.
If m was engaged to a woman w and later
w rejects him, then m becomes active again
and deletes w from his list, except if m is
uncertain, in this case m keeps w on the list.
If the list of m becomes empty for the first
time, he turns into a bachelor, his original list
is recovered, and he reactivates himself. If
the list of m becomes empty for the second
time, he will turn into an old bachelor and
will remain inactive forever.

After the algorithm finishes, the engaged pairs get
married and form matching M .

Theorem 1 ([7]) The algorithm always gives a
stable matching M and it is 3=2-approximating,
i.e., the stable matching given has size at least
2=3 of the maximum size stable matching.

Running Time, Locality
This algorithm runs in linear time using the as-
sumptions on the input format. Though it is clear
that along every edge at most three proposals
happen, the technical details must be worked out;
see [7] for details.

Local algorithm Each agent (a man or woman)
always makes a greedy decision based only on
local information (his/her preference list, and
provided by some communication with his/her
acceptable partners). A local algorithm is linear if
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every agent communicates with each acceptable
partner only a constant time during the algorithm.

The algorithm presented is a linear time local
algorithm (using the appropriate data structures);
see [7] for details.

Cross-References

�Hospitals/Residents Problem
�Maximum Cardinality Stable Matchings
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� Stable Marriage with One-Sided Ties
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Problem Definition

Buffer management policies are online al-
gorithms that control a limited buffer of
packets with homogeneous or heterogeneous
characteristics, deciding whether to accept new
packets when they arrive, which packets to
process and transmit, and possibly whether
to push out packets already residing in the
buffer. Although settings differ, the problem is
always to achieve the best possible competitive
ratio, i.e., find a policy with good worst-case
guarantees in comparison with an optimal offline
clairvoyant algorithm. The policies themselves
are often simple, simplicity being an important
advantage for implementation in switches; the
hard problem is to find proofs of lower and
especially upper bounds for their competitive
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ratios. Thus, this problem is more theoretical
in nature, although the resulting throughput
guarantees are important tools in the design of
network elements. Comprehensive surveys of this
field have been given in the past by Goldwasser
[9] and Epstein and van Stee [7].

General Model Description
We assume discrete slotted time. A packet is fully
processed if the processing unit has scheduled
the packet for processing for at least its required
number of cycles. Each packet may have the
following characteristics: (i) required processing,
i.e., how many processing cycles the packet has
to go through before it can be transmitted; (ii)
value, i.e., how much the packet contributes to
the objective function when it is transmitted; (iii)
output port, i.e., where the packet is headed (in
settings with multiple output ports, it is usually
assumed that processing occurs independently at
each port, so it becomes advantageous to have
more busy output ports at a time); and (iv) size,
i.e., how many slots (bytes) a packet occupies in
the buffer. The objective of a buffer management
policy is to maximize the total value of transmit-
ted packets. Different settings may assume that
some characteristics are uniform.

Competitive Analysis
Competitive analysis provides a uniform through-
put guarantee for online algorithms across all
traffic patterns. An online algorithm ALG is said
to be ˛-competitive with respect to some ob-
jective function f (for some ˛ � 1 which is
called the competitive ratio) if for any arrival
sequence � the objective function value on the
result of ALG is at least 1=˛ times the objective
function value on the solution obtained by an
offline clairvoyant algorithm, denoted OPT.

Problem 1 (Competitive Ratio) For a given
switch architecture, packet characteristics, and
an online algorithm ALG in a given setting,
prove lower and upper bounds on its competitive
ratio with respect to weighted throughput (total
value of packets transmitted by an algorithm).

Key Results

Policies and lower and upper bounds on their
competitive ratios are outlined according to prob-
lem settings; the latter differ in which packet
characteristics they assume to be uniform and
which are allowed to vary, and additional restric-
tions may be imposed on admission, processing
and/or transmission order, and admissible packet
characteristics.

Uniform Processing, Uniform Value,
Shared Memory Switch
Since all packets are identical, the problem for a
single queue with one output port is trivial. We
consider an M � N shared memory switch that
can hold B packets, with a separate processor
on each output port. All packets require a single
processing cycle and have equal value; the goal is
to maximize the number of transmitted packets.
Each packet is labeled with an output port where
it has to be processed and transmitted.

Non-Push-Out Policies
Kesselman and Mansour [14] show an adversarial
logarithmic lower bound: no non-push-out policy
can achieve competitive ratio better than d=2 for
d D logd N . On the positive side, they present
the Harmonic policy that allocates approximately
1=i of the buffer to the i th largest queue and, for
its variant, the Parametric Harmonic policy, show
an upper bound of c logc N C 1.

Push-Out Policies
The best known policy is Longest Queue Drop
(LQD): accept packets greedily if the buffer is not
full; if it is, accept the new packet and then drop
a packet from the longest queue (destined to the
output port with the most packets assigned to it).
Aiello et al. [1,10] show that the competitive ratio
of LQD is between

p
2 and 2; they also provide

nonconstant lower bounds for other popular poli-
cies and a general adversarial lower bound of 4

3

on the competitive ratio of any online algorithm.
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Uniform Processing, Uniform Value,
Multiple Separated Queues
In an N �1 switch where each of N input queues
has a separate independent buffer of size B , a
policy must select which input queue to take a
packet from and set admission policies for input
queues. For uniform values, the problem was
closed by Azar and Litichevskey [3] with a deter-
ministic policy with competitive ratio converging
to e

e�1
	 1:582 for arbitrary B; a matching lower

bound was shown by Azar and Richter [4].

Uniform Processing, Variable Values,
Single Queue
Here, there is only one output port (a single
queue), and each packet is fully processed in
one cycle; however, packets have different values,
making it desirable to drop packets with smaller
value and process packets of larger value. It
is easy to show that the Priority Queue (PQ)
policy that sorts packets with respect to values
and pushes out smaller values for larger ones is
optimal. Research has concentrated on models
with additional constraints: non-push-out policies
that are not allowed to push admitted packets out
and the FIFO model where packets have to be
transmitted in order of arrival. Another important
special case considers two possible values: 1 and
V > 1.

Non-Push-Out Policies
Aiello et al. [2] consider five online policies
for the two-valued case, considering the specific
cases of V D 1, V D 2, and V D1. Andelman,
Mansour, and Zhu provide a deterministic policy
(Ratio Partition) that achieves optimal

�
2 � 1

V

�
-

competitiveness [26]. In the case of arbitrary
values between 1 and V > 1, they show that the
optimal competitive ratio is ln V , proving tightly
matching bounds of 1 C ln V and 2 C ln V C

O.ln2 V=B/ [2, 26].

Push-Out Policies
In the FIFO model, there has been a line of ad-
versarial lower bounds culminating in the lower
bound of 1:419 shown by Kesselman, Mansour,
and van Stee [18] that applies to all algorithms,
with a stronger bound of 1:434 for B D 2

[2,26]. As for upper bounds, in this simple model
the FIFO greedy push-out policy (accept ev-
ery packet to end of queue, then push out the
packet with smallest value if buffer has over-
flown) has been shown by Kesselman et al. to
be 2-competitive [17]; in the two-valued case,
they provide an adversarial lower bound of 1:282,
and a long line of improvements for the upper
bound has led to the optimal Account Strategy
policy of Englert and Westermann [6]. They show
an adversarial lower bound of r D 1

2
.
p

13 �

1/ 	 1:303 for any B � 2 and r1 D
p

2 �
1
2
.
p

5C 4
p

2 � 3/ 	 1:282 for B ! 1 and
show that Account Strategy achieves competitive
ratio r for arbitrary B and r1 for B ! 1.
Thus, in the push-out two-valued case, the gap
between lower and upper bounds has been closed
completely.

Uniform Processing, Variable Values,
Multiple Separated Queues
Kawahara et al. [11] consider an N � 1

switch with N separated queues, each of
which has a distinct buffer of size B and has
a value ˛j associated with it, 1 D ˛1 �

: : : � ˛N D ˛. A policy selects one of N

queues, maximizing total transmitted value; [11]
provides matching lower and upper bounds

for the PQ policy as 1 C
Pn0

j D1 ˛j
Pn0

C1
j D1

˛j

, where

n0 D arg maxn

Pn
j D1 ˛j

PnC1
j D1

˛j

, and an adversarial

lower bound 1 C ˛3C˛2C˛
˛4C4˛3C3˛2C4˛C1

for any
online algorithm. Azar and Richter [4] show
that any r-competitive policy for a FIFO queue
with variable values yields a 2r-competitive
policy for multiple queues. Kobayashi et al.
[21] show that an r-competitive policy for
unit values and multiple queues yields a

min
n
V r; V r.2�r/Cr2�2rC2

V.2�r/Cr�1

o
-competitive policy

for the two-valued case.

Uniform Processing, Variable Values,
Shared Memory Switch
Several output queues, each with a processor,
share a buffer of size B , and each unit-
sized packet is labeled with an output port
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and an intrinsic value from 1 to V . Eugster,
Kogan, Nikolenko, and Sirotkin [8] show a
.

3
p

V � o.
3
p

V // lower bound for the LQD
(Longest Queue Drop) policy, an 1

2
.minfV; Bg �

1/ lower bound for the MVD (Minimal Value
Drop) policy, and a 4

3
lower bound for the MRD

(Maximal Ratio Drop) policy.

Uniform Processing, CIOQ Switches
In CIOQ (Combined Input–Output Queued)
switches, one maintains at each input a separate
queue for each output (also called Virtual Output
Queuing, VOQ). To get delay guarantees of an
input queuing (IQ) switch closer to those of an
output queuing switch (OQ), one usually assumes
increased speedup S : the switching fabric runs S

times faster than each of the input or the output
ports. Hence, an OQ switch has a speedup of N

(where N is the number of input/output ports),
whereas an IQ switch has a speedup of 1; for
1 < S < N , packets need to be buffered at
the inputs before switching as well as at the
outputs after switching. This architecture is called
a CIOQ switch.

Uniform Values
Consider an N � N CIOQ switch with speedup
S . Packets of equal size arrive at input ports,
each labeled with the output port where it has
to leave the switch. Each packet is placed in
the input queue corresponding to its output port;
when it crosses the switch fabric, it is placed
in the output queue and resides there until it is
sent on the output link. For unit-valued packets,
Kesselman and Rosén [15] proposed a non-push-
out policy which is 3-competitive for any S and
2-competitive for S D 1. Kesselman, Kogan,
and Segal [13] show an upper bound of 4 on the
competitiveness of a simple greedy policy.

Variable Values
For up to m packet values in Œ1; V �, Kesselman
and Rosén [15] show two push-out policies to
be 4S - and 8 minfm; 2 log V g-competitive. Azar
and Richter [5] propose a push-out policy ˇ-PG
with parameter ˇ; Kesselman et al. [20] show that
the competitive ratio of ˇ-PG is at most 7:5 for
ˇ D 3 and at most 7:47 for ˇ D 2:8. Kesselman

and Rosén [16] consider CIOQ switches with PQ
buffers (transmit the highest value packet) and
show that this policy is 6-competitive for any S .

Uniform Processing, Crossbar Switches
In the buffered crossbar switch architecture, a
small buffer is placed on each crosspoint in ad-
dition to input and output queues, which greatly
simplifies the scheduling process. For packets
with unit length and value, Kesselman et al. [20]
introduce a greedy switch policy with competi-
tive ratio between 3

2
and 4 and show a general

lower bound of 3
2

for unit-size buffers. For vari-
able values and PQ buffers, they propose a push-
out greedy switch policy with preemption factor
ˇ with competitive ratio between .2ˇ�1/=.ˇ�1/

(3:87 for ˇ D 1:53) and .ˇ C 2/2 C 2=.ˇ � 1/

(16:24 for ˇ D 1:53). For variable values and
FIFO buffers, they propose a ˇ-push-out greedy
switching policy with competitive ratio 6C 4ˇC

ˇ2 C 3=.ˇ � 1/ (19:95 for ˇ D 1:67) [19].

Uniform Values, Variable Processing,
Single Queue
In this setting, each packet contributes one unit to
the objective function, but different packets have
different processing requirements, i.e., they spend
a different number of time slots at the processor.
We denote maximal possible required processing
by k.

Non-Push-Out Policies
For a single queue and packets with heteroge-
neous processing, non-push-out policies have not
been considered in any detail. Kogan, López-
Ortiz, Nikolenko, and Sirotkin [23] have shown
that any greedy non-push-out policy is at least
1
2
.k C 1/-competitive. It remains an open prob-

lem to find non-push-out policies with sublinear
competitive ratios or show that none exists.

Push-Out Policies
Keslassy et al. [12] showed that again, for a
single queue, PQ (Priority Queue) that sorts pack-
ets with respect to required processing (smallest
first) is optimal; research has concentrated on the
FIFO case, where packets have to be transmitted
in order of arrival. Kogan et al. [24] introduced
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lazy policies that process packets down to a
single cycle but then delay their transmission un-
til the entire queue consists of such packets; then
all packets are transmitted out in as many time
slots as there are packets in the queue. In [24],
LPO (Lazy Push-Out) was proven to be at most
.maxf1; ln kg C 2C o.1//-competitive; [24] also
provides a lower bound of blogB kcC1�O.1=B/

for both PO (push-out FIFO) and LPO; for large
k this bound matches the upper bound up to a
factor of log B . Proving a matching upper bound
for the PO policy remains an important open
problem. In the two-valued case, when packets
may have required processing only 1 or k, LPO
has a lower bound of 2 � 1

k
and a matching

upper bound of 2 C 1
B

[24]. Kogan, López-
Ortiz, Nikolenko, and Sirotkin [23] introduce
semi-FIFO policies, separating processing order
from transmission order so that transmission can
conform to FIFO constraints while processing or-
der remains arbitrary. Lazy policies thus become
a special case of semi-FIFO policies. The authors
show a general upper bound of 1

B
log B

B�1
k C 3

on the competitive ratio of any lazy policy and
a matching lower bound of 1

B
log B

B�1
k C 1 for

several processing orders. In the two-valued case,
when processing is only 1 or k, this upper bound
improves to 2C 1

B
, so any lazy policy has constant

competitiveness. LPQ (Lazy Priority Queue) also
falls in the semi-FIFO class; its competitiveness
is between

�
2 � 1

B

˙
B
k

�
and 2 even for arbi-

trary processing requirements. Kogan et al. [22]
consider a generalization with packets of vary-
ing size, considering several natural policies and
showing an upper bound of 4L for one of PO
policies, where L is the maximal packet size.

Copying Cost
An important generalization of the heterogeneous
processing model was introduced by Keslassy
et al. [12]. They attach a penalty ˛ called copying
cost to admitting a packet in the queue; thus,
the objective function is now T � ˛A, where
T is the number of transmitted packets and A

is the number of accepted ones, and it becomes
less advantageous to push packets out. To deal
with copying cost, the authors propose to use ˇ-
push-out policies that push a packet out only

if its required processing is at least ˇ > 1

times less than the required processing of a
packet which is being pushed out. Keslassy et al.
[12] consider the PQˇ policy (Priority Queue
with ˇ-push-out) and show that it is at most

1
1�˛ logˇ k

�
1C log ˇ

ˇ�1

k
2
C 2 logˇ k

�
.1 � ˛/-

competitive. Kogan, López-Ortiz, Nikolenko, and
Sirotkin [23] show that for any processing order,
a ˇ-push-out lazy policy LAˇ has competitive

ratio at most
�
3C 1

B
log ˇB

ˇB�1

k
�

1�˛
1�˛ logˇ k

. They

show a lower bound 1�˛
1�˛ logˇ k

on the competitive

ratio of any ˇ-push-out policy, which matches
the additional factor in the upper bound. In
the two-valued case, the upper bound becomes�
2C 1

B

�
1�˛

1�2˛
, and the authors also show a

matching lower bound of .2B�2/.1�˛/
.B�1/.1�2˛/C.1�˛/

.

Uniform Values, Variable Processing,
Multiple Separated Queues
Consider k separate queues of size B each;
packets with required processing i fall into the i th
queue, and the processor chooses which queue to
process on a given time slot. Push-out is irrelevant
since queues are independent and packets in
a queue are identical. Kogan, López-Ortiz,
Nikolenko, and Sirotkin [25] show linear lower
bounds for several seemingly attractive policies:
1
2

minfk; Bg for LQF (Longest Queue First),

k for SQF (Shortest Queue First), 3k.kC2/
4kC16

for
PRR (Packet Round Robin), and an almost linear
lower bound of k

H.k/
, where H.k/ D

Pk
iD1

1
i
	

ln k C � , for CRR (Cycle Round Robin). They
introduce a policy called MQF (Minimal Queue
First) that processes packets from a nonempty
queue with minimal processing requirement.

They show that MQF is at least
�
1C k�1

2k

�
-

competitive and prove a constant upper bound of
2. For the two-valued case with two queues,
1 and k, Kogan et al. [25] show exactly
matching lower and upper bounds for MQF of
1C
�
1C

�
aB�1

b

˘�
=
�
B C

˙
1
a

�
b
�

aB�1
b

˘
C 1

��
.

Uniform Values, Variable Processing,
Shared Memory Switch
In this setting, multiple queues with shared mem-
ory are implemented in the same way as for
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uniform processing and heterogeneous values:
there are N output ports, each output port man-
ages a single output queue Qi , and each output
queue collects packets with the same processing
requirement (so packets in a given queue are
identical).

Non-Push-Out Policies
Eugster, Kogan, Nikolenko, and Sirotkin [8] con-
sider non-push-out policies and show that NHST
(Non-Push-Out Harmonic with Static Threshold:
jQi j is bounded by B

ri Z
) is .kZ C o.kZ//-

competitive, NEST (Non-Push-Out with Equal
Static Threshold: jQi j is bounded by B=n) is
.N Co.N //-competitive, NHDT (Non-Push-Out
with Harmonic Dynamic Threshold: accept into
Qi if

Pm
sD1 jQjs

j < B
Hk

�
1C 1

2
C : : :C 1

m

�
,

where j1 : : : jm D i are queues for which
jQj j � jQi j) is . 1

2

p
k ln k � o.

p
k ln k//-

competitive; finding better non-push-out policies
is an open problem.

Push-Out Policies
The work [8] also shows lower bounds on the
competitive ratio of well-known policies: .

p
k �

o.
p

k// for LQD (Longest Queue Drop), .ln k C

�/ for BQD (Biggest Packet Drop), and
�

4
3
� 6

B

�

for LWD (Largest Work Drop). The main result
of [8] is that LWD is at most 2-competitive.

Open Problems

1. Close the gap between competitive ratios 4
3

(lower bound for any policy) and 2 (upper
bound for LQD) in the uniform processing,
uniform value case.

2. Do there exist policies with constant compet-
itive ratio in the uniform processing, variable
values, shared memory multiple output queues
setting?

3. Do there exist non-push-out policies with sub-
linear competitive ratio in the case of a single
queue with packets with variable processing
and uniform values?

4. Prove an upper bound on the competitiveness
of PO (push-out) policy in the single-queue

FIFO model with heterogeneous required pro-
cessing and uniform values.

5. Do there exist non-push-out policies with log-
arithmic competitive ratio in the case of mul-
tiple output ports with shared memory that
contain packets with variable processing and
uniform values?

6. Design efficient policies for CIOQ and cross-
bar switches with packets with heterogeneous
processing and uniform values; prove bounds
on their competitive ratios.

7. Design efficient policies and prove bounds on
their competitive ratios for the case of packets
with both variable values and heterogeneous
processing requirements in all of the above
settings.
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Problem Definition

A dynamic graph algorithm maintains a given
property P on a graph subject to dynamic
changes, such as edge insertions, edge deletions
and edge weight updates. A dynamic graph
algorithm should process queries on property P
quickly, and perform update operations faster
than recomputing from scratch, as carried out by
the fastest static algorithm. An algorithm is fully
dynamic if it can handle both edge insertions and
edge deletions and partially dynamic if it can
handle either edge insertions or edge deletions,
but not both.

Given a graph with n vertices and m edges,
the transitive closure (or reachability) problem

http://dx.doi.org/10.1007/978-3-540-69355-0_15
http://dx.doi.org/10.1007/978-3-540-69355-0_15
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consists of building an n � n Boolean matrix M
such that MŒx; y� D 1 if and only if there is
a directed path from vertex x to vertex y in the
graph. The fully dynamic version of this problem
can be defifined as follows:

Definition 1 (Fully dynamic reachability
problem) The fully dynamic reachability
problem consists of maintaining a directed graph
under an intermixed sequence of the following
operations:

• insert(u,v): insert edge (u,v) into the graph.
• delete(u,v): delete edge (u,v) from the

graph.
• reachable(x,y): return true if there is a di-

rected path from vertex x to vertex y, and false
otherwise.

This entry addresses the single-source version of
the fully-dynamic reachability problem, where
one is only interested in queries with a fixed
source vertex s. The problem is defined as
follows:

Definition 2 (Single-source fully dynamic
reachability problem) The fully dynamic
single-source reachability problem consists of
maintaining a directed graph under an intermixed
sequence of the following operations:

• insert(u,v): insert edge (u,v) into the graph.
• delete(u,v): delete edge (u,v) from the

graph.
• reachable(y): return true if there is a di-

rected path from the source vertex s to vertex
y, and false otherwise.

Approaches
A simple-minded solution to the problem of Def-
inition would be to keep explicit reachability
information from the source to all other vertices
and update it by running any graph traversal
algorithm from the source s after each insert or
delete. This takes O.m C n/ time per operation,
and then reachability queries can be answered in
constant time.

Another simple-minded solution would be to
answer queries by running a point-to-point reach-
ability computation, without the need to keep
explicit reachability information up to date after
each insertion or deletion. This can be done in
O.m C n/ time using any graph traversal algo-
rithm. With this approach, queries are answered
in O.m C n/ time and updates require constant
time. Notice that the time required by the slowest
operation is O.mCn/ for both approaches, which
can be as high as O.n2/ in the case of dense
graphs.

The first improvement upon these two ba-
sic solutions is due to Demetrescu and Italiano,
who showed how to support update operations in
O.n1:575/ time and reachability queries in O.1/

time [1] in a directed acyclic graph. The result is
based on a simple reduction of the single-source
problem of Definition to the all-pairs problem
of Definition. Using a result by Sankowski [2],
the bounds above can be extended to the case of
general directed graphs.

Key Results

This Section presents a simple reduction
presented in [1] that allows it to keep explicit
single-source reachability information up to date
in subquadratic time per operation in a directed
graph subject to an intermixed sequence of
edge insertions and edge deletions. The bounds
reported in this entry were originally presented
for the case of directed acyclic graphs, but can
be extended to general directed graphs using the
following theorem from [2]:

Theorem 1 Given a general directed graph with
n vertices, there is a data structure for the fully
dynamic reachability problem that supports each
insertion/deletion in O.n1:575/ time and each
reachability query in O.n0:575/ time. The algo-
rithm is randomized with one-sided error.

The idea described in [1] is to maintain reach-
ability information from the source vertex s to
all other vertices explicitly by keeping a Boolean
array R of size n such that RŒy� D 1 if and
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only if there is a directed path from s to y. An
instance D of the data structure for fully dynamic
reachability of Theorem is also maintained. After
each insertion or deletion, it is possible to update
D in O.n1:575/ time and then rebuild R in O.n �

n0:575/ D O.n1:575/ time by letting RŒy�  D:

reachable (s,y) for each vertex y. This yields
the following bounds for the single-source fully
dynamic reachability problem:

Theorem 2 Given a general directed graph with
n vertices, there is a data structure for the single-
source fully dynamic reachability problem that
supports each insertion/deletion in O.n1:575/

time and each reachability query in O.1/

time.

Applications

The graph reachability problem is particularly
relevant to the field of databases for support-
ing transitivity queries on dynamic graphs of
relations [3]. The problem also arises in many
other areas such as compilers, interactive verifi-
cation systems, garbage collection, and industrial
robotics.

Open Problems

An important open problem is whether one can
extend the result described in this entry to main-
tain fully dynamic single-source shortest paths in
subquadratic time per operation.
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Problem Definition

The single-source shortest path problem (SSSP)
is, given a graph G D .V; E; l/ and a source
vertex s 2 V , to find the shortest path from s

to every v 2 V . The difficulty of the problem
depends on whether the graph is directed or
undirected and the assumptions placed on
the length function `. In the most general
situation, l W E ! R assigns arbitrary (positive
and negative) real lengths. The algorithms of
Bellman-Ford and Edmonds [1, 4] may be
applied in this situation and have running
times of roughly O.mn/, (Edmonds’s algorithm
works for undirected graphs and presumes that
there are no negative length simple cycles.)
where m D jEj and n D jV j are the
number of edges and vertices. If ` assigns
only nonnegative real edge lengths, then the

http://dx.doi.org/10.1007/978-1-4939-2864-4_425
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algorithms of Dijkstra and Pettie-Ramachandran
[4,13] may be applied on directed and undirected
graphs, respectively. These algorithms include
a sorting bottleneck and, in the worst case,
take �.mC n log n/ time. (The [13] algorithm
actually runs in O.mC n log log n/ time if the
ratio of any two edge lengths is polynomial
in n).

A common assumption is that ` assigns integer
edge lengths in the range f0; : : : ; 2w � 1g or
f�2w�1; : : : ; 2w�1 � 1g and that the machine is
a w-bit word RAM; that is, each edge length fits
in one register. For general integer edge lengths,
the best SSSP algorithms improve on Bellman-
Ford and Edmonds by a factor of roughly

p
n

[6]. For nonnegative integer edge lengths, the
best SSSP algorithms are faster than Dijkstra and
Pettie-Ramachandran by up to a logarithmic fac-
tor. They are frequently based on integer priority
queues [9].

Key Results

Thorup’s primary result [16] is an optimal linear
time SSSP algorithm for undirected graphs with
integer edge lengths. This is the first and only
linear time shortest path algorithm that does not
make serious assumptions on the class of input
graphs.

Theorem 1 There is a SSSP algorithm for
integer-weighted undirected graphs that runs
in O.m/ time.

Thorup avoids the sorting bottleneck inherent in
Dijkstra’s algorithm by precomputing (in linear
time) a component hierarchy. The algorithm of
[16] operates in a manner similar to Dijkstra’s
algorithm [4] but uses the component hierarchy
to identify groups of vertices that can be visited
in any order. In later work, Thorup [17] extended
this approach to work when the edge lengths are
floating-point numbers. (There is some flexibility
in the definition of shortest path since floating-
point addition is neither commutative nor asso-
ciative).

Thorup’s hierarchy-based approach has since
been extended to directed and/or real-weighted

graphs and to solve the all pairs shortest path
(APSP) problem [11–13]. The generalizations
to related SSSP problems are summarized be-
low. See [11, 12] for hierarchy-based APSP algo-
rithms.

Theorem 2 (Hagerup [8], 2000) A component
hierarchy for a directed graph G D .V; E; l/,
where l W E ! f0; : : : ; 2w � 1g, can be con-
structed in O.m log w/ time. Thereafter, SSSP
from any source can be computed in O.m C

n log log n/ time.

Theorem 3 (Pettie and Ramachandran [13],
2005) A component hierarchy for an undirected
graph G D .V; E; l/, where l W E !

R
C, can be constructed in O.m˛.m; n/ C

minfn log log r; n log ng/ time, where r is the
ratio of the maximum-to-minimum edge length.
Thereafter, SSSP from any source can be
computed in O.m log ˛.m; n// time.

The algorithms of Hagerup [8] and Pettie-
Ramachandran [13] take the same basic approach
as Thorup’s algorithm: use some kind of
component hierarchy to identify groups of
vertices that can safely be visited in any
order. However, the assumption of directed
graphs [8] and real edge lengths [13] renders
Thorup’s hierarchy inapplicable or inefficient.
Hagerup’s component hierarchy is based on a
directed analogue of the minimum spanning tree.
The Pettie-Ramachandran algorithm enforces
a certain degree of balance in its component
hierarchy and, when computing SSSP, uses a
specialized priority queue to take advantage of
this balance.

Applications

Shortest path algorithms are frequently used as a
subroutine in other optimization problems, such
as flow and matching problems [1] and facility
location [18]. A widely used commercial ap-
plication of shortest path algorithms is finding
efficient routes on road networks, e.g., as pro-
vided by Google Maps, MapQuest, or Yahoo
Maps.
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Open Problems

Thorup’s SSSP algorithm [16] runs in linear time
and is therefore optimal. The main open prob-
lem is to find a linear time SSSP algorithm
that works on real-weighted directed graphs. For
real-weighted undirected graphs, the best run-
ning time is given in Theorem 3. For integer-
weighted directed graphs, the fastest algorithms
are based on Dijkstra’s algorithm (not Theo-
rem 2) and run in O.m

p
log log n/ time (random-

ized) and deterministically in O.mC n log log n/

time.

Problem 1 Is there an O.m/ time SSSP algo-
rithm for integer-weighted directed graphs?

Problem 2 Is there an O.m/ C o.n log n/ time
SSSP algorithm for real-weighted graphs, either
directed or undirected?

The complexity of SSSP on graphs with positive
and negative edge lengths is also open.

Experimental Results

Asano and Imai [2] and Pettie et al. [14] evaluated
the performance of the hierarchy-based SSSP
algorithms [13,16]. There have been a number of
studies of SSSP algorithms on integer-weighted
directed graphs; see [7] for the latest and refer-
ences to many others. The trend in recent years
is to find practical preprocessing schemes that
allow for very quick point-to-point shortest path
queries. See [3, 10, 15] for recent work in this
area.

Data Sets

See [5] for a number of US and European road
networks.

URL to Code

See [5].
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Problem Definition

The ski rental problem was developed as a peda-
gogical tool for understanding the basic concepts
in some early results in online algorithms. (In the
interest of full disclosure, the earliest presenta-
tions of these results described the problem as the
wedding-tuxedo-rental problem. Objections were
presented that this was a gender-biased name
for the problem, since while groomsmen can
rent their wedding apparel, bridesmaids usually
cannot. A further complication, owing to the
difficulty of instantaneously producing fitted gar-
ments or ski equipment outlined below, suggests
that some complications could have been avoided
by focusing on the dilemma of choosing between

daily lift passes or season passes, although this
leads to the pricing complexities of purchasing
season passes well in advance of the season, as
opposed to the higher cost of purchasing them
at the mountain during the ski season. A simi-
lar problem could be derived from the question
as to whether to purchase the daily newspaper
at a newsstand or to take a subscription, after
adding the challenge that one’s peers will treat
one contemptuously if one has not read the news
on days on which they have.) The ski rental
problem considers the plight of one consumer
who, in order to socialize with peers, is forced to
engage in a variety of athletic activities, such as
skiing, bicycling, windsurfing, rollerblading, sky
diving, scuba-diving, tennis, soccer, and ultimate
Frisbee, each of which has a set of associated
apparatus, clothing, or protective gear.

In all of these, it is possible either to purchase
the accoutrements needed or to rent them. For the
purpose of this problem, it is assumed that one-
time rental is less expensive than purchasing. It
is also assumed that purchased items are durable,
and suitable for reuse for future activities of the
same type without further expense, until the items
wear out (which occurs at the same rate for all
users), are outgrown, become unfashionable, or
are disposed of to make room for other purchased
items. The social consumer must make the de-
cision to rent or buy for each event, although
it is assumed that the consumer is sufficiently
parsimonious as to abjure rental if already in
possession of serviceable purchased equipment.
Whether purchases are as easy to arrange as
rentals, or whether some advance planning is
required (e.g., to mount bindings on a ski) is a
further detail considered in this problem. It is
assumed that the social consumer has no partic-
ular independent interest in these activities, and
engages in these activities only to socialize with
peers who choose to engage in these activities
disregarding the consumer’s desires.

These putative peers are more interested in
demonstrating the superiority of their financial
acumen to that of the social consumer in question
than they are in any particular activity. To that
end, the social consumer is taunted mercilessly
based on the ratio of his/her total expenses on
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rentals and purchases to theirs. Consequently, the
peers endeavor to invite the social consumer to
engage in events while they are costly to him/her,
and once the activities are free to the social
consumer, if continued activity would be costly
to them, cease. But, to present an illusion of
fairness, skis, both rented and purchased, have the
same cost for the peers as they do for the social
consumer in question. The ski rental problem
takes a very restricted setting. It assumes that
purchased ski equipment never needs replace-
ment, and that there are no costs to a ski trip
other than the skis (thus, no cost for the gaso-
line, for the lift and/or speeding tickets, for the
hot chocolates during skiing, or for the après-
ski liqueurs and meals). It is assumed that the
social consumer experiences no physical disabil-
ities preventing him/her from skiing and has no
impending restrictions to his/her participation in
ski trips (obviously, a near-term-fatal illness or
an anticipated conviction leading to confinement
for life in a penitentiary would eliminate any
potential interest in purchasing alpine equipment
– when the ratio of purchase to rental exceeds the
maximum need for equipment, one should always
rent). It is assumed that the social consumer’s
peers have disavowed any interest in activities
other than skiing, and that the closet, basement,
attic, garage, or storage locker included in the so-
cial consumer’s rent or mortgage (or necessitated
by other storage needs) has sufficient capacity
to hold purchased ski equipment without entail-
ing the disposal of any potentially useful items.
Bringing these complexities into consideration
brings one closer to the hardware-based problems
which initially inspired this work.

The impact of invitations issued with sufficient
time allowed for purchasing skis, as well as those
without, will be considered.

Given all of that, what ratio of expenses can
the social consumer hope to attain? What ratio
can the social consumer not expect to beat? These
are the basic questions of competitive analysis.

The impact of keeping secrets from one’s
peers is further considered. Rather than a fixed
strategy for when to purchase skis, the social
consumer may introduce an element of chance
into the process. If the peers are able to observe

his/her ski equipment and notice when it changes
from rented skis to purchased skis, and change
their schedule for alpine recreation in light of
this observation, randomness provides no advan-
tages. If, on the other hand, the social consumer
announces to the peers, in advance of the first
trip, how he/she will decide when the time is
right for purchasing skis, including any use of
probabilistic techniques, and they then decide on
the schedule for ski trips for the coming win-
ter, a deterministic decision procedure generally
produces a larger competitive ratio than does a
randomized procedure.

Key Results

Given an unbounded sequence of skiing trips,
one should eventually purchase skis if the cost of
renting skis, r , is positive. In particular, let the
cost of purchasing skis be some number p � r .
If one never intends to make a purchase, one’s
cost for the season will be rn, where n is the
number of ski trips in which one participates. If
n exceeds p=r , one’s cost will exceed the price
of purchasing skis; as n continues to increase,
the ratio of one’s costs to those of one’s peers
increases to nr=p, which grows unboundedly
with n, since your peers, knowing that n exceeds
p=r , will have purchased skis prior to the first
trip.

On the other hand, if one rushes out to pur-
chase skis upon being told that the ski season is
approaching, one’s peers will decide that this sea-
son looks inopportune, and that skiing is passé,
leaving their costs at zero, and one’s costs at p,
leaving an infinite ratio between one’s costs and
theirs; if one chooses to defer the purchase until
after one’s first ski trip, this produces the less
unfavorable ratio p=r or 1C p=r , depending on
whether the invitation left one time to purchase
skis before the first trip or not.

Suppose one chooses, instead, to defer one’s
purchase until after one has made k rentals, but
before ski trip kC1. One’s costs are then bounded
by kr C p. After k ski trips, the cost to one’s
peers will be the lesser of kr and p (as one’s
peers will have decided whether to rent or buy for
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the season upon knowing one’s plans, which in
this case amounts to knowing k), for a ratio equal
to the larger of 1 C kr=p and 1 C p=kr . Were
they to choose to terminate the activity earlier
(so n < k), the ratio would be only the greater
of kr=p and 1, which is guaranteed to be less
than the sum of the two – one’s peers would be
shirking their opportunity to make one’s behavior
look foolish were they to allow one to stop skiing
prior to one’s purchase of a pair of skis!

It is certain, since kr=p and p=kr are recip-
rocals, that one of them is at least equal to 1,
ensuring that one will be compelled to spend at
least twice as much as one’s peers.

The analysis above applies to the case where
ski trips are announced without enough warning
to leave one time to buy skis. Purchases in that
case are not instantaneous; in contrast, if one is
able to purchase skis on demand, the cost to one’s
peers changes to the lesser of .kC1/r and p. The
overall results are not much different; the ratio
choices become the larger of 1 C kr=p and 1 C

.p � r/=..k C 1/r/.
When probabilistic algorithms are considered

with oblivious frenemies (those who know the
way in which random choices will affect one’s
purchasing decisions, but who do not take time to
notice that one’s skis are no longer marked with
the name and phone number of a rental agency),
one can appear more thrifty.

A randomized algorithm can be viewed as
a distribution over deterministic algorithms. No
good algorithm can purchase skis prior to the
first invitation, lest it exhibit infinite regrettability
(some positive cost compared to zero). A good
algorithm must purchase skis by the time one’s
peers will have; otherwise, one’s cost ratio con-
tinues to increase with the number of ski trips.
Moreover, the ratio should be the same after every
ski trip; if not, then there is an earliest ratio
not equal to the largest, and probabilities can be
adjusted to change this earliest ratio to be closer
to the largest while decreasing all larger ratios.

Consider, for example, the case of p D 2r ,
with purchases allowed at the time of an invita-
tion. The best deterministic ratio in this case is
1.5. It is only necessary to choose a probability
q, the probability of purchasing at the time of

the first invitation. The cost after one trip is then
.1�q/rC2qr D r.1Cq/, for a ratio of 1Cq, and
after two trips the cost is q.2r/C .1 � q/.3r/ D

3 � q/r , producing a ratio of .3 � q/=2. Setting
these to be equal yields q D 1=3, for a ratio of
4/3.

If insufficient time is allowed for purchases
before skiing, the best deterministic ratio is 2.
Purchasing after the first ski trip with probability
q (and after the second with probability 1 � q)
leads to expected costs of .1�q/rC3qr D r.1C

2q/ after the first trip, and .1�q/.2C2/rC3qr D

r.4 C q/, leading to a ratio of 2 � q=2. Setting
1C 2q D 2 � q=2 yields q D 2=5, for a ratio of
9/5.

More careful analysis, for which readers are
referred to the references and the remainder of
this volume, shows that the best achievable ra-
tio approaches �=.� � 1/ 	 1:58197 as p=r

increases, approaching the limit from below if
sufficient warning time is offered, and from above
otherwise.

Applications

The primary initial results were directed towards
problems of computer architecture; in particu-
lar, design questions for capacity conflicts in
caches, and shared memory design in the pres-
ence of a shared communication channel. The
motivation for these analyses was to find designs
which would perform reasonably well on as-
yet-unknown workloads, including those to be
designed by competitors who may have chosen
alternative designs which favor certain cases.
While it is probably unrealistic to assume that
precisely the least-desirable workloads will occur
in ordinary practice, it is not unreasonable to
assume that extremal workloads favoring either
end of a decision will occur.

History and Further Reading

This technique of finding algorithms with
bounded worst-case performance ratios is
common in analyzing approximation algorithms.
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The initial proof techniques used for such
analyses (the method of amortized analysis) were
first presented by Sleator and Tarjan.

The reader is advised to consult the remainder
of this volume for further extensions and appli-
cations of the principles of competitive online
algorithms.
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Problem Definition

This problem is about finding the optimal orienta-
tions of the cells in a slicing floorplan to minimize
the total area. In a floorplan, cells represent basic
pieces of the circuit which are regarded as in-
divisible. After performing an initial placement,
for example, by repeated application of a min-
cut partitioning algorithm, the relative positions
between the cells on a chip are fixed. Various
optimizations can then be done on this initial
layout to optimize different cost measures such
as chip area, interconnect length, routability, etc.
One such optimization, as mentioned in Lauther
[3], Otten [4], and Zibert and Saal [13], is to
determine the best orientation of each cell to
minimize the total chip area. This work by Stock-
meyer [8] gives a polynomial time algorithm to
solve the problem optimally in a special type
of floorplans called slicing floorplans and shows
that this orientation optimization problem in gen-
eral non-slicing floorplans is NP-complete.

Slicing Floorplan
A floorplan consists of an enclosing rectangle
subdivided by horizontal and vertical line seg-
ments into a set of non-overlapping basic rect-
angles. Two different line segments can meet but
not cross. A floorplan F is characterized by a
pair of planar acyclic directed graphs AF and LF

defined as follows. Each graph has one source
and one sink. The graph AF captures the “above”
relationships and has a vertex for each horizontal
line segment, including the top and the bottom of
the enclosing rectangle. For each basic rectangle
R, there is an edge er directed from segment ¢

to segment ¢ 0 if and only if ¢ (or part of ¢) is
the top of R and ¢ 0 (or part of ¢ 0) is the bot-
tom of R. There is a one-to-one correspondence
between the basic rectangles and the edges in
AF . The graph LF is defined similarly for the

http://dx.doi.org/10.1007/978-1-4939-2864-4_7
http://dx.doi.org/10.1007/978-1-4939-2864-4_229
http://dx.doi.org/10.1007/978-1-4939-2864-4_266
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http://dx.doi.org/10.1007/978-1-4939-2864-4_484
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“left” relationships of the vertical segments. An
example is shown in Fig. 1. Two floorplans F and
G are equivalent if and only if AF D AG and
LF D LG . A floorplan F is slicing if and only if
both its AF and LF are series parallel.

Slicing Tree
A slicing floorplan can also be described natu-
rally by a rooted binary tree called slicing tree.
In a slicing tree, each internal node is labeled by
either an h or a v, indicating a horizontal or a ver-
tical slice respectively. Each leaf corresponds to
a basic rectangle. An example is shown in Fig. 2.
There can be several slicing trees describing the
same slicing floorplan, but this redundancy can
be removed by requiring the label of an internal
node to differ from that of its right child [12].
For the algorithm presented in this work, a tree of
smallest depth should be chosen, and this depth
minimization process can be done in O.n log n/

time using the algorithm by Golumbic [2].

Orientation Optimization
In optimization of a floorplan layout, some free-
dom in moving the line segments and in choosing
the dimensions of the rectangles are allowed. In
the input, each basic rectangle R has two positive

integers aR and bR, representing the dimensions
of the cell that will be fit into R. Each cell has
two possible orientations resulting in either the
side of length aR or bR being horizontal. Given a
floorplan F and an orientation p, each edge e in
AF and LF is given a label l.e/ representing the
height or the width of the cell corresponding to
e depending on its orientation. Define an (F; ¡)-
placement to be a labeling l of the vertices in
AF and LF such that (i) the sources are labeled
by zero and (ii) if e is an edge from vertex
¢ to ¢ 0; l.¢ 0/ � l.¢/ C l.e/. Intuitively, if ¢

is a horizontal segment, l.¢/ is the distance of
¢ from the top of the enclosing rectangle, and
the inequality constraint ensures that the basic
rectangle corresponding to e is tall enough for
the cell contained in it and similarly for the
vertical segments. Now, hF .¡/ (resp. wF .¡/) is
defined to be the minimum label of the sink in
AF .¡/ (resp. LF .¡/) over all (F; ¡)-placements,
where AF .¡/ (resp. LF .¡/) is obtained from AF

(resp. LF ) by labeling the edges and vertices as
described above. Intuitively, hF .¡/ and wF .¡/

give the minimum height and width of a floorplan
F given an orientation ¡ of all the cells such
that each cell fits well into its associated basic
rectangle.
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The orientation optimization problem can be
defined formally as follows:

Problem 1 (Orientation Optimization Prob-
lem for Slicing Floorplan)
INPUT: A slicing floorplan F of n cells described
by a slicing tree T , the widths and heights of the
cells ai and bi for i D 1: : :n, and a cost function
§.h; w/.
OUTPUT: An orientation ¡ of all the cells that
minimizes the objective function§.hF .¡/;wF.¡//

over all orientations ¡.

For this problem, Lauther [3] has suggested
a greedy heuristic. Zibert and Saal [13] use
integer programming methods to do rotation
optimization and several other optimization
simultaneously for general floorplans. In the
following sections, an efficient algorithm will be
given to solve the problem optimally in O(nd)
time where n is the number of cells and d is the
depth of the given slicing tree.

Key Results

In the following algorithm, F.u/ denotes the
floorplan described by the subtree rooted at u in
the given slicing tree T , and let L.u/ be the set of
leaves in that subtree. For each node u of T , the
algorithm constructs recursively a list of pairs:

f.h1; w1/ ; .h2; w2/ ; : : : ; .hm; wm/g

where (1) m � jL.u/j C 1, (2) hi > hiC1 and
wi < wiC1 for i D 1: : :m � 1, (3) there is
an orientation ¡ of the cells in L.u/ such that
.hi ; wi / D .hF .u/.¡/; wF .u/.¡// for each i D

1: : :m, and (4) for each orientation ¡ of the cells
in L.u/, there is a pair .hi ; wi / in the list such that
hi � hF .u/.¡/ and wi � wF .u/.¡/.

L.u/ is thus a non-redundant list of all possible
dimensions of the floorplan described by the
subtree rooted at u. Since the cost function §

is non-decreasing, it can be minimized over all
orientations by finding the minimum §.hi ; wi /

over all the pairs .hi ; wi / in the list constructed
at the root of T . At the beginning, a list is
constructed at each leaf node of T representing

the possible dimensions of the cell. If a leaf cell
has dimensions a and b with a > b, the list
is f.a; b/; .b; a/g. If a D b, there will just be
one pair .a; b/ in the list. (If the cell has a fixed
orientation, there will also be just one pair as
defined by the fixed orientation.) Notice that the
condition (1) above is satisfied in these leaf node
lists. The algorithm then works its way up the
tree and constructs the list at each node recur-
sively. In general, assume that u is an internal
node with children v and v0 and u represents
a vertical slice. Let f.h1; w1/ : : : .hk ; wk/g and
f.h0

1; w0
1/ : : : .h0

m; w0
m/g be the lists at v and v0

respectively where k � jL.v/j C 1 and m � j

L.v0/j C 1. A pair (hi , wi) from v can be put
together by a vertical slice with a pair .h0

j ; w0
j /

from v0 to give a pair:

join..hi ; wi /; .h0
j ; w0

j // D .max.hi ; h0
j /; wiCw0

j /

in the list of u (see Fig. 3). The key fact is that
most of the km pairs are sub-optimal and do not
need to be considered. For example, if hi > h0

j ,
there is no need to join .hi ; wi / with .h0

´; w0
´/ for

any z > j since

max.hi ; h0
´/ D max.hi ; h0

j / D hi ;

wi C w0
´ > wi C w0

j

Similarly, if node u represents a horizontal slice,
the join operation will be

join..hi ; wi /; .h0
j ; w0

j // D .hiCh0
j ; max.wi ; w0

j //

The algorithm also keeps two pointers for each
element in the lists in order to construct back the
optimal orientation at the end. The algorithm is
summarized by the following pseudocode:

Pseudocode Stockmeyer()
1. Initialize the list at each leaf node.
2. Traverse the tree in postorder. At each inter-

nal node u with children v and v0, construct a
list at node u as follows:

3. Let f.h1; w1/ : : : .hk ; wk/g and f.h0
1; w0

1/

: : : .h0
m; w0

m/g be the lists at v and v0

respectively.
4. Initialize i and j to one.
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5. If i > k or j > m, the whole list at u is
constructed.

6. Add join..hi ; wi /; .h0
j ; w0

j // to the list with
pointers pointing to .hi ; wi / and .h0

j ; w0
j / in

L.v/ and L.v0/ respectively.
7. If hi > h0

j , increment i by 1.
8. If hi > h0

j , increment j by 1.
9. If hi > h0

j , increment both i and j by 1.
10. Go to step 5
11. Compute §.hi ; wi / for each pair .hi ; wi / in

the list Lr at the root r of T .
12. Return the minimum §.hi ; wi / for all

.hi ; wi / in Lr and construct back the optimal
orientation by following the pointers.

Correctness
The algorithm is correct since at each node u,
a list is constructed that records all the possible
non-redundant dimensions of the floorplan de-
scribed by the subtree rooted at u. This can be
proved easily by induction starting from the leaf
nodes and working up the tree recursively. Since
the cost function § is non-decreasing, it can be
minimized over all orientations of the cells by
finding the minimum §.hi ; wi / over all the pairs
.hi ; wi / in the list Lr constructed at the root r

of T .

Runtime
At each internal node u with children v and v0.
If the lengths of the lists at v and v0 are k and m

respectively, the time spent at u to combine the

two lists is O.k C m/. Each possible dimension
of a cell will thus invoke one unit of execution
time at each node on its path up to the root in
the postorder traversal. The total runtime is thus
O.d � N / where N is the total number of real-
izations of all the n cells, which is equal to 2n in
the orientation optimization problem. Therefore,
the runtime of this algorithm is O.nd/.

Theorem 1 Let §.h; w/ be non-decreasing in
both arguments, i.e., if h � h0 and w � w0,
§.h; w/ � §.h0; w0/, and computable in constant
time. For a slicing floorplan F described by a
binary slicing tree T , the problem of minimizing
§.hF .¡/; wF .¡// over all orientations ¡ can be
solved in time O.nd/ time, where n is the number
of leaves of T (equivalently, the number of cells
of F ) and d is the depth of T .

Applications

Floorplan design is an important step in the phys-
ical design of VLSI circuits. Stockmeyer’s opti-
mal orientation algorithm [8] has been general-
ized to solve the area minimization problem in
slicing floorplans [7], in hierarchical non-slicing
floorplans of order five [6,9], and in general floor-
plans [5]. The floorplan area minimization prob-
lem is similar except that each soft cell now has
a number of possible realizations, instead of just
two different orientations. The same technique
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can be applied immediately to solve optimally the
area minimization problem for slicing floorplans
in O.nd/ time where n is the total number of
realizations of all the cells in a given floorplan
F and d is the depth of the slicing tree of F. Shi
[7] has further improved this result to O.n log n/

time. This is done by storing the list of non-
redundant pairs at each node in a balanced binary
search tree structure called realization tree and
using a new merging algorithm to combine two
such trees to create a new one. It is also proved
in [7] that this O.n log n/ time complexity is the
lower bound for this area minimization problem
in slicing floorplans.

For hierarchical non-slicing floorplans, Pan
et al. [6] prove that the problem is NP-complete.
Branch-and-bound algorithms are developed by
Wang and Wong [9], and pseudopolynomial time
algorithms are developed by Wang and Wong
[10] and Pan et al. [6]. For general floorplans,
Stockmeyer [8] has shown that the problem is
strongly NP-complete. It is therefore unlikely
to have any pseudopolynomial time algorithm.
Wimer et al. [11] and Chong and Sahni [1]
propose branch-and-bound algorithms. Pan et al.
[5] develop algorithms for general floorplans that
are approximately slicing.
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Problem Definition

In the last decade, the theoretical study of the slid-
ing window model was developed to advance ap-
plications with very large input and time-sensitive
output. In some practical situations, input might
be seen as an ordered sequence, and it is use-
ful to restrict computations to recent portions
of the input. Examples include the analysis of
recent tweets and time series of the stock market.
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To address the aforementioned practical situa-
tions, Datar et al. [20] introduced the sliding
window model that assumes that the input is a
stream (i.e., the ordered sequence) of data el-
ements and divides the data elements into two
categories: active elements and expired elements.
Typically, a recent portion (i.e., a suffix) of the
stream defines the window of active elements,
and the reminder (i.e., a complimenting prefix)
of the stream defines the set of expired elements.
When a new data element arrives, the set of active
elements expands to include the new element,
but the set might also shrink by discarding some
portion of oldest active elements. This process
of additions and expirations reminds one of the
movements of an interval (or a window) along
a line and explains the name of the model. The
number of active elements N is often called a
size of the sliding window. There are two popular
variants of the sliding window model. The variant
of a sequence-based window fixes the number of
active elements N , and every insertion (or arrival)
of a new element corresponds to a deletion (or
expiration) of the oldest active element (after the
size of the stream becomes larger than N ). For
example, a sequence-based window on a stream
of IP packets is a set of last N packets. The
variant of a timestamp-based window associates
each element with a nondecreasing timestamp,
and the window contains all elements with times-
tamps larger than a certain value. Thus, there is
no obvious dependence between the number of
elements that arrive and expire. In the previous
example, the timestamp-based window might be
defined as a set of all packets that arrived within
the last t seconds.

Formal Definition
We denote the stream D by a sequence of ele-
ments fpig

m
iD1 where pi 2 Œn�. It is important

to note that m is incremented for each new
arrival. A bucket B.x; y/ D fpi ; i 2 Œx; y�g

is the set of all stream elements between px

and py , inclusively. A sequence-based window is
defined W D B.m � N C 1; m/ where N is a
predefined parameter. Consider a nondecreasing
timestamp function T W Œm� ! R and let t be
a parameter. Given T and t , a timestamp-based

window is defined as W D B.l.t/; m/ where
l.t/ D minfi W T .i/ � T .m/ � tg. Consider
function f that is defined on buckets. An algo-
rithm maintains a .1˙ �/-approximation of f on
W if, at any moment, the algorithm outputs X s.t.
jf .W / � X j � �f .W /. Similarly, a randomized
algorithm maintains a .1 ˙ �; ı/-approximation
if P.jf .W / � X j > �f .W // � ı. It is often
the case that f can be computed precisely if the
entire window is available, but sublinear-space
approximations, i.e., computation when the size
of the available memory is o.N C n/, might be
challenging. For example, Datar et al. [20] show
linear space is required to maintain a .1 ˙ �; ı/-
approximation of a sum of active elements if
pi 2 f1; 0;�1g. A typical question in the sliding
window model is the following: given function
f , what are the upper and lower bounds on
the space complexity of maintaining .1 ˙ �; ı/-
approximation of f .

History
In their pioneering papers, Datar et al. [20, 21]
and Babcock et al. [3] gave the first formal defi-
nition of the sliding window model. The model
arose in the context of relational databases as
a special case of time-sensitive queries in tem-
poral databases [3]. Below we give a short sur-
vey of a subset of known results. A survey of
Datar and Motwani [1] provides additional de-
tails. Datar et al. [20] gave the first algorithms
for estimating the count and sum of positive
integers, average, Lp for p 2 Œ1; 2�, and a wide
class of weakly additive functions. Gibbons and
Tirthapura [24] provided further improvements
to count and sum and gave the first methods
for distributed computations. Lee and Ting [29]
provided an optimal solution for a relaxed version
of the counting problem, where the correct an-
swer is provided only if it is comparable with the
window’s size. Braverman and Ostrovsky [6, 7]
extended the results in [20] to a wider class of
smooth functions. Chi et al. [15] considered a
problem of frequent itemsets. Arasu and Manku
[2], Lee and Ting [30], and Golab et al. [26]
considered the problem of finding frequent el-
ements, frequency counts, and quantiles. Bab-
cock, Datar, Motwani, and O’Callaghan [5] pro-
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vided first algorithms for variance and k-medians
problems. Feigenbaum, Kannan and Zhang [22]
presented an efficient solution for the diameter
of a data set in multidimensional space. Later,
Chan and Sadjad [23] presented optimal solu-
tions for this and other geometric problems. Bab-
cock, Datar and Motwani [4] presented algo-
rithms for uniform random sampling from sliding
windows.

Recently, Crouch et al. [17] presented the first
approximation algorithms for important graph
problems such as combinatorial sparsifiers and
spanners, graph matching, and minimum span-
ning tree. Among other results, the methods in
[17] allow non-smooth statistics using a modified
smooth histogram to be computed. McGregor
provided a detailed survey of these and other
graph algorithms [32]. Datar and Muthukrishnan
[19] solved problems of rarity and similarity.
Braverman et al. [11] gave improved algorithms
for rarity, similarity, and L2-heavy hitters. Cor-
mode and Yi developed several first algorithms
for sliding windows in distributed streams [16].
Babcock et al. [4] gave the first method of sam-
pling an element with constant expected space
complexity. Braverman et al. [9, 10] gave a solu-
tion with a space complexity that is a constant in
the worst case. Tatbul and Zdonik [35] considered
the problem of load shedding for aggregation
queries. Golab and Özsu [25] gave the first al-
gorithm for approximating multi-joins. Recently,
Braverman et al. [13] extended the zero-one law
for increasing frequency-based functions [8] to
sliding windows.

Key Results

Smooth Histogram
Extending the results in [20], Braverman and
Ostrovsky [6, 7] introduced a notion of a smooth
function and presented techniques for approxi-
mating smooth functions over sliding windows.
Denote by B �r A the event when bucket B is
a suffix of A; i.e., if A D fpn1

; : : : ; pn2
g (for

some n1 < n2), then B D fpn3
; : : : ; pn2

g, where
n1 � n3 � n2. Denote by A [ C the union of
adjacent buckets A and C .

Definition 1 Function f is .˛; ˇ/-smooth if it
preserves the following properties:

1. f .A/ � 0.
2. f .A/ � f .B/ for B �r A.
3. f .A/ � poly.jAj/.
4. For any 0 < � < 1, there exist ˛ D ˛.�; f /

and ˇ D ˇ.�; f / such that
• 0 < ˇ � ˛ < 1.
• If B �r A and .1� ˇ/f .A/ � f .B/, then

.1 � ˛/f .A [ C / � f .B [ C / for any
adjacent C .

In other words, a nonnegative, nondecreasing,
and polynomially bounded function f is .˛; ˇ/-
smooth if the following is true. If f .B/ is a
.1˙ ˇ/-approximation of f .A/, then f .B [ C /

is .1 ˙ ˛/-approximation of f .A [ C / for
any B �r A and C . The main technical
result of [7] is a new data structure called
“smooth histogram” that allows algorithms
for insertion-only streams to be extended
to sliding windows with space complexity
increased by a polylogarithmic factor. If there
exists an algorithm that computes f precisely
using g space and h time per element, then
a smooth histogram can be used to maintain
a .1 ˙ ˛/-approximation of f over sliding

windows, using O
�

1
ˇ

log n.g C log n/
�

bits

and O
�

1
ˇ

h log n
�

time. Further, .1 ˙ �/-

approximation of f on D results in .1 ˙

.˛ C �//-approximation of f over sliding
windows. Examples of smooth functions include
sum, count, min, diameter, weakly additive
functions, Lp norms, frequency moments,
length of longest subsequence, and geometric
mean.

Let f be .˛; ˇ/-smooth for which there ex-
ists an algorithm 	 that calculates f on D

using g space and h operation per element. To
maintain f on sliding windows, we construct a
data structure that we call smooth histogram. It
consists of a set of indexes x1 < x2 < � � � <

xs D N and instances of 	 for each bucket
B.xi ; N /. Informally, the smooth histogram en-
sures the following properties of the sequence.
The first two elements of the sequence always
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“sandwich” the window, i.e., x1 � N � n <

x2. This requirement and the monotonicity of
f give us useful bounds for the sliding window
W : f .x2; N / � f .W / � f .x1; N /. Also,
f should slowly but constantly decrease with
i , i.e., f .xiC2; N / < .1 � ˇ/f .xi ; N /. This
gradual decrease, together with the fact that f is
polynomially bounded, ensures that the sequence

is short, i.e., s D O
�

1
ˇ

log n
�

. Finally, the values

of f on successive buckets were close in the
past, i.e., f .xiC1; N 0/ � .1 � ˇ/f .xi ; N 0/ for
some N 0 � N . This represents our key idea and
exploits the properties of smoothness. Indeed,
f .x2; N 0/ � .1�ˇ/f .x1; N 0/ for some N 0 � N ;
thus, by the .˛; ˇ/-smoothness of f , we have
f .x2; N / � .1 � ˛/f .x1; N / � .1 � ˛/f .W /.
We refer a reader to [7] for further technical
details.

Applications

There are several applications of the theoretical
methods for the sliding window model, for ex-
ample, [15, 18, 31, 33, 36].

Open Problems

We list several interesting open problems. It
would be important to understand the difference
between the sliding window model and other
streaming models such as the insertion-only
model, the turnstile, and decay models. This is
perhaps one of the most important unresolved
open problems; see, e.g., Sohler [34]. In
particular, it would be nice to understand
the exact space complexity of the frequency
moments that are well understood in the other
streaming models [12, 27, 28]. Also, it would
be interesting to extend the coreset methods
[14] to sliding windows, obtain polylogarithmic
solutions for clustering, and improve the first
clustering algorithm in [5]. Also, it would
be nice to further develop graph methods
[17]. Improving the approximation ratio of the
maximum matching and obtaining the O.n1C1=t /

space bound for .2t � 1/-spanners are important
open problems.
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Problem Definition

Given a smooth surface S � R
3, we are required

to compute a set of points P � S and connect
them with edges and triangles so that the resulted
triangulation T is geometrically close and is
topologically equivalent to S .

The output triangulation T is a simplicial 2-
complex whose vertices are the points in P . Its
underlying space, which is the pointwise union
of the simplices (vertices, edges, triangles), is
denoted with jT j. Geometric proximity is often
characterized by Hausdorff distance between S

and the underlying space jT j of T . It is also
desired that the triangle normals in T closely
approximate the surface normals at its vertices.
Topological equivalence is characterized by the
existence of a homeomorphism between S and
jT j. In some cases, the topological guarantee can
be given in terms of isotopy which is stronger
than homeomorphism. It is important to notice
that, unlike polyhedral surfaces, a smooth surface
cannot be represented exactly and hence needs to
be approximated with a finite triangulation. This
approximation requires that the mesh generation
algorithms guarantee topological fidelity in addi-
tion to the geometric proximity.

In volume mesh generation, the space bounded
by a smooth surface S is required to be tes-
sellated with tetrahedra which form a simplicial
3-complex T . Similar to the surface case, it is
required that the underlying space jT j is geo-
metrically close and topologically equivalent to
the space bounded by S . It turns out that if the
underlying space of the boundary 2-complex of
T is geometrically close and has an isotopy to S ,
then so is jT j.

In both surface and volume meshes, it is
desirable that the triangles and tetrahedra have
good aspect ratio. This is often achieved by
bounding the circumradius to shortest edge
length ratios for triangles. Unfortunately, for
tetrahedra, a bounded radius-edge ratio does not
necessarily imply a bounded aspect ratio though
most poor quality tetrahedra except slivers [4]
are eliminated by bounded radius-edge ratio.
Figure 1 shows an example of a surface and a
volume mesh.

Key Results

Theoretically sound algorithms for surface mesh-
ing use the technique of Delaunay refinement
originally proposed by Chew [8]. For a point
set P � R

3, let Vor P and Del P denote the
Voronoi diagram and Delaunay triangulation of
P , respectively. A typical Delaunay refinement
algorithm iteratively samples the space to be
meshed with a locally furthest point strategy that
inserts points where a Voronoi face of appropriate
dimension intersects the space. The decision of

http://dl.acm.org/citation.cfm?id=1182635.1164196
http://dl.acm.org/citation.cfm?id=1182635.1164196
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Smooth Surface and Volume Meshing, Fig. 1 A knotted torus, its surface mesh, and its volume mesh

which points to be inserted is guided by cer-
tain desirable properties of the output such as
topological equivalence, simplex radius-edge ra-
tios, geometric proximity, and so on.

In both surface and volume meshing, the fea-
tures of the surface S play an important role
because regions of small features need to be sam-
pled relatively densely to capture the geometry
and topology of S . The definition of local feature
size and "-sample given by Amenta, Bern, and
Eppstein [2] captures this idea.

Let S be a smooth, closed surface, that is, S is
compact, C 2-smooth, and has no boundary. The
medial axis M.S/ of S is defined as the closure
of the set of points x 2 R

3 so that the distance
d.x; S/ is realized by two or more points in S .
The local feature size is defined as

f .x/ D d.x; M/:

A set of points P � S is called an "-sample of
S if every point x 2 S has a sample point in P

within "f .x/ distance.
It turns out that if P is an "-sample of S for a

sufficiently small value of ", a subcomplex of the
Delaunay triangulation of this sample captures
the topology of S . We define this subcomplex in
generality and then specialize it to S .

Let V
 denote the dual Voronoi face of a De-
launay simplex � in Del P . The restricted Voronoi
face of V
 with respect to X � R

3 is the inter-
section V
 jX D V
 \ X. The restricted Voronoi
diagram and restricted Delaunay triangulation of
P with respect to X are

Vor P jX D fV
 jX j V
 jX 6D ;g and Del P jX

D f� j V
 jX 6D ;g respectively.

In words, Del P jX consists of those Delaunay
simplices in Del P whose dual Voronoi face in-
tersects X. We call these simplices restricted.

Now consider a sample P on the surface S .
The restricted Delaunay triangulation of P with
respect to S is Del P jS . It is known that if P is
an "-sample of S for " � 0:09, then Del P jS has
its underlying space homeomorphic to S [1, 9].
To use this result one requires computing an "-
sample of S . A computation of local feature size
or its approximation is necessary to determine if
a sample is an "-sample for a predetermined ".
Even if one is allowed to assume the availability
of the local feature size at any given point, it is
not immediately obvious how to place points on
S so that they become "-sample for a given " > 0.

Surface Meshing
The following theorem about the fidelity of the
restricted Delaunay triangulation of a dense sam-
ple on a smooth closed surface is the basis of
provable surface meshing algorithms. It has been
proved in various versions in [1, 5, 7, 9].

Theorem 1 Let P be an "-sample of a smooth,
compact, boundary-less surface S � R

3. The re-
stricted Delaunay complex T D Del P jS satisfies
the following properties for " � 0:09:

1. The underlying space jT j is homeomorphic to
S (actually, there is an ambient isotopy taking
jT j to S ).

2. Every point in jT j has a point x 2 S so that
d.p; x/ � O."/f .x/. Similarly, every point x

in S has a point p in jT j so that d.p; x/ �

O."/f .x/.
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3. Each triangle t 2 T has a normal making an
angle O."/ with the normal to the surface S

at any of its vertices.

Cheng, Dey, Edelsbrunner, and Sullivan [5]
applied Chew’s furthest point placement strat-
egy [8] to maintain a dynamic surface mesh
of a special type of surface called skin surface
for which they computed the local feature size
explicitly. The above theorem then allowed them
to argue the geometric and topological fidelity
of the output. Boissonnat and Oudot [3] used
similar point placement strategy assuming that
the local feature sizes are available, but they
suggested how to initialize the meshing proce-
dure for general surfaces. For a restricted triangle
t 2 Del P jS , the dual Voronoi edge intersects S

possibly at multiple points. Each ball centering
such an intersection point and circumscribing
vertices of t is called a surface Delaunay ball of
t . Boissonnat and Oudot observed that if every
surface Delaunay ball of each restricted triangle
has small radius, say at most 0:05 times the
local feature size at the center, then P a 0:09-
sample of S . It follows that Del P jS at this point
satisfies the properties stated in Theorem 1. The
deduction of this conclusion also requires that
every component of S has at least one Voronoi
edge intersecting it which Boissonnat and Oudot
ensure with persistent triangles.

When local feature sizes are not known,
we cannot use the method of Boissonnat and
Oudot [3]. Instead, we fall back upon a different
strategy to drive the Delaunay refinement. A
result of Edelsbrunner and Shah [10] says
that if Voronoi faces intersect S in a closed
topological ball of appropriate dimension, then
the underlying space of the restricted Delaunay
triangulation becomes homeomorphic to S . In
fact, this is the basis of the proof of Theorem 1.
Therefore, a Delaunay refinement driven by
the violation of the topological ball conditions
provides a viable strategy for meshing with
topological guarantees. This strategy is followed
by Cheng, Dey, Ramos, and Ray [6].

The algorithm of Cheng et al. avoids com-
puting local feature sizes or their approximation;
however, it needs to compute critical points of

certain functions on the surface, which may not
be easily computable. In a recent book on De-
launay mesh generation [7], Cheng, Dey, and
Shewchuk have suggested a strategy that is more
practical which leverages on both algorithms of
Boissonnat and Oudot [3] and Cheng et al. [6].
It operates with an input parameter � > 0.
As long as the surface Delaunay balls of the
restricted triangles are not all smaller than a ball
of radius �, the algorithm refines. It also refines
if the restricted triangles around each vertex do
not form a topological disk. The algorithm can
be shown to terminate and has the following
guarantees.

Theorem 2 ([7]) There is a Delaunay refine-
ment algorithm that runs with a parameter � > 0

on an input smooth, compact, boundary-less
surface S with the following guarantees:

1. The output mesh is a Delaunay subcomplex
and is a 2-manifold for all values of �.

2. If � is sufficiently small, then the output mesh
has similar guarantees with respect to the
input surface S as in Theorem 1 (replace "

with �).

It should be noted that in any of the above
algorithms, one may introduce the condition that
the output triangles have radius-edge ratio of at
most 1 without loosing any of the geometric
or topological guarantees. Even a graded mesh
can be guaranteed by supplying an appropriate
grading function as input. For details see [7].

Volume Meshing
Let O denote the volume enclosed by a smooth
surface S . Consider the surface mesh of S pro-
duced by one of the algorithms mentioned above.
The volume enclosed by this surface mesh is
already triangulated with Delaunay tetrahedra.
We can further refine them for quality using the
radius-edge ratio condition. The circumcenters of
skinny tetrahedra can be added as long as they do
not disturb the surface triangulation. One easy ap-
proach is to skip adding those circumcenters who
encroach the surface Delaunay balls meaning that
they lie inside these balls. This ensures that all
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surface triangles remain intact. The trade-off of
this easy fix is that the tetrahedra near the bound-
ary may not have bounded radius-edge ratios. To
ensure the quality for all tetrahedra, additional
effort is required to maintain the surface. Oudot,
Rineau, and Yvinec [11] proposed an algorithm
for guaranteed quality volume meshing.

The algorithm first runs the algorithm of [3]
to obtain a surface triangulation with a vertex set
P on the surface. It uses two parameters " and
� where " controls the level of refinement and
� controls the aspect ratios of the tetrahedra and
triangles. It ensures that all restricted triangles on
the surface have vertices from S . It refines surface
triangles as in surface meshing algorithm. Then,
it refines the tetrahedra. Refinement of surface tri-
angles is given priority over the tetrahedra. Oudot
et al. [11] prove that their algorithm terminates
and has the following geometric and topological
guarantees.

Theorem 3 ([11]) Given a volume O bounded
by a smooth surface S , for " � 0:05 and � > 1,
there is an algorithm that produces T D Del P jO
where each tetrahedron in T has radius-edge
ratio at most � and jT j is homeomorphic (iso-
topic) to O and the boundary of T is Del P jS .
Furthermore, the isotopy moves a point x 2 S by
at most O."2/f .x/ distance.

An improved version of the algorithm and its
analysis in presented in the book [7].

URLs to Code and Data Sets

CGAL(http://cgal.org), a library of geometric
algorithms, contains software for surface and
volume mesh generation. The DelPSC software
that implements the surface and volume meshing
algorithms as described in [7] is also available
from http://web.cse.ohio-state.edu/~tamaldey/
delpsc.html.
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Problem Definition

Smoothed analysis has originally been introduced
by Spielman and Teng [22] in 2001 to explain
why the simplex method is usually fast in prac-
tice despite its exponential worst-case running
time. Since then it has been applied to a wide
range of algorithms and optimization problem.
In smoothed analysis, inputs are generated in
two steps: first, an adversary chooses an arbi-
trary instance, and then this instance is slightly
perturbed at random. The smoothed performance
of an algorithm is defined to be the worst ex-
pected performance the adversary can achieve.
This model can be viewed as a less pessimistic
worst-case analysis, in which the randomness
rules out pathological worst-case instances that
are rarely observed in practice but dominate the
worst-case analysis. If the smoothed running time
of an algorithm is low (i.e., the algorithm is ef-
ficient in expectation on any perturbed instance)
and inputs are subject to a small amount of
random noise, then it is unlikely to encounter an
instance on which the algorithm performs poorly.
In practice, random noise can stem, for example,
from measurement errors, numerical imprecision,
or rounding errors. It can also model arbitrary
influences, which we cannot quantify exactly, but
for which there is also no reason to believe that
they are adversarial. After its invention smoothed
analysis has been applied in a variety of different
contexts, e.g., linear programming [8, 19, 21, 23],
multi-objective optimization [5,10,17,18], online
and approximation algorithms [4,7,20], searching
and sorting [3,12,15,16], game theory [9,11], and
local search [1, 2, 13, 14].

Key Results

Simplex Method
Spielman and Teng [22] considered linear pro-
grams of the form

maximize cT x

subject to .ACG/x � .b C h/;

where A 2 R
n�d and b 2 R

n are chosen
arbitrarily by an adversary and the entries of the

matrix G 2 R
n�d and the vector h 2 R

n are
independent Gaussian random variables that rep-
resent the perturbation. These Gaussian random
variables have mean 0 and standard deviation
� � .maxik.bi ; ai /k/, where the vector .bi ; ai / 2

R
dC1 consists of the i -th component of b and the

i -th row of A and k�k denotes the Euclidean norm.
Without loss of generality, we can scale the linear
program specified by the adversary and assume
that maxik.bi ; ai /k D 1. Then the perturba-
tion consists of adding an independent Gaussian
random variable with standard deviation � to
each entry of A and b. The smaller � is chosen,
the more concentrated are the random variables,
and hence, the better worst-case instances can be
approximated by the adversary. Intuitively, � can
be seen as a measure specifying how close the
analysis is to a worst-case analysis.

Spielman and Teng analyzed the smoothed
running time of the simplex algorithm using the
shadow vertex pivot rule. This pivot rule has a
simple and intuitive geometric description which
makes probabilistic analyses feasible. Let x0 de-
note the given initial vertex of the polytope P
of feasible solutions. Since x0 is a vertex of
the polytope, there exists an objective function
uT x which is maximized by x0 subject to the
constraint x 2 P . In the first step, the shadow
vertex pivot rule computes an objective function
uT x with this property. If x0 is not an optimal
solution of the linear program, then the vectors
c and u are linearly independent and span a
plane. The shadow vertex method projects the
polytope P onto this plane. The shadow, that is,
the projection of P onto this plane is a possibly
open polygon. One can show that both x0 and the
optimal solution x� are projected onto vertices of
the polygon and that each path between the pro-
jections of x0 and x� in the polygon corresponds
to a path between x0 and x� in the polytope.
Hence, one only needs to follow the edges of the
polygon starting from the projection of x0 to (the
projection of) x�.

The number of steps performed by the simplex
method with shadow vertex pivot rule is upper
bounded by the number of vertices of the two-
dimensional projection of the polytope. Hence,
bounding the expected number of vertices on the
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polygon is the crucial step for bounding the ex-
pected running time of the simplex method with
shadow vertex pivot rule. Spielman and Teng first
consider the case that the polytope P is projected
onto a fixed plane specified by two fixed vectors
c and u. They show that the expected number of
vertices of the polygon is polynomially bounded
in d , n, and 1=� . Though this result is the main
ingredient of the analysis, alone it does not yield a
polynomial bound on the smoothed running time
of the simplex method. We have, for example,
not yet described how the initial solution x0 is
found. It is also problematic that the vector u is
not independent of the constraints because it is
determined by x0 which in turn is determined by
a subset of the constraints. Spielman and Teng
showed in a very involved analysis the following
theorem.

Theorem 1 The smoothed running time of the
shadow vertex simplex method is bounded poly-
nomially in d , n, and 1=� .

Later, this analysis was substantially improved
and simplified by Vershynin [23], who proved
that the smoothed running time is even polyno-
mially bounded in d , log n, and 1=� .

Binary Optimization Problems
Beier and Vöcking [6] studied the question which
linear binary optimization problems have polyno-
mial smoothed complexity. Intuitively these are
the problems that can be solved efficiently on
perturbed inputs. An instance I of such an op-
timization problem ˘ consists of a set of feasible
solutions S � f0; 1gn and a linear objective
function f W f0; 1gn ! R of the form maximize
(or minimize) f .x/ D cT x for some c 2 R

n.
Many well-known optimization problems can be
formulated this way, e.g., the problem of finding a
Minimum Spanning Tree, the Knapsack Problem,
and the Traveling Salesman Problem.

It is assumed that an adversary is allowed
to choose the coefficients of the objective
function from the interval Œ�1; 1�. In the second
step, these coefficients are perturbed by adding
independent Gaussian random variables with
mean 0 and standard deviation � to them.
Naturally one might define that a problem ˘ has

polynomial smoothed complexity if there exists
an algorithm A for ˘ whose expected running
time E ŒTA.I /� is bounded polynomially in the
input size jI j and 1=� . This definition, however,
is not sufficiently robust as it depends on the
machine model. An algorithm with expected
polynomial running time on one machine model
might have expected exponential running time on
another machine model even if the former can
be simulated by the latter in polynomial time. In
contrast, the definition from [6] yields a notion
of polynomial smoothed complexity that does
not vary among classes of machines admitting
polynomial time simulations among each other. It
states that a problem ˘ has polynomial smoothed
complexity if there exists an algorithm A for ˘

and some ˛ > 0 such that E ŒTA.I /˛� is bounded
polynomially in the input size jI j and 1=� .

Beier and Vöcking proved the following
theorem that characterizes the class of linear
binary optimization problems with polynomial
smoothed complexity.

Theorem 2 A linear binary optimization prob-
lem ˘ has polynomial smoothed complexity if
and only if there exists a randomized algorithm
for solving ˘ whose expected worst-case running
time is pseudo-polynomial with respect to the
coefficients in the objective function.

For example, the knapsack problem, which
can be solved by dynamic programming
in pseudo-polynomial time, has polynomial
smoothed complexity even if the weights are
fixed and only the profits are randomly perturbed.
Moreover, the traveling salesman problem does
not have polynomial smoothed complexity when
only the distances are randomly perturbed, unless
PDNP, since a simple reduction from Hamilto-
nian cycle shows that it is strongly NP-hard.

Open Problems

An interesting open question is whether or not
other pivot rules for the simplex method also have
polynomial smoothed running time. It would also
be interesting to see whether the insights gained
from smoothed analysis can be used to improve
existing algorithms.
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Problem Definition

Implementing a snapshot object is an abstraction
of the problem of obtaining a consistent view of
several shared variables while other processes are
concurrently updating those variables.

In an asynchronous shared-memory dis-
tributed system, a collection of n processes
communicate by accessing shared data structures,
called objects. The system provides basic types
of shared objects; other needed types must be
built from them. One approach uses locks to
guarantee exclusive access to the basic objects,
but this approach is not fault-tolerant, risks
deadlock or livelock, and causes delays when
a process holding a lock runs slowly. Lock-free
algorithms avoid these problems but introduce
new challenges. For example, if a process reads
two shared objects, the values it reads may not
be consistent if the objects were updated between
the two reads.

A snapshot object stores a vector of m values,
each from some domain D. It provides two opera-
tions: scan and update(i, v), where 1 � i � m and
v 2 D. If the operations are invoked sequentially,
an update(i, v) operation changes the value of the
ith component of the stored vector to v, and a scan
operation returns the stored vector.

Correctness when snapshot operations by
different processes overlap in time is described
by the linearizability condition, which says op-
erations should appear to occur instantaneously.
More formally, for every execution, one can
choose an instant of time for each operation
(called its linearization point) between the
invocation and the completion of the operation.
(An incomplete operation may either be assigned
no linearization point or given a linearization
point at any time after its invocation.) The
responses returned by all completed operations
in the execution must return the same result
as they would if all operations were executed
sequentially in the order of their linearization
points.

An implementation must also satisfy
a progress property. Wait-freedom requires that
each process completes each scan or update in
a finite number of its own steps. The weaker

non-blocking progress condition says the system
cannot run forever without some operation
completing.

This article describes implementations of
snapshots from more basic types, which are
also linearizable, without locks. Two types
of snapshots have been studied. In a single-
writer snapshot, each component is owned by
a process, and only that process may update it.
(Thus, for single-writer snapshots, m D n.) In
a multi-writer snapshot, any process may update
any component. There also exist algorithms
for single-scanner snapshots, where only one
process may scan at a time [10, 13, 14, 16].
Snapshots were introduced by Afek et al. [1],
Anderson [2] and Aspnes and Herlihy [4].

Space complexity is measured by the number
of basic objects used and their size (in bits).
Time complexity is measured by the maximum
number of steps a process must do to finish
a scan or update, where a step is an access to
a basic shared object. (Local computation and
local memory accesses are usually not counted.)
Complexity bounds will be stated in terms of
n; m; d D log jDj and k, the number of opera-
tions invoked in an execution. Ordinarily, there
is no bound on k.

Most of the algorithms below use read-write
registers, the most elementary shared object type.
A single-writer register may only be written
by one process. A multi-writer register may be
written by any process. Some algorithms using
stronger types of basic objects are discussed in
section “Wait-Free Implementations from Small,
Stronger Objects”.

Key Results

A Simple Non-blocking Implementation
from Small Registers
Suppose each component of a single-writer snap-
shot object is represented by a single-writer reg-
ister. Process i does an update(i, v) by writing v

and a sequence number into register i, and incre-
menting its sequence number. Performing a scan
operation is more difficult than merely reading
each of the m registers, since some registers
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might change while these reads are done. To
scan, a process repeatedly reads all the regis-
ters. A sequence of reads of all the registers is
called a collect. If two collects return the same
vector, the scan returns that vector (with the
sequence numbers stripped away). The sequence
numbers ensure that, if the same value is read
in a register twice, the register had that value
during the entire interval between the two reads.
The scan can be assigned a linearization point
between the two identical collects, and updates
are linearized at the write. This algorithm is non-
blocking, since a scan continues running only if
at least one update operation is completed during
each collect. A similar algorithm, with process
identifiers appended to the sequence numbers,
implements a non-blocking multi-writer snapshot
from m multi-writer registers.

Wait-Free Implementations from
Large Registers
Afek et al. [1] described how to modify the
non-blocking single-writer snapshot algorithm to
make it wait-free using scans embedded within
the updates. An update(i, v) first does a scan and
then writes a triple containing the scan’s result,
v and a sequence number into register i. While
a process P is repeatedly performing collects to
do a scan, either two collects return the same
vector (which P can return) or P will eventually
have seen three different triples in the register of
some other process. In the latter case, the third
triple that P saw must contain a vector that is
the result of a scan that started after P’s scan, so
P’s scan outputs that vector. Updates and scans
that terminate after seeing two identical collects
are assigned linearization points as before. If one
scan obtains its output from an embedded scan,
the two scans are given the same linearization
point. This is a wait-free single-writer snapshot
implementation from n single-writer registers of
.nC 1/d C log k bits each. Operations complete
within O(n2) steps. Afek et al. [1] also describe
how to replace the unbounded sequence numbers
with handshaking bits. This requires n�.nd/-bit
registers and n2 1-bit registers. Operations still
complete in O(n2) steps.

The same idea can be used to build multi-
writer snapshots from multi-writer registers.
Using unbounded sequence numbers yields
a wait-free algorithm that uses m registers
storing �.nd C log k/ bits each, in which
each operation completes within O(mn) steps.
(This algorithm is given explicitly in [9].) No
algorithm can use fewer than m registers if
n � m [9]. If handshaking bits are used instead,
the multi-writer snapshot algorithm uses n2

1-bit registers, m.d C log n/-bit registers and
n (md)-bit registers, and each operation uses
O.nmC n2/ steps [1].

Guerraoui and Ruppert [12] gave a similar
wait-free multi-writer snapshot implementation
that is anonymous, i.e., it does not use pro-
cess identifiers and all processes are programmed
identically.

Anderson [3] gave an implementation of
a multi-writer snapshot from a single-writer
snapshot. Each process stores its latest update
to each component of the multi-writer snapshot
in the single-writer snapshot, with associated
timestamp information computed by scanning the
single-writer snapshot. A scan is done using just
one scan of the single-writer snapshot. An update
requires scanning and updating the single-writer
snapshot twice. The implementation involves
some blow-up in the size of the components,
i.e., to implement a multi-writer snapshot with
domain D requires a single-writer snapshot
with a much larger domain D0. If the goal
is to implement multi-writer snapshots from
single-writer registers (rather than multi-writer
registers), Anderson’s construction gives a more
efficient solution than that of Afek et al.

Attiya, Herlihy and Rachman [7] defined the
lattice agreement object, which is very closely
linked to the problem of implementing a single-
writer snapshot when there is a known upper
bound on k. Then, they showed how to construct
a single-writer snapshot (with no bound on k)
from an infinite sequence of lattice agreement
objects. Each snapshot operation accesses the
lattice agreement object twice and does O(n)
additional steps. Their implementations of lattice
agreement are discussed in section “Wait-Free
Implementations from Small, Stronger Objects”.
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Attiya and Rachman [8] used a similar ap-
proach to give a single-writer snapshot imple-
mentation from large single-writer registers using
O.n log n/ steps per operation. Each update has
an associated sequence number. A scanner tra-
verses a binary tree of height log k from root
to leaf (here, a bound on k is required). Each
node has an array of n single-writer registers.
A process arriving at a node writes its current
vector into a single-writer register associated with
the node and then gets a new vector by combining
information read from all n registers. It proceeds
to the left or right child depending on the sum
of the sequence numbers in this vector. Thus,
all scanners can be linearized in the order of
the leaves they reach. Updates are performed
by doing a similar traversal of the tree. The
bound on k can be removed as in [7]. Attiya and
Rachman also give a more direct implementation
that achieves this by recycling the snapshot object
that assumes a bound on k. Their algorithm has
also been adapted to solve condition-based con-
sensus [15].

Attiya, Fouren and Gafni [6] described how to
adapt the algorithm of Attiya and Rachman [8]
so that the number of steps required to perform
an operation depends on the number of processes
that actually access the object, rather than the
number of processes in the system.

Attiya and Fouren [5] solve lattice agreement
in O(n) steps. (Here, instead of using the ter-
minology of lattice agreement, the algorithm is
described in terms of implementing a snapshot
in which each process does at most one snapshot
operation.) The algorithm uses, as a data struc-
ture, a two-dimensional array of O(n2) reflectors.
A reflector is an object that can be used by two
processes to exchange information. Each reflector
is built from two large single-writer registers.
Each process chooses a path through the array
of reflectors, so that at most two processes visit
each reflector. Each reflector in column i is used
by process i to exchange information with one
process j < i . If process i reaches the reflector
first, process j learns about i’s update (if any).
If process j reaches it first, then process i learns
all the information that j has already gathered.
(If both reach it at about the same time, both

processes learn the information described above.)
As the processes move from column i � 1 to
column i, a process that enters column i at some
row r will have gathered all the information that
has been gathered by any process that enters
column i below row r (and possibly more). This
invariant is maintained by ensuring that if process
i passes information to any process j < i in row
r of column i, it also passes that information to
all processes that entered column i above row r.
Furthermore, process i exits column i at a row that
matches the amount of information it learns while
traveling through the column. When processes
have reached the rightmost column of the array,
the ones in higher rows know strictly more than
the ones in lower rows. Thus, the linearization
order of their scans is the order in which they exit
the rightmost column, from bottom to top. The
techniques of Attiya, Herlihy and Rachman [7,
8], mentioned above, can be used to remove the
restriction that each process performs at most one
operation. The number of steps per operation is
still O(n).

Wait-Free Implementations from Small,
Stronger Objects
All of the wait-free implementations described
above use registers that can store ˝.m/ bits
each, and are therefore not practical when m is
large. Some implementations from smaller ob-
jects equipped with stronger synchronization op-
erations, rather than just reads and writes, are
described in this section. An object is considered
to be small if it can store O.d C log nC log k/

bits. This means that it can store a constant
number of component values, process identifiers
and sequence numbers.

Attiya, Herlihy and Rachman [7] gave an el-
egant divide-and-conquer recursive solution to
the lattice agreement problem. The division of
processes into groups for the recursion can be
done dynamically using test&set objects. This
provides a snapshot algorithm that runs in O(n)
time per operation, and uses O.kn2 log n/ small
single-writer registers and O.kn log2 n/ test&set
objects. (This requires modifying their imple-
mentation to replace those registers that are large,
which are written only once, by many small
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registers.) Using randomization, each test&set
object can be replaced by single-writer registers
to give a snapshot implementation from registers
only with O(n) expected steps per operation.

Jayanti [13] gave a multi-writer snapshot im-
plementation from O.mn2/ small compare &
swap objects where updates take O(1) steps and
scans take O(m) steps. He began with a very
simple single-scanner, single-writer snapshot im-
plementation from registers that uses a secondary
array to store a copy of recent updates. A scan
clears that array, collects the main array, and
then collects the secondary array to find any
overlooked updates. Several additional mecha-
nisms are introduced for the general, multi-writer,
multi-scanner snapshot. In particular, compare &
swap operations are used instead of writes to
coordinate writers updating the same component
and multiple scanners coordinate with one an-
other to simulate a single scanner. Jayanti’s algo-
rithm builds on an earlier paper by Riany, Shavit
and Touitou [16], which gave an implementation
that achieved similar complexity, but only for
a single-writer snapshot.

Applications

Applications of snapshots include distributed
databases, storing checkpoints or backups for
error recovery, garbage collection, deadlock
detection, debugging distributed programmes
and obtaining a consistent view of the values
reported by several sensors. Snapshots have been
used as building blocks for distributed solutions
to randomized consensus and approximate
agreement. They are also helpful as a primitive
for building other data structures. For example,
consider implementing a counter that stores
an integer and provides increment, decrement
and read operations. Each process can store
the number of increments it has performed
minus the number of its decrements in its own
component of a single-writer snapshot object,
and the counter may be read by summing the
values from a scan. See [10] for references on
many of the applications mentioned here.

Open Problems

Some complexity lower bounds are known for
implementations from registers [9], but there re-
main gaps between the best known algorithms
and the best lower bounds. In particular, it is not
known whether there is an efficient wait-free im-
plementation of snapshots from small registers.

Experimental Results

Riany, Shavit and Touitou gave performance eval-
uation results for several implementations [16].
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Problem Definition

One of the most promising ways to determine
evolutionary distance between two organisms is
to compare the order of appearance of identical
(e.g., orthologous) genes in their genomes. The
resulting genome rearrangement problem calls
for finding a shortest sequence of rearrangement
operations that sorts one genome into the other.

In this work [8], Hartman and Sharan provide
a 1.5-approximation algorithm for the problem
of sorting by transpositions, transreversals, and
revrevs, improving on a previous 1.75 ratio for
this problem. Their algorithm is also faster than
current approaches and requires O.n3=2

p
log n/

time for n genes.

Notations and Definition
A signed permutation   D Œ 1;  2; : : : ;  n� on
n. / 
 n elements is a permutation in which
each element is labeled by a sign of plus or minus.
A segment of   is a sequence of consecutive
elements  i ;  iC1; : : : ;  k , where 1 � i � k �

n. A reversal ¡ is an operation that reverses the
order of the elements in a segment and also flips
their signs. Two segments  i ;  iC1; : : : ;  k and
 j ;  j C1; : : : ;  l are said to be contiguous if
j D kC1 or i D lC1. A transposition £ is an op-
eration that exchanges two contiguous (disjoint)
segments. A transreversal £¡A;B (respectively,
w£¡B;A) is a transposition that exchanges two
segments A and B and also reverses A (respec-
tively, B). A revrev operation ¡¡ reverses each
of the two contiguous segments (without trans-
posing them). The problem of finding a short-
est sequence of transposition, transreversal, and
revrev operations that transforms a permutation
into the identity permutation is called sorting by
transpositions, transreversals, and revrevs. The
distance of a permutation  , denoted by d. /, is
the length of the shortest sorting sequence.

Key Results

Linear vs. Circular Permutations
An operation is said to operate on the affected
segments as well as on the elements in those seg-
ments. Two operations � and �0 are equivalent if
they have the same rearrangement result, i.e., � �

  D �0 �  for all  . In this work [8], Hartman and
Sharan showed that for an element x of a circular
permutation  , if � is an operation that operates
on x, then there exists an equivalent operation �0

that does not operate on x. Based on this property,
they further proved that the problem of sorting
by transpositions, transreversals, and revrevs is
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Sorting by Transpositions and Reversals (Ap-
proximate Ratio 1.5), Fig. 1 (a) The equivalence
of transreversal and revrev on circular permutations.
(b) The breakpoint graph G. / of the permutation
  D Œ1; �4; 6; �5; 2; �7; �3�, for which f . / D

Œ1; 2; 8; 7; 11; 12; 10; 9; 3; 4; 14; 13; 6; 5�. It is con-
venient to draw G. / on a circle such that black edges
(i.e., thick lines) are on the circumference and gray edges
(i.e., thin lines) are chords

equivalent for linear and circular permutations.
Moreover, they observed that revrevs and tran-
sreversals are equivalent operations for circular
permutations (as illustrated in Fig. 1a), imply-
ing that the problem of sorting a linear/circular
permutation by transpositions, transreversals, and
revrevs can be reduced to that of sorting a circular
permutation by transpositions and transreversals
only.

The Breakpoint Graph
Given a signed permutation   on {1,2,. . . ,n} of
n elements, it is transformed into an unsigned
permutation f . / D  0 D Œ 0

1;  0
2; : : : ;  0

2n� on
{1,2,. . . ,2 n} of 2n elements by replacing each
positive element i with two elements 2i � 1; 2i

(in this order) and each negative element �i with
2i; 2i � 1. The extended f . / is considered here
as a circular permutation by identifying 2n C 1

and 1 in both indices and elements. To ensure
that every operation on f . / can be mimicked
by an operation on  , only operations that cut
before odd position are allowed for f . /. The
breakpoint graph .G / is an edge-colored graph
on 2n vertices f1; 2; : : : ; 2ng, in which for every
1 � i � n;  0

2i is joined to  0
2iC1 by a black

edge and 2i is joined to 2i C 1 by a gray edge
(e.g., see Fig. 1b). Since the degree of each vertex
in G. / is exactly 2, G. / uniquely decomposes
into cycles. A k-cycle (i.e., a cycle of lengthk) is a
cycle with k black edges, and it is odd if k is odd.

The number of odd cycles in G. / is denoted by
codd. /. It is not hard to verify that G. / consists
of n 1-cycles, and hence, codd. / D n, if   is
an identity permutation Œ1; 2; : : : ; n�. Gu et al.
[5] have shown that codd.� �  / � codd. / C 2

for all linear permutations   and operations �.
In this work [8], Hartman and Sharan further
noted that the above result holds also for circular
permutations and proved that the lower bound of
d. / is .n. / � codd. //=2.

Transformation into 3-Permutations
A permutation is called simple if its breakpoint
graph contains only k-cycle, where k � 3. A sim-
ple permutation is also called a 3-permutation if
it contains no 2-cycles. A transformation from  

to O
 is said to be safe if n.
/�codd.
/ D n. O
/�

codd. O
/. It has been shown that every permutation
  can be transformed into a simple one  0 by safe
transformations and, moreover, every sorting of
 0 mimics a sorting of   with the same number
of operations [6, 11]. Here, Hartman and Sharan
[8] further showed that every simple permutation
 0 can be transformed into a 3-permutation O

by safe paddings (of transforming those 2-cycles
into 1-twisted 3-cycles) and, moreover, every
sorting of O
 mimics a sorting of  0 with the same
number of operations. Hence, based on these
two properties, an arbitrary permutation   can
be transformed into a 3-permutation O
 such that
every sorting of O
 mimics a sorting of   with the



2024 Sorting by Transpositions and Reversals (Approximate Ratio 1.5)

a b c d e f

Sorting by Transpositions and Reversals (Approxi-
mate Ratio 1.5), Fig. 2 Configurations of 3-cycles. (a)
Unoriented, 0-twisted 3-cycle. (b) Unoriented, 1-twisted

3-cycle. (c) Oriented, 2-twisted 3-cycle. (d) Oriented, 3-
twisted 3-cycle. (e) A pair of intersecting 3-cycles. (f) A
pair of interleaving 3-cycles

same number of operations, suggesting that one
can restrict attention to circular 3-permutations
only.

Cycle Types
An operation that cuts some black edges is said
to act on these edges. An operation is further
called a k-operation if it increases the number
of odd cycles by k. A (0, 2,2)-sequence is a
sequence of three operations, of which the first is
a 0-operation and the next two are 2-operations.
An odd cycle is called oriented if there is a 2-
operation that acts on three of its black edges;
otherwise, it is unoriented. A configuration of
cycles is a subgraph of the breakpoint graph
that contains one ore more cycles. As shown in
Fig. 2a–d, there are four possible configurations
of single 3-cycles. A black edge is called twisted
if its two adjacent gray edges cross each other
in the circular breakpoint graph. A cycle is k-
twisted if k of its black edges is twisted. For
example, the 3-cycles in Fig. 2a–d are 0-, 1-, 2-,
and 3-twisted, respectively. Hartman and Sharan
observed that a 3-cycle is oriented if and only if
it is 2- or 3-twisted.

Cycle Configurations
Two pairs of black edges are called intersecting
if they alternate in the order of their occurrence
along the circle. A pair of black edges intersects
with cycle C , if it intersects with a pair of black
edges that belong to C . Cycles C and Dintersect
if there is a pair of black edges in C that intersects
with D (see Fig. 2e). Two intersecting cycles are
called interleaving if their black edges alternate
in their order of occurrence along the circle (see
Fig. 2f). Clearly, the relation between two cycles
is one of (1) nonintersecting, (2) intersecting but
non-interleaving, and (3) interleaving. A pair of
black edges is coupled if they are connected by
a gray edge and when reading the edges along

the cycle, they are read in the same direction. For
example, all pairs of black edges in Fig. 2a are
coupled. Gu et al. [5] have shown that given a
pair of coupled black edges .b1; b2/, there exists a
cycle C that intersects with (b1; b2). A 1-twisted
pair is a pair of 1-twisted cycles, whose twists
are consecutive on the circle in a configuration
that consists of these two cycles only. A 1-twisted
cycle is called closed in a configuration if its two
coupled edges intersect with some other cycle
in the configuration. A configuration is closed
if at least one of its 1-twisted cycles is closed;
otherwise, it is called open.

The Algorithm
The basic ideas of the Hartman and Sharan’s
1.5-approximation algorithm [8] for the problem
of sorting by transpositions, transreversals, and
revrevs are as follows. Hartman and Sharan re-
duced the problem to that of sorting a circular 3-
permutation by transpositions and transreversals
only and then focused on transforming the 3-
cycles into 1-cycles in the breakpoint graph of
this 3-permutation. By definition, an oriented
(i.e., 2- or 3-twisted) 3-cycle admits a 2-operation
and, therefore, they continued to consider unori-
ented (i.e., 0- or 1-twisted) 3-cycles only. Since
configurations involving only 0-twisted 3-cycles
were handled with (0,2,2)-sequences in [7], Hart-
man and Sharan restricted their attention to those
configurations that consist of 0- and 1-twisted 3-
cycles. They showed that these configurations are
all closed and that it can be sorted by a (0,2,2)-
sequence of operations for each of the following
five possible closed configurations: (1) a closed
configuration with two unoriented, interleaving
3-cycles that do not form a 1-twisted pair; (2)
a closed configuration with two intersecting, 0-
twisted 3-cycles; (3) a closed configuration with
two intersecting, 1-twisted 3-cycles; (4) a closed
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configuration with a 0-twisted 3-cycles that in-
tersects with the coupled edges of a 1-twisted 3-
cycle; and (5) a closed configuration that contains
k � 2 mutually interleaving 1-twisted 3-cycles
such that all their twists are consecutive on the
circle and k is maximal with this property. As
a result, the sequence of operations used by
Hartman and Sharan in their algorithm contains
only 2-operations and (0,2,2)-sequences. Since
every sequence of three operations increases the
number of odd cycles by at least 4 out of 6
possible in 3 steps, the ratio of their approxi-
mation algorithm is 1.5. Furthermore, Hartman
and Sharan showed that their algorithm can be
implemented in O.n3=2

p
log n/ time using the

data structure of Kaplan and Verbin [10], where
n is the number of elements in the permutation.

Theorem 1 The problem of sorting linear per-
mutations by transpositions, transreversals, and
revrevs is linearly equivalent to the problem of
sorting circular permutations by transpositions,
transreversals, and revrevs.

Theorem 2 There is a 1.5-approximation algo-
rithm for sorting by transpositions, transrever-
sals, and revrevs, which runs in O.n3=2

p
log n/

time.

Applications

When trying to determine evolutionary distance
between two organisms using genomic data, bi-
ologists may wish to reconstruct the sequence of
evolutionary events that have occurred to trans-
form one genome into the other. One of the most
promising ways to do this phylogenetic study
is to compare the order of appearance of iden-
tical (e.g., orthologous) genes in two different
genomes [9, 12]. This comparison of computing
global rearrangement events (such as reversals,
transpositions, and transreversals of genome seg-
ments) may provide more accurate and robust
clues to the evolutionary process than the anal-
ysis of local point mutations (i.e., substitutions,
insertions, and deletions of nucleotides/amino
acids). Usually, the two genomes being com-
pared are represented by signed permutations,
with each element standing for a gene and its

sign representing the (transcriptional) direction of
the corresponding gene on a chromosome. Then
the goal of the resulting genome rearrangement
problem is to find a shortest sequence of rear-
rangement operations that transforms (or, equiv-
alently, sorts) one permutation into the other.
Previous work focused on the problem of sorting
a permutation by reversals. This problem has
been shown by Capara [2] to be NP-hard, if the
considered permutation is unsigned. However,
for signed permutations, this problem becomes
tractable and Hannenhalli and Pevzer [6] gave the
first polynomial-time algorithm for it. On the
other hand, there has been less progress on the
problem of sorting by transpositions. Thus far,
the complexity of this problem is still open,
although several 1.5-approximation algorithms
[1, 3, 7] have been proposed for it. Recently,
the approximation ratio of sorting by transpo-
sitions was further improved to 1.375 by Elias
and Hartman [4]. Gu et al. [5] and Lin and Xue
[11] gave quadratic-time 2-approximation algo-
rithms for sorting signed, linear permutations by
transpositions and transreversals. In [11], Lin and
Xue considered the problem of sorting signed,
linear permutations by transpositions, transrever-
sals, and revrevs and proposed a quadratic-time
1.75-approximation algorithm for it. In this work
[8], Hartman and Sharan further showed that
this problem is equivalent for linear and circular
permutations and can be reduced to that of sorting
signed, circular permutations by transpositions
and transreversals only. In addition, they provided
a 1.5-approximation algorithm that can be imple-
mented in O.n3=2

p
log n/ time.
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Problem Definition

This entry describes algorithms for finding the
minimum number of steps needed to sort a signed
permutation (also known as inversion distance,
reversal distance). This is a real-world prob-
lem and, for example, is used in computational
biology.

Inversion distance is a difficult computational
problem that has been studied intensively in re-
cent years [1, 4, 6–10]. Finding the inversion
distance between unsigned permutations is NP-
hard [7], but with signed ones, it can be done in
linear time [1].

Key Results

Bader et al. [1] present the first worst-case linear-
time algorithm for computing the reversal dis-
tance that is simple and practical and runs faster
than previous methods. Their key innovation is a
new technique to compute connected components
of the overlap graph using only a stack, which
results in the simple linear-time algorithm for
computing the inversion distance between two
signed permutations. Bader et al. provide am-
ple experimental evidence that their linear-time
algorithm is efficient in practice as well as in
theory: they coded it as well as the algorithm of
Berman and Hannenhalli, using the best princi-
ples of algorithm engineering to ensure that both
implementations would be as efficient as possible
and compared their running times on a large
range of instances generated through simulated
evolution.

Bafna and Pevzner introduced the cycle
graph of a permutation [3], thereby providing
the basic data structure for inversion distance
computations. Hannenhalli and Pevzner then
developed the basic theory for expressing the
inversion distance in easily computable terms
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(number of breakpoints minus number of cycles
plus number of hurdles plus a correction factor
for a fortress [3, 15]-hurdles and fortresses are
easily detectable from a connected component
analysis). They also gave the first polynomial-
time algorithm for sorting signed permutations
by reversals [9]; they also proposed a O.n4/

implementation of their algorithm which runs
in quadratic time when restricted to distance
computation. Their algorithm requires the
computation of the connected components of
the overlap graph, which is the bottleneck
for the distance computation. Berman and
Hannenhalli later exploited some combinatorial
properties of the cycle graph to give a O.n˛.n//

algorithm to compute the connected components,
leading to a O.n2˛.n// implementation of
the sorting algorithm [6], where ˛ is the
inverse Ackerman function. (The later Kaplan-
Shamir-Tarjan (KST) algorithm [10] reduces
the time needed to compute the shortest
sequence of inversions, but uses the same
algorithm for computing the length of that
sequence.)

No algorithm that actually builds the overlap
graph can run in linear time, since that graph
can be of quadratic size. Thus, Bader’s key
innovation is to construct an overlap forest
such that two vertices belong to the same
tree in the forest exactly when they belong to
the same connected component in the overlap
graph. An overlap forest (the composition of its
trees is unique, but their structure is arbitrary)
has exactly one tree per connected component
of the overlap graph and is thus of linear
size. The linear-time step for computing the
connected components scans the permutation
twice. The first scan sets up a trivial forest in
which each node is its own tree, labeled with
the beginning of its cycle. The second scan
carries out an iterative refinement of this first
forest, by adding edges and so merging trees
in the forest; unlike a Union-Find, however,
this algorithm does not attempt to maintain the
trees within certain shape parameters. This step
is the key to Bader’s linear-time algorithm for
computing the reversal distance between signed
permutations.

Applications

Some organisms have a single chromosome or
contain single-chromosome organelles (such as
mitochondria or chloroplasts), the evolution of
which is largely independent of the evolution of
the nuclear genome. Given a particular strand
from a single chromosome, whether linear or cir-
cular, we can infer the ordering and directionality
of the genes, thus representing each chromosome
by an ordering of oriented genes. In many cases,
the evolutionary process that operates on such
single-chromosome organisms consists mostly of
inversions of portions of the chromosome; this
finding has led many biologists to reconstruct
phylogenies based on gene orders, using as a
measure of evolutionary distance between two
genomes the inversion distance, i.e., the smallest
number of inversions needed to transform one
signed permutation into the other [11, 12, 14].

The linear-time algorithm is in wide use (as
it has been cited nearly 200 times within the
first several years of its publication). Examples
include the handling multichromosomal genome
rearrangements [16], genome comparison [5],
parsing RNA secondary structure [13], and
phylogenetic study of the HIV-1 virus [2].

Open Problems

Efficient algorithms for computing minimum dis-
tances with weighted inversions, transpositions,
and inverted transpositions are open.

Experimental Results

Bader et al. give experimental results in [1].

URL to Code

An implementation of the linear-time algorithm
is available as C code from www.cc.gatech.edu/~
bader. Two other dominated implementations are
available that are designed to compute the short-
est sequence of inversions as well as its length:

www.cc.gatech.edu/~ bader
www.cc.gatech.edu/~ bader
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one, due to Hannenhalli that implements his first
algorithm [9], which runs in quadratic time when
computing distances, while the other, a Java ap-
plet written by Mantin (http://www.math.tau.ac.
il/~rshamir/GR/), that implements the KST algo-
rithm [10], but uses an explicit representation of
the overlap graph and thus also takes quadratic
time. The implementation due to Hannenhalli is
very slow and implements the original method of
Hannenhalli and Pevzner and not the faster one
of Berman and Hannenhalli. The KST applet is
very slow as well since it explicitly constructs the
overlap graph.

Cross-References
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entry:
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Problem Definition

A signed permutation   of size n is a permutation
over f � n; : : : ;�1; 1 : : : ng, where  �i D � i

for all i . We note   D . 1; : : : ;  n/.
The reversal ¡ D ¡i;j .1 � i � j � n/ is

an operation that reverses the order and flips the
signs of the elements  i ; : : : ;  j in a permutation
 :

  � �

D . 1; : : : ;  i�1;� j ; : : : ;� i  j C1; : : : ;  n/:

If ¡1; : : : ; ¡k is a sequence of reversals, it is
said to sort a permutation   if   � � � ¡1 � � � ¡k D

Id , where Id D .1; 2; : : : ; n/ is the identity
permutation. The length of a shortest sequence of
reversals sorting   is called the reversal distance
of   and is denoted by d. /.

If the computation of d. / is solved in linear
time [3] (see the entry �Sorting Signed Per-
mutations by Reversal (Reversal Distance)), the
computation of a sequence �1; : : : ; �k of size
k D d. / that sorts   is more complicated,
and no linear time algorithm is known so far.
The best complexity is currently achieved by
the subquadratic solution of Tannier and Sagot
[17], which has later been improved by Tannier,
Bergeron and Sagot [18], and Han [9].

Key Results

The O.n4/ Self-Reduction
Recall there is a linear algorithm to compute the
reversal distance thanks to the formula d. / D

n C 1 � c. / C t . / C h. / C f . /, where
c. / is the number of cycles in the breakpoint
graph and h. / C f . / is computed from the
unoriented components of the permutation (see
the entry �Sorting Signed Permutations by Re-

versal (Reversal Distance)). Once this is known,
the self-reduction technique trivially computes a
sequence of size d. /: try every possible reversal
¡ at one step, until you find one such that d.  �

¡/ D d. /� 1. Such a reversal is called a sorting
reversal. This necessitates O.n/ computations for
every possible reversal. There are at most n.nC

1/=2 D O.n2/ reversals to try, so iterating this to
find a sequence yields an O.n4/ algorithm.

The first polynomial algorithm by Hannenhalli
and Pevzner [10] was not achieving a better com-
plexity, and the algorithmic study of finding the
shortest sequences of reversals began its history.

The Quadratic Roof

All the published solutions for the computations
of a sorting sequence are divided into two, fol-
lowing the division of the distance formula into
its parameters: a first part computes a sequence
of reversals so that the resulting permutation has
no unoriented component, and a second part sorts
all oriented components.

The first part was given its best solution by
Kaplan, Shamir, and Tarjan [12], whose algo-
rithm runs in linear time when coupled with the
linear distance computation [3], and it is based on
Hannenhalli and Pevzner’s [10] early results.

The second part is the bottleneck of the whole
procedure. At this point, if there is no unoriented
component, the distance is d. / D nC 1� c. /,
so a sorting reversal is one that increases c. / and
does not create unoriented components.

A reversal that increases c. / is called ori-
ented. Finding an oriented reversal is an easy part:
any two consecutive numbers that have different
signs in the permutation define one. This can
easily be done in linear time or sublinear with ad
hoc data structures to maintain the permutation
during the scenario. The hard part is to make sure
it does not create unoriented components.

The quadratic solutions (see, e.g., the one of
Kaplan, Shamir, and Tarjan [12]) are based on
the linear recognition of sorting reversals. No
better algorithm is known so far to recognize
sorting reversals, and it seemed that a lower
bound had been reached, as witnessed by a survey

http://dx.doi.org/10.1007/978-1-4939-2864-4_383
http://dx.doi.org/10.1007/978-1-4939-2864-4_383
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of Ozery-Flato and Shamir [15] in which they
wrote that “a central question in the study of
genome rearrangements is whether one can ob-
tain a subquadratic algorithm for sorting by re-
versals.” This was obtained by Tannier and Sagot
[17], who proved that the recognition of sorting
reversal at each step is not necessary, but only the
recognition of oriented reversals.

A Promising New but Still Quadratic
Method

The algorithm is based on the following theorem,
taken from [18]. A sequence of oriented reversals
¡1; : : : ; ¡k is said to be maximal if there is no
oriented reversal in   � ¡1 : : : ¡k . In particular a
sorting sequence is maximal, but the converse is
not true.

Theorem 1 If S is a maximal but not a sorting
sequence of oriented reversals for a permutation,
then there exists a nonempty sequence S 0 of ori-
ented reversals such that S may be split into two
parts S D S1; S2, and S1; S 0; S2 is a sequence of
oriented reversal.

This allows to construct sequences of oriented
reversals instead of sorting reversals, increase
their size by adding reversals inside the sequence
instead of at the end, and obtain a sorting se-
quence.

This algorithm, with a classical data structure
to represent permutations (e.g., as an array), has
still an O.n2/ complexity, because at each step
it has to test the presence of an oriented reversal
and apply it to the permutation.

Composing with Data Structures
The slight modification of a data structure in-
vented by Kaplan and Verbin [11] allows to pick
and apply an oriented reversal in O.

p
n log n/,

and using this, Tannier and Sagot’s algorithm
achieves O.n3=2

p
log n/ time complexity.

Han [9] announced another data structure that
allows to pick and apply an oriented reversal in
O.
p

n/ time, and integrating this to the algorithm
can plausibly decrease the complexity of the
overall method to O.n3=2/. Swenson et al. [16]

gave an O.n log n/ solution for picking oriented
reversals, but their attempts of integrating it to the
overall procedure seems to fail on worst cases.

Extensions

Once sorting by reversals has reached its best
solutions, there are natural extensions guided by
the main motivation for the problem in computa-
tional biology: sample among optimal solutions,
and handle several permutations and more opera-
tions than just the reversal.

Counting optimal solutions is conjectured to
be #P-complete [14], but sampling almost uni-
formly from the solution space is still open, and
has been given a heuristic solution [14], including
suboptimal solutions in the sample.

Algorithms to enumerate all sorting reversals
at one step have also been worked out [4], which
provides a way for enumeration. A structure of
the solution space was proposed, but with a pos-
sibly exponential number of objects to enumer-
ate [5].

The median problem consists in handling
more than one permutation and is a particular
case of the so-called small parsimony problem,
which consists in reconstructing ancestral states
in a phylogenetic context. Additional operations
can be transpositions, duplications, or many
others. Many generalizations and variants have
been listed in a book on Combinatorics of
Genome Rearrangements [8]. Almost all are
NP-hard.

Applications

The motivation as well as the main application of
this problem is in computational biology. Signed
permutations are an adequate object to model the
relative position and orientation of homologous
segments of DNA in two species.

Reversal scenarios were used to test some
evolutionary properties, like the propension of
rearrangement to cut around the replication origin
[1] or the fragility of certain genomic regions
[2]. But evolutionary hypotheses can hardly be



Sorting Signed Permutations by Reversal (Reversal Sequence) 2031

S

tested from a single optimal solution; this would
necessitate a better view of the solution space.

The gain of complexity for sorting by reversals
inspired many other algorithmic works, and
several problems in genome rearrangement found
a better solution thanks to the subquadratic gain
described here. But the computational difficulties
of the problem (parameters h. / and f . /,
additional complexity for generating a scenario
compared to the distance calculation, NP-
completeness of every generalization with more
operations, more permutations, more realistic
models) lead most computational biologists to
progressively abandon the reversal model for
simpler ones (DCJ [19], SCJ [7]).

Sometimes heroic gains in complexity are
worth for computer science but seem just like
going a bit further in a dead end for applications.
Research consists in breaking walls without
always knowing if behind there is a space for
a community to work in or another thicker wall.

Open Problems

Still there are a couple of questions that remain
unsolved before closing (or reopening?) this en-
try:

• I conjecture that the “real” complexity of giv-
ing a reversal scenario is O.n log n/. It is more
or less what Swenson et al. [16] also claim, but
without giving a full proof.

• Counting and sampling, even approximately,
are open. I learned this interesting conjecture
from Istvan Miklos: is it possible to walk in
the entire space of sequences of sorting re-
versals by small transformations of scenarios,
consisting at each step to change at most 4
reversals? This would be a first step to design
an almost uniform sampler.

Experimental Results

To my knowledge the data structure that allows
the subquadratic complexity described in this

entry has never been implemented. The size of
the data, as well as the limited possibilities of
applications of handling only two genomes and
a single optimal solution, makes the subquadratic
version, while a good piece of algorithmics, not
really worth for applications.

URL to Code

• There are a few old programs still able to
give a sorting sequence of reversals: in San
Diego http://grimm.ucsd.edu/GRIMM/, New
Mexico www.cs.unm.edu/~moret/GRAPPA/,
or Tel Aviv www.math.tau.ac.il/~rshamir/
GR/ and more recent ones in Lyon http://
doua.prabi.fr/software/luna or Bielefeld
http://bibiserv.techfak.uni-bielefeld.de/dcj/wel
come.html.

• The standard software for Bayesian sampling
in the space of sorting sequences (including
nonoptimal ones) is Badger http://bibiserv.
techfak.uni-bielefeld.de/dcj/welcome.html,
and there is also one biased to optimal
solutions called DCJ2HP http://www.renyi.
hu/~miklosi/DCJ2HP/ that uses a parallel
tempering between DCJ solutions (easier to
sample) and reversals solutions.
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Problem Definition

Let G D .V; E/ be an undirected graph, with
nonnegative weights on the edges w W E ! RC.
Let dG be the shortest-path metric on G, with
respect to the weights. For a spanning (subgraph)
tree T of G, define the stretch of an edge fu; vg 2

E in T as stretchT .u; v/ D dT .u;v/
dG.u;v/

and the
average stretch as

avg � stretchT .G/ D
1

jEj

X

e2E

stretchT .e/ :

We shall consider the problem of finding a tree T

whose average stretch is small. We also study the
problem of finding a distribution over spanning
trees, such that for all e 2 E, ET ŒstretchT .e/� is
small.

Key Results

Low-stretch spanning trees were first studied
by [3], who showed that any graph on n

vertices has a spanning tree with average stretch
2O.

p
log n log log n/ and showed a family of graphs
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that requires ˝.log n/ average stretch. Their
result was substantially improved by [7], who
showed an upper bound of O.log2 n log log n/,
and later [1] improved this to a near optimal
QO.log n/.

The main result discussed here is from [2]:

Theorem 1 For any graph G with n ver-
tices and m edges, there is a determin-
istic algorithm that constructs a spanning
tree T , such that avg � stretchT .G/ �

O.log n log log n/. The running time of the
algorithm is O.m log n log log n/.

We also show an efficient algorithm to sample
from a distribution over spanning trees, such that
the expected stretch of any edge is bounded by
O.log n log log n log log log n/.

Applications

An important problem in algorithm design is ob-
taining fast algorithms for solving linear systems.
For many applications, the matrix is sparse, and
while little is known for general sparse matri-
ces, the case of symmetric diagonally dominant
(SDD) matrices has received a lot of attention
recently. In a seminal sequence of results, Spiel-
man and Teng [12] showed a near-linear time
solver for this important case. This solver has
proven a powerful algorithmic tool and is used
to calculate eigenvalues, obtain spectral graph
sparsifiers [11], and approximate maximum flow
[6] and many other applications. A basic step in
solving these systems Ax D b is combinatorial
preconditioning. If one uses the Laplacian matrix
corresponding to a spanning tree (and a few extra
edges) of the graph whose Laplacian matrix is
A, then the condition number depends on the
total stretch of the tree. This will improve the
run-time of iterative methods, such as conjugate
gradient or Chebyshev iterations. See [9, 10] for
the latest progress on this direction. In this work
we show that one can construct such a spanning
tree with both run-time and total stretch bounded
by O.m log n log log n/.

Probabilistic embedding into trees, introduced
by [4], has been a successful paradigm in algo-

rithm design. Many hard optimization problems
on graphs can be reduced, via embedding, to a
similar problem on a tree, which is often con-
siderably easier. This framework can be applied
to approximation algorithms, online algorithms,
network design, and other settings. Some of the
notable examples are metrical task system, buy-
at-bulk network design, the k-server problem,
group Steiner tree, etc. An asymptotical opti-
mal result of expected O.log n/ distortion for
probabilistic embedding into trees was given by
[8]. The trees in the support of the FRT dis-
tribution are not subgraphs of the input graph
and may contain Steiner nodes and new edges.
While this is fine for most applications, there
are some that must have trees which are sub-
graphs, such as minimum cost communication
spanning tree: Given a weighted graph G D

.V; E/ and a requirement matrix R D .ruv/, the
objective is to find a spanning tree T that mini-
mizes

P
u;v2V ruv � dT .u; v/. Our result implies a

QO.log n/ approximation.

Petal Decomposition

A basic tool that is often used in constructing
tree metrics and spanning trees with low stretch
is sparse graph decomposition. The idea is to
partition the graph into small diameter pieces,
such that few edges are cut. Each cluster of the
decomposition is partitioned recursively, which
yields a hierarchical decomposition. Creating a
tree recursively on each cluster of the decompo-
sition, and connecting these in a tree structure,
will yield a spanning tree of the graph. The edges
cut by the decomposition are potentially stretched
by a factor proportional to the diameter of the
created tree. The construction has to balance
between these two goals: cut a small number of
edges and maintain small diameter in the created
tree.

One of the main difficulties in such a spanning
tree construction is that the radius (The radius
of a graph is the maximal distance from a des-
ignated center.) may increase by a small factor
at every application of the decomposition, which
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translates to increased stretch. If we drop the
requirement that the tree is a spanning tree of
the graph and just require a tree metric, then this
difficulty does not appear, and indeed, optimal
�.log n/ bound is known on the average stretch
[5,8]. Our petal decomposition allows essentially
optimal control on the radius increase of the
spanning tree; it increases by at most a factor of
4 over all the recursion levels.

Highways
One of the components in the decomposition
scheme is highways. Each cluster X � V in our
decomposition scheme has a designated center
x0 2 X and a “target” t 2 X . It is guaranteed
that the shortest path from x0 to t will be fully
contained in the final spanning tree T . This path
is called the petal’s highway. Intuitively, the high-
way will provide short paths from the center x0 to
many of the points in the cluster.

Cones and Petals
A cone is a generalization of a ball; the notion
of cones was introduced in [7] and was used also
in [1] for low-stretch spanning trees. Informally, a
cone C.t; r/ of radius r centered at t (with respect
to the cluster center x0) contains all the points
´ 2 X such that d.´; t/C d.t; x0/ � d.´; x0/C

r (here d is the shortest-path metric on X ). In
other words, the cone contains all the points for
which the path to x0 through t is not much longer
than the direct shortest path to x0. The parameter
r is a bound on the radius increase in the current
decomposition.

One way to define a petal is as a union
of cones. The petal P.t; r/ around a target t

with radius r is defined as
S

0�k�r C.pk ; k=2/,
where pk is the point of distance r � k from
t on the shortest path from t to x0. The
center of the petal is defined as x D p0, and
the path from x to t is the petal’s highway.
The petal-decomposition algorithm
iteratively picks an arbitrary target of distance
at least 3�=4 (where � is the radius of X ) away
from x0, generates a petal for it, and removes the
petal from the graph. When there are no longer
such points, the remaining points will form
the central cluster (the stigma). The first petal

requires extra care in its target choice, as it may
contain the designated target of the cluster, which
implies we cannot allow the shortest path to this
target to be cut by this or subsequent petals. The
radii of the petals are chosen by a region-growing
argument that cuts few edges, where the length of
the possible range for the radius is	�. This is in
contrast with the previous work, where in order to
give an appropriate bound on the radius increase,
the range was much smaller than �, which
immediately translates to a loss in the stretch.
The precise method for choosing r is essentially
given in [7], and we also give a randomized
version similar in spirit to the one in [1].

Fast Petal Construction
The alternative way to define petals and cones is
as balls in an appropriately defined directed graph
created from G. This suggests that we can use a
variant of Dijkstra to compute a petal in nearly
linear time in the sum of degrees of its vertices.
Let QG D .V; A; Nw/ be the weighted directed
graph induced by adding the two directed edges
.u; v/; .v; u/ 2 A for each fu; vg 2 E and setting
Nw.u; v/ D d.u; v/ � .d.v; x0/ � d.u; x0//. The
cone C.t; r/ is simply the ball around t of radius
r in QG. The petal P.t; r/ is the ball around t

of radius r=2 in QG with one change: the weight
of each edge on the path from t to x D p0 is
changed to be 1=2 of its original weight (i.e., 1=2

of its weight in G).

Ideas in the Analysis
Informally, the crucial property of a petal and its
highway is the following: Assume ´ 2 P.t; r/,
and Px0´ is the shortest path from the original
center x0 to ´. By forming the petal, we remove
all edges between P.t; r/ and X n P.t; r/ except
for the edge from the petal center x toward x0.
Hence, any path from x0 to ´ must go through the
petal center x. If the new shortest path P 0

x0´ (after
forming the petal) is (additively) k=2 longer than
the length of Px0´, then ´ 2 C.pk ; k=2/ and so
P 0

x0´ will contain part of the new petal’s highway
of length at least k. Such a property could allow
the following wishful thinking: Suppose that in
each iteration we increase the distance of a point
to the center by at most ˛ but also mark a new
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portion of the path of length 2˛ as edges that
are guaranteed to appear in the final tree (part
of a highway). In such a case, it is easy to see
that the final path will have stretch at most 2:
If the original distance was b, once the total
increase is b, we have marked 2b – all of the
path – as a highway that will appear in the tree.
Unfortunately, the path from x to ´ in the final
tree may not use the prescribed highway of the
parent cluster so the above “wishful thinking”
argument does not work.

The key algorithmic idea to alleviate this prob-
lem is to decrease the weight of an edge by half
when it becomes part of a highway (we ensure
that this happens at most once for every edge).
This reweighting signals later iterations to use
the prescribed highway, as this must remain the
shortest path. We maintain the invariant that in
every cluster, the highway edges are the only
cluster edges which have been reweighted. Now,
in every petal (except for maybe the first), we cre-
ate a new petal highway when we form P.t; r/.
For any ´ 2 P.t; r/, the length of the path from
x0 to ´ does not increase at all (after reweighting
the highway): For some k � r , it increased by at
most k=2, but a highway length of at least k was
reduced by 1=2.

We have to take care of radius increase gen-
erated by the very first petal as well, where it
could be that no new highway is created (this
petal’s highway may be a part of the highway
of the original cluster). In this case, we use the
fact that the path from x0 to x1 (the center of
the first petal) must also be on the highway of
the original cluster and that its length is at least
�=2. This implies that even though we may have
increased the radius, at least half of the path is
guaranteed not to increase ever again. We use a
subtle inductive argument to make this intuition
precise, and in fact we lose a factor of 2 for each
of these cases, so the maximal increase is by a
factor of 4.
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Problem Definition

Suppose that we have access to a vector x 2

C
n. How much time does it take to compute its

Fourier transform Ox? One can do this with the
Fast Fourier Transform (FFT) in O.n log n/ time.
But can we do better?

We do not know the answer in general, but
some classes of algorithms cannot do better [1,
20] and certainly one cannot do better than O.n/

time for arbitrary signals x. But the Fourier trans-
form is ubiquitous in signal processing, appearing
in compression of audio, images, and video, in
manipulation of audio, and in recovery of radio or
MRI signals, so we would really like to do better.
If we cannot improve on the FFT in general, then
perhaps we can for the signals commonly seen
in these applications. To do this, we need some
notion for how the signals we typically see are
“easier” than arbitrary ones.

One such notion is sparsity. The main reason
to use the Fourier transform in compression is
because it concentrates the energy of the signal
into a few large (or “heavy”) coordinates and
many small ones; signals with such concentrated
coordinates are called sparse. One can then throw
out the small coordinates and only store the
heavy ones; this is the main principle behind
lossy compression such as MP3 or JPEG. In fact,

in all the applications discussed in the previous
paragraph, the signals typically have an approxi-
mately sparse Fourier transform. This brings us
to the problem described in this entry: can we
speed up the Fourier transform for signals when
the result is approximately sparse?

Moreover, as with lossy compression, we of-
ten only care about the heavy coordinates and are
willing to tolerate an error proportional to the en-
ergy in the small coordinates. This relaxation will
allow us to compute the sparse Fourier transform
in sublinear time.

Formal Definition
The discrete Fourier transform Ox 2 C

n of a vector
x 2 C

n is given by

Oxj D

nX

iD1

!ij for ! D e2� i=n

We say that Ox is exactly k-sparse if it has at most
k nonzero coordinates, i.e., jsupp.x/j � k. We
say that Ox is approximately k-sparse if most of the
energy is contained in the heaviest k coordinates,
in particular

Errk.x/ WD min
k-sparse Oy

k Ox � Oyk2

is small relative to k Oxk2. A sparse Fourier trans-
form algorithm can access x 2 C

n in arbitrary
positions and outputs a vector Ox0 such that

k Ox � Ox0k2 � C Errk.x/C ık Oxk2 (1)

for some approximation factor C > 1 and ı � 1.
An algorithm for the exactly sparse case would
do this for C D 1, while robust algorithms
can achieve C D O.1/ or even C D 1 C ".
The algorithms we will discuss will feature a
logarithmic dependence on 1=ı, so one typically
sets ı D 1= poly.n/, and for typical signals, the
right-hand side of (1) will be dominated by the
C Errk.x/ term; we will assume this for the rest
of the entry.

We would like to optimize both the sample
complexity – the number of positions of x

that are accessed by the algorithm – and the
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running time. Optimizing sample complexity
is important for applications such as spectrum
sensing or MRIs, which do not have the input
x in memory but must sample it at some
expense.

We also allow the algorithm to be randomized
and to fail with some small probability p. For
simplicity we set p to a small constant; for
any algorithm one can amplify this probability
with a O.log 1

p
/ overhead in sample complexity

and time. It is an open question whether the
algorithms that achieve the best known time and
sample complexities can be modified to avoid this
overhead.

Related Work
The modern research on sparse Fourier
transforms is closely related to work on sparse
recovery from general linear measurements. In
this problem, one would like to (approximately)
recover an (approximately) sparse vector
x from linear measurements Ax for some
“measurement” matrix A with fewer rows
than columns. The sparse Fourier transform is
precisely this where A is a subset of rows of the
inverse Fourier matrix.

Broadly speaking, there are two conceptual
classes of algorithms and results for the general
linear measurement setting. The first class, often
called compressed sensing and first studied
in [2, 3, 7], generally (1) involves independent
random linear measurements,;(2) shows with
high probability, the measurement matrix gives
good recovery for all vectors x; (3) optimizes
the sample complexity but not the running
time, which is superlinear or polynomial in
n; and (4) give algorithms that work for
general classes of measurements and work for
both random Gaussian and random Fourier
matrices at the same time. These papers often
refer to properties like the restricted isometry
property that measurement matrices may have
and use either convex optimization (e.g., L1
minimization or the LASSO) or iterative greedy
methods (e.g., IHT or CoSaMP) to perform the
recovery.

The second class, more often called sparse
recovery, is largely an outgrowth of the streaming

algorithms literature [4, 5]. These results
generally (1) involve more structured linear
measurements that use randomness and also have
dependencies among the samples; (2) show for
each vector x that, with high probability, the
measurement matrix gives good recovery; (3)
optimize both the sample complexity and the
running time, so both may be sublinear in n; and
(4) give algorithms that are closely connected to
the measurement matrix and would not work
for matrices with different structure. These
papers often construct the matrix to emulate
hash tables and use medians to perform robust
recovery.

These statements are generalizations, and
not every algorithm matches the trend in all
four ways, but they hold more often than
not. Our algorithm falls in the second class,
which for Fourier measurements can achieve
both better sample complexity and better
running time than algorithms in the first
class.

There’s a much older collection of algorithms
that can do sparse Fourier transforms in the ex-
act setting when jsupp. Ox/j � k. These include
Prony’s method from 1795, the matrix pencil
method, and Berlekamp-Massey syndrome de-
coding. These can achieve the optimal sample
complexity of 2k and recovery time poly.k/

(down to O.k2 C k logc log n/ [8]). Addition-
ally, they use a deterministic set of samples and
work for all vectors x. However, it is not known
how to make the techniques in these algorithms
robust to approximately sparse signals, so they
do not apply to the signals appearing in typical
applications.

Noise-tolerant sparse Fourier transforms were
first studied over the Boolean cube, also known
as the Hadamard transform. In this setting, Gol-
dreich and Levin [12, 18] showed how to get
O.k log.n=k// samples and O.k logc n/ time,
which is essentially optimal. Mansour [19] ex-
tended this to the C

n setting that we consider in
this entry but with more than k2 sample com-
plexity. Over the next couple decades, a number
of subsequent works, including [9, 10, 13, 14,
16], have improved our understanding of the C

n

setting.
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Key Results

At present, the two best sparse Fourier trans-
form algorithms are [13], which is fastest at
O.k log.n=k/ log n/ time and sample complex-
ity, and [14], which has nearly optimal O.k log n/

sample complexity at the cost of QO.n/ running
time. These works build on [9, 10, 17].

We know that the optimal nonadaptive sample
complexity – that is, among algorithms that
choose the sample set ˝ independently of
the vector x – is ˝.k log.n=k// [6], which
matches [14] for k < n0:99. One could imagine
constructing an algorithm that uses adaptive
samples, where one uses the first few samples
to decide where to look in future samples. In the
general sparse recovery setting, this adaptivity
can lead to significant improvements [15],
but we know that ˝.k log.n=k/= log log n/

Fourier samples remain necessary in the adaptive
setting [13].

Algorithm Overview
At a high level, sparse recovery algorithms are
built in three stages: one-sparse recovery, where
we solve the problem for k D 1; partial k-
sparse recovery, where we find and estimate most
(say, 90 %) of the heavy coordinates or of the
energy; and full k-sparse recovery, where we
get a good approximation to the entire signal
and achieve (1). Each stage uses the previous as
(nearly) a black box. This architecture generally
holds for the class of “sparse recovery” algo-
rithms; in the sparse Fourier transform setting, the

pieces change, but the architecture does not. We
will go through each in turn.

One-Sparse Recovery
Let us consider the one-sparse setting for C D

O.1/. We have access to xj D v!i�j C gj for
some “signal” .v; i�/ 2 C � Œn� and “noise” g 2

C
n with kgk2 � cjvj

p
n for a sufficiently small

constant c. To satisfy (1), we would like to find
i� exactly and find v to within O.kgk=

p
n/.

The tricky bit is to find i�; once we know
i�, then xj !�i�j is a good estimator of v.
In particular, for a random j 2 Œn�, we have
Ej jxj !�i�j � vj2 D kgk2=n, so taking the
median of several such estimates will have
O.kgk=

p
n/ error with large probability. So that

just leaves us to find i�.
As a first step, consider for a fixed a 2 Œn�

looking at the random variable

ya WD xaCj =xj 	 !i�a

as a distribution over random j 2 Œn�, where
addition of indices is taken modulo n. This allows
us to remove the influence of v and focus on i�.
We can show that ya � !i�a < O.c/ with large
(say, 3=4) probability. Suppose this were instead
true with probability 1.

By knowing !i�a to within O.c/, we know
i�a mod n to with ˙O.cn/. For small enough
c, this is within ˙n=4. Then we could look at
y1 to learn i� to within ˙n=4, y2 to refine the
estimate to ˙n=8, and y4 to refine to ˙n=16,
until we identify i� using log n different ya. This
is illustrated in Fig. 1.

y1 ≈ i∗ y2 ≈ 2i∗ √
y2 ≈ ±ω ω i∗ω

a b c

Sparse Fourier Transform, Fig. 1 The first two steps of
estimating i� using y1 and y2. Using y1 we can identify
i� to an O.cn/ size region. With y2 we learn 2i� mod n
to within O.cn/, which tells us that i� is within one of

two antipodal regions of half the size. Based on y1, we
can throw out the spurious region and narrow our estimate
of i� (a) Error in y1. (b) Error in y2. (c) Set of !i�

consistent with y2
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a b
Filter (time): Gaussian . sinc Filter (frequency): Gaussian * rectangle

Sparse Fourier Transform, Fig. 2 Filters used in [13]. (a) In time domain: O.k log n/ sparse. (b) In frequency
domain: width O.n=k/ rectangle

In reality ya has a small constant chance of
failure at each stage. One could fix this by taking
O.log log n/ different samples of ya at each stage
and using the median, which would give an algo-
rithm with O.log n log log n/ sample complexity
and time. An alternative, as used in [13], is
to learn i� in chunks of O.log log n/ bits at a
time, which gets the optimal O.log n/ sample
complexity using O.log1:1 n/ running time.

Partial k-Sparse Recovery
The goal of partial k-sparse recovery is to find
most of the heavy coordinates of Ox. The general
idea is to “hash” the coordinates randomly into
B D O.k/ bins in a way that lets us take mea-
surements of the signal restricted to frequencies
within each bin. By taking the measurements
corresponding to the one-sparse recovery algo-
rithm, we recover frequencies that are alone in
their bin. This will happen with a large constant
(say, 90 %) probability for each heavy frequency,
so we recover most of the heavy frequencies
well.

To see how this is done, we start with a
deterministic way of hashing the frequencies into
bins and then show how to randomize it. Hashing
is based on filters that are sparse in both time
and frequency domain. The filter F is designed
to be as close as possible to a rectangular filter
in frequency domain while still being sparse in
frequency domain. Figure 2 demonstrates the
filter used in [13], where F is a sinc function
times a (truncated) Gaussian with support size
O.k log n/. In frequency domain, OF approxi-
mates a rectangle of width O.n=k/, matching

it up to a small transition region between the
passband and the stopband and with 1=nc error
inside the passband and stopband.

Using these filters, Fig. 3 demonstrates a
method for learning information about the
signal. Given the signal x, we compute the
O.k log n/-size vector F � x. We then “alias”
it down to B D O.k/ elements – adding up
terms 1; B C 1; 2B C 1; : : : – and take the B-
dimensional DFT. This lets us compute the red
points in Fig. 3f in O.k log n C B log B/ D

O.k log n/ time. The red points are B evenly
spaced samples of Ox  OF .

We can think of the i th red point in a different
way. The i th red point is the sum of all the
entries of Ox �shift. OF; in=B/, where shift. OF; in=B/

denotes shifting OF to the right by in=B . This
equals the zeroth time domain coefficient of the
vector with Fourier coefficients given by Ox �
shift. OF; in=B/. And if our algorithm looks not
at yj D Fj xj but y

.a/
j D Fj xj Ca when

computing the red points, then the i th red point
will equal the ath time domain coefficient of
the vector with Fourier coefficients given by Ox �
shift. OF; in=B/. This lets us sample from the time
domain representation of the vectors with Fourier
coefficients given by Ox � shift. OF; in=B/ for i 2

ŒB�. It takes O.k log n/ time to get these samples,
for O.log n/ overhead (in time and samples) per
“effective” sample.

Now, we simply choose our samples a from
the distribution requested by the one-sparse
recovery algorithm. In every bucket for which
Ox � shift. OF; in=B/ is one-sparse, this procedure
will let us recover the heavy frequency. Because
the different shifts of OF give B different buckets,
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Sparse Fourier
Transform, Fig. 3 The
algorithm for hashing used
in [13]. For simplicity, the
illustrations do not include
noise. (a) The signal in
time domain. (b)
Corresponds to this signal
in frequency domain. (c)
We observe F � x for a
sparse F . (d) Which has
the dashed n-dimensional
DFT. (e) We alias from
O.k log n/ terms to O.k/.
(f) And compute the
O.k/-dimensional DFT
(dots)

a b

c d

e f

Original singnal x

Computed F:x Filtered signal F*x 

Computed samples of F*x F:x  aliased to k terms

Goal x

if the frequencies were randomly distributed, this
technique would get us partial sparse recovery.
The one-sparse recovery algorithm only takes
O.log.n=k// samples because each frequency
is known to lie within an n=B D O.n=k/

size region; hence the overall method takes
O.k log n log.n=k// time and samples.

We would like the algorithm to work for ar-
bitrary input signals, so we need a way of ran-
domizing the frequencies. To do this, we further
refine the algorithm to choose a random �; b 2

Œn� with � relatively prime to n. Then we have
the algorithm look at y

.a/
j D Fj x�.j Ca/!

��jb .
The effect of �; b is to apply an hash func-
tion j ! ��1j C b in frequency domain;
this is approximately pairwise independent, so
the frequencies become effectively randomly dis-
tributed. Each frequency then has a good chance
of landing alone in its bucket, so we can recover

most frequencies in O.k log.n=k/ log n/ time
and samples.

Full k-Sparse Recovery
Once we have partial k-sparse recovery, one
can naively achieve full k-sparse recovery by
repeating the algorithm O.log k/ times. Since
each heavy frequency is recovered with 90 %
probability in each stage, the median of all the es-
timations will recover all the heavy frequencies –
and in fact achieve (1) – with high probability.
This method is simple but loses a log k factor in
running time and sample complexity, which more
intricate techniques can avoid.

One such technique, used in [13] and based
off [11], is to use smaller and smaller k in succes-
sive iterations. Once we have performed partial
sparse recovery on Ox to get Ox.1/ that contains
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90 % of the heavy hitters, we can then perform
sparse recovery on the residual Ox � Ox.1/. The
residual is then roughly k=10-sparse, so we run
a partial k=10-sparse recovery algorithm in the
second stage that is much faster than in the first
stage. Similar geometric decay happens in later
stages, so the total time spent will be dominated
by the first stage. This gives O.k log.n=k/ log n/

time and sample complexity for the problem.
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Problem Definition

For a pair of numbers ˛; ˇ, ˛ � 1, ˇ � 0,
a subgraph G0 D .V; H/ of an unweighted
undirected graph G D .V; E/, H � E, is an
.˛; ˇ/-spanner of G if for every pair of vertices
u; w 2 V , distG0.u; w/ � ˛ � distG.u; w/ C ˇ,
where distG.u; w/ stands for the distance between
u and w in G. It is desirable to show that for
every n-vertex graph there exists a sparse .˛; ˇ/-
spanner with as small values of ˛ and ˇ as
possible. The problem is to determine asymptotic
tradeoffs between ˛ and ˇ on one hand, and the
sparsity of the spanner on the other.

Key Results

The main result of Elkin and Peleg [8] establishes
the existence and efficient constructibility of

http://arxiv.org/abs/1403.1307
http://arxiv.org/abs/1403.1307
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.1C �; ˇ/-spanners of size O.ˇn1C1=/ for
every n-vertex graph G, where ˇ D ˇ.�; �/

is constant whenever › and � are. The
specific dependence of ˇ on › and � is
ˇ.�; �/D� log log �log� .

An important ingredient of the construction
of [8] is a partition of the graph G into regions
of small diameter in such a way that the super-
graph induced by these regions is sparse. The
study of such partitions was initiated by Awer-
buch [3], that used them for network synchro-
nization. Peleg and Schäffer [10] were the first to
employ such partitions for constructing spanners.
Specifically, they constructed .O.�/; 1/-spanners
with O.n1C1=/ edges. Althofer et al. [2] pro-
vided an alternative proof of the result of Peleg
and Schäffer that uses an elegant greedy argu-
ment. This argument also enabled Althofer et
al. to extend the result to weighted graphs, to
improve the constant hidden by the O-notation
in the result of Peleg and Schäffer, and to obtain
related results for planar graphs.

Applications

Efficient algorithms for computing sparse
.1C �; ˇ/-spanners were devised in [7] and [13].
The algorithm of [7] was used in [7, 9, 12] for
computing almost shortest paths in centralized,
distributed, streaming, and dynamic centralized
models of computations. The basic approach used
in these results is to construct a sparse spanner,
and then to compute exact shortest paths on the
constructed spanner. The sparsity of the latter
guarantees that the computation of shortest paths
in the spanner is far more efficient than in the
original graph.

Open Problems

The main open question is whether it is possi-
ble to achieve similar results with � D 0. More
formally, the question is: Is it true that for any
� � 1 and any n-vertex graph G there exists
.1; ˇ.�//-spanner of G with O.n1C1=/ edges?

This question was answered in affirmitive for ›

equal to 2, 5/2, and 3 [1, 4-6, 8]. Some lower
bounds were recently proved by Woodruff [14].

A less challenging problem is to improve the
dependence of ˇ on � and ›. Some progress
in this direction was achieved by Thorup and
Zwick [13], and very recently by Pettie [11].
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Problem Definition

In the Sparsest Cut problem, informally, the goal
is to partition a given graph into two or more large
pieces while removing as few edges as possible.
Graph partitioning problems such as this one oc-
cupy a central place in the theory of network flow,
geometric embeddings, and Markov chains, and
form a crucial component of divide-and-conquer
approaches in applications such as packet rout-
ing, VLSI layout, and clustering.

Formally, given a graph G D .V; E/, the spar-
sity or edge expansion of a non-empty set S � V ,
jS j � 1

2
jV j, is defined as follows:

˛.S/ D
jE.S; V n S/j

jS j
:

The sparsity of the graph, ’(G), is then defined as
follows:

˛.G/ D min
S	V;jS j� 1

2 jV j

˛.S/ :

The goal in the Sparsest Cut problem is to find
a subset S � V with the minimum sparsity, and
to determine the sparsity of the graph.

The first approximation algorithm for the
Sparsest Cut problem was developed by Leighton
and Rao in 1988 [13]. Employing a linear
programming relaxation of the problem, they
obtained an O.log n/ approximation, where n is
the size of the input graph. Subsequently Arora,
Rao and Vazirani [4] obtained an improvement
over Leighton and Rao’s algorithm using
a semi-definite programming relaxation, approx-
imating the problem to within an O.

p
log n/

factor.
In addition to the Sparsest Cut problem, Arora

et al. also consider the closely related Balanced
Separator problem. A partition .S; V n S/ of the
graph G is called a c-balanced separator for
0 < c � 1

2
, if both S and V n S have at least

cjV j vertices. The goal in the Balanced Separator
problem is to find a c-balanced partition with
the minimum sparsity. This sparsity is denoted
˛c.G/.

Key Results

Arora et al. provide an O.
p

log n/ pseudo-
approximation to the balanced-separator problem
using semi-definite programming. In particular,
given a constant c 2 .0; 1

2
�, they produce

a separator with balance c0 that is slightly worse
than c (that is, c0 < c), but sparsity within an
O.
p

log n/ factor of the sparsity of the optimal
c-balanced separator.

Theorem 1 Given a graph G D .V; E/, let
˛c.G/ be the minimum edge expansion of
a c-balanced separator in this graph. Then
for every fixed constant a < 1, there exists
a polynomial-time algorithm for finding a c0-
balanced separator in G, with c0 � ac, that has
edge expansion at most O.

p
log n˛c.G//.

Extending this theorem to include unbalanced
partitions, Arora et al. obtain the following:

Theorem 2 Let G D .V; E/ be a graph with
sparsity ˛(G). Then there exists a polynomial-time
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algorithm for finding a partition .S; V n S/,
with S � V , S ¤ ;, having sparsity at most
O.
p

log n˛.G//.

An important contribution of Arora et al. is
a new geometric characterization of vectors
in n-dimensional space endowed with the
squared-Euclidean metric. This result is of
independent significance and has lead to or
inspired improved approximation factors for
several other partitioning problems (see, for
example, [1, 5, 6, 7, 11]).

Informally, the result says that if a set of points
in n-dimensional space is randomly projected on
to a line, a good separator on the line is, with
high probability, a good separator (in terms of
squared-Euclidean distance) in the original high-
dimensional space. Separation on the line is re-
lated to separation in the original space via the
following definition of stretch.

Definition 1 (Def. 4 in [4]) Let Ex1; Ex2; : : : ; Exn

be a set of n points in Rn, equipped with the
squared-Euclidean metric d.x; y/ D jjx � yjj22.
The set of points is said to be .t; �; ˇ/ -stretched
at scale `, if for at least a � fraction of all the
n-dimensional unit vectors u, there is a partial
matching Mu D f.xi ; yi /gi among these points,
with jMuj � ˇn, such that for all .x; y/ 2Mu,
d.x; y/ � `2 and hu; Ex � Eyi � t`=

p
n. Here h�; �i

denotes the dot product of two vectors.

Theorem 3 For any �; ˇ > 0, there is a constant
C D C.�; ˇ/ such that if t > C log1=3 n, then no
set of n points in Rn can be .t; �; ˇ/-stretched for
any scale `.

In addition to the SDP-rounding algorithm, Arora
et al. provide an alternate algorithm for finding
approximate sparsest cuts, using the notion of ex-
pander flows. This result leads to fast (quadratic
time) implementations of their approximation al-
gorithm [3].

Applications

One of the main applications of balanced sepa-
rators is in improving the performance of divide

and conquer algorithms for a variety of optimiza-
tion problems.

One example is the Minimum Cut Linear
Arrangement problem. In this problem, the
goal is to order the vertices of a given n
vertex graph G from 1 through n in such
a way that the capacity of the largest of the
cuts .f1; 2; � � � ; ig; fi C 1; � � � ; ng/, i 2 Œ1; n�,
is minimized. Given a ¡-approximation to the
balanced separator problem, the following divide
and conquer algorithm gives an O.� log n/-
approximation to the Minimum Cut Linear
Arrangement problem: find a balanced separator
in the graph, then recursively order the two
parts, and concatenate the orderings. The
approximation follows by noting that if the graph
has a balanced separator with expansion ˛c.G/,
only O.�n˛n.G// edges are cut at every level,
and given that a balanced separator is found at
every step, the number of levels of recursion is at
most O.log n/.

Similar approaches can be used for problems
such as VLSI layout and Gaussian elimination.
(See the survey by Shmoys [14] for more details
on these topics.)

The Sparsest Cut problem is also closely
related to the problem of embedding squared-
Euclidean metrics into the Manhattan (`1)
metric with low distortion. In particular, the
integrality gap of Arora et al.’s semi-definite
programming relaxation for Sparsest Cut
(generalized to include weights on vertices and
capacities on edges) is exactly equal to the
worst-case distortion for embedding a squared-
Euclidean metric into the Manhattan metric.
Using the technology introduced by Arora et
al., improved embeddings from the squared-
Euclidean metric into the Manhattan metric have
been obtained [5, 7].

Open Problems

Hardness of approximation results for the
Sparsest Cut problem are fairly weak. Recently
Chuzhoy and Khanna [9] showed that this
problem is APX-hard, that is, there exists a con-
stant � > 0, such that a .1C �/-approximation
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algorithm for Sparsest Cut would imply P D NP.
It is conjectured that the weighted version
of the problem is NP-hard to approximate
better than O..log log n/c/ for some constant
c, but this is only known to hold true
assuming a version of the so-called Unique
Games conjecture [8, 12]. On the other hand,
the semi-definite programming relaxation of
Arora et al. is known to have an integrality
gap of ˝.log log n/ even in the unweighted
case [10]. Proving an unconditional super-
constant hardness result for weighted or un-
weighted Sparsest Cut, or obtaining o.

p
log n/-

approximations for these problems remain
open.

The directed version of the Sparset Cut prob-
lem has also been studied, and is known to be
hard to approximate within a 2˝.log1�� n/ fac-
tor [9]. On the other hand, the best approxi-
mation known for this problem only achieves
a polynomial factor of approximation–a factor of
O.n11=23 logO.1/ n/ due to Aggarwal, Alon and
Charikar [2].
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Problem Definition

Speed scaling is a power management technique
in modern processor that allows the processor to
run at different speeds. There is a power function
P(s) that specifies the power, which is energy
used per unit of time, as a function of the speed.
In CMOS-based processors, the cube-root rule
states that P.s/ 	 s3. This is usually generalized
to assume that P.s/ D s˛ form some constant ’.
The goals of power management are to reduce
temperature and/or to save energy. Energy is
power integrated over time. Theoretical investi-
gations to date have assumed that there is a fixed
ambient temperature and that the processor cools
according to Newton’s law, that is, the rate of
cooling is proportional to the temperature differ-
ence between the processor and the environment.

In the resulting scheduling problems, the
scheduler must not only have a job-selection
policy to determine the job to run at each time,
but also a speed scaling policy to determine
the speed at which to run that job. The
resulting problems are generally dual objective
optimization problems. One objective is some
quality of service measure for the schedule, and
the other objective is temperature or energy.

We will consider problems where jobs arrive at
the processor over time. Each job i has a release
time ri when it arrives at the processor, and
a work requirement wi. A job i run at speed s takes
wi =s units of time to complete.

Key Results

Yao et al. [5] initiated the theoretical algorithmic
investigation of speed scaling problems. Yao et
al. [5] assumed that each job i had a deadline
di, and that the quality of service measure was
deadline feasibility (each job completes by its
deadline). Yao et al. [5] gives a greedy algorithm

YDS to find the minimum energy feasible sched-
ule. The job selection policy for YDS is to run the
job with the earliest deadline. To understand the
speed scaling policy for YDS, define the intensity
of a time interval to be the work that must be
completed in this time interval divided by the
length of the time interval. YDS then finds the
maximum intensity interval, runs the jobs that
must be run in this interval at constant speed,
eliminates these jobs and this time interval from
the instance, and proceeds recursively. Yao et al.
[5] gives two online algorithms: OA and AVR. In
OA the speed scaling policy is the speed that YDS
would run at, given the current state and given
that no more jobs will be released in the future.
In AVR, the rate at which each job is completed
is constant between the time that a job is released
and the deadline for that job. Yao et al. [5] showed
that AVR is 2˛�1˛˛-competitive with respect to
energy.

The results in [5] were extended in [2]. Bansal
et al. [2] showed that OA is ˛˛-competitive with
respect to energy. Bansal et al. [2] proposed
another online algorithm, BKP. BKP runs at the
speed of the maximum intensity interval contain-
ing the current time, taking into account only the
work that has been released by the current time.
They show that the competitiveness of BKP with
respect to energy is at most 2.˛=.˛ � 1//˛ e˛ .
They also show that BKP is e-competitive with
respect to the maximum speed.

Bansal et al. [2] initiated the theoretical
algorithmic investigation of speed scaling to
manage temperature. Bansal et al. [2] showed
that the deadline feasible schedule that minimizes
maximum temperature can in principle be
computed in polynomial time. Bansal et al.
[2] showed that the competitiveness of BKP
with respect to maximum temperature is at most
2˛C1 e˛.6.˛=.˛ � 1//˛ C 1/.

Pruhs et al. [4] initiated the theoretical al-
gorithmic investigation into speed scaling when
the quality-of-service objective is average/total
flow time. The flow time of a job is the delay
from when a job is released until it is com-
pleted. Pruhs et al. [4] give a rather complicated
polynomial-time algorithm to find the optimal
flow time schedule for unit work jobs, given
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a bound on the energy available. It is easy to see
that no O(1)-competitive algorithm exists for this
problem.

Albers and Fujiwara [1] introduce the objec-
tive of minimizing a linear combination of energy
used and total flow time. This has a natural
interpretation if one imagines the user specifying
how much energy he is willing to use to increase
the flow time of a job by a unit amount. Albers
and Fujiwara [1] give an O(1)-competitive online
algorithm for the case of unit work jobs. Bansal
et al. [3] improves upon this result and gives a 4-
competitive online algorithm. The speed scaling
policies of the online algorithms in [1] and [3]
essentially run as power equal to the number
of unfinished jobs (in each case modified in
a particular way to facilitate analysis of the al-
gorithm). Bansal et al. [3] extend these results
to apply to jobs with arbitrary work, and even
arbitrary weight. The speed scaling policy is
essentially to run at power equal to the weight
of the unfinished work. The expression for the
resulting competitive ratio is a bit complicated
but is approximately 8 when the cube-root rule
holds.

The analysis of the online algorithms in [2]
and [3] heavily relied on amortized local com-
petitiveness. An online algorithm is locally com-
petitive for a particular objective if for all times
the rate of increase of that objective for the
online algorithm, plus the rate of change of some
potential function, is at most the competitive ratio
times the rate of increase of the objective in any
other schedule.

Applications

None

Open Problems

The outstanding open problem is probably to
determine if there is an efficient algorithm to
compute the optimal flow time schedule given
a fixed energy bound.
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Problem Definition

The sphere packing problem seeks to pack
spheres into a given geometric domain. The
problem is an instance of geometric packing.
Geometric packing is a venerable topic in
mathematics. Various versions of geometric
packing problems have been studied, depending
on the shapes of packing domains, the types
of packing objects, the position restrictions
on the objects, the optimization criteria, the
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dimensions, etc. It also arises in numerous
applied areas. The sphere packing problem
under consideration here finds applications in
radiation cancer treatment using Gamma Knife
systems. Unfortunately, even very restricted
versions of geometric packing problems (e.g.,
regular-shaped objects and domains in lower
dimensional spaces) have been proved to be
NP-hard. For example, for congruent packing
(i.e., packing copies of the same object), it is
known that the 2-D cases of packing fixed-sized
congruent squares or disks in a simple polygon
are NP-hard [7]. Baur and Fekete [2] considered
a closely related dispersion problem of packing
k congruent disks in a polygon of n vertices
such that the radius of the disks is maximized;
they proved that the dispersion problem cannot
be approximated arbitrarily well in polynomial
time unless PD NP, and gave a 2

3
-approximation

algorithm for the L1 disk case with a time bound
of O(n38).

Chen et al. [4] proposed a practically efficient
heuristic scheme, called pack-and-shake, for the
congruent sphere packing problem, based on
computational geometry techniques. The prob-
lem is defined as follows.

The Congruent Sphere Packing Problem
Given a d-D polyhedral region R.d D 2; 3/ of n
vertices and a value r > 0, find a packing SP of R
using spheres of radius r, such that (i) each sphere
is contained in R, (ii) no two distinct spheres
intersect each other in their interior, and (iii) the
ratio (called the packing density) of the covered
volume in R by SP over the total volume of R is
maximized.

In the above problem, one can view the
spheres as “solid” objects. The region R is also
called the domain or container. Without loss of
generality, let r D 1.

Much work on congruent sphere packing stud-
ied the case of packing spheres into an unbounded
domain or even the whole space [5]. There are
also results on packing congruent spheres into
a bounded region. Hochbaum and Maass [8] pre-
sented a unified and powerful shifting technique
for designing pseudo-polynomial time approxi-
mation schemes for packing congruent squares

into a rectilinear polygon. But, the high time com-
plexities associated with the resulting algorithms
restrict their applicability in practice. Another
approach is to formulate a packing problem as
a non-linear optimization problem, and resort to
an available optimization software to generate
packings; however, this approach works well only
for small problem sizes and regular-shaped do-
mains.

To reduce the running time yet achieve a dense
packing, a common idea is to consider objects
that form a certain lattice or double-lattice.
A number of results were given on lattice packing
of congruent objects in the whole (especially
high dimensional) space [5]. For a bounded
rectangular 2-D domain, Milenkovic [10]
adopted a method that first finds the densest
translational lattice packing for a set of polygonal
objects in the whole plane, and then uses
some heuristics to extract the actual bounded
packing.

Key Results

The pack-and-shake scheme of Chen et al. [4]
for packing congruent spheres in an irregular-
shaped 2-D or 3-D bounded domain R consists
of three phases. In the first phase, the d-D
domain R is partitioned into a set of convex
subregions (called cells). The resulting set of
cells defines a dual graph GD, such that each
vertex v of GD corresponds to a cell C(v) and
an edge connects two vertices if and only if
their corresponding cells share a .d � 1/-D face.
In the second phase, the algorithm repeats the
following trimming and packing process until
GD D ;: Remove the lowest degree vertex
v from GD and pack the cell C(v). In the
third phase, a shake procedure is applied to
globally adjust the packing to obtain a denser
one.

The objective of the trimming and packing
procedure is that after each cell is packed, the
remaining “packable” subdomain R0 of R is al-
ways kept as a connected region. The rationale for
maintaining the connectivity of R0 is as follows.
To pack spheres in a bounded domain R, two
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typical approaches have been used: (a) packing
spheres layer by layer going from the boundary
of R towards its interior [9], and (b) packing
spheres starting from the “center” of R, such
as its medial axis, towards its boundary [3, 13,
14]. Due to the shape irregularity of R, both
approaches may fragment the remaining “pack-
able” subdomain R0 into more and more dis-
connected regions; however, at the end of pack-
ing each such region, a small “unpackable” area
may eventually remain that allows no further
packing. It could fit more spheres if the “pack-
able” subdomain R0 is lumped together instead
of being divided into fragments, which is what
the trimming and packing procedure aims to
achieve.

Due to the packing of its adjacent cells
that have been done by the trimming and
packing procedure, the boundary of a cell
C(v) that is to be packed may consist of both
line segments and arcs (from packed spheres).
Hence, a key problem is to pack spheres in
a cell bounded by curves of low degrees. Chen
et al.’s algorithms [4] for packing each cell are
based on certain lattice structures and allow
the cell to both translate and rotate. Their
algorithms have fairly low time bounds. In
certain cases, they even run in nearly linear
time.

An interesting feature of the cell pack-
ings generated by the trimming and pack-
ing procedure is that the resulted spheres
cluster together in the middle of the cells
of the domain R, leaving some small un-
packable areas scattered along the bound-
ary of R. The “shake” procedure in [4]
thus seeks to collect these small areas to-
gether by “pushing” the spheres towards
the boundary of R, in the hope of obtain-
ing some “packable” region in the middle
of R.

The approach in [4] is to first obtain a densest
lattice unit sphere packing LSP(C) for each cell
C of R, and then use a “shake” procedure to
globally adjust the resulting packing of R to
generate a denser packing SP in R. Suppose
the plane P is already packed by infinitely
many unit spheres whose center points form

a lattice (e.g., the hexagonal lattice). To obtain
a densest packing LSP(C) for a cell C from the
lattice packing of the plane P, a position and
orientation of C on P need to be computed
such that C contains the maximum number
of spheres from the lattice packing of P.
There are two types of algorithms in [4] for
computing an optimal placement of C on P:
translational algorithms that allow C to be
translated only, and translational/rotational
algorithms that allow C to be both translated
and rotated.

Let n D jC j, the number of bounding curves
of C, and m be the number of spheres along
the boundary of C in a sought optimal packing
of C.

Theorem 1 Given a polygonal region C
bounded by n algebraic curves of constant
degrees, a densest lattice unit sphere packing
of C based only on translational motion can
be computed in O.N log N CK/ time, where
N D f .n; m/ is a function of n and m, and K
is the number of intersections between N planar
algebraic curves of constant degrees that are
derived from the packing instance.

Note: In the worst case, N Df .n; m/Dn�m.
But in practice, N may be much smaller. The
N planar algebraic curves in Theorem 1 form
a structure called arrangement. Since all these
curves are of a constant degree, any two such
curves can intersect each other at most a constant
number of times. In the worst case, the num-
ber K of intersections between the N algebraic
curves, which is also the size of the arrange-
ment, is O(N2). The arrangement of these curves
can be computed by the algorithms [1, 6] in
O.N log N CK/ time.

Theorem 2 Given a polygonal region C
bounded by n algebraic curves of con-
stant degrees, a densest lattice unit sphere
packing of C based on both translational
and rotational motions can be computed
in O.T .n/C .N CK 0/ log N / time, where
N D f .n; m/ is a function of n and m,
K0 is the size of the arrangement of N
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pseudo-plane surfaces in 3-D that are derived
from the packing instance, and T(n) is the
time for solving O(n2) quadratic optimization
problem instances associated with the packing
instance.

In Theorem 2, K 0 D O.N 3/ in the worst case. In
practice, K0 can be much smaller.

The results on 2-D sphere packing in [4]
can be extended to d-D for any constant integer
d � 3, so long as a good d-D lattice packing of
the d-D space is available.

Applications

Recent interest in the considered congruent
sphere packing problem was motivated by
medical applications in Gamma Knife radio-
surgery [4, 11, 12]. Radiosurgery is a minimally
invasive surgical procedure that uses radiation
to destroy tumors inside human body while
sparing the normal tissues. The Gamma Knife
is a radiosurgical system that consists of 201
Cobalt-60 sources [3, 14]; the gamma-rays from
these sources are all focused on a common
center point, thus creating a spherical volume
of radiation field. The Gamma Knife treatment
normally applies high radiation dose. In this
setting, overlapping spheres may result in
overdose regions (called hot spots) in the target
treatment domain, while a low packing density
may cause underdose regions (called cold spots)
and a non-uniform dose distribution. Hence, one
may view the spheres used in Gamma Knife
packing as “solid” spheres. Therefore, a key
geometric problem in Gamma Knife treatment
planning is to fit multiple spheres into a 3-D
irregular-shaped tumor [3, 13, 14]. The total
treatment time crucially depends on the number
of spheres used. Subject to a given packing
density, the minimum number of spheres used
in the packing (i.e., treatment) is desired. The
Gamma Knife currently produces spheres of
four different radii (4, 8, 14, and 18 mm), and
hence the Gamma Knife sphere packing is in
general not congruent. In practice, a commonly
used approach is to pack larger spheres first,

and then fit smaller spheres into the remaining
subdomains, in the hope of reducing the total
number of spheres involved and thus shortening
the treatment time. Therefore, congruent sphere
packing can be used as a key subroutine for such
a common approach.

Open Problems

An open problem is to analyze the quality bounds
of the resulting packing for the algorithms in [4];
such packing quality bounds are currently not yet
known. Another open problem is to reduce the
running time of the packing algorithms in [4],
since these algorithms, especially for sphere
packing problems in higher dimensions, are still
very time-consuming. In general, it is highly
desirable to develop efficient sphere packing
algorithms in d-D (d � 2) with guaranteed good
packing quality.

Experimental Results

Some experimental results of the 2-D pack-
and-shake sphere packing algorithms were
given in [4]. The planar hexagonal lattice
was used for the lattice packing. On packings
whose sizes are in the hundreds, the CCC
programs of the algorithms in [4] based only
on translational motion run very fast (a few
minutes), while those of the algorithms based
on both translation and rotation take much
longer time (hours), reflecting their respective
theoretical time bounds, as expected. On the
other hand, the packing quality of the translation-
and-rotation based algorithms is a little better
than the translation based algorithms. The
packing densities of all the algorithms in the
experiments are well above 70 % and some are
even close to or above 80 %. Comparing with the
nonconvex programming methods, the packing
algorithms in [4] seemed to run faster based on
the experiments.
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Problem Definition

Introduced by Cunningham and Edmonds [11],
the split decomposition, also known as the join
(or 1-join) decomposition, ranges among the
classical graph decomposition schemes. Given a
graph G D .V; E/, a bipartition .A; B/ of the
vertex set V (with jAj > 2 and jBj > 2) is a split
if there are subsets A0 � A and B 0 � B , called
frontiers, such that there is an edge between a
vertex u 2 A and v 2 B if and only if u 2 A0

and v 2 B 0 (see Fig. 1). A graph is prime if
it does not contain any split. Observe that an
induced cycle of length at least 5 is a prime
graph. A graph is degenerate if every bipartition
.A; B/ with jAj > 2 and jBj > 2 is a split.
It can be shown that a degenerate graphs are
either cliques or stars. The split decomposition
consists in recursively decompose a graph into
a set of disjoint graphs fG1; : : : Gkg, called split
components, each of which is either prime or
degenerate. There are two cases:

1. If G is prime or degenerate, then return the set
fGg;

http://dx.doi.org/10.1007/978-1-4939-2864-4_209
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Split Decomposition via Graph-Labelled Trees, Fig.
1 A circle graph G with a chord diagram on the right
and its split decomposition tree ST .G/ on the left. The
nodes v and y are prime nodes, whereas u is a star node
and w a clique node. The bipartition .ff; g; h; ig; V n
ff; g; h; ig/ forms a split of G and corresponds to a tree
edge of ST .G/. The frontiers are ff; ig on one side and

fe; j; k; lg on the other. Observe that .fk; lg; V nfk; lg/
is also a split but which is not represented by the tree edge
between nodes Y and Z in ST .G/. Because G is not
a prime graph, it can be represented with several chord
diagram. For example, exchanging the chord of y with the
chord of ´ yields an alternative chord diagram

2. If G is neither prime nor degenerate, it con-
tains a split .A; B/, with frontiers A0 and B 0.
The split components of G is then the union
of the split components of the graphs GŒA�C

.a; A0/ and GŒB�C .b; B 0/, where a and b are
new vertices, called markers.

Observe that the split decomposition process nat-
urally defines a decomposition tree whose nodes
represent the split components. This decomposi-
tion tree can be represented by a graph-labeled
tree (GLT) (see [16,18]) defined as a pair .T;F/,
where T is a tree and F a set of graphs, such
that each node u of T is labeled by the graph
G.u/ 2 F , and there exists a bijection �u between
the edges of T incident to u and the vertices
of G.u/, called marker vertices. We say that
two leaves `a and `b of T are accessible if
for every pair of consecutive tree edges uv and
vw on the path from `a and `b in T , �v.uv/

and �v.vw/ are adjacent in G.v/. From a GLT
.T;F/, we define an accessibility graph G.T;F/

whose vertex set is the leaf set of T and two
vertices a and b are adjacent if the corresponding
leaves `a and `b are accessible. It is easy to
observe that every tree edge e of a GLT .T;F/

defines a split .A; B/ of G.T;F/ where A and
B respectively contain the vertices corresponding

to the leaves of the two connected components of
T�e. Cunningham and Edmonds [11] formalized
the family of splits as an example of partite
family of bipartitions thereby implying that every
graph admits a canonical split decomposition tree
(see Fig. 1). In terms of GLTs, this translates as
follows:

Theorem 1 ([11, 16, 18]) Let G be a connected
graph. There exists a unique GLT .T;F/ whose
labels are either prime or degenerate, having
a minimal number of nodes and such that
G D G.T;F/. This GLT is called the split tree of
G and denoted ST .G/.

The problem we are interested in is to effi-
ciently compute the split tree ST .G/ of a graph
G D .V; E/. The first polynomial-time algorithm
was and runs in time O.nm/, where n D jV j and
m D jEj. Ma and Spinrad [23] later developed an
O.n2/ algorithm. Finally Dahlhaus [12] designed
the first linear-time algorithm which was recently
revisited by Charbit et al. [5].

Key Results

As mentioned above, the split tree of a graph can
be computed in linear time. The algorithm we
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describe here is nearly optimal, that is, runs in
time O.nCm/ �˛.nCm/, where ˛ is the inverse
Ackermann function. The fact that this algorithm
incrementally builds the split tree is responsible
of the small additional complexity cost. More
precisely, updating the tree structure of the GLT
representing the split tree relies on the union-
find data structure [15]. But having an incre-
mental split decomposition algorithm allows an
extension of the algorithm, within the same time
complexity, to the circle graph recognition [17], a
problem for which computing the split decompo-
sition is a corner step. But so far, a subquadratic
time complexity cannot be reached using the
previous linear (or quadratic) split decomposition
algorithms.

Theorem 2 ([18]) The split tree ST .G/ of
a graph G D .V; E/, with jV j D n and
jEj D m, can be built incrementally according
to an LBFS ordering in time O.n C m/ �

˛.n C m/, where ˛ is the inverse Ackermann
function.

It is important to observe that to reach the
expected complexity, the algorithm inserts the
vertices according to a LexBFS ordering [25].
These orderings, resulting from a lexicographic
breadth-first search, appear in a number of recog-
nition algorithms, such as chordal graphs [25],
comparability graphs [20], interval graphs [22],
and cographs [3]. The idea is that structural
properties can be shown on the last vertex visited
by a LexBFS. For example, in chordal graphs
the last vertex is simplicial; in comparability
graphs it is a source of some transitive orienta-
tion. LexBFS, introduced in [25], works as fol-
lows: it numbers the vertices decreasingly from
n D jV j down to 1; initially every vertex re-
ceives an empty label; then iteratively, an ar-
bitrary unnumbered vertex x with lexicograph-
ically largest label is selected and numbered i ,
and i is appended to the label of every unnum-
bered neighbor of x. On the graph of Fig. 1,
� D b; a; e; d; c; f; i; j; k; l; h; g is a LexBFS
ordering.

Applications

Many graph classes can be characterized by
means of the split decomposition. Below,
we review the most important of these
classes. Finally, we discuss the links between
split decomposition and other decomposition
approaches.

Graph Classes

Distance Hereditary Graphs
The family of graphs for which the split tree
does not contain any prime node is called to-
tally decomposable (or totally separable). This
terminology follows from the observation that for
every subgraph of size at least 4, every nontrivial
bipartition of the vertex set forms a split. A graph
G is distance hereditary [1] if for every induced
connected subgraph H of G and every pair of
vertices x and y of H , the distance between x

and y is the same in H and G. It turns out that
a graph G is totally decomposable if and only
if it is distance hereditary [1]. In other words,
a graph G is distance hereditary if and only if
every node of ST .G/ is either a star or a clique
node. The first linear-time recognition algorithm
of distance hereditary graphs, due to [21], relies
on a breadth-first search characterization (see
also [13]). More recently, a linear-time algorithm
has been designed to update the split tree of a
distance hereditary graph under vertex and edge
insertion, leading to an alternative (vertex in-
cremental) linear-time recognition algorithm for
distance hereditary graphs.

Theorem 3 ([16]) Let ST .G/ be the split tree of
a distance hereditary graph G D .V; E/, S � V

be a subset of vertices of G and e D .x; y/ … E

be a non-edge of G. Then:

• In O.1/-time, we can compute ST .G C e/

where GCe D .V; E[feg/ if GCe is distance
hereditary;

• In O.jS j/-time, we can compute ST .G C

.x; S/ where G C .x; S/ D .V [ fxg; E [

f.x; y/ j y 2 Sg if G C .x; S/ is distance
hereditary.
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Subclasses of Totally Decomposable Graphs
A GLT is called clique-star tree if its nodes are
labeled either with cliques or stars. As a conse-
quence of the discussion of the previous para-
graph, distance hereditary graphs are the graphs
corresponding the clique-star trees. Imposing any
constraint on a clique-star tree thereby immedi-
ately defines a subclass of distance hereditary
graphs. It turns out that many important graph
subclasses of distance hereditary graphs can be
characterized with the split decomposition.

The cographs, also known as complement-
reducible graphs [8] or P4-free graphs, are prob-
ably the most studied subclass of distance heredi-
tary graphs. Cographs are also known as the class
of graphs totally decomposable with respect to
the modular decomposition [19], and their com-
binatorial structure is captured by the so-called
cotree. As noticed in [16], it is easy to observe
that a graph G is a cograph if and only if its split
tree ST .G/ is a clique-star tree that can be rooted
either at a node or at a tree edge such that every
star node is “oriented” toward that root (that is the
marker vertex corresponding the center of every
star node is oriented toward the root).

The class of ptolemaic graphs or 3-leaf power
are also interesting. The class of ptolemaic graphs
is defined as the intersection of distance heredi-
tary graphs and chordal graphs. Chordal graphs
are the graphs without induced chordless cycles
of length four or more. It follows that a graph

G is ptolemaic if and only if ST .G/ is a clique-
star tree such that for every pair of star nodes u
and v, not both extremities of the path from u
to v in ST .G/ are attached to the center marker
vertex of u and v (otherwise this would generate
a chordless 4-cycle). As a subclass of chordal
graph, 3-leaf powers inherit the restrictions of
ptolemaic graphs on the split tree with the addi-
tive constraint that no clique node lies on the path
between two star nodes (see [16] for details).

Circle Graphs
The split decomposition plays an important role
in the context of circle graphs defined as inter-
section graphs of a set of chords in a circle. The
main reason is that a graph G is a circle graph
if and only if every split component of G is a
circle graph. In other words, as clique and stars
are circle graphs, G is a circle graph if and only if
the prime nodes of ST .G/ are labeled with circle
graphs. Observe that this characterization shows
that distance hereditary graphs form a subclass
of circle graphs. By the way the first quadratic
time circle graph recognition algorithm was ob-
tained by computing the split decomposition of
the input graph and reducing the problem to the
recognition of prime circle graphs [23, 26]. The
key property is that a prime circle graph has a
unique (up to mirror) chord diagram [2, 14] (see
Fig. 2).
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Split Decomposition via Graph-Labelled Trees, Fig. 2
On the left, two distinct chord diagrams of the graph G
depicted in Fig. 1 results from symmetric insertion of the
chords representing the vertices ff; g; h; ig (remind that

.ff; g; h; ig; V nff; g; h; ig/ form a split). On the right,
the chord diagram on f1; 2; 3; 4; 5g is the unique (up to
rotation and mirror) chord diagram of the 5-cycle, which
is a prime graph
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The linear-time split decomposition al-
gorithm [12], proposed in the mid-1990s,
did not lead to a linear-time circle graph
recognition algorithm. For almost two decades,
the quadratic time complexity [27] remained the
best known complexity. The quadratic barrier
has been broken using the almost linear-time
split decomposition algorithm of [17]. The key
ingredient was to insert the vertices according
to a LexBFS ordering. Indeed, in the unique
chord diagram of a prime circle graph G, the
neighborhood of the last vertex x of a LexBFS
ordering satisfies a sort of consecutiveness
property. More precisely, the chord diagram of
G contains a set of consecutive chord extremities
starting and ending with the extremities of x’s
chord and containing one and only one chord
extremity per neighbor of x and no chord
extremity of non-neighbors of x. This property
is used to incrementally build the split tree of a
circle graph using chord diagrams to represent
prime nodes. It is worth to observe that the split
tree of a circle graph G together with the chord
diagrams of each of its prime nodes provides a
canonical (linear space) representation of the set
of (exponentially many) chord diagrams of G.

Theorem 4 ([17]) Let G D .V; E/ be a graph
such that jV j D n and jEj D m. There exists
a O.n C m/ � ˛.n C m/-time algorithm, where
˛ is the inverse Ackermann function, deciding
whether G is a circle graph. Moreover, if G is
a circle graph, the algorithm outputs a split-tree
representation G from which any chord diagram
of G can be extracted in linear time.

Perfect Graphs
The recent proof [6] of the famous conjecture of
Berge on perfect graphs states that a graph is per-
fect if and only if it does not contain an odd cycle
of length at least 5 nor its complement as induced
subgraph. It is easy to observe that a graph is
perfect if and only if its prime components are
perfect graphs. The split decomposition does not
formally appear in the structural decomposition
theorem of perfect graphs [6, 28] as it is sub-
sumed by the so-called balanced skew partition.
In the context of perfect graphs, parity graphs [4]

form a nice example of class of graphs simply
characterized through their split decomposition.
A graph is a parity graph if for every pair x,
y of vertices, the length of every chordless path
between x and y is of the same parity. This
constraint can be translated into a condition on
odd cycles or into a condition on their split tree.
Indeed it can be proved that a graph is a parity
graph if and only if its prime nodes are labeled
with bipartite graphs [7].

Related Graph Decompositions

Modular Decomposition
The split decomposition is often introduced as
a generalization of the modular decomposition
(also known as homogeneous decomposi-
tion) [19]. A module in a graph G D .V; E/ is a
subset M of vertices such that every vertex not in
M is either fully adjacent or fully nonadjacent to
the vertices of M . Clearly, if M is a module of
size at least 2, then .M; V nM/ defines a split.
Indeed the split decomposition is sometimes used
to further decompose graphs that are primes with
respect to the modular decomposition.

Width Parameters
Rank-width [24] and clique-width [10] are two
important width parameters both sharing some
connections with the split decomposition. As the
rank-width of a graph is small if its clique-width
is small and vice versa, we only briefly describe
the former parameter. A rank-decomposition of a
graph G is defined as a ternary tree whose leaves
are in one-to-one correspondence with the ver-
tices of G. It follows that every internal tree edge
defines a bipartition, say .A; B/ of the vertices of
G. The rank-width of a bipartition .A; B/ is de-
fined as the rank of the incidence matrix between
A and B , and the width of a rank-decomposition
is the maximum width over its bipartitions. The
rank-width of a graph G is then the minimum
width over its rank-decompositions. Observe that
the every split is a rank-width 1 bipartition. It
follows that the rank-width of a graph is the max-
imum rank-width of its prime components. As a
consequence rank-width one graphs are exactly
distance hereditary graphs. To conclude, let us
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mention that computing the split decomposition
of a graph is a key step in the polynomial-
time recognition algorithm of clique-width three
graphs [9].
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Squares and Repetitions, Fig. 1 The structure of RUNS(x) where x D baababaababbabaababaab D
b´2.´R/2b, for ´ D aabab. The operation �R is reversing the string

Problem Definition

Periodicities and repetitions in strings have been
extensively studied and are important both in
theory and practice (combinatorics of words,
pattern-matching, computational biology). The
words of the type ww and www, where w is
a nonempty primitive (not of the form uk for
an integer k > 1) word, are called squares and
cubes, respectively. They are well-investigated
objects in combinatorics on words [16] and in
string-matching with small memory [5].

A string w is said to be periodic iff
period.w/ � jwj=2, where period(w) is the small-
est positive integer p for which wŒi � D wŒi C p�

whenever both sides of the equality are defined.
In particular each square and cube is periodic.

A repetition in a string x D x1x2 : : : xn is an
interval Œi : : j � � Œ1 : : n� for which the associated
factor xŒi : : j � is periodic. It is an occurrence of
a periodic word xŒi : : j �, also called a positioned
repetition. A word can be associated with several
repetitions, see Fig. 1.

Initially people investigated mostly positioned
squares, but their number is ˝.n log n/ [2], hence
algorithms computing all of them cannot run in
linear time, due to the potential size of the output.
The optimal algorithms reporting all positioned
squares or just a single square were designed
in [1, 2, 3, 19]. Unlike this, it is known that
only O(n) (un-positioned) squares can appear in
a string of length n [8].

The concept of maximal repetitions, called
runs (equivalent terminology) in [14], has been
introduced to represent all repetitions in a suc-
cinct manner. The crucial property of runs is that

there are only O(n) runs in a word of length
n [15, 21].

A run in a string x is an interval Œi : : j �

such that both the associated string xŒi : : j � has
period p � .j � i C 1/=2, and the periodicity
cannot be extended to the right nor to the left:
xŒi � 1� ¤ xŒx C p � 1� and xŒj � p C 1� ¤

xŒj C 1� when the elements are defined. The set
of runs of x is denoted by RUNS.x/. An example
is displayed in Fig. 1.

Key Results

The main results concern fast algorithms for
computing positioned squares and runs, as well
as combinatorial estimation on the number of
corresponding objects.

Theorem 1 (Crochemore [1], Apostolico-
Preparata [2], Main-Lorentz [19]) There exists
an O.n log n/ worst-case time algorithm for
computing all the occurrences of squares in
a string of length n.

Techniques used to design the algorithms are
based on partitioning, suffix trees, and naming
segments. A similar result has been obtained
by Franek, Smyth, and Tang using suffix ar-
rays [11]. The key component in the next algo-
rithm is the function described in the following
lemma.

Lemma 2 (Main-Lorentz [19]) Given two
square-free strings u and v, reporting if uv

contains a square centered in u can be done
in worst-case time O.juj/.
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Squares and Repetitions, Fig. 2 The f-factorization of the example string x D baababaababbabaababaab and
the set of its internal runs; all other runs overlap factorization points

Squares and Repetitions, Fig. 3 If an overlapping run with period p starts in u, ends in v, and its part in v is of size
at least p then it is easily detectable by computing continuations of the periodicity p in two directions: left and right

Using suffix trees or suffix automata together
with the function derived from the lemma, the
following fact has been shown.

Theorem 3 (Crochemore [3], Main-Lorentz
[19]) Testing the square-freeness of a string
of length n can be done in worst-case time
O.n log a/, where a is the size of the alphabet
of the string.

As a consequence of the algorithms and of the
estimation on the number of squares, the most
important result related to repetitions can be for-
mulated as follows.

Theorem 4 (Kolpakov-Kucherov [15], Rytter
[21], Crochemore-Ilie [4])

(1) All runs in a string can be computed in linear
time (on a fixed-size alphabet).

(2) The number of all runs is linear in the length
of the string.

The point (2) is very intricate, it is of purely
combinatorial nature and has nothing to do with
the algorithm. We sketch shortly the basic com-
ponents in the constructive proof of the point
(1). The main idea is to use, as for the previous
theorem, the f-factorization (see [3]): a string x
is decomposed into factors u1; u2; : : : ; uk , where
ui is the longest segment which appears before
(possibly with overlap) or is a single letter if the
segment is empty.

The runs which fit in a single factor are called
internal runs, other runs are called here overlap-
ping runs. There are three crucial facts:

• all overlapping runs can be computed in linear
time,

• each internal run is a copy of an earlier over-
lapping run,

• the f-factorization can be computed in linear
time (on a fixed-size alphabet) if we have the
suffix tree or suffix automaton of the string.
Figure 2 shows f-factorization and internal
runs of an example string.

It follows easily from the definition of the f-
factorization that if a run overlaps two (consec-
utive) factors u k�1 and uk then its size is at most
twice the total size of these two s factors.

Figure 3 shows the basic idea for computing
runs that overlap u v in time O.juj C jvj/. Using
similar tables as in the Morris–Pratt algorithm
(border and prefix tables), see [6], we can test the
continuation of a period p from position p in v

to the left and to the right. The corresponding
tables can be constructed in linear time in
a preprocessing phase. After computing all
overlapping runs the internal runs can be copied
from their earlier occurrences by processing the
string from left to right.

Another interesting result concerning period-
icities is the following lemma and its fairly im-
mediate corollary.
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Lemma 5 (Three Prefix Squares, Crochemore-
Rytter [5]) If u, v, and w are three primitive
words satisfying: juj < jvj < jwj, uu is a prefix of
vv, and vv is a prefix of ww, then juj C jvj � jwj

Corollary 1 Any nonempty string x possesses
less than log˚ jyj prefixes that are squares.

In the configuration of the lemma, a second
consequence is that uu is a prefix of w. Therefore,
a position in a string x cannot be the largest
position of more than two squares, which yields
the next corollary. A simple direct proof of it is
by Ilie [13], see also [17].

Corollary 2 (Fraenkel and Simpson [8]) Any
string x contains at most 2jxj (different) squares,
that is: cardfu j u primitive and u2 factor of yg �

2jxj:

The structure of all squares and of un-positioned
runs has been also computed within the same time
complexities as above in [18] and [12].

Applications

Detecting repetitions in strings is an important
element of several questions: pattern matching,
text compression, and computational biology
to quote a few. Pattern-matching algorithms
have to cope with repetitions to be efficient
as these are likely to slow down the process;
the large family of dictionary-based text
compression methods use a weaker notion of
repeats (like the software gzip); repetitions
in genomes, called satellites, are intensively
studied because, for example, some over-repeated
short segments are related to genetic diseases;
some satellites are also used in forensic crime
investigations.

Open Problems

The most intriguing question remains the
asymptotically tight bound for the maximum
number �.n/ of runs in a string of size n. The
first proof (by painful induction) was quite

difficult and has not produced any concrete
constant coefficient in the O(n) notation. This
subject has been studied in [9, 10, 22, 23].
The best-known lower bound of approximately
0:927 n is from [10]. The exact number of
runs has been considered for special strings:
Fibonacci words and (more generally) Sturmian
words [7, 14, 20]. It is proved in a structural
and intricate manner in the full version of [21]
that �.n/ � 3:44 n, by introducing a sparse-
neighbors technique. The neighbors are runs
for which both the distance between their
starting positions is small and the difference
between their periods is also proportionally
small (according to some fixed coefficient of
proportionality). The occurrences of neighbors
satisfy certain sparsity properties which imply
the linear upper bound. Several variations
for the definitions of neighbors and sparsity
are possible. Considering runs having close
centers the bound has been lowered to 1:6 n

in [4].
As a conclusion, we believe that the following

fact is valid.

Conjecture: A string of length n contains less
than n runs, i.e., jRUNSj.n/ < n.
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Problem Definition

The objective in stable matching problems is to
match together pairs of elements of a set of par-
ticipants, taking into account the preferences of
those involved and focusing on a stability require-
ment. The stability property ensures that no pair
of participants would both prefer to be matched
together rather than to accept their allocation in
the matching. Such problems have widespread
application, for example, in the allocation of
medical students to hospital posts, students to
schools or colleges, etc.

An instance of the classical stable marriage
problem (SM), introduced by Gale and Shapley
[2], involves a set of 2n participants comprising n

men fm1; : : : ; mng and n women fw1; : : : ; wng.
Associated with each participant is a preference
list, which is a total order over the participants
of the opposite sex. A man mi prefers woman
wj to woman wk if wj precedes wk on the
preference list of mi and similarly for the women.



Stable Marriage 2061

S

A matching M is a bijection between the sets of
men and women, in other words a set of man-
woman pairs so that each man and each woman
belongs to exactly one pair of M . For a man mi ,
M.mi / denotes the partner of mi in M , i.e., the
unique woman wj such that .mi ; wj / is in M .
Similarly, M.wj / denotes the partner of woman
wj in M . A matching M is stable if there is no
blocking pair, namely, a pair .mi ; wj / such that
mi prefers wj to M.mi / and wj prefers mi to
M.wj /.

Relaxing the requirements that the numbers
of men and women are equal and that each
participant should rank all of the members of the
opposite sex gives the stable marriage problem
with incomplete lists (SMI). So an instance of
SMI comprises a set of n1 men fm1; : : : ; mn1g

and a set of n2 women fw1; : : : ; wn2g, and each
participant’s preference list is a total order over
a subset of the participants of the opposite sex.
The implication is that if woman wj does not
appear on the list of man mi , then she is not an
acceptable partner for mi and vice versa. A man-
woman pair is acceptable if each member of the
pair is on the preference list of the other, and a
matching M is now a set of acceptable pairs such
that each man and each woman is in at most one
pair of M . In this context, a blocking pair for
matching M is an acceptable pair .mi ; wj / such
that mi either is unmatched in M or prefers wj

to M.mi / and, likewise, wj either is unmatched
or prefers mi to M.wj /. A matching is stable
if it has no blocking pair. So in an instance of
SMI, a stable matching need not match all of the
participants.

Gale and Shapley also introduced a many-
one version of stable marriage, which they
called the college admissions problem, but
which is now more usually referred to as the
�Hospitals/Residents Problem (HR) because
of its well-known applications in the medical
employment field. This problem is covered in
detail in Entry 150 of this volume.

A comprehensive treatment of many aspects of
the stable marriage problem, as of 1989, appears
in the monograph of Gusfield and Irving [5].
A more recent detailed exposition is given by
Manlove [14].

Key Results

Theorem 1 For every instance of SM or SMI,
there is at least one stable matching.

Theorem 1 was proved constructively by Gale
and Shapley [2] as a consequence of the algo-
rithm that they gave to find a stable matching.

Theorem 2 1. For a given instance of SM in-
volving n men and n women, there is a O.n2/

time algorithm that finds a stable matching.
2. For a given instance of SMI in which the

combined length of all the preference lists is
a, there is a O.a/ time algorithm that finds a
stable matching.

The algorithm for SMI is a simple extension
of that for SM. Each can be formulated in a
variety of ways, but is most usually expressed
in terms of a sequence of “proposals” from the
members of one sex to the members of the other.
A pseudocode version of the SMI algorithm ap-
pears in Fig. 1, in which the traditional approach
of allowing men to make proposals is adopted.

The complexity bound of Theorem 2(1) first
appeared in Knuth’s monograph on stable mar-
riage [12]. The fact that this algorithm is asymp-
totically optimal was subsequently established by
Ng and Hirschberg [17] via an adversary argu-
ment. On the other hand, Wilson [21] proved that
the average running time, taken over all possible
instances of SM, is O.n log n/.

The algorithm of Fig. 1, in its various guises,
has come to be known as the Gale-Shapley algo-
rithm. The variant of the algorithm given here is
called man oriented, because men have the ad-
vantage of proposing. Reversing the roles of men
and women gives the woman-oriented variant.
The “advantage” of proposing is remarkable, as
spelled out in the next theorem.

Theorem 3 The man-oriented version of the
Gale-Shapley algorithm for SM or SMI yields the
man-optimal stable matching in which each man
has the best partner that he can have in any stable
matching, but in which each woman has her worst
possible partner. The woman-oriented version
yields the woman-optimal stable matching, which
has analogous properties favoring the women.

http://dx.doi.org/10.1007/978-1-4939-2864-4_180
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M = ∅;
assign each person to be free;      /* i. e., not a member of a pair in M */
while (some man m is free and has not proposed to every woman on his list)
     m proposes to w, the first woman on his list to whom he has not proposed;
     if (w is free)
           add (m, w) to M;          /* w accepts m */
     else if (w prefers m to her current partner m�)
           remove (m�, w) from M; /* w rejects m�, setting m� free */
           add (m, w) to M;          /* w accepts m */
     else
          M remains unchanged;    /* w rejects m */
return M;

Stable Marriage, Fig. 1 The Gale-Shapley algorithm

The optimality property of Theorem 3 was
established by Gale and Shapley [2], and the
corresponding “pessimality” property was first
observed by McVitie and Wilson [16].

As observed earlier, a stable matching for
an instance of SMI need not match all of the
participants. But the following striking result was
established by Gale and Sotomayor [3] and Roth
[19] (in the context of the more general HR
problem).

Theorem 4 In an instance of SMI, all stable
matchings have the same size and match exactly
the same subsets of the men and women.

For a given instance of SM or SMI, there may
be many different stable matchings. Indeed Knuth
[12] showed that the maximum possible number
of stable matchings grows exponentially with the
number of participants. He also pointed out that
the set of stable matchings forms a distributive
lattice under a natural dominance relation, a result
attributed to Conway. This powerful algebraic
structure that underlies the set of stable matchings
can be exploited algorithmically in a number of
ways. For example, Gusfield [4] showed how all
k stable matchings for an instance of SM can be
generated in O.n2C kn/ time (�Optimal Stable
Marriage).

Extensions of these problems that are impor-
tant in practice, so-called SMT and SMTI (ex-
tensions of SM and SMI, respectively), allow the

presence of ties in the preference lists. In this con-
text, three different notions of stability have been
defined [7] – weak, strong, and super-stability,
depending on whether the definition of a blocking
pair requires that both members should improve,
or at least one member improves and the other
is no worse off, or merely that neither member is
worse off. The following theorem summarizes the
basic algorithmic results for these three varieties
of stable matchings.

Theorem 5 For a given instance of SMT or
SMTI:

1. A weakly stable matching is guaranteed to
exist and can be found in O.n2/ or O.a/ time,
respectively.

2. A super-stable matching may or may not exist;
if one does exist, it can be found in O.n2/ or
O.a/ time, respectively.

3. A strongly stable matching may or may not
exist; if one does exist, it can be found in
O.n3/ or O.na/ time, respectively.

Theorem 5 parts (1) and (2) are due to Irving [7]
(for SMT) and Manlove [13] (for SMTI). Part (3)
is due to Kavitha et al. [11], who improved earlier
algorithms of Irving and Manlove.

It turns out that, in contrast to the situation
described by Theorem 4, weakly stable match-
ings in SMTI can have different sizes. The nat-
ural problem of finding a maximum cardinality

http://dx.doi.org/10.1007/978-1-4939-2864-4_271
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weakly stable matching, even under severe re-
strictions on the ties, is NP-hard [15]. �Stable
Marriage with Ties and Incomplete Lists explores
this problem further.

Interesting special cases of SM and its variants
arise when the preference lists on one or both
sides are derived from a “master” list that ranks
participants (e.g.„ according to some objective
criterion). Such problems are explored by Irving
et al. [10].

The stable marriage problem is an example
of a bipartite matching problem. The extension
in which the bipartite requirement is dropped
is the so-called stable roommates (SR)
problem.

Gale and Shapley had observed that, unlike the
case of SM, an instance of SR may or may not ad-
mit a stable matching, and Knuth [12] posed the
problem of finding an efficient algorithm for SR
or proving it NP-complete. Irving [6] established
the following theorem via a nontrivial extension
of the Gale-Shapley algorithm.

Theorem 6 For a given instance of SR, there ex-
ists a O.n2/ time algorithm to determine whether
a stable matching exists and if so to find such a
matching.

Variants of SR may be defined, as for SM, in
which preference lists may be incomplete and/or
contain ties – these are denoted by SRI, SRT,
and SRTI – and in the presence of ties, the three
flavors of stability, weak, strong, and super, are
again relevant.

Theorem 7 For a given instance of SRT or
SRTI:

1. A weakly stable matching may or may not
exist, and it is an NP-complete problem
to determine whether such a matching
exists.

2. A super-stable matching may or may not exist;
if one does exist, it can be found in O.n2/ or
O.a/ time, respectively.

3. A strongly stable matching may or may not
exist; if one does exist, it can be found in
O.n4/ or O.a2/ time, respectively.

Theorem 7 part (1) is due to Ronn [18], part (2)
is due to Irving and Manlove [9], and part (3) is
due to Scott [20].

Applications

Undoubtedly the best known and most important
applications of stable matching algorithms are
in centralized matching schemes in the medical
and educational domains. �Hospitals/Residents
Problem includes a summary of some of these
applications.

Open Problems

The parallel complexity of stable marriage
remains open. The best known parallel algorithm
for SMI is due to Feder et al. [1] and has
O.
p

a log3 a/ running time using a polynomially
bounded number of processors. It is not known
whether the problem is in NC, but nor is there a
proof of P-completeness.

One of the open problems posed by Knuth in
his early monograph on stable marriage [12] was
that of determining the maximum possible num-
ber xn of stable matchings for any SM instance
involving n men and n women. This problem
remains open, although Knuth himself showed
that xn grows exponentially with n. Irving and
Leather [8] conjecture that, when n is a power of
2, this function satisfies the recurrence

xn D 3x2
n=2 � 2x4

x=4:

Many open problems remain in the setting of
weak stability, such as finding a good approxima-
tion algorithm for a maximum cardinality weakly
stable matching – see � Stable Marriage with
Ties and Incomplete Lists – and enumerating all
weakly stable matchings efficiently.
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Problem Definition

In the stable marriage problem first defined by
Gale and Shapley [7], there is one set each of
men and women having the same size, and each
person has a strict preference order on persons
of the opposite gender. The problem is to find a
matching such that there is no pair of a man and a
woman who prefer each other to their partners in
the matching. Such a matching is called a stable
marriage (or stable matching). Gale and Shap-
ley showed the existence of a stable marriage
and gave an algorithm for finding one. Fleiner
[4] extended the stable marriage problem to the
framework of matroids, and Eguchi, Fujishige,
and Tamura [3] extended this formulation to a
more general one in terms of discrete convex
analysis, which was developed by Murota [8, 9].
Their formulation is described as follows.

Let M and W be sets of men and women who
attend a dance party at which each person dances
a waltz T times and the number of times that

http://dx.doi.org/10.1007/978-1-4939-2864-4_331
http://dx.doi.org/10.1007/978-1-4939-2864-4_394
http://dx.doi.org/10.1007/978-1-4939-2864-4_805
http://dx.doi.org/10.1007/978-1-4939-2864-4_397
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he/she can dance with the same person of the op-
posite gender is unlimited. The problem is to find
an “agreeable” allocation of dance partners, in
which each person is assigned at most T persons
of the opposite gender with possible repetition.
Let E D M �W , i.e., the set of all man-woman
pairs. Also define E.i/ D fig �W for all i 2 M

and E.j / DM � fj g for all j 2 W . Denoting by
x.i; j / the number of dances between man i and
woman j , an allocation of dance partners can be
described by a vector x D .x.i; j / W i 2 M; j 2

W / 2 ZE , where Z denotes the set of all integers.
For each y 2 ZE and k 2M[W , denote by y.k/

the restriction of y on E.k/. For example, for an
allocation x 2 ZE , x.k/ represents the allocation
of person k with respect to x. Each person k

describes his/her preferences on allocations by
using a value function fk W ZE.k/ ! R [
.�1/, where R denotes the set of all reals and
fk.y/ D �1 means that allocation y 2 ZE.k/

is unacceptable for k. Note that the valuation of
each person on allocations is determined only by
his/her allocations. Let dom fk D fyjfk.y/ 2

Rg. Assume that each value function fk satisfies
the following assumption:

(A) dom fk is bounded and hereditary and has
0 as the minimum point, where 0 is the vector of
all zeros and heredity means that for any y; y0 2

ZE.k/ , 0 � y0 � y 2 dom fk implies y0 2

dom fk .
For example, the following value functions

with M D f1g and W D f2; 3g

f1.x.1; 2/; x.1; 3// D
8
<

:

10.x.1; 2/C x.1; 3// � x.1; 2/2 � x.1; 3/2 if x.1; 2/; x.1; 3/ � 0

and x.1; 2/C x.1; 3/ � 3

�1 otherwise;

fj .x.1; j // D

�
x.1; j / if x.1; j / 2 f0; 1; 2; 3g.j D 2; 3/

�1 otherwise

represent the case where (1) everyone wants to
dance as many times, up to three, as possible and
(2) man 1 wants to divide his dances between
women 2 and 3 as equally as possible. Alloca-
tions .x.1; 2/; x.1; 3// D .1; 2/ and (2,1) are
stable in the sense below.

A vector x 2 ZE is called a feasible allocation
if x.k/ 2 dom fk for all k 2 M [ W . An
allocation x is said to satisfy incentive constraints
if each person has no incentive to unilaterally
decrease the current units of x, that is, if it
satisfies

fk.x.k//Dmaxffk.y/jy�x.k/g .8 k 2M[W /:

(1)
An allocation x is called unstable if it does not
satisfy incentive constraints or there exist i 2M ,
j 2 W , y0 2 ZE.i/ and y00 2 ZE.j / such that

fi .x.i// < fi .y
0/; (2)

y0.i; j 0/ � x.i; j 0/ .8 j 0 2 W nfj g/; (3)

fj .x.j // < fj .y00/; (4)

y00.i 0; j / � x.i 0; j / .8 i 0 2Mnfig/; (5)

y0.i; j / D y00.i; j /: (6)

Conditions (2) and (3) say that man i can strictly
increase his valuation by changing the current
number of dances with j without increasing the
numbers of dances with other women, and (4)
and (5) describe a similar situation for women.
Condition (6) requires that i and j agree on the
number of dances between them. An allocation x

is called stable if it is not unstable.

Problem 1 Given disjoint sets M and W and
value functions fk W ZE.k/ ! R [ f�1g for
k 2 M [ W satisfying assumption (A), find a
stable allocation x.
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Remark 1 A time schedule for a given feasible
allocation can be given by a famous result on
graph coloring, namely, “any bipartite graph can
be edge-colorable with the maximum degree
colors.”

Key Results

The work of Eguchi, Fujishige, and Tamura [3]
gave a solution to Problem 1 in the case where
each value function fk is M\-concave.

Discrete Convex Analysis:
M\-Concave Functions

Let V be a finite set. For each S � V , eS

denotes the characteristic vector of S defined by
eS .v/ D 1 if v 2 S and eS .v/ D 0 otherwise.
Also define e0 as the zero vector in ZV . For a
vector x 2 ZV , its positive support suppC.x/

and negative support supp�.x/ are defined by
suppC.x/ D fu 2 V jx.u/ > 0g and supp�.x/ D

fu 2 V jx.u/ < 0g. A function f W ZV !

R [ f�1g is called M \-concave if it satisfies
the following condition 8 x; y 2 dom f , 8 u 2
suppC.x � y/, 9v 2 supp�.x � y/ [ f0g:

f .x/Cf .y/ � f .x�euCev/Cf .yCeu�ev/:

The above condition says that the sum of the
function values at two points does not decrease as
the points symmetrically move one or two steps
closer to each other on the set of integral lattice
points of ZV . This is a discrete analogue of the
fact that for an ordinary concave function, the
sum of the function values at two points does not
decrease as the points symmetrically move closer
to each other on the straight line segment between
the two points.

Example 1 A nonempty family T of subsets of
V is called a laminar family if X \ Y D ;,
X � Y or Y � X holds for every X; Y 2 T .
For a laminar family T and a family of univariate
concave functions fY W R! R [ f�1g indexed
by Y 2 T , the function f W ZV ! R [ f�1g
defined by

f .x/ D
X

Y 2T
fY

 
X

v2Y

x.v/

!

.8 x 2 ZV /

is M\-concave. The stable marriage problem can
be formulated as Problem 1 by using value func-
tions of this type.

Example 2 For the independence family I � 2V

of a matroid on V and w 2 RV , the function f W

ZV ! R [ f�1g defined by

f .x/D

� P
u2X w.u/ if x D eX for some X 2I

�1 otherwise

.8 x 2 ZV /

is M\-concave. Fleiner [4] showed that there al-
ways exists a stable allocation for value functions
of this type.

Theorem 1 ([6]) Assume that the value func-
tions fk.k 2M [W / are M\-concave satisfying
(A). Then, a feasible allocation x is stable if
and only if there exist ZM D .´.i/ji 2 M/ 2

.Z [ fC1g/E and ´W D .´.j /jj 2 W / 2

.Z [ fC1g/E such that

x.i/ 2 arg maxffi .y/jy � ´.i/g .8 i 2M/;

(7)

x.j / 2 arg maxffj .y/jy � ´.j /g .8 j 2 W /;

(8)

´M .e/ D C1 or ´W .e/ D C1 .8 e 2 E/;

(9)

where arg maxffi .y/jy � ´.i/g denotes the set of
all maximizers of fi under the constraints y �

´.i/.

Theorem 2 ([3]) Assume that the value func-
tions fk.k 2M [W / are M\-concave satisfying
(A). Then, there always exists a stable allocation.

Eguchi, Fujishige, and Tamura [3] proved The-
orem 2 by showing that the following algorithm
finds a feasible allocation x, and ´M , ´W satisfy-
ing (7), (8), and (9).

Here, ´W _xM is defined by .´W _xM /.e/ D

maxf´W .e/; xM .e/g for all e 2 E.
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Algorithm EXTENDED-GS

Input: M\-concave functions fM ; fW with fM .x/ DP

i2M

fi .x.i// and fW .x/ D
P

j 2W

fj .x.j //;

Output: .x; ´M ; ´W / satisfying (7), (8), and (9);
´M WD .C1; � � � ; C1/, ´W WD xW WD 0;
repeat{
let xM be any element in
arg maxffM .y/jxW � y � ´M g;
let xW be any element in
arg maxffW .y/jy � xM g;
for each e 2 E with xM .e/ > xW .e/{
´M .e/ WD xW .e/;
´W .e/ WD C1;
} ;
} until xM D xW ;
return .xM ; ´M ; ´W _ xM /.

Applications

Abraham, Irving, and Manlove [1] dealt with
a student-project allocation problem which is a
concrete example of models in [4] and [3] and
discussed the structure of stable allocations.

Fleiner [5] generalized the stable marriage
problem and its extension in [4] to a wide frame-
work and showed the existence of a stable alloca-
tion by using a fixed point theorem.

Fujishige and Tamura [6] proposed a common
generalization of the stable marriage problem and
the assignment game defined by Shapley and
Shubik [10] by utilizing M\-concave functions
and gave a constructive proof of the existence of
a stable allocation.

Open Problems

Algorithm EXTENDED-GS solves the maximiza-
tion problem of an M\-concave function in each
iteration. A maximization problem of an M\-
concave function f on E can be solved in poly-
nomial time in jE j and log L, where L D

maxfjjx � yjj1jx; y 2 dom f g, provided that
the function value f .x/ can be calculated in
constant time for each x [11, 12]. Eguchi, Fu-
jishige, and Tamura [3] showed that EXTENDED-
GS terminates after at most L iterations, where
L is defined by fjjxjj1jx 2 dom fM g in this

case, and there exist a series of instances in which
EXTENDED-GS requires numbers of iterations
proportional to L. On the other hand, Baïou and
Balinski [2] gave a polynomial time algorithm
in jE j for the special case where fM and fW

are linear on rectangular domains. Whether a
stable allocation for the general case can be found
in polynomial time in jE j and log L or not
is open.
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Problem Definition

Over the last 50 years, the stable marriage
problem has been extensively studied for many
problem settings (see, e.g., [11]), and one of
the most intensively studied problem settings is
MAX SMTI (MAXimum Stable Marriage with
Ties and Incomplete lists). An input for the stable
marriage problem consists of n men, n women,
and each person’s preference list for the people of
the opposite sex. In MAX SMTI, the preference
list of each person can be incomplete, which
means that each person is allowed to exclude
unacceptable people from the preference list, and
the preference list of each person is allowed to
include ties to show indifference between two or
more people.

The objective of MAX SMTI is to find the
largest matching that satisfies a stability condi-
tion. Before describing the stability condition, we
review some notation. A matching M is defined
as a set of pairs of man m and woman w such
that m and w are acceptable to each other. The
size of a matching M is defined as the number of
pairs in M . We say that a person p is single if p

is not matched in M . When man m and woman
w are matched in M , we write M.m/ D w and
M.w/ D m. We say that matching M is stable if
it does not contain any pair of man and woman,
each of whom prefers the other to the partner
in M (if any). More precisely, a matching M is
stable if there is no pair of man m0 and woman w0

that satisfy all three conditions (i)–(iii): (i) m0 and
w0 are acceptable to each other but not matched
in M , (ii) m0 is single in M or m0 strictly prefers
w0 to M.m0/, and (iii) w0 is single in M or w0

strictly prefers m0 to M.w0/. MAX SMTI asks
us to find a stable matching of the largest size,
and this problem is known to be NP-hard [12].
Therefore, the approximability of this problem
has been intensively studied.

In this entry, we show recent results for two
major variants of MAX SMTI. One of the vari-
ants is MAX SMOTI (MAXimum Stable Mar-
riage with One-Sided Ties and Incomplete lists),
in which only women are allowed to include ties
in their preference lists and the preference lists
of men are strictly ordered. The other variant
is MAX SSMTI (Special SMTI), which is an
even more restricted variant of MAX SMOTI
where the ties are only allowed at the ends of
the women’s preference lists. Note that these two
variants are still known to be NP-hard [12].

Problem 1 (MAX SMOTI)
INPUT: n men, n women, and each person’s

preference list, where only women have ties
OUTPUT: A stable matching of maximum size

Problem 2 (MAX SSMTI)
INPUT: n men, n women, and each person’s

preference list, where ties are at the ends of
the women’s preference lists

OUTPUT: A stable matching of maximum size



Stable Marriage with One-Sided Ties 2069

S

Stable Marriage with One-Sided Ties, Table 1 Examples of instances for MAX SMOTI and MAX SSMTI

MAX SMOTI MAX SSMTI

m1 W w2 w1 w1 W m1 m2

m2 W w2 w3 w1 w2 W .m1 m2/ m3

m3 W w3 w2 w3 W m2 m3

m1 W w1 w3 w1 W .m1 m2 m3/

m2 W w2 w3 w1 w2 W m2

m3 W w3 w1 w3 W m2 .m1 m3/

Examples
Table 1 shows examples of instances for
MAX SMOTI and MAX SSMTI. The instance
for MAX SMOTI contains a set of men
fm1; m2; m3g and a set of women fw1; w2; w3g.
The preference list of each person is described in
decreasing order of preference, and tied people
are enclosed in a pair of parenthesis. For example,
woman w2 is indifferent between m1 and m2 but
prefers m1 or m2 over m3. A matching M D

f.m2; w1/; .m3; w2/g is not stable for this MAX
SMOTI instance, because m2 strictly prefers w2

to w1 .D M.m2// and w2 strictly prefers m2 to
m3 .DM.w2//. An example of a stable matching
for this instance is M 0 D f.m1; w2/; .m2; w3/g,
and we can find another larger stable matching
M � D f.m1; w1/; .m2; w2/; .m3; w3/g of size 3.

Key Results

Here we review past research on MAX SMOTI
and MAX SSMTI. We start by describing a sim-
ple proposal-based algorithm (often referred to
as the Gale-Shapley algorithm or the deferred
acceptance algorithm), which is guaranteed to
find a stable matching. In this algorithm, all
of the men and women are initially set to be
single. We pick an arbitrary man m who is single,
and let man m propose to woman w at the top
of his preference list. When man m proposes
to w, he deletes woman w from his preference
list. Woman w always accepts any proposal if
she is single, which makes a matching pair of
m and w. We repeat this proposal procedure to
find more and more matching pairs. When a
woman w, who is already matched to a man m,
receives another proposal from man m0, woman
w chooses the more highly ranked man based on
her preference list. (That is, the matching partner

of w is unchanged if w prefers m to m0, and the
matching partner of w is changed from m to m0

and m becomes unmatched if w prefers m0 to
m.) If m and m0 are tied in w’s preference list,
then w chooses an arbitrary man. The proposal
procedure continues until we cannot find any
man who can propose. (That is, this algorithm
terminates when all of the men become matched
or the preference lists of all single men become
empty.) Any matching obtained by this algorithm
can be proven to be stable. The size of the
obtained stable matching depends mostly on the
decisions by women when a woman receives two
proposals from men who are tied in her prefer-
ence list. In the worst case, the size of an obtained
matching can be half of the optimum matching,
and hence, the approximation ratio of this al-
gorithm is 2. It was an open problem whether
or not there exists an approximation algorithm
whose approximation ratio is strictly better than
2. Iwama, Miyazaki, and Yamauchi [8] provided
an affirmative answer for this open problem with
a 1:875-approximation algorithm.

After this breakthrough, Király [10] devel-
oped a new simple 1:5-approximation algorithm
for MAX SMOTI (which also applies to MAX
SSMTI) by improving the decision strategy of the
proposal-based algorithm when women receive
multiple proposals from tied men. His algorithm
proceeds in the same way as the proposal-based
algorithm until one of the men’s preference lists
become empty. When the preference list of a man
becomes empty, he enters into his second round.
Specifically, he recovers his original preference
list so that he can propose to the women in
his original preference list again, but his status
is changed to “promoted.” A promoted man is
not allowed to recover his original preference
list when his preference list becomes empty the
second time, and hence, no man can enter a
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third round in Kiráry’s algorithm. The decision
strategy of the women is changed so that a woman
is forced to choose a promoted man (if one exists)
when she receives two proposals from men who
are tied in her preference list. This improvement
of the decision strategy is the key to achieve the
1:5-approximation.

Iwama, Miyazaki, and Yanagisawa [9] further
improved the approximation ratio to 25=17 .<

1:4706/ for MAX SMOTI with a new algorithm
GSA-LP, which uses a more complex proposal
sequence of the men and a more sophisticated
decision strategy for the women. In GSA-LP,
we compute an optimum solution for a linear
programming relaxation of a natural integer pro-
gramming formulation of the problem in advance
and use it for the decision strategy of the women.
In addition, the proposal sequence is changed
so that a man can propose to a woman many
times, and a man is allowed to recover his original
preference list at most twice (in other words, a
man is allowed to go into a third round). These
changes yield an improved approximation ratio
for MAX SMOTI. Very recently, GSA-LP was
shown to achieve a 1:25-approximation for MAX
SSMTI [5].

For MAX SMOTI, there are successive im-
provements over GSA-LP. Huang and Kavitha [4]
developed another new algorithm that achieves
a 22/15 (<1.4667)-approximation by using
a maximum matching algorithm. Radnai [14]
showed 41/28 (<1.4643)-approximation by
using a more detailed analysis of this new
algorithm and also showed that a lower bound
of the approximation ratio of this algorithm is
at least 13/9 (>1.4444). Dean and Jalasutram
improved the analysis of GSA-LP and showed
that the approximation ratio of GSA-LP is
at most 19/13 (<1.4616) if we increase the
number of rounds from three to four [1].
We also note that if the lengths of ties are
restricted to two, then the approximation ratio
of this restricted MAX SMOTI variant can be
further improved. A randomized algorithm [2]
achieves 10/7 (<1.4286)-approximation and
Huang and Kavitha devised another deterministic
algorithm [4] with the same approximation
ratio.

For the negative side, both MAX SMOTI and
MAX SSMTI are NP-hard to approximate within
any constant factor better than 21/19 (>1.1052)
and hard to approximate within any constant
factor better than 5/4 (= 1.25) under the unique
games conjecture [3, 15]. These lower bounds
hold even if we restrict the lengths of the ties
to two. Note that the approximation ratio of the
GSA-LP algorithm for MAX SSMTI is 1:25,
which matches the lower bound under the unique
games conjecture.

Applications

MAX SSMTI was introduced by Irving and
Manlove [6] based on an actual application of
the Scottish Foundation Allocation Scheme,
which allocates residents (medical students) to
hospitals. In this scheme, each resident submits
a strictly ordered preference list, while each
hospital submits a preference list that may
contain one tie of arbitrary length at the end
of the list. The objective of this allocation
scheme is to maximize the number of allocated
residents, and it is easy to reformulate this
many-to-one allocation scheme as a one-to-
one matching problem (MAX SSMTI) using a
cloning technique [11].

Open Problems

An obvious future goal is to narrow the gap
between the upper and lower bounds of the
approximability of MAX SMOTI. Assuming
the unique games conjecture is true, we now
know that the best possible approximation
ratio is between 1:4616 and 1:25. Even if we
restrict the lengths of ties to two, all we can do
now is reduce the upper bound slightly down
to 1:4286. Thus, there is still much room for
improvement.

As for MAX SSMTI, the 1:25-approximation
of the GSA-LP algorithm is the best possible
if the unique games conjecture is true. A fu-
ture project could investigate if we can construct
a faster approximation algorithm, because the
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GSA-LP algorithm uses a linear programming re-
laxation technique, which takes superlinear time
in the worst case.

Experimental Results

Irving and Manlove [7] reported on experimental
evaluations of some heuristic algorithms
including the Király’s algorithm on real-world
and random instances for MAX SMOTI.
Subsequently, Podhradský [13] conducted
experimental evaluations on random instances
for MAX SMOTI and MAX SSMTI using
some other heuristic algorithms including
GSA-LP.
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Problem Definition

In the original setting of the stable marriage
problem introduced by Gale and Shapley [2],
each preference list has to include all members of
the other party, and furthermore, each preference
list must be totally ordered (see entry �Stable
Marriage also).

One natural extension of the problem is then
to allow persons to include ties in preference
lists. In this extension, there are three variants
of the stability definition, super-stability, strong
stability, and weak stability (see below for defini-
tions). In the first two stability definitions, there
are instances that admit no stable matching, but
there is a polynomial-time algorithm in each case
that determines if a given instance admits a stable
matching and finds one if one exists [9]. On the
other hand, in the case of weak stability, there
always exists a stable matching, and one can be
found in polynomial time.

Another possible extension is to allow persons
to declare unacceptable partners, so that prefer-
ence lists may be incomplete. In this case, every
instance admits at least one stable matching, but
a stable matching may not be a perfect matching.
However, if there are two or more stable match-
ings for one instance, then all of them have the
same size [3].

The problem treated in this entry allows both
extensions simultaneously, which is denoted as
SMTI (stable marriage with ties and incomplete
lists).

Notations
An instance I of SMTI comprises n men, n

women, and each person’s preference list that
may be incomplete and may include ties. If a man
m includes a woman w in his list, w is acceptable
to m. wi �m wj means that m strictly prefers
wi to wj in I . wi Dm wj means that wi and wj

are tied in m’s list (including the case wi D wj ).
The statement wi �m wj is true if and only if
wi �m wj or wi Dm wj . Similar notations are
used for women’s preference lists. A matching M

is a set of pairs .m; w/ such that m is acceptable
to w, and vice versa, and each person appears at

most once in M . If a man m is matched with a
woman w in M , it is written as M.m/ D w and
M.w/ D m.

A man m and a woman w are said to form
a blocking pair for weak stability for M if
they are not matched together in M , but by
matching them, both become better off, namely,
(i) M.m/ ¤ w but m and w are acceptable to
each other, (ii) w �m M.m/ or m is single in M ,
and (iii) m �w M.w/ or w is single in M .

Two persons x and y are said to form a
blocking pair for strong stability for M if they
are not matched together in M , but by matching
them, one becomes better off, and the other does
not become worse off, namely, (i) M.x/ ¤ y but
x and y are acceptable to each other, (ii) y �x

M.x/ or x is single in M , and (iii) x �y M.y/

or y is single in M .
A man m and a woman w are said to form

a blocking pair for super-stability for M if they
are not matched together in M , but by match-
ing them, neither becomes worse off, namely,
(i) M.m/ ¤ w but m and w are acceptable to
each other, (ii) w �m M.m/ or m is single in M ,
and (iii) m �w M.w/ or w is single in M .

A matching M is called weakly stable
(strongly stable and super-stable, respectively)
if there is no blocking pair for weak (strong and
super, respectively) stability for M .

Problem 1 (SMTI)

INPUT: n men, n women, and each person’s
preference list

OUTPUT: A stable matching

Problem 2 (MAX SMTI)

INPUT: n men, n women, and each person’s
preference list

OUTPUT: A stable matching of maximum size

The following problem is a restriction of MAX
SMTI in terms of the length of preference lists:

Problem 3 ((p,q)-MAX SMTI)

INPUT: n men, n women, and each person’s pref-
erence list, where each man’s preference list
includes at most p women and each woman’s
preference list includes at most q men

OUTPUT: A stable matching of maximum size

http://dx.doi.org/10.1007/978-1-4939-2864-4_393
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Definition of the Approximation Ratio
A goodness measure of an approximation al-
gorithm T for a maximization problem is de-
fined as follows: the approximation ratio of T

is maxfopt.x/=T .x/g over all instances x of
size N , where opt.x/ and T .x/ are the sizes of
the optimal and the algorithm’s solutions, respec-
tively.

Key Results

SMTI and MAX SMTI in Super-Stability and
Strong Stability
Theorem 1 ([20]) There is an O.n2/-time algo-
rithm that determines if a given SMTI instance
admits a super-stable matching and finds one if
one exists.

Theorem 2 ([17]) There is an O.n3/-time algo-
rithm that determines if a given SMTI instance
admits a strongly stable matching and finds one
if one exists.

It is shown that all stable matchings for a fixed
instance are of the same size [20]. Therefore, the
above theorems imply that MAX SMTI can also
be solved in the same time complexity.

SMTI and MAX SMTI in Weak Stability
In the case of weak stability, every instance ad-
mits at least one stable matching, but one instance
can have stable matchings of different sizes. If the
size is not important, a stable matching can be
found in polynomial time by breaking ties arbi-
trarily and applying the Gale-Shapley algorithm.

Theorem 3 There is an O.n2/-time algorithm
that finds a weakly stable matching for a given
SMTI instance.

However, if larger stable matchings are re-
quired, the problem becomes hard.

Theorem 4 ([5, 13, 21, 24]) MAX SMTI is
NP-hard and cannot be approximated within
33=29 � � for any positive constant � unless
P=NP. (33=29 > 1:137)

The following approximation ratio is achieved
by a local search type algorithm.

Theorem 5 ([14]) There is a polynomial-time
approximation algorithm for MAX SMTI whose
approximation ratio is at most 15/8 (=1.875).

There are a couple of approximation algo-
rithms for restricted inputs.

Theorem 6 ([6]) There is a polynomial-time
randomized approximation algorithm for MAX
SMTI whose expected approximation ratio is at
most 10=7.'1:429/ if, in a given instance, ties
appear in one side only and the length of each tie
is two.

Theorem 7 ([6]) There is a polynomial-time
randomized approximation algorithm for MAX
SMTI whose expected approximation ratio is at
most 7=4.D 1:75/ if, in a given instance, the
length of each tie is two.

Theorem 8 ([7]) There is a polynomial-time
approximation algorithm for MAX SMTI whose
approximation ratio is at most 2=.1CL�2/ if, in
a given instance, ties appear in one side only and
the length of each tie is at most L.

Theorem 9 ([7]) There is a polynomial-time ap-
proximation algorithm for MAX SMTI whose ap-
proximation ratio is at most 13=7.'1:858/ if, in
a given instance, the length of each tie is two.

(p, q)-MAX SMTI in Weak Stability
Irving et al. [12] show the boundary between
P and NP-hardness in terms of the length of
preference lists.

Theorem 10 ([12]) (2,1)-MAX SMTI is solv-
able in time O.n

3
2 log n/.

Theorem 11 ([12]) (3,3)-MAX SMTI is NP-
hard.

Theorem 12 ([12]) (3,4)-MAX SMTI is NP-hard
and cannot be approximated within some con-
stant ı.> 1/ unless P=NP.

Applications

One of the most famous applications of the stable
marriage problem is a centralized assignment
system between medical students (residents) and
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hospitals. This is an extension of the stable mar-
riage problem to a many-one variant: Each hospi-
tal declares the number of residents it can accept,
which may be more than one, while each resident
has to be assigned to at most one hospital. Actu-
ally, there are several applications in the world,
known as NRMP in the USA [4], CaRMS in
Canada [1], SFAS (previously known as SPA) in
Scotland [10, 11], and JRMP in Japan [16]. One
of the optimization criteria is clearly the number
of matched residents. In a real-world application
such as the above hospitals-residents matching,
hospitals and residents tend to submit short pref-
erence lists that may include ties, in which case,
the problem can be naturally considered as MAX
SMTI.

Open Problems

An apparent open problem is to narrow the gap of
approximability and inapproximability of MAX
SMTI in weak stability.

Since the publication of the key result of
this chapter (Theorem 5), there have been a lot
of improvement. Király [18] presented a linear
time 5/3-approximation algorithm (see � Simpler
Approximation for Stable Marriage). McDer-
mid [22] then presented a 1.5-approximation
algorithm (see � Simpler Approximation for
Stable Marriage), and Király [19] and Paluch [23]
presented simpler algorithms with the same
approximation ratio, which is the current best
upper bound. The lower bound was improved by
Yanagisawa [24], who showed that MAX SMTI
is inapproximable to within a ratio smaller than
33=29.>1:137/ unless P = NP. He also showed
that MAX SMTI is inapproximable within a
ratio smaller than 4=3.>1:333/ under the Unique
Games Conjecture (UGC).

As for the special case where ties can appear
in one side only (see �Stable Marriage with
One-Sided Ties), Király [18] presented a 1.5-
approximation algorithm. It was then improved to
25=17.<1:471/ [15] and to 22=15.<1:467/ [8],
which is the current best upper bound. The cur-
rent best lower bounds are 21=19.'1:105/ under
P¤NP and 1.25 under UGC [7].
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Problem Definition

Let N be a finite set of players; a nonempty
subset of N is called a coalition. Each player
i 2 N has a preference relation �i (complete,
reflexive, and transitive) over all the coalitions
that contain i . Notation S �i T means that player
i weakly prefers coalition S to coalition T ; if
S �i T and not T �i S , then player i strictly
prefers S to T , denoted by S �i T . If S �i T

and T �i S , then player i is indifferent between
coalitions S and T (there is a tie in his prefer-
ence list). Player i has strict preferences if her
preference list contains no ties. There are several
possible ways of representing preferences, but it
is usually supposed that preference relations can
be evaluated in polynomial time.

An instance I of the stable partition problem
(or coalition formation game, or hedonic game) is
given by the set of players and their preferences.

A partition … is a collection of disjoint
coalitions whose union equals N . It is supposed
that each participant’s appreciation of a coalition
structure only depends on the coalition ….i/ she
is a member and not on the composition of other
coalitions. Of interest are partitions that fulfill
some kind of stability requirements.

We say that a coalition S � N strongly blocks
a partition …, if each player i 2 S strictly prefers
S to ….i/, and a coalition S � N weakly blocks
a partition …, if each player i 2 S weakly prefers
S to ….i/ and there exists at least one player
j 2 S who strictly prefers S to ….j /. Partition
… is:

• Individually stable if each player i weakly
prefers ….i/ to fig;

• Nash stable (NS) if each player i weakly
prefers ….i/ to X [ fig for each X 2 … [ ;;

http://www.jrmp.jp/
http://www.jrmp.jp/
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• Individually stable (IS) if whenever a player i

strictly prefers X [ fig to ….i/ for some X 2

…, then X �j X [ fig for at least one player
j 2 X ;

• Contractually individually stable (CIS) if
whenever a player i strictly prefers X [ fig to
….i/ for some X 2 …, then X �j X [ fig

for at least one player j 2 X or ˘.i/ �j

˘.i/nfig for at least one player i 2 ˘.i/;
• Core stable if it admits no blocking coalition;
• Strictly core stable if it admits no weakly

blocking coalition;

Most of these definitions were introduced in
[3] and [4] where also some sufficient conditions
for the existence of stable partitions were formu-
lated. An overview of the implications between
these definitions can be found in [1]. The follow-
ing problems have been studied algorithmically
for various stability notions S:

• S-STABILITY-VERIFICATION: Given I and a
partition …, is ˘ a S-stable partition?

• S-STABILITY-EXISTENCE: Given I , does a S-
stable partition exist?

• S-STABILITY-CONSTRUCTION: Given I ,
construct a S-stable partition.

• S-STABILITY-STRUCTURE: Describe the
structure of S-stable partitions for a
given I .

The computational complexity of these prob-
lems depends on the specification of the prefer-
ence relation in the input.

An Important special case of the stable par-
tition problem arises when each coalition can
contain at most two players. This is known under
the name the Stable Matching Problem and is
treated in detail in [14]; see also references in the
entry Stable Marriage.

Key Results

Trivial Encoding
In the trivial encoding, each player lists all her
individually rational coalitions (i.e., those that
player i weakly prefers to coalition fig).

Theorem 1 Under the trivial encoding, the
STABILITY-VERIFICATION problem is poly-
nomially solvable for any stability definition.
STABILITY-EXISTENCE is NP-complete for IR,
NS, core, and strict core [2]. CORE-STABILITY-
EXISTENCE is NP-complete [2], even in the case
when each player i has her preference list of the
form C1.i/ �i C2.i/ �i fig and all acceptable
coalitions have size three [11].

As the trivial encoding may be of exponential
size in the number of players, more succinct
preference representations have been studied.

Anonymous Preferences
Players have anonymous preferences if all coali-
tions of the same size are tied, i.e., players do
not care about the actual content of the coalitions,
only about their sizes.

Theorem 2 Under anonymous preferences, the
CORE-STABILITY-VERIFICATION problem is
polynomially solvable and CORE-STABILITY-
EXISTENCE is NP-complete [2].

Additive Preferences
In an additive hedonic game, each player i has a
real-valued function vi W N ! R and S �i T if
and only if

P
j 2S vi .j / >

P
j 2T vi .j /.

Theorem 3 In additive hedonic games, STABILI-
TY-VERIFICATION is co-NP-complete in the
strong sense for core and strict core [1, 17].
CORE-STABILITY-EXISTENCE and STRICT-
CORE-STABILITY-EXISTENCE are strongly
NP-hard [18] even in the symmetric case
[1]. INDIVIDUAL-STABILITY-EXISTENCE and
NASH-STABILITY-EXISTENCE are strongly NP-
complete [1, 18]. Moreover, CORE-STABILITY-
EXISTENCE is

Pp
2 -complete [19].

Special cases of additive preferences arise if
vi .j / 2 f�1; jN jg for each i; j 2 N (friend-
oriented case) or vi .j / 2 f1;�jN jg for each
i; j 2 N (enemy-oriented case). Under friend-
oriented as well as under enemy-oriented prefer-
ences, a core-stable partition always exists [12],
however, the following assertion holds.
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Theorem 4 ([12]) Under enemy-oriented pref-
erences, CORE-STABILITY-VERIFICATION and
CORE-STABILITY-CONSTRUCTION are strongly
NP-complete and NP-hard, respectively.

Preferences Derived from the Best and/or
Worst Player
Suppose that each player i linearly orders only
individual players or, more precisely, a subset of
them – these are acceptable for i .

Preferences over players are extended to pref-
erences over coalitions on the basis of the best or
the worst player in the coalition as follows:

B-preferences – a player orders coalitions first
on the basis of the most preferred member of
the coalition, and if those are equal or tied, the
coalition with smaller cardinality is preferred;

W-preferences – a player orders coalitions on
the basis of the least preferred member of the
coalition;

BW-preferences – a player orders coalitions
first on the basis of the best member of the
coalition, and if those are equal or tied, the
coalition with a more preferred worst member
is preferred.

In this case, preferences are considered strict,
if the preferences over individuals are strict, and
they are called dichotomous if all acceptable
participants are tied in each preference list.

Theorem 5 Under B-preferences, STABILITY-
VERIFICATION is polynomial for core and strict
core. A strict core and a core stable partition
always exist if preferences over players are strict
[9]. However, if preferences over players contain
ties, STABILITY-EXISTENCE for core and strict
core is NP-complete [6]. In the dichotomous
case, a core stable partition can be constructed in
polynomial time, but STRICT-CORE-STABILITY-
EXISTENCE is NP-complete [5].

Let us remark here that in the case of strict
preferences, a strict core stable partition can be
found by the famous Top Trading Cycles algo-
rithm [9, 20].

The stable partition problem under W-
preferences was studied in [7] and many
features similar to the Stable Roommates

Problem [14] were described. First, if a blocking
coalition exists, then there is a blocking
coalition of size at most 2. Hence, CORE-
STABILITY-VERIFICATION is polynomial.
CORE-STABILITY-EXISTENCE and CORE-
STABILITY-CONSTRUCTION are polynomial in
the strict preferences case, which can be shown
using an extension of Irving’s Stable Roommates
Algorithm (discussed in detail in [14]). This
algorithm can also be used to derive some results
for CORE-STABILITY-STRUCTURE. In the case
of ties, CORE-STABILITY-EXISTENCE is NP-
complete.

Under BW preferences, in the strict pref-
erences case, a core partition always exists
and one can be obtained by the Top Trading
Cycles algorithm, but STRICT-CORE-STABILITY-
EXISTENCE is NP-hard. If preferences contain
ties, CORE-STABILITY-EXISTENCE is NP-
hard too [8]. CORE-STABILITY-VERIFICATION

remains open.

Applications

Stable partitions arise in various economic and
game theoretical models. They appear in the
study of countries formation [10] and in multi-
agent coordination scenarios and social network-
ing services [13]. Stability is also desired in barter
exchange economies with discrete commodities
[20,21], including exchange of kidneys for trans-
plantations [5, 16]. Notice that in case when the
cooperation of players consists in the exchange of
some items within one partition set, the exchange
cycle has also to be specified.

Open Problems

Due to the great number of variants, a lot of open
problems exists. In almost all cases, STABILITY-
STRUCTURE is not satisfactorily solved. For in-
stances with no stable partition, one may seek one
that minimizes the number of players who have
an incentive to deviate. Parallel algorithms were
also not studied.
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Experimental Results

Stochastic local search algorithms for CORE-
STABILITY-VERIFICATION in the additive
preferences case were reported in [15].
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Problem Definition

Stackelberg games [15] may model the inter-
play among an authority and rational individuals
that selfishly demand resources on a large-scale
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network. In such a game, the authority (Leader)
of the network is modeled by a distinguished
player. The selfish users (Followers) are modeled
by the remaining players.

It is well known that selfish behavior
may yield a Nash Equilibrium with cost
arbitrarily higher than the optimum one, yielding
unbounded Coordination Ratio or Price of
Anarchy (PoA) [7, 13]. Leader plays his strategy
first assigning a portion of the total demand
to some resources of the network. Followers
observe and react selfishly assigning their
demand to the most appealing resources. Leader
aims to drive the system to an a posteriori
Nash equilibrium with cost close to the overall
optimum one [4, 6, 8, 10]. Leader may also
be eager for his own rather than system’s
performance [2, 3].

A Stackelberg game can be seen as a special,
and easy [6] to implement, case of Mechanism
Design. It avoids the complexities of either com-
puting taxes or assigning prices, or even design-
ing the network at hand [9]. However, a central
authority capable to control the overall demand
on the resources of a network may be unrealistic
in networks which evolute and operate under the
effect of many and diversing economic entities. A
realistic way [4] to act centrally even in large nets
could be via Virtual Private Networks (VPNs)
[1]. Another flexible way is to combine such
strategies with Tolls [5, 14].

A dictator controlling the entire demand opti-
mally on the resources surely yields PoA = 1. On
the other hand, rational users do prefer a liberal
world to live. Thus, it is important to compute
the optimal Leader strategy which controls the
minimum of the resources (Price of Optimum)
and yields PoA D 1. What is the complexity
of computing the Price of Optimum? This is not
trivial to answer, since the Price of Optimum de-
pends crucially on computing an optimal Leader
strategy. In particular, [6] proved that computing
the optimal Leader strategy is hard.

The central result of this lemma is Theorem 5.
It says that on nonatomic flows and arbitrary s� t

networks and latencies, computing the minimum
portion of flow and Leader’s optimal strategy
sufficient to induce PoA D 1 is easy [10].

Problem (G(V; E),s; t 2 V; r) INPUT: Graph
G;8e 2 E latency `e , flow r , a source-
destination pair .s; t/ of vertices in V .
OUTPUT: (i) The minimum portion αG of the
total flow r sufficient for an optimal Stackelberg
strategy to induce the optimum on G. (ii) The
optimal Stackelberg strategy.

Models and Notations

Consider a graph G.V; E/ with parallel edges
allowed. A number of rational and selfish users
wish to route from a given source s to a destina-
tion node t an amount of flow r . Alternatively,
consider a partition of users in k commodities,
where user(s) in commodity i wish to route flow
ri through a source-destination pair .si ; ti /, for
each i D 1; : : :; k. Each edge e 2 E is associated
to a latency function `e./, positive, differentiable,
and strictly increasing on the flow traversing it.

Nonatomic Flows

There are infinitely many users, each routing
his/her infinitesimally small amount of the total
flow ri from a given source si to a destination
vertex ti in graph G.V; E/. A flow f is an
assignment of jobs fe on each edge e 2 E. The
cost of the injected flow fe (satisfying the stan-
dard constraints of the corresponding network-
flow problem) that traverses edge e 2 E equals;
ce.fe/ D fe � `e.fe/. It is assumed that on
each edge e the cost is convex with respect to
the injected flow fe . The overall system’s cost is
the sum

P

e2E

fe � `e.fe/ of all edge costs in G.

Let fP the amount of flow traversing the si � ti
path P . The latency `P.f / of si � ti path P is
the sum

P

e2P
`e.fe/ of latencies per edge e 2 P .

The cost CP.f / of si � ti path P equals the
flow fP traversing it multiplied by path latency
`P.f /. That is, CP.f / D fP �

P

e2P
`e.fe/. In

a Nash equilibrium, all si � ti paths traversed by
nonatomic users in part i have a common latency,
which is at most the latency of any untraversed
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si � ti path. More formally, for any part i and
any pair P1, P2 of si � ti paths, if fP1

> 0

then `P1
.f / � `P2

.f /. By the convexity of
edge costs, the Nash equilibrium is unique and
computable in polynomial time given a floating-
point precision. Also computable is the unique
Optimum assignment O of flow, assigning flow
oe on each e 2 E and minimizing the overall
cost

P

e2E

oe`e.oe/. However, not all optimally tra-

versed si � ti paths experience the same latency.
In particular, users traversing paths with high
latency have incentive to reroute toward more
speedy paths. Therefore, the optimal assignment
is unstable on selfish behavior.

A Leader dictates a weak Stackelberg strategy
if on each commodity i D 1; : : :; k controls
a fixed α portion of flow ri ; α 2 Œ0; 1�. A
strong Stackelberg strategy is more flexible, since
Leader may control αi ri flow in commodity i

such that
kP

iD1

αi D α. Let a Leader dictating flow

se on edge e 2 E. The a posteriori latency Q̀e.ne/

of edge e, with respect to the induced flow ne by
the selfish users, equals Q̀e.ne/ D `e.ne C se/. In
the a posteriori Nash equilibrium, all si � ti paths
traversed by the free selfish users in commodity
i have a common latency, which is at most the
latency of any selfishly untraversed path, and its
cost is

P

e2E

.ne C se/� Q̀e.ne/.

Atomic Splittable Flows

There is a finite number of atomic users 1; : : :; k.
Each user i is responsible for routing a non-
negligible flow-amount ri from a given source si

to a destination vertex ti in graph G. In turn, each
flow-amount ri consists of infinitesimally small
jobs.

Let flow f assigning jobs fe on each edge
e 2 E. Each edge flow fe is the sum of partial
flows f 1

e ; : : : ; f k
e injected by the corresponding

users 1; : : :; k. That is, fe D f 1
e C � � � C f k

e .
As in the model above, the latency on a given
si � ti path P is the sum

P

e2P
`e.fe/ of latencies

per edge e 2 P . Let f i
P be the flow that user i

ships through an si � ti path P . The cost of user
i on a given si � ti path P is analogous to her
path flow f i

P routed via P times the total path
latency

P

e2P
`e.fe/. That is, the path cost equals

f i
P �

P

e2P
`e.fe/. The overall cost Ci .f / of user

i is the sum of the corresponding path costs of all
si � ti paths.

In a Nash equilibrium no user i can improve
his cost Ci .f / by rerouting, given that any user
j ¤ i keeps his routing fixed. Since each atomic
user minimizes its cost, if the game consists of
only one user, then the cost of the Nash equilib-
rium coincides to the optimal one.

In a Stackelberg game, a distinguished atomic
Leader player controls flow r0 and plays first
assigning flow se on edge e 2 E. The a pos-
teriori latency Q̀e.x/ of edge e on induced flow
x equals Q̀e.x/ D `e.x C se/. Intuitively, after
Leader’s move, the induced selfish play of the
k atomic users is equivalent to atomic splittable
flows on a graph where each initial edge latency
`e has been mapped to Q̀e . In game parlance,
each atomic user i 2 f1; : : :; kg, having fixed
Leader’s strategy, computes his best reply against
all other atomic users f1; : : :; kgnfig. If ne is the
induced Nash flow on edge e, this yields total costP

e2E

.ne C se/ � Q̀e.ne/.

Atomic Unsplittable Flows

The users are finite 1; : : :; k and user i is allowed
to send his non-negligible job ri only on a single
path. Despite this restriction, all definitions given
in atomic splittable model remain the same.

Key Results

Let us see first the case of atomic splittable flows,
on parallel M/M/1 links with different speeds
connecting a given source-destination pair of ver-
tices.

Theorem 1 (Korilis, Lazar, Orda [6]) The
Leader can enforce in polynomial time the
network optimum if his/her controls flow r0

exceeding a critical value r0.
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In the sequel, we focus on nonatomic flows on
s � t graphs with parallel links. In [6] primarily
were studied cases that Leader’s flow cannot
induce network’s optimum and was shown that an
optimal Stackelberg strategy is easy to compute.
In this vain, if s � t parallel link instances are
restricted to ones with linear latencies of equal
slope, then an optimal strategy is easy [4].

Theorem 2 (Kaporis, Spirakis [4]) The opti-
mal Leader strategy can be computed in polyno-
mial time on any instance .G; r; α/ where G is an
s�t graph with parallel links and linear latencies
of equal slope.

Another positive result is that the optimal
strategy can be approximated within .1 C �/ in
polynomial time, given that link latencies are
polynomials with nonnegative coefficients.

Theorem 3 (Kumar, Marathe [8]) There is
a fully polynomial approximate Stackelberg

scheme that runs in poly
�
m; 1

�

�
time and outputs

a strategy with cost .1 C �/ within the optimum
strategy.

For parallel link s � t graphs with arbitrary
latencies more can be achieved: in polynomial
time a “threshold” value αG is computed, suf-
ficient for the Leader’s portion to induce the
optimum. The complexity of computing optimal
strategies changes in a dramatic way around the
critical value αG from “hard” to “easy” .G; r; α/

Stackelberg scheduling instances. Call αG as the
Price of Optimum for graph G.

Theorem 4 (Kaporis, Spirakis [4]) On an in-
put s � t parallel link graph G with arbitrary
strictly increasing latencies, the minimum portion
αG sufficient for a Leader to induce the optimum,
as well as his/her optimal strategy, can be com-
puted in polynomial time.

As a conclusion, the Price of Optimum αG

essentially captures the hardness of instances
.G; r; α/. Since, for Stackelberg scheduling in-
stances .G; r; α � αG/, the optimal Leader
strategy yields PoA D 1 and it is computed
as hard as in P , while for .G; r; α < αG/ the
optimal strategy yields PoA < 1 and it is as easy
as NP [10].

The results above are limited to parallel links
connecting a given s� t pair of vertices. Is it pos-
sible to efficiently compute the Price of Optimum
for nonatomic flows on arbitrary graphs? This is
not trivial to settle. Not only because it relies
on computing an optimal Stackelberg strategy,
which is hard to tackle [10], but also because
Proposition B.3.1 in [11] ruled out previously
known performance guarantees for Stackelberg
strategies on general nets.

The central result of this lemma is presented
below and completely resolves this question (ex-
tending Theorem 4).

Theorem 5 (Kaporis, Spirakis [4]) On arbi-
trary s � t graphs G with arbitrary latencies,
the minimum portion αG sufficient for a Leader
to induce the optimum, as well as her optimal
strategy, can be computed in polynomial time.

Example

Consider the optimum assignment O of flow r

that wishes to travel from source vertex s to sink
t . O assigns flow oe incurring latency `e.oe/

per edge e 2 G. Let Ps!t the set of all s � t

paths. The shortest paths in Ps!t with respect
to costs `e.oe/ per edge e 2 G can be com-
puted in polynomial time. That is, the paths that
given flow assignment O achieve path latency:

min
P 2Ps!t

�
P

e2P

`e.oe/

�
, i.e., minimize their path

latency. It is crucial to observe that if we want
the induced Nash assignment by the Stackelberg
strategy to attain the optimum cost, then these
shortest paths are the only choice for selfish users
that are eager to travel from s to t . Furthermore,
the uniqueness of the optimum assignment O

determines the minimum part of flow which can
be selfishly scheduled on these shortest paths.
Observe that any flow assigned by O on a non-
shortest s � t path has incentive to opt for a
shortest one. Then a Stackelberg strategy must
freeze the flow on all non-shortest s � t paths.

In particular, the idea sketched above achieves
coordination ratio 1 on the graph in Fig. 1. On this
graph Roughgarden proved that 1

˛
� (optimum
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Stackelberg Games: The Price of Optimum, Fig. 1 A bad example for Stackelberg routing

cost) guarantee is not possible for general .s; t/-
networks, Appendix B.3 in [11]. The optimal
edge flows are .r D 1/:

os!v D
3
4
� �; os!w D

1
4
C �; ov!w D

1
2
� 2�;

ov!t D
1
4
C �; ow!t D

3
4
� �

The shortest path P0 2 P with respect to the
optimum O is P0 D s ! v ! w ! t (see
[11] pp. 143, 5th-3th lines before the end) and its
flow is fP0

D 1
2
� 2�. The non-shortest paths are

P1 D s ! v ! t and P2 D s ! w ! t with
corresponding optimal flows: fP1

D 1
4
C � and

fP2
D 1

4
C �. Thus, the Price of Optimum is

fP1
C fP2

D
1

2
C 2� D r � fP0

Applications

Stackelberg strategies are widely applicable in
networking [6], see also Section 6.7 in [12].

Open Problems

It is important to extend the above results on
atomic unsplittable flows.
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Problem Definition

Algorithmic self-assembly is concerned with
hands-off assembly of complex structures by
mixing collections of simple particles that
aggregate according to local rules. Staged
self-assembly utilizes sequences of mixings to
reduce the number of particle types used. The
standard model of staged self-assembly builds
on the abstract Tile Assembly Model (aTAM)
of Winfree [7], where each particle is a non-
rotatable unit square tile with a labeled glue on
each side. Tiles attach to other tiles edgewise
via glues of the same label, forming polyomino-
shaped aggregates called assemblies.

In the simplest model, a pair of assemblies
(of which single tiles are a special case) can
attach via a single matching glue. In a more
general model, a pair of assemblies can attach
if they share a total of � 2 N glues. The
parameter � is called the temperature of the
system.

The self-assembly process is carried out by
combining an infinite number of copies of a
collection of reagent assemblies in a bin, where
they attach in every possible way. The subset of
the resulting assemblies that cannot attach to any
other assemblies define the product assemblies of
the mixing, i.e., the set of assemblies that remain
once the assembly process is complete. A system
consisting of a single bin with single-tile reagent
assemblies is a hierarchical [2], two-handed [1],
or polyomino [5] self-assembly system.

In a staged self-assembly system [3], the prod-
ucts of one bin can be used as the reagents of
other bin (see Fig. 1). The directed acyclic graph
describing the relationship mixings is called the
mix graph of the system. An initial set of mixings
each have a single tile as the only product assem-
bly and no reagent assemblies.

Objectives In general, the goal is to design a
system with a mixing containing a single product
assembly of a desired polyomino shape while
minimizing the size of some aspect of the sys-
tem. Several aspects are considered, including the
number of distinct tiles (tile complexity), number
of edges of the mix graph (mix graph complexity),

http://theory.stanford.edu/~tim/
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Staged Assembly, Fig. 1 A staged self-assembly sys-
tem. Each bin (blue box) contains the product assemblies
of the bin. The reagent assemblies of a bin are the products
of other bins (incoming arrows)

width of the mix graph (bin complexity), height
of the mix graph (stage complexity), and tempera-
ture of the system. The computational complexity
of finding an optimal system for an input shape
under some measure of system complexity is also
considered. In some cases, the desired polyomino
shape also has each cell labeled, and the goal is
to construct a given labeled shape using labeled
tiles.

Problem 1 (Smallest Staged Self-Assembly
System)

INPUT: A labeled polyomino P .
OUTPUT: A staged self-assembly system con-

taining a bin with a single product assembly
with labeled shape P that is minimum in some
measure.

Key Results

We describe the results by increasing generality
of the shapes assembled.

Lines
In the most constrained case, the input polyomino
is an unlabeled 1�n polyomino (a line). Lines can

be assembled by � D 1 systems using O.1/ tile
types, O.1/ bins, and O.log n/ stages and mix
graph edges. The idea is to repeatedly double the
length of a line assembly as proved by Demaine
et al. [3].

Demaine, Eisenstat, Ishaque, and Winslow [4]
prove that the case of labeled lines is roughly
equivalent to the problem of finding the small-
est context-free grammar that is a single string
consisting of the labels of the line read from left
to right. In particular, any context-free grammar
G with jGj rules and deriving a single string �

can be converted into a � D 1 staged self-
assembly system S assembling a line with left-to-
right label string � , where the number of edges in
the mix graph of S is O.jGj/. The complexity of
the smallest staged self-assembly system where
the input polyomino is a labeled line and the
system has an upper limit on the number of glue
types appearing on the tiles was proven to be NP-
hard [4].

Squares
Demaine et al. [3] prove that unlabeled n � n

squares are possible with a � D 1 staged systems
containing O.1/ tile types and bins, O.log n/

stages, and thus a mix graph with O.log n/

stages. The system uses an idea similar to
that for assembling lines but in two steps: first
assemble n � 1 columns and then combine them
to form n � 2, then n � 4, etc., rectangles. This
construction uses a jigsaw technique to ensure
attaching rectangles cannot assemble askew.

Demaine et al. also prove that unlabeled
n � n squares can be assembled using � D 2

staged systems using O.1/ tile types, O.
p

log n/

bins, and O.log log n/ stages. The approach is
to simulate known � D 2 single-bin systems
that efficiently assemble squares by constructing
macrotiles: large assemblies that simulate the
behavior of distinct tile types by encoding
glue types in geometry on their surfaces. Such
macrotiles allow staged systems to trade off
tile types for stages by replacing many distinct
tile types with an initial sequence of stages that
assemble macrotile versions of the tiles.
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General Shapes
For general shapes, several different results high-
light the trade-offs in complexity enabled by
staged assembly. Demaine et al. [3] prove that any
unlabeled shape can be assembled by a � D 1

staged system using O.1/ tile types, O.log n/

bins, and a number of stages proportional to the
diameter of the dual grid graph of the shape. If
the shape is monotone, then a similar system with
O.n/ bins and O.log n/ stages (increased bins
but decreased stages) exists.

If the system is permitted to assemble a scaled
version of the input shape, then the system of
Soloveichik and Winfree [6] can be simulated
with macrotiles, resulting in a � D 2 staged sys-
tem with O.1/ tile types, O.K= log K/ bins, and
O.log log K/ stages, where K is the Kolmogorov
complexity of the shape. For labeled shapes,
Winslow [8] proves that any polyomino context-
free grammar G (a generalization of context-free
grammars to two dimensions) with jGj rules de-
riving a single labeled polyomino P can be con-
verted into a staged system S assembling a scaled
version of P consisting of labeled macrotiles
where the number of edges in the mix graph of
S is O.jGj/.

Applications

The theory of algorithmic self-assembly is rooted
in the design of nanoscale particle systems, par-
ticularly DNA-based systems. For staged self-
assembly in particular, the capability of assem-
bling complex shapes using only O.1/ tile types
is highly desirable in practice, as engineering
many tile types with desired glues is often far
more challenging than carrying out a sequence of
mixings.

Open Problems

The complexity of the smallest staged self-
assembly problem where the number of glue
types used is unconstrained remains open, both
for the case of lines and general shapes. For
lines, the problem is known to be in NP and

when the number of glues is constrained is NP-
complete (both proved in [4]). For general shapes,
the problem is only known to be in PSPACE
(proved in [9]) and NP-hard when the number of
glues is constrained, following from the special
case of lines. The complexity of verifying that a
staged assembly system produces a given shape
also remains open and is only known to lie in
PSPACE.
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Problem Definition

The three main types of mutations modifying
biological sequences are insertions, deletions,
and substitutions. The simplest model involving
these three types of mutations is the so-called
Thorne-Kishino-Felsenstein model [16]. In this
model, the characters of a sequence evolve
independently. Each character in the sequence
can be substituted with another character
according to a prescribed reversible time-
continuous Markov model on the possible
characters. Insertion-deletions are modeled as
a birth-death process. Insertions can happen at
the beginning of the sequence, at the end of the
sequence, and between any two characters. It
is possible to insert a character into the empty
sequence. The time span between two insertions
is exponentially distributed with parameter �,
and this parameter does not depend on the
context of the position. The newborn character
is drawn from the equilibrium distribution of the
substitution process. Each character is deleted
after an exponentially distributed waiting time
with parameter �, and its two positions where
insertions can happen are joined.

The multiple statistical alignment problem is
to calculate the likelihood of a set of sequences,
namely, what is the probability of observing a set

of sequences, given all the necessary parameters
that describe the evolution of sequences. Hein,
Jensen, and Pedersen were the first who gave an
algorithm to calculate this probability [5]. Their
algorithm has O.5nLn/ running time, where n is
the number of sequences, and L is the geometric
mean of the sequences. The running time has
been improved to O.2nLn/ by Lunter et al. [9].

Notations

Substitutions
A time-continuous Markov model for a substitu-
tion process on an alphabet † is given by a k � k

rate matrix Q, with constraints

qi;j � 0 8i ¤ æ (1)
X

i

qi;j D 0 8i (2)

where k is the size of the alphabet. The probabil-
ity that a character ai will be character aj after
time t can be calculated with the exponentiation
of the rate matrix:

Pt .aj jai / D pi;j where (3)

P D eQt (4)

The exponentiated matrix can be easily calculated
if the rate matrix is diagonalized, namely, if Q D

W ƒW �1, where ƒ is a diagonal matrix, then

eQt D W eƒt W �1 (5)

eƒt can be easily calculated, since it is a diagonal
matrix containing e�i t in the i th position of the
diagonal.

Insertions and Deletions
A Galton-Watson tree is a rooted, edge-weighted
binary tree that describes a birth-death process
for a time span t . The process starts at the root
of the tree, and a split represents a birth. Edge
weights represent times, and leaves having a
distance from the root smaller than t represent
death events. Leaves being t time fare from the
root are the individuals that live at time point t .
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Insertion-deletion events transforming one
sequence into another can be described
with Galton-Watson forests: births represent
insertions, and deaths represent deletions. Each
character of the ancestral sequence has a tree, and
there is an additional tree at the beginning of the
sequence associated to an imaginary character.
This imaginary character cannot die. Roots of the
trees are the characters of the ancestral sequence,
and each character of the descendant sequence
is a leaf of one of the trees, being t time fare
from the root. There might be additional leaves
that are not associated with characters of the
descendant sequences; these are the died out
lineages. The forest is aligned such that edges
do not cross each other while the characters of
the two sequences keep their original order. Each
Galton-Watson forest indicates an alignment of
the two sequences; see Fig. 1. Given a birth and
death process, the probability density of a Galton-
Watson tree can be calculated easily. Assuming
independence, the probability of a Galton-Watson
forest is the product of the probabilities of its
trees. The probability of an alignment is the
integral of the probabilities of the forests that
represent it. Due to independence, it is enough
to tell the probability of alignment patterns that
might arise as an image of a Galton-Watson tree
(see Fig. 1b); the probability of an alignment is
the product of the probabilities of its patterns.

In the Thorne-Kishino-Felsenstein model
(TKF91 model) [16], both the birth and the death
processes are Poisson processes with parameters
� and �, respectively. The probability of the
possible patterns can be found on Fig. 2.

Evolutionary Trees
An evolutionary tree is a leaf-labeled, edge-
weighted, rooted binary tree. Labels are the
species related by the evolutionary tree, and
weights are evolutionary distances. It might
happen that the evolutionary changes had
different speed at different lineages, and hence
the tree is not necessary ultrametric, namely,
the root not necessary has the same distance
to all leaves. The nodes of an evolutionary tree
can be partially ordered such that two nodes are
comparable if there is a path from the root to

a

b

Statistical Multiple Alignment, Fig. 1 (a) A Galton-
Watson forest representing insertion-deletion events. The
first tree starts with an immortal element that is respon-
sible to the insertions at the beginning of the sequence.
(b) The alignment indicated by the Galton-Watson forest
above. Each tree makes a pattern of the alignment; patterns
are separated with dashed lines

any of the leaves containing the two nodes in
question, and in this case the smaller node is the
one that is closer to the root on the path. Each
node v of an evolutionary tree indicates a subtree
that contains v and all the nodes that are greater
than v. Hereafter we consider only these subtrees.

Given a set S of l-long sequences over al-
phabet †, a substitution model M on † and an
evolutionary tree T are labeled by the sequences.
The likelihood of the tree is the probability of
observing the sequences at the leaves of the tree,
given that the substitution process starts at the
root of the tree with the equilibrium distribution.
This likelihood is denoted by P.S jT; M/. The
substitution likelihood problem is to calculate the
likelihood of the tree.

Let † be a finite alphabet and let S1 D

s1;1s1;2 : : : s1;L1
, S2 D s2;1s2;2 : : : s2;L2

, : : :

Sn D sn;1sn;2 : : : sn;Ln
be sequences over

this alphabet. Let a TKF91 model TKF 91 be
given with its parameters: substitution model
M , insertion rate �, and deletion rate �. Let
T be an evolutionary tree labeled by S1,
S2, : : : Sn. The multiple statistical alignment
problem is to calculate the likelihood of the
tree, P.S1; S2; : : : SnjT; TKF 91/, given that
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Statistical Multiple Alignment, Fig. 2 The probabili-
ties of alignment patterns. From left to right: k insertions
at the beginning of the alignment, a match followed by

k � 1 insertions, a deletion followed by k insertions, and

a deletion not followed by insertions. ˇ D 1�e.���/t

���e.���/t

the TKF91 process starts at the root with the
equilibrium distribution.

Multiple Hidden Markov Models
It will turn out that the TKF91 model can be
transformed to a multiple Hidden Markov Model;
therefore we formally define it here. A multiple
Hidden Markov Model (multiple HMM) is a
directed graph with distinguished start and end
states, (the in degree of the start and the out
degree of the end state are both 0), together with
the following described transition and emission
distributions. Each vertex has a transition distri-
bution over its out edges. The vertexes can be
divided into two classes, the emitting and silent
states. Each emitting state emits one-one random
character to a prescribed set of sequences; it is
possible that a state emits only one character
to one sequence. For each state, an emission
distribution over the alphabet and the set of se-
quences gives the probabilities which characters
will be emitted to which sequences. The Markov
process is a random walk from the start to the
end, following the transition distribution on the
out edges. When the walk is in an emitting
state, characters are emitted according to the
emission distribution of the state. The process is
hidden since the observer sees only the emitted
sequences, and the observer does not observe
which character is emitted by which state, even
the observer does not see which characters are
co-emitted. The multiple HMM problem is to
calculate the emission probability of a set of
sequences for a multiple HMM. This probability
can be calculated with the forward algorithm
that has O.V 2Ln/ running time, where V is the

number of emitting states in the multiple HMM,
L is the geometric mean of the sequences, and n

is the number of sequences [3].

Key Results

Substitutions have been modeled with time-
continuous Markov models since the late 1960s
[8], and an efficient algorithm for likelihood
calculations was published in 1980 [4]. The
running time of this efficient algorithm grows
linearly both with the number of sequences
and with the length of the sequences being
analyzed, and it grows squarely with the size of
the alphabet. The algorithm belongs to the class
of dynamic programming algorithms. For each
character, subtree, and position x, the algorithm
calculates what would be the likelihood of
the characters in position x in the sequences
belonging to the subtree if the substitution
process started in the root of the subtree with
the given character. These probabilities are called
conditional likelihoods. It is easy to show that

Lp.˛; x/ D

 
X

˛1

Pt1.˛1j˛/Ld1
.˛1; x/

!

 
X

˛2

Pt2.˛2j˛/Ld2
.˛2; x/

!

(6)

where d1 and d2 are the descendant nodes of the
parent node p and t1 and t2 are the length of the
edges connecting p with d1 and d2, respectively.
The likelihood of the tree can be calculated from
the conditional likelihoods of the tree. Recall that
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P.S jT; M/ is the likelihood of observing a set of
sequences S on the leaves of an evolutionary tree
T under the substitution model M :

P.S jT; M/ D
Y

x

X

˛

Lroot .˛; x/
˛ (7)

Thorne, Kishino, and Felsenstein gave an
O.nm/ running time algorithm for calculating
the likelihood of an n-long and an m-long
sequence under their model [16]. It was not
clear for long time how to extend this algorithm
to more than two sequences. In 2001, several
researchers [7,12] realized that the TKF91 model
for two sequences is equivalent with a pair
Hidden Markov Model (pair HMM) in the sense
that the transition and emission probabilities of
the pair HMM can be parameterized with �, �

and the transition and equilibrium probabilities
of the substitution model; moreover there is
a bijection between the paths emitting the
two sequences and alignments such that the
probability of a path in the pair HMM equals
to the probability of the corresponding alignment
of the two sequences. Hence the likelihood of
two sequences can be calculated with the forward
algorithm of the pair HMM.

After this discovery, it was relatively easy
to develop an algorithm for multiple statistical
alignment [5]. The key observation is that a multi-
ple HMM can be created as a composition of pair
HMMs along the evolutionary tree. This tech-
nique was already known in the speech recog-
nition literature [14], and was also rediscovered
by Ian Holmes [6], who named this technique as
transducer composition. The number of states in
the so-created multiple HMM is O.5

n
2 /, where n

is the number of leaves of the tree. The emission
probabilities are the substitution likelihoods on
the tree, which can be efficiently calculated as
shown above. The running time of the forward
algorithm is 5nLn, where L is the geometric
mean of the sequence lengths.

Lunter et al. [9] introduced an algorithm that
does not need a multiple HMM description of
the TKF91 model to calculate the likelihood of
a tree. Using a logical sieve algorithm, they were
able to reduce the running time to O.2nLn/. They

called their algorithm the “one-state recursion”
since their dynamic programming algorithm does
not need different state of a multiple HMM to
calculate the likelihood correctly.

Applications

Since the running time of the best known al-
gorithm for multiple statistical alignment grows
exponentially with the number of sequences, on
its own it is not useful in practice. However,
Lunter et al. also showed that there is a one-
state recursion to calculate the likelihood of the
tree given an alignment [10]. The running time of
this algorithm grows only linearly with both the
alignment length and the number of sequences.
Since the number of states in a multiple HMM
that can emit the same multiple alignment column
might grow exponentially, this version of the
one-state recursion is a significant improvement.
The one-state recursion for multiple alignments
is used in a Bayesian Markov chain Monte Carlo
where the state space is the Descartes product of
the possible multiple alignments and evolutionary
trees. The one-state recursion provides an effi-
cient likelihood calculation for a point in the state
space [11].

Csűrös and Miklós introduced a model for
gene content evolution that is equivalent with the
multiple statistical alignment problem for alpha-
bet size 1 [2]. They gave a polynomial running
time algorithm that calculates the likelihood of
the tree. The running time is O.nC hL2/, where
n is the number of sequences, h is the height of
the evolutionary tree, and L is the sum of the
sequence lengths.

Thorne, Kishino, and Felsenstein also intro-
duced a fragment model, also called the TKF92
model, in which multiple insertions and deletions
are allowed [17]. The birth process is still a
Poisson process, but instead of single charac-
ters, fragments of characters are inserted with a
geometrically distributed length. The fragments
are unbreakable, and the death process is going
on the fragments. The TKF92 model for a pair
of sequences also can be described into a pair
HMM and the TKF92 model on a tree can be
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transformed to a multiple HMM. Such multiple
HMM is used in the StatAlign software package
[13]. The software package has been extended
to predict the common structure of sequences
(e.g., slowly quickly evolving regions, RNA sec-
ondary structures) by combining this multiple
HMM with other stochastic models describing
the structure of sequences [1, 15].

Open Problems

It is conjectured that the multiple statistical align-
ment problem cannot be solved in polynomial
time for any nontrivial alphabet size. One also
can ask what the most likely multiple alignment
is or, equivalently, what the most probable path
in the multiple HMM is that emits the given
sequences. For a set of sequences, a TKF91
model, and an evolutionary tree, the decision
problem “Is there a multiple alignment that is
more probable than p” is conjectured to be NP-
complete.

It is conjectured that there is no one-state
recursion for the TKF92 model.
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2. Csűrös M, Miklós I (2006) A probabilistic model
for gene content evolution with duplication,
loss, and horizontal transfer. In: Proceedings of
RECOMB2006. Lecture notes in bioinformatics,
Springer Verlag, vol 3909, pp 206–220

3. Durbin R, Eddy S, Krogh A, Mitchison G (1998).
Biological sequence analysis. Cambridge University
Press, Cambridge

4. Felsenstein J (1981) Evolutionary trees from DNA
sequences: a maximum likelihood approach. J Mol
Evol 17:368–376

5. Hein JJ, Jensen JL, Pedersen CNS (2003) Recursions
for statistical multiple alignment. PNAS 100:14960–
14965

6. Holmes I (2003) Using guide trees to construct
multiple-sequence evolutionary hmms. Bioinformat-
ics 19:i147–i157

7. Holmes I, Bruno WJ (2001) Evolutionary HMMs: a
Bayesian approach to multiple alignment. Bioinfor-
matics 17(9):803–820

8. Jukes TH, Cantor CR (1969) Evolution of protein
molecules. In: Munro HN (ed) Mammalian protein
metabolism. Academic, New York, pp 21–132

9. Lunter GA, Miklós I, Song YS, Hein J (2003)
An efficient algorithm for statistical multiple align-
ment on arbitrary phylogenetic trees. J Comput Biol
10(6):869–889

10. Lunter GA, Miklós I, Drummond AJ, Jensen JL,
Hein JJ (2003) Bayesian phylogenetic inference un-
der a statistical indel model. In: Proceedings of
WABI2003. Lecture notes in bioinformatics, Springer
Verlag, vol 2812, pp 228–244

11. Lunter GA, Miklós I, Drummond AJ, Jensen JL, Hein
JJ (2005) Bayesian coestimation of phylogeny and
sequence alignment. BMC Bioinformatics 6:83

12. Metzler D, Fleißner R, Wakolbringer A, von Hae-
seler A (2001) Assessing variability by joint sam-
pling of alignments and mutation rates. J Mol Evol
53:660–669

13. Novák A, Miklós I, Lyngsø R, Hein J (2008)
StatAlign: an extendable software package for joint
bayesian estimation of alignments and evolutionary
trees. Bioinformatics 24(20):2403–2404

14. Pereira F, Riley M (1997) Speech recognition by
composition of weighted finite automata. In: Finite-
state language processing. MIT, Cambridge, pp 149–
173

15. Satija R, Novák A, Miklós I, Lyngsø R, Hein J (2009)
BigFoot: Bayesian alignment and phylogenetic foot-
printing with MCMC. BMC Evol Biol 9:217

16. Thorne JL, Kishino H, Felsenstein J (1991) An evolu-
tionary model for maximum likelihood alignment of
DNA sequences. J Mol Evol 33:114–124

17. Thorne JL, Kishino H, Felsenstein J (1992) Inching
toward reality: an improved likelihood model of se-
quence evolution. J Mol Evol 34:3–16

Statistical Query Learning

Vitaly Feldman
IBM Research – Almaden, San Jose, CA, USA

Keywords

Classification noise; Noise-tolerant learning;
PAC learning; SQ dimension; Statistical query

Years and Authors of Summarized
Original Work

1998; Kearns



Statistical Query Learning 2091

S

Problem Definition

The problem deals with learning to classify
from random labeled examples in Valiant’s PAC
model [30]. In the random classification noise
model of Angluin and Laird [1], the label of each
example given to the learning algorithm is flipped
randomly and independently with some fixed
probability � called the noise rate. Robustness
to such benign form of noise is an important
goal in the design of learning algorithms. Kearns
defined a powerful and convenient framework for
constructing noise-tolerant algorithms based on
statistical queries. Statistical query (SQ) learning
is a natural restriction of PAC learning that
models algorithms that use statistical properties
of a data set, rather than individual examples.
Kearns demonstrated that any learning algorithm
that is based on statistical queries can be
automatically converted to a learning algorithm
in the presence of random classification noise
of arbitrary rate smaller than the information-
theoretic barrier of 1=2. This result was used
to give the first noise-tolerant algorithm for a
number of important learning problems. In fact,
virtually all known noise-tolerant PAC algorithms
were either obtained from SQ algorithms or can
be easily cast into the SQ model.

In subsequent work, the model of Kearns has
been extended to other settings and found a num-
ber of additional applications in machine learning
and theoretical computer science.

Definitions and Notation
Let C be a class of f�1;C1g-valued functions
(also called concepts) over an input space X .
In the basic PAC model, a learning algorithm
is given examples of an unknown function f

from C on points randomly chosen from some
unknown distribution D over X and should pro-
duce a hypothesis h that approximates f . More
formally, an example oracle EX.f;D/ is an ora-
cle that upon being invoked returns an example
hx; f .x/i, where x is chosen randomly with re-
spect to D, independently of any previous exam-
ples. A learning algorithm for C is an algorithm
that for every � > 0, ı > 0, f 2 C, and

distribution D over X , given �, ı, and access
to EX.f;D/ outputs, with probability at least
1� ı, a hypothesis h that �-approximates f with
respect to D (i.e., PrDŒf .x/ ¤ h.x/� � �).
Efficient learning algorithms are algorithms that
run in time polynomial in 1=�, 1=ı and the size
of the learning problem s. The size of a learning
problem is determined by the description length
of f under some fixed representation scheme for
functions in C and the description length of an
element in X (often proportional to the dimension
n of the input space).

A number of variants of this basic framework
are commonly considered. The basic PAC model
is also referred to as distribution-independent
learning to distinguish it from distribution-
specific PAC learning in which the learning
algorithm is required to learn with respect to
a single distribution D known in advance. A
weak learning algorithm is a learning algorithm
that can produce a hypothesis whose error on the
target concept is noticeably less than 1=2 (and
not necessarily any � > 0). More precisely, a
weak learning algorithm produces a hypothesis
h such that PrDŒf .x/ ¤ h.x/� � 1=2 � 1=p.s/

for some fixed polynomial p. The basic PAC
model is often referred to as strong learning in
this context.

In the random classification noise model
EX.f;D/ is replaced by a faulty oracle
EX�.f;D/, where � is the noise rate. When
queried, this oracle returns a noisy example
hx; bi where b D f .x/ with probability 1 � �

and :f .x/ with probability � independently of
previous examples. When � approaches 1=2 the
label of the corrupted example approaches the
result of a random coin flip, and therefore, the
running time of learning algorithms in this
model is allowed to depend on 1

1�2�
(the

dependence must be polynomial for the algorithm
to be considered efficient). For simplicity, one
usually assumes that � is known to the learning
algorithm. This assumption can be removed using
a simple technique due to Laird [26].

To formalize the idea of learning from statis-
tical properties of a large number of examples,
Kearns introduced a new oracle STAT.f;D/ that
replaces EX.f;D/. The oracle STAT.f;D/ takes
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as input a statistical query (SQ) of the form
.; �/, where  is a f�1;C1g-valued function on
labeled examples and � 2 Œ0; 1� is the tolerance
parameter. Given such a query, the oracle re-
sponds with an estimate v of PrDŒ.x; f .x// D

1� that is accurate to within an additive ˙� .
Note that the oracle does not guarantee

anything else on the value v beyond jv �
PrDŒ.x; f .x// D 1�j � � and an SQ learning
algorithm needs to work with any possible
implementation of the oracle. Yang proposed
a stronger, honest version of the oracle which
to a call with function  returns the value of
.x; f .x//, where x is chosen randomly and
independently according to D [32]. This version
was shown to be equivalent to the original model
up to polynomial factors [17].

Chernoff bounds easily imply that STAT.f;D/

can, with high probability, be simulated using
EX.f;D/ by estimating PrDŒ.x; f .x// D 1�

on O.��2/ examples. Therefore, the SQ model
is a restriction of the PAC model. Efficient SQ
algorithms allow only efficiently evaluatable ’s
and impose an inverse polynomial lower bound
on the tolerance parameter over all oracle calls.
Kearns also observes that in order to simulate
all the statistical queries used by an algorithm,
one does not necessarily need new examples
for each estimation. Instead, assuming that
the set of possible queries of the algorithm
has Vapnik-Chervonenkis dimension d , all
its statistical queries can be simulated using
QO.d��2.1 � 2�/�2 log .1=ı// examples [24].

Key Results

Statistical Queries and Noise-Tolerance
The main result given by Kearns is a way to
simulate statistical queries using noisy examples.

Lemma 1 ([24]) Let .; �/ be a statistical query
such that  can be evaluated on any input in time
T and let EX�.f;D/ be a noisy oracle. The value
PrDŒ.x; f .x// D 1� can, with probability at
least 1�ı, be estimated within � using O.��2.1�

2�/�2 log .1=ı// examples from EX�.f;D/ and
time O.��2.1 � 2�/�2 log .1=ı/ � T /.

This simulation is based on estimating several
probabilities using examples from the noisy or-
acle and then offsetting the effect of noise. The
lemma implies that any efficient SQ algorithm for
a concept class C can be converted to an efficient
learning algorithm for C tolerating random clas-
sification noise of any rate � < 1=2.

Theorem 1 ([24]) Let C be a concept class ef-
ficiently PAC learnable from statistical queries.
Then C is efficiently PAC learnable in the pres-
ence of random classification noise of rate � for
any � < 1=2.

Balcan and Feldman describe more general
conditions on noise under which a specific SQ
algorithm can be simulated in the presence of
noise [3].

Statistical Query Algorithms
Kearns showed that, despite the major restriction
on the way an SQ algorithm accesses the exam-
ples, many PAC learning algorithms known at the
time can be modified to use statistical queries
instead of random examples [24]. Examples of
learning algorithms for which he described an SQ
analogue and thereby obtained a noise-tolerant
learning algorithm include:

• Learning decision trees of constant rank.
• Attribute-efficient algorithms for learning con-

junctions.
• Learning axis-aligned rectangles over Rn.
• Learning AC0 (constant-depth unbounded

fan-in) Boolean circuits over f0; 1gn with
respect to the uniform distribution in
quasipolynomial time.

Subsequent works have provided numerous
additional examples of algorithms used in theory
and practice of machine learning that can either
be implemented using statistical queries or can
be replaced by an alternative SQ-based algorithm
of similar complexity. For example, the Percep-
tron algorithm and learning of linear threshold
functions [6, 12], boosting [2], attribute-efficient
learning via the Winnow algorithm (cf. [16]),
k-means clustering [5] and convex optimization-
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based methods [20]. We note that many learning
algorithms rely only on evaluations of functions
on random examples and therefore can be seen as
using access to the honest statistical query oracle.
In such cases the SQ implementation follows
immediately from the equivalence of the Kearns’
SQ oracle and the honest one [17].

The only known example of a technique for
which there is no SQ analogue is Gaussian elim-
ination for solving linear equations over a finite
field. This technique can be used to learn parity
functions that are not learnable using SQs (as we
discuss below). As a result, with the exception of
the parity learning problem, known bounds on the
complexity of learning from random examples
are, up to polynomial factors, the same as known
bound for learning with statistical queries.

Statistical Query Dimension
The restricted way in which SQ algorithms use
examples makes it simpler to understand the
limitations of efficient learning in this model. A
long-standing open problem in learning theory
is learning of the concept class of all parity
functions over f0; 1gn with noise (a parity func-
tion is a XOR of some subset of n Boolean in-
puts). Kearns has demonstrated that parities can-
not be efficiently learned using statistical queries
even under the uniform distribution over f0; 1gn

[24]. This hardness result is unconditional in
the sense that it does not rely on any unproven
complexity assumptions.

The technique of Kearns was generalized by
Blum et al. who proved that efficient SQ learn-
ability of a concept class C is characterized by
a relatively simple combinatorial parameter of C
called the statistical query dimension [7]. The
quantity they defined, measures the maximum
number of “nearly uncorrelated” functions in a
concept class. (The definition and the results were
simplified and strengthened in subsequent works
[17, 29] and we use the improved statements
here.) More formally,

Definition 1 For a concept class C and distri-
bution D, the statistical query dimension of C
with respect to D, denoted SQ-DIM.C;D/, is
the largest number d such that C contains d

functions f1; f2; : : : ; fd such that for all i ¤ j ,
jEDŒfi fj �j � 1

d
.

Blum et al. relate the SQ dimension to learning
in the SQ model as follows.

Theorem 2 ([7, 17]) Let C be a concept class
and D be a distribution such that SQ-DIM
.C;D/ D d .

• If all queries are made with tolerance of at
least 1=d 1=3, then at least d 1=3�2 queries are
required to learn C with error 1=2 � 1=.2d 3/

in the SQ model.
• There exists an algorithm for learning C with

respect to D that makes d fixed queries, each
of tolerance 1=.4d/, and finds a hypothesis
with error at most 1=2 � 1=.2d/.

Thus SQ-DIM characterizes weak SQ learn-
ability relative to a fixed distribution D up to a
polynomial factor. Parity functions are uncorre-
lated with respect to the uniform distribution and
therefore, any concept class that contains a super-
polynomial number of parity functions cannot be
learned by statistical queries with respect to the
uniform distribution. This, for example, includes
such important concept classes as k-juntas over
f0; 1gn (or functions that depend on at most k

input variables) for k D !.1/ and decision trees
of superconstant size.

Simon showed that (strong) PAC learning rel-
ative to a fixed distribution D using SQs can also
be characterized by a more general and involved
dimension [28]. Simpler and tighter characteriza-
tions of distribution-specific PAC learning using
SQs have been demonstrated by Feldman [15]
and Szörényi [29]. Feldman also extended
the characterization to the agnostic learning
model.

Despite characterizing the number of queries
of certain tolerance, the SQ-DIM and its gen-
eralizations capture surprisingly well the com-
putational complexity of SQ learning of most
concept classes. One reason for this is that if a
concept class has polynomial SQ-DIM then it
can be learned by a polynomial-time algorithm
with advice also referred to as a “non-uniform”
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algorithm (cf. [18]). However it was shown by
Feldman and Kanade that for strong PAC learning
there exist artificial problems whose computa-
tional complexity is larger than their statistical
query complexity [18].

Applications of these characterizations to
proving lower bounds on SQ algorithms can
be found in [11, 15, 19, 25]. Relationships of SQ-
DIM to other notions of complexity of concept
classes were investigated in [22, 27].

Applications

The ideas behind the use of statistical queries to
produce noise-tolerant algorithms were adapted
to learning using membership queries (or ability
to ask for the value of the unknown function
at any point) and used to give a noise-tolerant
algorithm for learning DNF with respect to the
uniform distribution [9, 21]. The SQ model of
learning was generalized to active learning (or
learning where labels are requested only for some
of the points) and used to obtain new efficient
noise-tolerant active learning algorithms [3].

The restricted way in which an SQ algorithm
uses data implies it can be used to obtain learn-
ing algorithms with additional useful properties.
Blum et al. [5] show that an SQ algorithm can
be used to obtain a differentially-private [13]
algorithm for the problem. In fact, SQ algo-
rithms are equivalent to local (or randomized-
response) differentially-private algorithms [23].
Chu et al. [10] show that SQ algorithms can
be automatically parallelized on multicore ar-
chitectures and give many examples of popular
machine learning algorithms that can be sped up
using this approach.

The SQ learning model has also been instru-
mental in understanding Valiant’s model of evo-
lution as learning [31]. Feldman showed that the
model is equivalent to learning with a restricted
form of SQs referred to as correlational SQs
[14]. A correlational SQ is a query of the form
.x; `/ D g.x/ � ` for some g W X ! Œ�1; 1�.
Such queries were first studied by Ben-David
et al. [4] (remarkably, before the introduction
of the SQ model itself) and distribution-specific

learning with such queries is equivalent to learn-
ing with (unrestricted) SQs.

Statistical query-based access can naturally be
defined for any problem where the input is a set of
i.i.d. samples from a distribution. Feldman et al.
show that lower bounds based on SQ-DIM can
be extended to this more general setting and give
examples of applications [17, 20].

Open Problems

The main questions related to learning with ran-
dom classification noise are still open. Is every
concept class efficiently learnable in the PAC
model also learnable in the presence of random
classification noise? Is every concept class effi-
ciently learnable in the presence of random clas-
sification noise of arbitrarily high rate (less than
1=2) also efficiently learnable using statistical
queries? A partial answer to this question was
provided by Blum et al. who show that Gaussian
elimination can be used in low dimension to ob-
tain a class learnable with random classification
noise of constant rate � < 1=2 but not learnable
using SQs [8]. For both questions a central issue
seems to be obtaining a better understanding of
the complexity of learning parities with noise.

The complexity of learning from statistical
queries remains an active area of research with
many open problems. For example, there is
currently an exponential gap between known
lower and upper bounds on the complexity
of distribution-independent SQ learning of
polynomial-size DNF formulae and AC0 circuits
(cf. [27]). Several additional open problems
on complexity of SQ learning can be found in
[16, 19, 22].
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Problem Definition

The timing behavior of integrated systems is
strongly affected by the characteristics of tran-
sistors and wires in the system. Variations in
the manufacturing process can cause drifts in
these characteristics from one manufactured part
to another. The traditional approach to address-
ing these variations was to choose a worst-case
value for each process parameter, but this has
become unsustainable in the face of current-day
variations. Statistical timing analysis provides
a computationally efficient way to translate the
probability density function of the underlying
process parameter spread to the distribution of
circuit timing.

A key underlying structure for timing analysis
is a graph G.V; E/ of a combinational circuit,
where the vertex set V corresponds to the gates,
primary inputs, and primary outputs of the cir-
cuit, and each connection between these gates
corresponds to an edge in E. The delay of each
gate corresponds to a probability distribution that
is a function of the distributions of the under-
lying (possibly correlated) process parameters,
and the task of combinational statistical timing
analysis is to obtain the distribution of the maxi-
mum (or minimum) delay of the circuit, over all
primary outputs. The extension of this problem
to general edge-triggered sequential circuits is
straightforward. Such circuits can be decomposed
into independent combinational blocks, and the
maximum (or minimum) operator acts on the
delay distribution at all primary outputs of all
combinational blocks of the sequential circuit.

Key Results

The framework that is used for statistical tim-
ing analysis is based on graph-based topological
traversals that maintain a closed-form structure

for the delay from the primary inputs of the
circuit to the output of each vertex (referred to
as the arrival time). The computation under this
paradigm scales linearly with jEj. While it is
certainly possible to perform statistical timing
analysis through Monte Carlo simulations based
on samples of the process parameter space, such
an approach is uncompetitive compared to graph
traversal algorithms. The traversal approach con-
sists of three key steps [1, 2]:

• Translating the underlying process parameter
variations to an orthogonal set of random
variables

• Representing gate delay variations in terms of
this orthogonal set

• Performing a topological traversal of G and
computing the arrival time at each node and
maximum delay of the circuit

Orthogonalizing Process Parameter
Distributions
A common assumption is that the underlying
process parameters, such as the transistor width
W and effective length Leff of devices, gate oxide
thickness (Tox), and device threshold voltage
(Vt) due to random dopant fluctuations, show
a Gaussian distribution. Each individual device
is separately represented by such a parameter.
The distributions of Tox and Vt are largely
uncorrelated across devices. In contrast, the
dimension-based parameters, W and Leff, show
strong spatial correlations, whereby the distribu-
tions of nearby devices are strongly correlated,
and this correlation falls off as a function of
distance.

The existence of correlations can significantly
complicate the task of statistical timing analysis,
since all pairwise combinations of random vari-
ables must be considered during the optimization,
potentially leading to quadratic complexity in
jV j. To overcome this, an initial principal compo-
nent analysis (PCA) [7] step is carried out that or-
thogonalizes the underlying Gaussians, enabling
linear-time analysis. PCA is a one-time operation
for a given process (which is used for numerous
designs). Therefore, although its worst-case com-
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plexity is cubic in jV j, the expense is practically
manageable as it is amortized over numerous
designs. Furthermore, sparsity properties of the
correlation matrix realistically imply that in prac-
tice, the cost of PCA scales considerably slower
than this cubic rate.

For cases where the underlying process
parameters may be a mix of Gaussians or
non-Gaussians, it is possible to orthogonalize
the Gaussian parameters using PCA and
non-Gaussian parameters using independent
component analysis (ICA) [4]. The approach in
[8] extends the graph-based approach presented
here and shows how statistical timing analysis
can be performed for case where some or all
process parameters are non-Gaussian.

Gate Delay Distribution
To build a model for the gate delay that captures
the underlying variations in process parameters,

we observe that the delay function d D f .P/,
where P is a set of process parameters, can be
approximated d linearly using a first-order Taylor
expansion:

d D d0 C
X
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@pi




0

�pi (1)
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where cov
�
pi ; pj

�
is the covariance of pi and

pj .
This approximation is valid when �pi has

relatively small variations, in which domain the
first-order Taylor expansion is adequate and the
approximation is acceptable with little loss of
accuracy. This is generally true of the impact
of within-die variations on delay, where the pro-
cess parameter variations are relatively small in
comparison with the nominal values, and the
function changes by a small amount under this
perturbation. Hence, the delays, as functions of
the process parameters, can be approximated as
normal distributions when the parameter varia-
tions are assumed to be normal. Higher-order
expansions based on quadratics have also be
explored to cover cases where the variations are
larger [6, 11].

Circuit Delay Distribution
A PCA-based approach maintains the invariant
that the output arrival time at each gate is a
Gaussian variable represented as

ai .p1; : : : ; pn/ D a0
i C

nX

iD1

ki p
0
i C knC1p0

nC1

(4)
Here, the primed variables correspond to the
principal components of the unprimed variables
and maintain the form of the arrival time after
each sum and max operation. Gate delays, as
represented in Eq. 1, can be translated into a
similar representation based on principal com-
ponents as a one-time step during gate library
characterization. Under orthogonalization, many
operations become much simpler since the co-
variance terms disappear: for example, Eq. 3 can
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be evaluated in linear time instead of quadratic
time.

The task of statistical timing analysis is
to translate these gate delay distributions
to circuit delay probabilities while per-
forming a topological traversal. The opera-
tions performed at each node encountered
during this traversal in STA are of two
types [5]:

• A gate (vertex) is being processed in STA
when the arrival times of all inputs are
known, at which time the candidate delay
values at the output are computed using
the “sum” operation that adds the delay
at each input with the input-to-output pin
delay.

• Once these candidate delays have been
found, the “max” operation is applied to
determine the maximum arrival time at the
output.

Since the gate delays are Gaussian, the “sum”
operation is merely an addition of Gaussians,
which is well known to be a Gaussian. The
computation of the max function, however,
poses greater problems. The set of candidate
delays are all Gaussian, so that this function
must find the maximum of Gaussians. Such
a maximum may be reasonably approximated
using a Gaussian [3]. A detailed description of
how the invariant representation is maintained
under the max operation is presented in
[1, 2].

The cost of this method corresponds to run-
ning a bounded number of deterministic STAs,
and it is demonstrated to be accurate, given the
statistics of P.

Applications

Statistical timing analysis has been ex-
tensively used in industry [10] and has
seeded a large amount of academic research.
Integrated circuit manufacturing foundries
have promoted the use of statistical timing

analysis by providing PCA-like information
with their process parameter models, thus
enabling design flows that are statistically
based.

The ideas of statistical analysis have also mo-
tivated simpler and more approximate methods,
used in industry today, based on on-chip vari-
ation (OCV) derating factors. In its most ele-
mentary form, OCV adds margins to each timing
path to account for possible variation. More in-
volved versions of OCV, such as advanced OCV
(AOCV), capture the essence of spatial corre-
lation by using derating factors that depend on
factors such as spatial distance and logical depth
of a path [9].

Experimental Results

Statistical timing analysis based on orthogonal-
ization brings down the computational cost from
quadratic to linear in the number of variables
and can be applied to large circuit instances. The
method is capable of considering both spatial
correlations and structural correlations, i.e., cor-
relations between paths that share gates, since
such correlations are embedded into the invariant
representation. This makes the approach accu-
rate and computationally practical, as described
in [1, 2, 10] and the large body of follow-on
work.

URLs to Code and Data Sets

The MinnSSTA statistical static timing analyzer
is available at http://www.ece.umn.edu/~sachin/
software/MinnSSTA/index.html.
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Problem Definition

The Steiner forest problem is a fundamental prob-
lem in network design. Informally, the goal is to
establish connections between pairs of vertices in
a given network at minimum cost. The problem
generalizes the well-known Steiner tree problem.
As an example, assume that a telecommunica-
tion company receives communication requests
from their customers. Each customer asks for
a connection between two vertices in a given
network. The company’s goal is to build a min-
imum cost network infrastructure such that all
communication requests are satisfied.

Formal Definition and Notation
More formally, an instance I D .G; c; R/ of
the Steiner forest problem is given by an
undirected graph G D .V; E/ with vertex set
V and edge set E, a non-negative cost function
cWE ! Q

C, and a set of vertex pairs R D

f.s1; t1/; : : : ; .sk ; tk/g � V � V . The pairs in
R are called terminal pairs. A feasible solution
is a subset F � E of the edges of G such that
for every terminal pair .si ; ti / 2 R there is a path
between si and ti in the subgraph G[F] induced
by F. Let the cost c(F) of F be defined as the total
cost of all edges in F, i.e., c.F / D

P
e2F c.e/.

The goal is to find a feasible solution F of
minimum cost c(F). It is easy to see that there
exists an optimum solution which is a forest.

The Steiner forest problem may alternatively
be defined by a set of terminal groups
R D fg1; : : : ; gkg with gi � V instead of
terminal pairs. The objective is to compute
a minimum cost subgraph such that all terminals
belonging to the same group are connected. This
definition is equivalent to the one given above.

Related Problems
A special case of the Steiner forest problem is the
Steiner tree problem (see also the entry � Steiner
Trees). Here, all terminal pairs share a common
root vertex r 2 V , i.e., r 2 fsi ; tig for all terminal
pairs .si ; ti / 2 R. In other words, the problem
consists of a set of terminal vertices R � V and
a root vertex r 2 V and the goal is to connect the

http://dx.doi.org/10.1007/978-1-4939-2864-4_403
http://www.synopsys.com/Tools/Implementation/SignOff/CapsuleModule/PrimeTime_AdvancedOCV_WP.pdf
http://www.synopsys.com/Tools/Implementation/SignOff/CapsuleModule/PrimeTime_AdvancedOCV_WP.pdf
http://www.synopsys.com/Tools/Implementation/SignOff/CapsuleModule/PrimeTime_AdvancedOCV_WP.pdf
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terminals in R to r in the cheapest possible way.
A minimum cost solution is a tree.

The generalized Steiner network problem (see
the entry �Generalized Steiner Network), also
known as the survivable network design problem,
is a generalization of the Steiner forest prob-
lem. Here, a connectivity requirement function
r WV � V ! N specifies the number of edge dis-
joint paths that need to be established between
every pair of vertices. That is, the goal is to find
a minimum cost multi-subset H of the edges of G
(H may contain the same edge several times) such
that for every pair of vertices .x; y/ 2 V there are
r(x, y) edge disjoint paths from x to y in G[H]. The
goal is to find a set H of minimum cost. Clearly,
if r.x; y/ 2 f0; 1g for all .x; y/ 2 V � V , this
problem reduces to the Steiner forest problem.

Key Results

Agrawal, Klein and Ravi [1, 2] give an approx-
imation algorithm for the Steiner forest prob-
lem that achieves an approximation ratio of 2.
More precisely, the authors prove the following
theorem.

Theorem 1 There exists an approximation algo-
rithm that for every instance I D .G; c; R/ of the
Steiner forest problem, computes a feasible forest
F such that

c.F / �

�
2 �

1

k

�
�OPT.I /;

where k is the number of terminal pairs in R and
OPT.I / is the cost of an optimal Steiner forest
for I.

Related Work
The Steiner tree problem is NP-hard [10] and
APX-complete [4, 8]. The current best lower
bound on the achievable approximation ratio for
the Steiner tree problem is 1.0074 [21]. Goemans
and Williamson [11] generalized the results ob-
tained by Agrawal, Klein and Ravi to a larger
class of connectivity problems, which they term
constrained forest problems. For the Steiner for-
est problem, their algorithm achieves the same

approximation ratio of .2 � 1=k/. The algorithms
of Agrawal, Klein and Ravi [2] and Goemans and
Williamson [11] are both based on the classical
undirected cut formulation for the Steiner forest
problem [3]. The integrality gap of this relax-
ation is known to be .2 � 1=k/ and the results
in [2, 11] are therefore tight. Jain [15] presents
a 2-approximation algorithm for the generalized
Steiner network problem.

Primal-Dual Algorithm
The main ideas of the algorithm by Agrawal,
Klein and Ravi [2] are sketched below; subse-
quently, AKR is used to refer to this algorithm.
The description given here differs from the one
in [2]; the interested reader is referred to [2] for
more details.

The algorithm is based on the following inte-
ger programming formulation for the Steiner for-
est problem. Let I D .G; c; R/ be an instance of
the Steiner forest problem. Associate an indicator
variable xe 2 f0; 1g with every edge e 2 E. The
value of xe is 1 if e is part of the forest F and 0 oth-
erwise. A subset S � V of the vertices is called
a Steiner cut if there exists at least one terminal
pair .si ; ti / 2 R such that jfsi ; tig \ S j D 1; S is
said to separate terminal pair (si, ti). Let S be the
set of all Steiner cuts. For a subset S � V , define
ı.S/ as the the set of all edges in E that have
exactly one endpoint in S. Given a Steiner cut
S 2 S , any feasible solution F of I must contain
at least one edge that crosses the cut S, i.e.,P

e2ı.S/ xe � 1. This gives rise to the following
undirected cut formulation:

minimize
X

e2E

c.e/xe (IP)

subject to
X

e2ı.S/

xe � 1 8S 2 S (1)

xe 2 f0; 1g 8e 2 E: (2)

The dual of the linear programming relaxation
of (IP) has a variable yS for every Steiner cut
S 2 S . There is a constraint for every edge e 2 E

that requires that the total dual assigned to sets
S 2 S that contain exactly one endpoint of e is at
most the cost c(e) of the edge:

http://dx.doi.org/10.1007/978-1-4939-2864-4_161
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maximize
X

S2S
yS (D)

subject to
X

S2SW e2ı.S/

yS � c.e/ 8e 2 E (3)

yS � 0 8S 2 S: (4)

Algorithm AKR is based on the primal-dual
schema (see, e.g., [22]). That is, the algorithm
constructs both a feasible primal solution
for (IP) and a feasible dual solution for (D).
The algorithm starts with an infeasible primal
solution and reduces its degree of infeasibility
as it progresses. At the same time, it creates
a feasible dual packing of subsets of large total
value by raising dual variables of Steiner cuts.

One can think of an execution of AKR as
a process over time. Let x� and y� , respectively,
be the primal incidence vector and feasible dual
solution at time � . Initially, let x0

e D 0 for all
e 2 E and y0

S D 0 for all S 2 S . Let F� denote
the forest corresponding to the set of edges with
x�

e D 1. A tree T in F� is called active at time
� if it contains a terminal that is separated from
its mate; otherwise it is inactive. Intuitively, AKR
grows trees in F� that are active. At the same
time, the algorithm raises dual values of Steiner
cuts that correspond to active trees. If two active
trees collide, they are merged. The process termi-
nates if all trees are inactive and thus there are
no unconnected terminal pairs. The interplay of
the primal (growing trees) and the dual process
(raising duals) is somewhat subtle and outlined
next.

An edge e 2 E is tight if the corresponding
constraint (3) holds with equality; a path is tight if
all its edges are tight. Let H� be the subgraph of G
that is induced by the tight edges for dual y� . The
connected components of H� induce a partition
C� on the vertex set V. Let S� be the set of all
Steiner cuts contained in C� , i.e., S� D C� \ S .
AKR raises the dual values yS for all sets S 2 S�

uniformly at all times � � 0. Note that y� is dual
feasible. The algorithm maintains the invariant
that F� is a subgraph of H� at all times. Consider
the event that a path P between two trees T1 and
T2 of F� becomes tight. The missing edges of P
are then added to F� and the process continues.

Eventually, all trees in F� are inactive and the
process halts.

Applications

The computation of (approximate) solutions for
the Steiner forest problem has various applica-
tions both in theory and practice; only a few
recent developments are mentioned here.

Algorithms for more complex network design
problems often rely on good approximation
algorithms for the Steiner forest problem. For
example, the recent approximation algorithms
[6, 9, 12] for the multi-commodity rent-or-buy
problem (MRoB) are based on the random
sampling framework by Gupta et al. [12, 13]. The
framework uses a Steiner forest approximation
algorithm that satisfies a certain strictness
property as a subroutine. Fleischer et al. [9]
show that AKR meets this strictness requirement,
which leads to the current best 5-approximation
algorithm for MRoB. The strictness property
also plays a crucial role in the boosted sampling
framework by Gupta et al. [14] for two-stage
stochastic optimization problems with recourse.

Online versions of Steiner tree and forest prob-
lems have been studied by by Awerbuch et al. [5]
and Berman and Coulston [7]. In the area of algo-
rithmic game theory, the development of group-
strategyproof cost sharing mechanisms for net-
work design problems such as the Steiner tree
problem has recently received a lot of atten-
tion; see e.g., [16, 17, 19, 20]. An adaptation of
AKR yields such a cost sharing mechanism for
the Steiner forest problem [18].
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Definition

Given a set of points, called terminals, in a
metric space, the problem is to find the shortest
tree interconnecting all terminals. There are three
important metric spaces for Steiner trees, the Eu-
clidean plane, the rectilinear plane, and the edge-
weighted network. The Steiner tree problems
in those metric spaces are called the Euclidean
Steiner tree (EST), the rectilinear Steiner tree
(RST), and the network Steiner tree (NST), re-
spectively. EST and RST have been found to have
polynomial-time approximation schemes (PTAS)
by using adaptive partition. However, for NST,
there exists a positive number r such that com-
puting r-approximation is NP-hard. So far, the
best performance ratio of polynomial-time ap-
proximation for NST is achieved by k-restricted
Steiner trees. However, in practice, the iterated
1-Steiner tree is used very often. Actually, the
iterated 1-Steiner was proposed as a candidate of
good approximation for Steiner minimum trees
a long time ago. It has a very good record in
computer experiments, but no correct analysis
was given showing the iterated 1-Steiner tree
having a performance ratio better than that of
the minimum spanning tree until the recent work
by Du et al. [9]. There is minimal difference in
construction of the 3-restricted Steiner tree and
the iterated 1-Steiner tree, which makes a big
difference in analysis of those two types of trees.
Why does the difficulty of analysis make so much
difference? This will be explained in this article.

History and Background
The Steiner tree problem was proposed by
Gauss in 1835 as a generalization of the Fermat
problem. Given three points A, B , and C

in the Euclidean plane, Fermat studied the
problem of finding a point S to minimize
jSAj C jSBj C jSCj. He determined that when all
three inner angles of triangle ABC are less than

120ı, the optimal S should be at the position that
†ASB D †BSC D †CSA D 120ı.

The generalization of the Fermat problem has
two directions:

1. Given n points in the Euclidean plane, find a
point S to minimize the total distance from S

to n given points. This is still called the Fermat
problem.

2. Given n points in the Euclidean plane, find
the shortest network interconnecting all given
points.

Gauss found the second generalization through
communication with Schumacher. On March 19,
1836, Schumacher wrote a letter to Gauss and
mentioned a paradox about Fermat’s problem:
Consider a convex quadrilateral ABCD. It is
known that the solution of Fermat’s problem for
four points A, B , C , and D is the intersection E

of diagonals AC and BD. Suppose extending DA
and CB can obtain an intersection F . Now, move
A and B to F . Then E will also be moved to F .
However, when the angle at F is less than 120ı,
the point F cannot be the solution of Fermat’s
problem for three given points F , D, and C .
What happens? (Fig. 1.)

On March 21, 1836, Gauss wrote a letter
replying to Schumacher in which he explained
that the mistake of Schumacher’s paradox occurs
at the place where Fermat’s problem for four
points A, B , C , and D is changed to Fermat’s
problem for three points F , C , and D. When A

and B are identical to F , the total distance from
E to four points A, B , C , and D equals 2jEFj C
jECj C jEDj, not jEFj C jECj C jEDj. Thus,

A

D C

B

F

Steiner Trees, Fig. 1 Convex quadrilateral ABCD, Fer-
mat’s problem
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the point E may not be the solution of Fermat’s
problem for F , C , and D. More importantly,
Gauss proposed a new problem. He said that it
is more interesting to find the shortest network
rather than a point. Gauss also presented several
possible connections of the shortest network for
four given points.

It was unfortunate that Gauss’ letter was not
seen by researchers of Steiner trees at an earlier
stage. Especially, R. Courant and H. Robbins
who in their popular book What is mathematics?
(published in 1941) [6] called Gauss’ problem
the Steiner tree so that “Steiner tree” became a
popular name for the problem.

The Steiner tree became an important research
topic in mathematics and computer science due to
its applications in telecommunication and com-
puter networks. Starting with Gilbert and Pollak’s
work published in 1968, many publications on
Steiner trees have been generated to solve various
problems concerning it.

One well-known problem is the Gilbert-Pollak
conjecture on the Steiner ratio, which is the least
ratio of lengths between the Steiner minimum
tree and the minimum spanning tree on the same
set of given points. Gilbert and Pollak in 1968
conjectured that the Steiner ratio in the Euclidean
plane is

p
3=2 which is achieved by three vertices

of an equilateral triangle. A great deal of research
effort has been put into the conjecture and it was
finally proved by Du and Hwang [7].

Another important problem is called the bet-
ter approximation. For a long time no approxi-
mation could be proved to have a performance
ratio smaller than the inverse of the Steiner ra-
tio. Zelikovsky [14] made the first breakthrough.
He found a polynomial-time 11/6-approximation
for NST which beats 1/2, the inverse of the
Steiner ratio in the edge-weighted network. Later,
Berman and Ramaiye [2] gave a polynomial-time
92/72-approximation for RST, and Du, Zhang,
and Feng [8] closed the story by showing that in
any metric space, there exists a polynomial-time
approximation with a performance ratio better
than the inverse of the Steiner ratio provided
that for any set of a fixed number of points,
the Steiner minimum tree is polynomial-time
computable.

All the above better approximations came
from the family of k-restricted Steiner trees.
By improving some detail of construction, the
constant performance ratio was decreasing, but
the improvements were also becoming smaller.
In 1996, Arora [1] made significant progress for
EST and RST. He showed the existence of PTAS
for EST and RST. Therefore, the theoretical
researchers now pay more attention to NST. Bern
and [3] showed that NST is MAX SNP-complete.
This means that there exists a positive number r ;
computing the r-approximation for NST is NP-
hard. The best-known performance for NST was
given by Robin and Zelikovsky [12]. They also
gave a very simple analysis to a well-known
heuristic, the iterated 1-Steiner tree for pseudo-
bipartite graphs.

Analysis of the iterated 1-Steiner tree is an-
other long-standing open problem. Since Chang
[4, 5] proposed that the iterated 1-Steiner tree
approximates the Steiner minimum tree in 1972,
its performance has been claimed to be very good
through computer experiments [10, 13], but no
theoretical analysis supported this claim. Actu-
ally, both the k-restricted Steiner tree and the
iterated 1-Steiner tree are obtained by greedy
algorithms, but with different types of potential
functions. For the iterated 1-Steiner tree, the
potential function is non-submodular, but for the
k-restricted Steiner tree, it is submodular; a prop-
erty that holds for k-restricted Steiner trees may
not hold for iterated 1-Steiner trees. Actually,
the submodularity of potential function is very
important in analysis of greedy approximations
[11]. Du et al. [9] gave a correct analysis for the
iterated 1-Steiner tree with a general technique to
deal with non-submodular potential function.

Key Results

Consider input edge-weighted graph G D .V; E/

of NST. Assume that G is a complete graph and
the edge weight satisfies the triangular inequality;
otherwise, consider the complete graph on V with
each edge (u; v) having a weight equal to the
length of the shortest path between u and v in
G. Given a set P of terminals, a Steiner tree is a
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tree interconnecting all given terminals such that
every leaf is a terminal.

In a Steiner tree, a terminal may have degree
more than one. The Steiner tree can be decom-
posed, at those terminals with degree more than
one, into smaller trees in which every terminal is
a leaf. In such a decomposition, each resulting
small tree is called a full component. The size
of a full component is the number of terminals
in it. A Steiner tree is k-restricted if every full
component of it has a size at most k. The short-
est k-restricted Steiner tree is also called the
k-restricted Steiner minimum tree. Its length is
denoted by smtk .P /. Clearly, smt2.P / is the
length of the minimum spanning tree on P , which
is also denoted by mst.P /. Let smt.P / denote
the length of the Steiner minimum tree on P . If
smt3.P / can be computed in polynomial time,
then it is better than mst.P / for an approxima-
tion of smt.P /. However, so far no polynomial-
time approximation has been found for smt3.P /.
Therefore, Zelikovsky [14] used a greedy ap-
proximation of smt3.P / to approximate smt.P /.
Actually, Chang [4, 5] used a similar greedy
algorithm to compute an iterated 1-Steiner tree.
Let F be a family of subgraphs of input edge-
weighted graph G. For any connected subgraph
H , denote by mst.H/ the length of the minimum
spanning tree of H , and for any subgraph H ,
denote by mst.H/ the sum of mst.H 0/ for H 0

over all connected components of H . Define

gain.H/ D mst.P /�mst.P W H/�mst.H/;

where mst.P W H/ is the length of the minimum
spanning tree interconnecting all unconnected
terminals in P after every edge of H shrinks into
a point.

Greedy Algorithm H  ;;
while P has not been interconnected by H do
choose F 2 F to maximize gain.H [ F /;
output mst.H/.

When F consists of all full components of size
at most three, this greedy algorithm gives the 3-
restricted Steiner tree of Zelikovsky [14]. When
F consists of all 3-stars and all edges where a 3-
star is a tree with three leaves and a central vertex,
this greedy algorithm produces the iterated 1-
Steiner tree. An interesting fact pointed out by Du
et al. [9] is that the function gain(�) is submodular
over all full components of size at most three, but
not submodular over all 3-stars and edges.

Let us consider a base set E and a function
f from all subsets of E to real numbers. f is
submodular if for any two subsets A, B of E,

f .A/C f .B/ � f .A [ B/C f .A \ B/:

For x 2 E and A � E, denote Δxf .A/ D f .A[

fxg/ � f .A/.

Lemma 1 f is submodular if and only if for any
A � E and distinct x; y 2 E � A,

ΔxΔyf .A/ � 0: (1)

Proof Suppose f is submodular. Set B D A [

fxg and C D A [ fyg. Then B [ C D A [ A [

fx; yg and B \ C D A. Therefore, one has

f .A [ fx; yg/ � f .A [ fxg/ � f .A [ fyg/

C f .A/ � 0;

that is, (1) holds.
Conversely, suppose (1) holds for any A � E

and distinct x; y 2 E � A. Consider two subsets
A; B of E. If A � B or B � A, it is trivial to
have

f .A/C f .B/ � f .A [ B/C f .A \ B/:

Therefore, one may assume that AnB ¤ ; and
BnA ¤ ;. Write AnB D fx1; : : : ; xkg and
BnA D fy1; : : : ; yhg. Then

f .A [ B/ � f .A/ � f .B/C f .A \ B/

D
kP

iD1

hP

j D1

Δxi
Δyj

f .A [ fx1; : : : ; xi�1g [
˚
y1; : : : ; yj �1

�
/

� 0;
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where fx1; : : : xi�1g D ; for i D 1 and
fy1; : : : ; yj �1g D ; for j D 1. ut

Lemma 2 Define f .H/ D �mst.P W H/. Then
f is submodular over edge set E.

Proof Note that for any two distinct edges x and
y not in subgraph H ,

ΔxΔf .H/

D �mst.P W H [ x [ y/Cmst.P W H [ x/

Cmst.P W H [ y/ �mst.P W H/

D .mst.P W H/ �mst.P W H [ x [ y//

� .mst.P W H/ �mst.P W H [ x//

C .mst.P W H/ �mst.P W H [ y//:

Let T be a minimum spanning tree for uncon-
nected terminals after every edge of H shrinks
into a point. T contains a path Px connecting two
endpoints of x and also a path Py connecting two
endpoints of y. Let ex .ey/ be a longest edge in
Px .Py/. Then

mst.P W H/ �mst.P W H [ x/ D length.ex/;

mst.P W H/ �mst.P W H [ y/ D length.ey/:

mst.P W H/ – mst(P W H [ x [ y) can be
computed as follows: Choose a longest edge e0

from Px [Py . Note that T [ x [ y � e0 contains
a unique cycle Q. Choose a longest edge e00 from
.Px [ Py/ \Q. Then

mst.P W H/�mst.P W H[x[y/ D length.e00/

Now, to show the submodularity of f , it suffices
to prove

length.ex/C length.ey/ � length.e00/ (2)

Case 1. exPx \ Py and eyPx \ Py . Without
loss of generality, assume length.ex/ �

length.ey/. Then one may choose e0 D ex

so that .Px [ Py/\Q D Py . Hence, one can
choose e00 D ey . Therefore, the equality holds
for (2).

Case 2. exPx \ Py and ey 2 Px \ Py . Clearly,
length.ex/ � length.ey/. Hence, one may
choose e0 D ex so that .Px [ Py/\Q D Py .
Hence, one can choose e00 D ey . Therefore,
the equality holds for (2).

Case 3. ex 2 Px \ Py and eyPx \ Py . Similar
to Case 2.

Case 4. ex 2 Px \Py and ey 2 Px \Py . In this
case, length.ex/ D length.ey/ D length.e0/.
Hence, (2) holds. ut

The following explains that the submodularity
of gain.�/ holds for a k-restricted Steiner tree.

Theorem 1 Let " be the set of all full compo-
nents of a Steiner tree. Then gain.�/ as a function
on the power set of " is submodular.

Proof Note that for any H � E and x; y 2 E�H,

ΔxΔymst.H/ D 0;

where H D [´2H´. Thus, this theorem follows
from Lemma 2.

Let F be the set of 3-stars and edges chosen
in the greedy algorithm to produce an iterated 1-
Steiner tree. Then gain.�/ may not be submodular
on F . To see this fact, consider two 3-stars
x and y in Fig. 2. Note that gain.x [ y/ >

gain.x/; gain.y/ � 0, and gain.;/ D 0. One has

gain.x[y/�gain.x/�gain.y/Cgain.;/ > 0:

ut

y

x

x

Steiner Trees, Fig. 2 An example for the proof of Theo-
rem 1
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Applications

The Steiner tree problem is a classic NP-hard
problem with many applications in the design of
computer circuits, long-distance telephone lines,
multicast routing in communication networks,
etc. There exist many heuristics of the greedy
type for Steiner trees in the literature. Most of
them have a good performance in computer ex-
periments, without support from theoretical anal-
ysis. The approach given in this work may apply
to them.

Open Problems

It is still open whether computing the 3-restricted
Steiner minimum tree is NP-hard or not. For
k � 4, it is known that computing the k-restricted
Steiner minimum tree is NP-hard.
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Problem Definition

This problem deals with packing a maximum
reward set of items into a knapsack of given
capacity, when the item sizes are random. The
input is a collection of n items, where each item
i 2 Œn� WD f1; : : : ; ng has reward ri � 0 and
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size Si � 0, and a knapsack capacity B � 0. In
the stochastic knapsack problem, all rewards are
deterministic but the sizes are random. The ran-
dom variables Si s are independent with known,
arbitrary distributions. The actual size of an item
is known only when it is placed into the knapsack.
The objective is to add items sequentially (one
by one) into the knapsack so as to maximize
the expected reward of the items that fit into the
knapsack. As usual, a subset T of items is said to
fit into the knapsack if the total size

P
i2T Si is

at most the knapsack capacity B .
A feasible solution (or policy) to the stochastic

knapsack problem is represented by a decision
tree. Nodes in this decision tree denote the current
“state” of the solution (i.e., previously added
items and the residual knapsack capacity) as well
as the new item to place into the knapsack at this
state. Branches in the decision tree denote the
random size instantiations of items placed into
the knapsack. Such solutions are called adaptive
policies, to emphasize the fact that the items
being placed may depend on previously observed
outcomes. More formally, an adaptive policy is
given by a mapping 
 W 2Œn��Œ0; B�! Œn�, where

.T; C / denotes the next item to place into the
knapsack when some subset T � Œn� of items has
already been added, and C D B �

P
i2T Si is

the residual knapsack capacity. The policy ends
when the knapsack overflows (i.e., the total size
of items added exceeds the knapsack capacity);
we use the convention that no reward is obtained
from the last overflowing item.

Notice that an arbitrary adaptive policy may
require exponential space to even store. This
motivates a special class of solutions, called non-
adaptive policies. A nonadaptive policy is just
specified by a fixed ordering of the n items,
and the solution adds items into the knapsack
in that order (irrespective of the actual size in-
stantiations) until the knapsack overflows. Again,
there is no reward obtained from the last over-
flowing item. While it may be easier to obtain a
good nonadaptive policy, the obvious drawback
is that nonadaptive policies may perform much
worse than adaptive policies. The benefit of be-
ing adaptive is quantified by a measure called
the adaptivity gap, which is the maximum ratio

(over all instances) of the expected reward of an
optimal adaptive policy to the expected reward of
an optimal nonadaptive policy.

In both the adaptive and nonadaptive settings,
the stochastic knapsack problem is at least NP-
hard, since it generalizes the deterministic knap-
sack problem. Moreover, certain questions re-
garding adaptive policies are PSPACE-hard [4].

Notation We assume that the item size
distributions are given explicitly. For any item i 2

Œn� define its effective reward wi D ri �PrŒSi � B�

and its mean truncated size �i D E ŒminfSi ; Bg�.
Note that the expected reward obtained by
placing the single item i into the knapsack is
exactly wi .

Key Results

Dean, Goemans, and Vondrák introduced the
stochastic knapsack problem and the notion of
adaptivity gaps. They proved the following.

Theorem 1 ([4]) There is a polynomial time al-
gorithm for the stochastic knapsack problem that
computes a nonadaptive policy having expected
reward at least 1

4
that of an optimal adaptive

policy.

As a consequence, the adaptivity gap of
the stochastic knapsack problem is also upper
bounded by four. Dean, Goemans, and Vondrák
[4] also showed an instance of stochastic
knapsack that lower bounds the adaptivity gap
by 5

4
.

The algorithm in Theorem 1 uses a natural
greedy approach. It outputs the better of the
following two nonadaptive policies:

• Place the single item i� D arg maxi2Œn� wi .
• Place items in nonincreasing order of wi =�i .

In terms of adaptive policies, Bhalgat, Goel,
and Khanna proved the following.

Theorem 2 ([2, 3]) For any constant � > 0,
there is polynomial time algorithm for the
stochastic knapsack problem that computes an
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adaptive policy having expected reward at least
1

2C�
that of an optimal adaptive policy.

The algorithm in Theorem 2 relies on an intricate
transformation of general size distributions to
certain canonical distributions and an algorithm
for computing a near-optimal adaptive policy
under canonical size distributions.

Extensions

Several variants of the stochastic knapsack prob-
lem have been studied, and good algorithms have
been obtained for them.

Correlated Stochastic Knapsack
This is a generalization of the stochastic knap-
sack problem, where each item’s reward is also
random and possibly correlated with its size. The
distributions across items are still independent:
so the correlations are only between the size and
reward of a single item. Gupta, Krishnaswamy,
Molinaro, and Ravi [6] gave an algorithm for
this problem that computes a nonadaptive policy
having expected reward within factor 8 of the
optimal adaptive policy. Recently, Ma [8] gave an
algorithm that for any constant � > 0 computes
an adaptive policy having expected reward within
factor 2 C � of the optimal adaptive policy; this
algorithm requires item sizes and the capacity B

to be specified in unary.

Budgeted Multi-armed Bandit
The input to this problem consists of a bound
B and n “arms” (each arm is a Markov chain
with rewards at its states and a specified starting
state). A feasible policy consists of B steps. In
each step, the policy can select one arm i 2 Œn�:
upon selecting arm i , it gets the reward at the
current state of arm i and the arm transitions
to its next state according to its Markov chain.
The objective is to maximize the expected total
reward over B steps of the policy. Again, we
are interested in adaptive policies, whose ac-
tions may depend on past outcomes. Guha and
Munagala [5] introduced this problem and gave
a .2 C �/-approximation algorithm, under the
assumption that the rewards of each arm satisfy

a “Martingale” condition (which is natural in
many settings). Gupta, Krishnaswamy, Molinaro,
and Ravi [6] gave the first constant-factor ap-
proximation algorithm for this problem without
the Martingale reward assumption. The constant
factor in the latter result was improved to 6:75 by
Ma [8].

Stochastic Orienteering
This problem is defined on a finite metric space
.V; d/ with vertex set V and distance function
d W V � V ! RC that satisfies (i) symmetry
d.u; v/ D d.v; u/ for all u; v 2 V and (ii) triangle
inequality d.u; w/ � d.u; v/ C d.v; w/ for all
u; v; w 2 V . The distances between vertices de-
note travel times. Each vertex i 2 V corresponds
to a job having deterministic reward ri � 0 and
random processing time Si � 0. The random
variables Si s are independent with known, arbi-
trary distributions. Given a start-vertex � 2 V and
bound B , the goal is to compute a policy, which
describes a (possibly adaptive) path originating
from � that visits vertices and runs the respective
jobs. The actual processing time of a job is known
only when it completes. The policy ends when
the total time (for travel plus processing) exceeds
B . The objective is to maximize the expected
total reward; there is no reward obtained from
a partially completed job (which may occur at
the end of the policy). As before, an optimal
policy may be adaptive and choose the next job
to run based on previously observed outcomes.
Gupta, Krishnaswamy, Nagarajan, and Ravi [7]
gave an O.log log B/-approximation algorithm
for the stochastic orienteering problem; this re-
sult requires the bound B , distances, and pro-
cessing times to be integer valued. As a corol-
lary, [7] also upper bounded the adaptivity gap
by O.log log B/. Recently, Bansal and Nagara-

jan [1] gave an ˝
�p

log log B
�

lower bound on

the adaptivity gap.

Applications

The stochastic knapsack problem and its variants
model various applications in advertising, logis-
tics, medical diagnosis, and robotics.
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Open Problems

It is not known if the stochastic knapsack prob-
lem is any harder to approximate than the usual
(deterministic) knapsack problem. In particular,
is there a PTAS for stochastic knapsack? Deter-
mining a tight bound on its adaptivity gap is also
an interesting open question.
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Problem Definition

Scheduling is concerned with the allocation of
scarce resources (such as machines or servers) to
competing activities (such as jobs or customers)
over time. The distinguishing feature of a
stochastic scheduling problem is that some of the
relevant data are modeled as random variables,
whose distributions are known, but whose
actual realizations are not. Stochastic scheduling
problems inherit several characteristics of their
deterministic counterparts. In particular, there are
virtually an unlimited number of problem types
depending on the machine environment (single
machine, parallel machines, job shops, flow
shops), processing characteristics (preemptive
versus nonpreemptive, batch scheduling versus
allowing jobs to arrive “over time,” due dates,
deadlines), and objectives (makespan, weighted
completion time, weighted flow time, weighted
tardiness). Furthermore, stochastic scheduling
models have some new, interesting features (or
difficulties!):

• The scheduler may be able to make inferences
about the remaining processing time of a job
by using information about its elapsed pro-
cessing time; whether the scheduler is allowed
to make use of this information or not is a
question for the modeler.

• Many scheduling algorithms make decisions
by comparing the processing times of jobs. If
jobs have deterministic processing times, this
poses no problems as there is only one way
to compare them. If the processing times are
random variables, comparing processing times
is a subtle issue. There are many ways to com-
pare pairs of random variables, and some are
only partial orders. Thus, any algorithm that
operates by comparing processing times must
now specify the particular ordering used to
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compare random variables (and to determine
what to do if two random variables are not
comparable under the specified ordering).

These considerations lead to the notion of a
scheduling policy, which specifies how the scarce
resources have to be allocated to the competing
activities as a function of the state of the system at
any point in time. The state of the system includes
information such as prior job completions, the
elapsed time of jobs currently in service, the
realizations of the random release dates and due
dates (if any), and any other information that
can be inferred based on the history observed so
far. A policy that is allowed to make use of all
this information is said to be dynamic, whereas
a policy that is not allowed to use any state
information is static.

Given any policy, the objective function
for a stochastic scheduling model operating
under that policy is typically a random variable.
Thus, comparison of two policies entails the
comparison of the associated random variables,
so the sense in which these random variables
are compared must be specified. A common
approach is to find a solution that optimizes the
expected value of the objective function (which
has the advantage that it is a total ordering); less
commonly, other orderings such as the stochastic
ordering or the likelihood ratio ordering are
used.

Key Results

Consider a single machine that processes n

jobs, with the (random) processing time of job
i given by a distribution Fi .�/ whose mean is
pi . The Weighted Shortest Expected Processing
Time first (WSEPT) rule sequences the jobs in
decreasing order of wi =pi . Smith [13] proved that
the WSEPT rule minimizes the sum of weighted
completion times when the processing times are
deterministic. Rothkopf [11] generalized this
result and proved the following:

Theorem 1 The WSEPT rule minimizes the ex-
pected sum of the weighted completion times in

the class of all nonpreemptive dynamic policies
(and hence also in the class of all nonpreemptive
static policies).

If preemption is allowed, the WSEPT rule is
not optimal. Nevertheless, Sevcik [12] showed
how to assign an “index” to each job at each
point in time such that scheduling a job with
the largest index at each point in time is op-
timal. Such policies are called index policies
and have been investigated extensively because
they are (relatively) simple to implement and
analyze. Often, the optimality of index policies
can be proved under some assumptions on the
processing time distributions. For instance, We-
ber, Varaiya, and Walrand [14] proved the follow-
ing result for scheduling n jobs on m identical
parallel machines:

Theorem 2 The SEPT rule minimizes the ex-
pected sum of completion times in the class of all
nonpreemptive dynamic polices, if the processing
time distributions of the jobs are stochastically
ordered.

For the same problem but with the makespan
objective, Bruno, Downey, and Frederickson [3]
proved the optimality of the Longest Expected
Processing Time first rule provided all the jobs
have exponentially distributed processing times.

One of the most significant achievements in
stochastic scheduling is the proof of optimality of
index policies for the multiarmed bandit problem
and its many variants, due originally to Gittins
and Jones [5, 6]. In an instance of the bandit
problem, there are N projects, each of which is
in any one of a possibly finite number of states.
At each (discrete) time, any one of the projects
can be attempted, resulting in a random reward;
the attempted project undergoes a (Markovian)
state transition, whereas the other projects remain
frozen and do not change state. The goal of the
decision maker is to determine an optimal way to
attempt the projects so as to maximize the total
discounted reward. Of course one can solve this
problem as a large, stochastic dynamic program,
but such an approach does not reveal any struc-
ture and is moreover computationally impractical
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except for very small problems. (Also, if the state
space of any project is countable or infinite, it
is not clear how one can solve the resulting DP
exactly!) The remarkable result of Gittins and
Jones [6] is the optimality of index policies: to
each state of each project, one can associate an
index so that attempting a project with the largest
index at any point in time is optimal. The original
proof of Gittins and Jones [6] has subsequently
been simplified by many authors; moreover, sev-
eral alternative proofs based on different tech-
niques have appeared, leading to a much better
understanding of the class of problems for which
index policies are optimal [2, 4, 5, 10, 17].

While index policies are easy to implement
and analyze, they are often not optimal in many
problems. It is therefore natural to investigate the
gap between an optimal index policy (or a natural
heuristic) and an optimal policy. For example, the
WSEPT rule is a natural heuristic for the problem
of scheduling jobs on identical parallel machines
to minimize the expected sum of the weighted
completion times. However, the WSEPT rule
is not necessarily optimal. Weiss [16] showed
that, under mild and reasonable assumptions, the
expected number of times that the WSEPT rule
differs from the optimal decision is bounded
above by a constant, independent of the number
of jobs. Thus, the WSEPT rule is asymptotically
optimal. As another example of a similar result,
Whittle [18] generalized the multiarmed bandit
model to allow for state transitions in projects that
are not activated, giving rise to the “restless ban-
dit” model. For this model, Whittle [18] proposed
an index policy whose asymptotic optimality was
established by Weber and Weiss [15].

A number of stochastic scheduling models
allow for jobs to arrive over time according to
a stochastic process. A commonly used model
in this setting is that of a multiclass queueing
network. Multiclass queueing networks serve as
useful models for problems in which several
types of activities compete for a limited number
of shared resources. They generalize determinis-
tic job-shop problems in two ways: jobs arrive
over time and each job has a random processing
time at each stage. The optimal control prob-
lem in a multiclass queueing network is to find

an optimal allocation of the available resources
to activities over time. Not surprisingly, index
policies are optimal only for restricted versions
of this general model. An important example is
scheduling a multiclass single-server system with
feedback: there are N types of jobs; type i jobs
arrive according to a Poisson process with rate
�i , require service according to a service-time
distribution Fi .�/ with mean processing time si ,
and incur holding costs at rate ci per unit time. A
type i job after undergoing processing becomes a
type j job with probability pij or exits the system
with probability 1�

P

j

pij isn’t in document. The

objective is to find a scheduling policy that min-
imizes the expected holding cost rate in steady
state. Klimov [9] proved the optimality of index
policies for this model, as well as for the objective
in which the total discounted holding cost is to
be minimized. While the optimality result does
not hold when there are many parallel machines,
Glazebrook and Niño-Mora [7] showed that this
rule is asymptotically optimal. For more general
models, the prevailing approach is to use ap-
proximations such as fluid approximations [1] or
diffusion approximations [8].

Applications

Stochastic scheduling models are applicable in
many settings, most prominently in computer and
communication networks, call centers, logistics
and transportation, and manufacturing systems
[4, 10].
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Problem Definition

Given a pattern string P D p1p2 : : : pm and a
text string T D t1t2 : : : tn, both being sequences
over an alphabet ˙ of size � , the exact string-
matching (ESM) problem is to find one or, more
generally, all the text positions where P occurs in
T , that is, compute the set fj j 1 � j � n�mC

1 and P D tj tj C1 : : : tj Cm�1g.
Both worst- and average-case complexities are

considered. For the latter one assumes that pattern
and text are randomly generated by choosing
each character uniformly and independently from
˙ . For simplicity and practicality the assumption
m D o.n/ is made in this entry.

Key Results

Most algorithms that solve the ESM problem
proceed in two steps: a preprocessing phase of the
pattern P followed by a searching phase over the
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text T . The preprocessing phase serves to collect
information on the pattern in order to speed up
the searching phase.

The searching phase of string-matching algo-
rithms works as follows: they first align the left
ends of the pattern and the text, then compare
the aligned symbols of the text and the pattern –
this specific work is called an attempt or a scan –
and after a whole match of the pattern or after
a mismatch, they shift the pattern to the right.
They repeat the same procedure again until the
right end of the pattern goes beyond the right end
of the text. The scanning part can be viewed as
operating on the text through a window, which
size is most often the length of the pattern. This
processing manner is called the scan and shift
mechanism. Different scanning strategies of the
window lead to algorithms having specific prop-
erties and advantages.

The brute force algorithm for the ESM prob-
lem consists in checking if P occurs at each
position j on T , with 1 � j � n � m C 1. It
does not need any preprocessing phase. It runs
in quadratic time O.mn/ with constant extra
space and performs O.n/ character comparisons
on average. This is to be compared with the
following bounds.

Theorem 1 (Cole et al. [6]) The minimum num-
ber of character comparisons to solve the ESM
problem in the worst case is n C 9

4m
.n � m/,

and there exists an algorithm performing at most
nC 8

3.mC1/
.n�m/ character comparisons in the

worst case.

Theorem 2 (Yao [26]) The ESM problem needs

˝
�

log� m

m
� n

�
time in expectation.

Online Text Parsing
The first linear ESM algorithm appears in the
1970s. The preprocessing phase consists in com-
puting the periods of the pattern prefixes, or
equivalently the length of the longest border for
all the prefixes of the pattern. A border of a
string is both a prefix and a suffix of it distinct
from the string itself. Let nextŒi � be the length
of the longest border of p1 : : : pi�1. Consider an
attempt at position j , when the pattern p1 : : : pm

is aligned with the segment tj : : : tj Cm�1 of the
text. Assume that the first mismatch (during a
left to right scan) occurs between symbols pi

and tiCj for 1 � i � m. Then, p1 : : : pi�1 D

tj : : : tiCj �1 D u and a D pi ¤ tiCj D b.
A prefix v of the pattern may match a suffix of
the portion u of the text. By the definition of
table next, a shift that aligns pnextŒi� with tiCj

cannot miss any occurrence of P in T , and thus
backtracking in the text is not necessary. There
exist two variants [18,19], depending on whether
pnextŒi� has to be different from pi or not. The
second is slightly more efficient.

Theorem 3 (Knuth, Morris, and Pratt [18])
The text searching can be done in time O.n/ and
space O.m/. Preprocessing the pattern can be
done in time O.m/.

The search can also be realized using an im-
plementation with successor by default of the
deterministic automaton D.P / recognizing the
language ˙�P . The size of the implementation
is O.m/ independent of the alphabet size, due
to the fact that D.P / possesses m C 1 states,
m forward arcs, and at most m backward arcs.
Using the automaton for searching a text leads to
an algorithm having an efficient delay (maximum
time for processing a character of the text).

Theorem 4 (Hancart [15]) Searching for
the pattern P can be done with a delay of
O.minf�; log2 m/g/ letter comparisons.

Note that for most algorithms the pattern pre-
processing is not necessarily done before the text
parsing, as it can be performed on the fly during
the parsing.

Algorithms Sublinear on the Average
The Boyer-Moore algorithm [3] is among the
most efficient ESM algorithms. A simplified ver-
sion of it, or the entire algorithm, is often imple-
mented in text editors for the search and substi-
tute commands.

The algorithm scans the characters of the win-
dow from right to left beginning with its right-
most symbol. In case of a mismatch (or a com-
plete match of the pattern), it uses two precom-
puted functions to shift the pattern to the right.
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These two shift functions are called the bad-
character shift and the good-suffix shift. They
are based on the following observations. Assume
that a mismatch occurs between character pi D

a of the pattern and character tiCj D b of
the text during an attempt at position j . Then,
piC1 : : : pm D tiCj C1 : : : tj Cm D u and pi ¤

tiCj . The good-suffix shift consists in aligning
the segment tiCj C1 : : : tj Cm with its rightmost
occurrence in P that is preceded by a character
different from pi . Another variant called the
best-suffix shift consists in aligning the segment
tiCj : : : tj Cm with its rightmost occurrence in
P . Both variants can be computed in time and
space O.m/ independent of the alphabet size. If
there exists no such segment, the shift consists in
aligning the longest suffix v of tiCj C1 : : : tj Cm

with a matching prefix of x. The bad-character
shift consists in aligning the text character tiCj

with its rightmost occurrence in p1 : : : pm�1. If
tiCj does not appear in the pattern, no occurrence
of P in T can overlap the symbol tiCj , then the
left end of the pattern is aligned with the character
at position iCjC1. The search can then be done
in O.n=m/ in the best case.

Theorem 5 (Cole [5]) During the search for a
nonperiodic pattern P of length m (such that the
length of the longest border of P is less than
m=2) in a text T of length n, the Boyer-Moore
algorithm performs at most 3n comparisons be-
tween letters of P and of T .

In practice, when scanning the window
from right to left during an attempt, it is
sometimes more efficient to only use the bad-
character shift. This was first done by the
Horspool algorithm [16]. Other practical efficient
algorithms are the Quick Search by Sunday [24]
and the Tuned Boyer-Moore by Hume and
Sunday [17].

Yao’s bound can be reached using an indexing
structure giving access to all the factors of the
reverse pattern. This is done by the Reverse
Factor algorithm also called BDM (for Backward
Dawg Matching).

Theorem 6 (Crochemore et al. [9]) The
search can be done in optimal expected time

O
�

log� m

m
� n

�
using the suffix automaton or the

suffix tree of the reverse pattern.

A factor oracle can be used instead of an index
structure. A factor oracle is an automaton simpler
than the suffix automaton that may recognize
some additional strings of length smaller than m.
The only string of length m accepted by the factor
oracle of a string w of length m is w itself. Then it
can be used for solving the ESM problem. This is
done by the Backward Oracle Matching (BOM)
algorithm of Allauzen, Crochemore, and Raffinot
[1]. Its behavior in practice is similar to the one
of the BDM algorithm.

Time-Space Optimal Algorithms
Algorithms of this type run in linear time (for
both preprocessing and searching) and need only
constant space in addition to the inputs.

Theorem 7 (Galil and Seiferas [13]) The
search can be done optimally in time O.n/ and
constant extra space.

After Galil and Seiferas’ first solution, other
solutions are by Crochemore-Perrin [8] and Ryt-
ter [22]. These algorithms rely on a partition of
the pattern in two parts; they first search for the
right part of the pattern from left to right, and
then, if no mismatch occurs, they search for the
left part. The partition can be the perfect factor-
ization [13], the critical factorization [8], or based
on the lexicographically maximum suffix of the
pattern [22]. Another solution by Crochemore [7]
is a variant of KMP [18]: it computes lower
bounds of pattern prefixes periods on the fly and
requires no preprocessing.

Bit-Parallel Solution
It is possible to use the bit-parallelism technique
for ESM.

Theorem 8 (Baeza-Yates and Gonnet [2]; Wu
and Manber [25]) If the length m of the string
P is smaller than the number of bits of a machine
word, the preprocessing phase can be done in
time and space O.�/ and the searching phase in
time O.n/.
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It is even possible to use this bit-parallelism
technique to simulate the BDM algorithm. This
is realized by the BNDM (Backward Nondeter-
ministic Dawg Matching) algorithm [20].

There exists another method that uses the
bit-parallelism technique that is optimal on the
average. It considers sparse q-grams and thus
avoids to scan a lot of text positions. It is due to
Fredriksson and Grabowski [12].

Applications

The methods that are described here apply to
the treatment of the natural language, of genetic
and musical sequences, the problems of safety
related to data flows like virus detection, and the
management of the textual databases, to quote
only some immediate applications.

Open Problems

There remain only a few open problems on this
question. It is still unknown if it is possible to
design an average optimal time constant space
string-matching algorithm. The exact size of the
Boyer-Moore automaton is still unknown [3]. The
Boyer-Moore automaton was first introduced by
Knuth [18]. Its states encode all the possible
situations when searching the pattern with the
Boyer-Moore algorithm and remember every text
character already matched in the window.

Experimental Results

The book of G. Navarro and M. Raffinot [21] is a
good introduction and presents an experimental
map of ESM algorithms for different alphabet
sizes and pattern lengths. Basically, the Shift-
Or algorithm is efficient for small alphabets and
short patterns, the BNDM algorithm is efficient
for medium-sized alphabets and medium-length
patterns, the Horspool algorithm is efficient for
large alphabets, and the BOM algorithm is ef-
ficient for long patterns. The article of S. Faro

and T. Lecroq [11] updates the experimental map
with the most recent results.

URLs to Code and Data Sets

The site monge.univ-mlv.fr/~lecroq/string
presents a large number of ESM algorithms
(see also [4]). Each algorithm is implemented
in C code and a Java applet is given. The site
www.dmi.unict.it/~faro/smart presents SMART,
a string-matching research tool, which contains
the C code of a great number of exact string-
matching algorithms and some corpora (natural
language, musical, biological, and random texts).
The user can easily plug its own algorithm to
compare it against some selected algorithms.

Cross-References

�Approximate String Matching is the version
where errors are permitted;

�Multiple String Matching is the version where
a finite set of patterns is searched for in a text;

�Regular Expression Matching is the more com-
plex case where P can be a regular expression;

� Suffix Trees and Arrays refers to the case where
the text is preprocessed.

Further information can be found in the three
following books: [10, 14] and [23].
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Problem Definition

The problem is to sort a set of strings into lexi-
cographical order. More formally: A string over
an alphabet † is a finite sequence x1x2x3 : : : xk

where xi 2 † for i D 1; : : : ; k. The xi s
are called the characters of the string, and k

is the length of the string. If the alphabet † is
ordered, the lexicographical order on the set of
strings over † is defined by declaring a string
x D x1x2x3 : : : xk smaller than a string y D

y1y2y3 : : : yl if either there exists a j �1 such
that xi D yi for 1� i < j and xj < yj or
if k < l and xi D yi for 1� i � k. Given a
set S of strings over some ordered alphabet, the
problem is to sort S according to lexicographical
order.

The input to the string sorting problem con-
sists of an array of pointers to the strings to be
sorted. The output is a permutation of the array of
pointers, such that traversing the array will point
to the strings in nondecreasing lexicographical
order.

The complexity of string sorting depends on
the alphabet as well as the machine model. The
main solution [15] described in this entry works
for alphabets of unbounded size (i. e., com-
parisons are the only operations on characters
of †) and can be implemented on a pointer
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machine. See below for more information on the
asymptotic complexity of string sorting in various
settings.

Key Results

This section is structured as follows: first, the
key result appearing in the title of this entry [15]
is described; then an overview of other relevant
results in the area of string sorting is given.

The string sorting algorithm proposed by
Bentley and Sedgewick in 1997 [15] is called
three-way radix quicksort [5]. It works for
unbounded alphabets, for which it achieves
optimal performance.

Theorem 1 The algorithm three-way radix
quicksort sorts K strings of total length N in
time O.K log K CN /.

This time complexity is optimal, which
follows by considering strings of the form
bbb : : :bx, where all xs are different: Sorting
the strings can be no faster than sorting the
xs, and all bs must be read (else an adversary
could change one unread b to a or c, making
the returned order incorrect). A more precise
version of the bounds above (upper as well as
lower) is K log K C D, where D is the sum of
the lengths of the distinguishing prefixes of the
strings. The distinguishing prefix ds of a string
s in a set S is the shortest prefix of s which
is not a prefix of another string in S (or is s

itself, if s is a prefix of another string). Clearly,
K � D � N .

The three-way radix quicksort of Bentley and
Sedgewick is not the first algorithm to achieve
this complexity; however, it is a very simple
and elegant way of doing it. As demonstrated in
[3, 15], it is also very fast in practice. Although
various elements of the algorithm had been noted
earlier, their practical usefulness for string sorting
was overlooked until the work in [15].

Three-way radix quicksort is shown in pseudo-
code in Fig. 1 (adapted from [5]), where S is a
list of strings to be sorted and d is an integer. To

SORT(S, d)

SORT(S<, d)

SORT(S>, d)
S = S<  + S=  + S>

SORT(S=, d + 1)

RETURN
Choose a partitioning character n ∈ {sd ⎜s ∈S}
S<  = {s ∈S ⎜sd < n}
S=  = {s ∈S ⎜sd = n}
S>  = {s ∈S ⎜sd > n}

IF ⎜S ⎜≤ 1:

IF n ≠ EOS:

String Sorting, Fig. 1 Three-way radix quicksort (as-
suming each string ends in a special EOS character)

sort S , an initial call SORT(S , 1) is made. The
value sd denotes the d th character of the string
s, andC denotes concatenation. The presentation
in Fig. 1 assumes that all strings end in a special
end-of-string (EOS) character (such as the null
character in C). In an actual implementation, S

will be an array of pointers to strings, and the sort
will be in-place (using an in-place method from
standard quicksort for three-way partitioning of
the array into segments holding S<, SD, and S>),
rendering concatenation superfluous.

Correctness follows from the following invari-
ant being maintained by the algorithm: At the
start of a call SORT(S , d ), all strings in S agree
on the first d � 1 characters.

Time complexity depends on how the par-
titioning character v is chosen. One particular
choice is the median of all the d th characters (in-
cluding doublets) of the strings in S . Partitioning
and median finding can be done in time O.jS j/,
which is O(1) time per string partitioned. Hence,
the total running time of the algorithm is the sum
over all strings of the number of partitionings
they take part in. For each string, let a partitioning
be of type I if the string ends up in S< or S>

and of type II if it ends up in SD. For a string s,
type II can only occur jdsj times and type I can
only occur log K times. Hence, the running time
is O.K log K CD/.
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Like for standard quicksort, median finding
impairs the constant factors of the algorithm, and
more practical choices of partitioning character
include selecting a random element among all the
d th characters of the strings in S and selecting
the median of three elements in this set. The
worst-case bound is lost, but the result is a fast,
randomized algorithm.

Note that the ternary recursion tree of three-
way radix quicksort is equivalent to a trie over
the input strings where each trie node is im-
plemented by a binary search tree whose node
elements are the child edges (in the trie) of the
trie node. In more detail, a node in a binary tree
contains the character of a trie edge and a pointer
to the root of the binary tree implementing the
corresponding trie child. The search keys in a
binary tree are the characters in its nodes. This
trie implementation is named ternary search trees
in [15]. In the recursion tree of three-way radix
quicksort, an edge representing a recursive call
on S< or S> corresponds to a tree edge inside a
binary tree implementing a trie node, and an edge
representing a recursive call on SD corresponds
to a trie edge.

For the version of the algorithm where the
partitioning character v is chosen as the median
of all the d th characters, it is not hard to see
that the binary trees representing the trie nodes
become weighted trees. These are binary trees in
which each element x has an associated weight
wx , and searches for x take O.log W=wx/, where
W D †xwx is the sum of all weights in the
binary tree. Here, the weight of a binary tree
node storing character x is the number of strings
which in the trie reside below the corresponding
trie edge. As shown in [13], in such a trie im-
plementation, searching for a string P among K

stored strings takes time O.log KCjP j/, which is
optimal for unbounded (i.e., comparison-based)
alphabets. Hence, by the correspondence between
the recursion trees of three-way radix quicksort
and ternary search trees, three-way radix quick-
sort may additionally be viewed as a construction
algorithm for an efficient dictionary structure for
strings.

Other key results in the area of string
sorting are now described. The classic string
sorting algorithm is radixsort, which assumes
a constant-sized alphabet. The least-significant-
digit-first variant is easy to implement and runs
in O.N C l j†j/ time, where l is the length of
the longest string. The most-significant-digit-first
variant is more complicated to implement but
has a better running time of O.D C d j†j/,
where D is the sum of the lengths of the
distinguishing prefixes and d is the longest
distinguishing prefix. McIlroy et al. [12]
discusses in depth efficient implementations of
radixsort.

If the alphabet consists of integers, then on
a word-RAM the complexity of string sorting
is essentially determined by the complexity of
integer sorting. More precisely, the time (when
allowing randomization) for sorting strings is
Θ.SortInt.K/C N /, where SortInt.K/ is the time
to sort K integers [2], which currently is known
to be O.K

p
log log K/ [11].

Returning to comparison-based model, the pa-
pers [8, 10] give generic methods for turning any
data structure over one-dimensional keys into a
data structure over strings. Using finger search
trees, this gives an adaptive sorting method for
strings which uses O.N C K log.F=K// time,
where F is the number of inversions among the
strings to be sorted.

Concerning space complexity, it has been
shown [9] that string sorting can still be
done in O.K log K C N / time using only
O(1) space besides the strings themselves.
However, this assumes that all strings have equal
lengths.

All algorithms so far are designed to work in
internal memory, where CPU time is assumed to
be the dominating factor. For external memory
computation, a more relevant cost measure is
the number of I/Os performed, as captured by
the I/O model [1], which models a two-level
memory hierarchy with an infinite outer memory,
an inner memory of size M , and transfer (I/Os)
between the two levels taking place in blocks
of size B . For external memory, upper bounds
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were first given in [4], along with matching
lower bounds in restricted I/O models. For a
comparison-based model where strings may
only be moved in blocks of size B (hence,
characters may not be moved individually),
it is shown in [4] that string sorting takes
Θ.N1=B logM=B.N1=B/ C K2 logM=B K2 C

N=B/ I/Os, where N1 is the total length of
strings shorter than B characters, K2 is the
number of strings of at least B characters, and
N is the total number of characters. This bound
is equal to the sum of the I/O costs of sorting
the characters of the short strings, sorting B

characters from each of the long strings, and
scanning all strings. In the same paper, slightly
better bounds in a model where characters may
be moved individually in internal memory are
given, as well as some upper bounds for non-
comparison-based string sorting. Further bounds
(using randomization) for non-comparison-based
string sorting have been given, with I/O bounds of
O.K=B log M=B.K=M/ log logM=B.K=M/ C

N=B/ [7] and O.K=B.logM=B.N=M//2 log2KC

N=B/ (Ferragina, personal communication).
Returning to internal memory, it may also

there be the case that memory hierarchy effects
are the determining factor for the running time
of algorithms but now due to cache faults rather
than disk I/Os. Heuristic algorithms (i.e., algo-
rithms without good worst-case bounds), aiming
at minimizing cache faults for internal memory
string sorting, have been developed. Of these,
the burstsort line of algorithms [16] performs
particularly well in experiments.

Applications

Data sets consisting partly or entirely of string
data are very common: Most database applica-
tions have strings as one of the data types used,
and in some areas, such as bioinformatics, Web
retrieval, and word processing, string data is pre-
dominant. Additionally, strings form a general
and fundamental data model, containing, e.g.,
integers and multidimensional data as special
cases. Since sorting is arguably among the most

important data processing tasks in any domain,
string sorting is a general and important problem
with wide practical applications.

Open Problems

As appears from the bounds discussed above,
the asymptotic complexity of the string sorting
problem is known for comparison-based alpha-
bets. For integer alphabets on the word-RAM, the
problem is almost closed in the sense that it is
equivalent to integer sorting, for which the gap
left between the known bounds and the trivial
linear lower bound is small.

In external memory, the situation is less
settled. As noted in [4], a natural upper bound to
hope for in a comparison-based setting is to meet
the lower bound of Θ.K=B logM=B K=M C

N=B/ I/Os, which is the sorting bound for
K single characters plus the complexity of
scanning the input. The currently known upper
bounds only get close to this when leaving
the comparison-based setting and allowing
randomization.

Experimental Results

In [15], experimental comparison of two imple-
mentations (one simple and one tuned) of three-
way radix quicksort with a tuned quicksort [6]
and a tuned radixsort [12] showed the simple im-
plementation to always outperform the quicksort
implementation and the tuned implementation to
be competitive with the radixsort implementa-
tion.

In [3], experimental comparison among ex-
isting and new radixsort implementations (in-
cluding the one used in [15]), as well as tuned
quicksort and tuned three-way radix quicksort,
was performed. This study confirms the picture
of three-way radix quicksort as very competitive,
always being one of the fastest algorithms, and
arguably the most robust across various input
distributions.
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Data Sets

The data sets used in [15]: http://www.cs.
princeton.edu/~rs/strings/. The data sets used
in [3]: http://dl.acm.org/citation.cfm?id=297136.

URL to Code

Code in C from [15]: http://www.cs.princeton.
edu/~rs/strings/.

Code in C from [3]: http://dl.acm.org/citation.
cfm?id=297136.

Code in Java from [14]: http://www.cs.princeton.
edu/~rs/Algs3.java1-4/code.txt.

Cross-References

� Suffix Array Construction
� Suffix Tree Construction
� Suffix Tree Construction in Hierarchical

Memory
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Problem Definition

Let G D .V; E/ be a directed graph. For an
arc .u; v/ 2 E, u is said to dominate v, and
v is said to absorb u. Vertex u is also called a
dominator of v, and vertex v is called an absorber
of u. A vertex set D � V is a dominating
set (DS) of G if every vertex in V n D has a
dominator in D; it is an absorbing set (AS) of
G if every vertex in V nD has an absorber in D.
A directed graph G is strongly connected if for
any pair of ordered vertices u; v 2 V , there is a
directed path in G from u to v. The “Minimum
Strongly Connected Dominating and Absorbing
Set” problem (MSCDAS) is to find a vertex set
D such that D is both a dominating set and an
absorbing set of G and the subgraph of G induced
by D is strongly connected.

Disk graph is a geometric graph which is
of particular interest in the study of MSCDAS,
since disk graph is a model of heterogeneous
wireless sensor network, and as one can see in
the application part, MSCDAS plays an important
role in wireless sensor network. In a disk graph,
every vertex u corresponds to a sensor on the
plane equipped with an omnidirectional antenna
of transmission radius r.u/. Another sensor v

can correctly decode the message sent by u if
and only if v is in the disk centered at u with
radius r.u/. Hence, there is an arc .u; v/ in the
disk graph if and only if kuvk � r.u/, where
k � k is the Euclidean distance between u and
v. In particular, if all sensors are equipped with
the same transmission radius, then the disk graph
degenerates to an undirected graph called unit
disk graph.

Key Results

Hardness Results
In a general digraph, the MSCDAS problem can-
not be approximated within a factor of .1�"/ ln n

for any real number " > 0, where n is the
number of vertices in the digraph. Even in disk
graph, MSCDAS is still NP-hard. These hardness
results follow from the fact that their undirected
counterparts have these hardness results [1, 5].

MSCDAS in General Digraph
Li et al. [8] gave a .3H.n�1/�1/-approximation
for MSCDAS, where H.�/ D

P�
iD1 1=i is the

harmonic number.
The algorithm is based on the following obser-

vation. For a vertex u in a digraph G, a spanning
in-arborescence (resp. out-arborescence) rooted
at u is a spanning sub-digraph of G in which
every vertex except u has in-degree (resp. out-
degree) exactly one and vertex u has in-degree
(resp. out-degree) zero. For a spanning arbores-
cence T of G, denote by int.T / the set of internal
vertices of T . For any vertex u, suppose T in and
T out are spanning in-arborescence and spanning
out-arborescence of G rooted at u, respectively.
Then int.T in/ [ int.T out/ is an SCDAS of G.

Define the problem “Spanning Arborescence
with Fewest Internal Vertices” (SAFIV) as fol-
lows: given a digraph G and a vertex u, find a
spanning arborescence T rooted at u such that
jint.T /j is as small as possible. By the above
observation, if SAFIV has a �-approximation,
then MSCDAS has a 2�-approximation. Li et al.
gave a .1:5H.n � 1/ � 0:5/-approximation for
SAFIV, and thus the approximation ratio .3H.n�

1/ � 1/ for MSCDAS follows.
The approximation algorithm for SAFIV uses

the idea in [6, 7] which study the problem of
“Minimum Node-Weighted Steiner Tree” (MN-
WST). The idea is to iteratively merge smaller
arborescences greedily (a vertex is a trivial ar-
borescence) until finally one gets one arbores-
cence including all vertices which is rooted at
the given vertex. It was pointed out in [8] that
using the method in [6], the approximation ratio
for SAFIV can be further reduced to 1:35 ln n.
Since SAFIV is at least as hard as the minimum
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connected dominating set problem, it cannot be
approximated within factor .1 � "/ ln n. Any
progress narrowing the gap between ln n and
1:35 ln n would be interesting.

MSCDAS in Disk Graph
Making use of geometric properties, can the ap-
proximation ratio for MSCDAS be better in a
disk graph? The answer is yes. Du et al. [2] were
the first to give a constant approximation in this
setting. Their idea was further explored by Park
et al. [11] to output an SCDAS with size at most
9:6.kC1=2/2optC14:8.kC1=2/2, where opt is
the size of an optimal solution and k D rmax=rmin,
the ratio between the maximum radius and the
minimum radius. The core in their work is an
algorithm for SAFIV, which first colors all ver-
tices white and then, by growing a search tree step
by step, turns the colors to either black, blue, or
gray. The set of black vertices forms a dominating
set, and the set of blue vertices connects these
black vertices into an out-arborescence. In fact,
black vertices are mutually independent, where
two vertices u and v are said to be independent
if either uv or vu is not an arc. Two independent
vertices have distance greater than rmin. Such a
property guarantees an upper bound for the num-
ber of black vertices. Furthermore, the structure
of a search tree guarantees that the number of
blues vertices is no larger than that of black
vertices. Then, the desired approximation ratio
follows. It should be noted that if rmax=rmin is
unbounded, then the approximation ratio is not a
constant.

Without a bounded assumption on rmax=rmin,
Xu and Li [12] showed that a .2 C "/-
approximation exists for MDAS, which is a
combination of a PTAS for MDS and a PTAS for
MAS. In fact, the PTAS for MAS is a special case
of the “Geometric Hitting Set” problem studied
in [10], and the PTAS for MDS is a variation for
the MDS problem in an undirected graph studied
in [4]. Both PTASs are obtained through a local
search method. The analysis is based on the
separator theorem for planar graphs [3, 9]. Zhang
et al. [13] also obtained approximation ratio
.2 C "/ using the same method. Based on such
a DAS, adding Steiner nodes to connect, Zhang

et al. showed that a .4 C 3 ln.2 C "/opt C "/-
approximation exists for MSCDAS. When the
optimal value opt is substantially smaller than n,
this is an improvement on ratio 3H.n � 1/ � 1

for disk graphs.

Applications

One application of MSCDAS is the communi-
cation in wireless sensor network (WSN). In a
WSN, information is distributed among sensors
by multi-hop transmissions. If all sensors trans-
mit messages in a flooding manner, then a lot
of energy is wasted, and large amount of inter-
ference is created. To alleviate such problems, it
is desirable that only a small fraction of sensors
participate in the transmission, while information
can still be successfully shared. An SCDAS can
serve for this purpose. Suppose D is an SCDAS
of directed graph G (the topology of the WSN).
If there is a message at source sensor u to be sent
to destination sensor v, then the message can be
first sent from u to its absorber; since GŒD� is
strongly connected, it can be successfully relayed
to the dominator of v and then sent to v.

Open Problems

It is still open whether there exists a constant
approximation algorithm for MSCDAS in disk
graph.
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Problem Definition

A parameterized problem is a language L �

˙� � N, where ˙ is a fixed, finite alphabet.
The second component is called the parameter
of the problem. The central notion in parameter-
ized complexity is the notion of fixed-parameter
tractability (FPT). A parameterized problem L

is called FPT if it can be determined in time
f .k/ � nc whether or not .x; k/ 2 L, where n D

j.x; k/j, f is a computable function depending
only on k, and c is a constant independent of n

and k. The complexity class containing all fixed-
parameter tractable problems is called FPT.

While in the definition of class FPT, we are
happy with any computable function f , from
application perspective it is often desirable to
have the asymptotic growth of f as slow as
possible. Take as an example an FPT problem
VERTEX COVER which has been subjected
to intense scrutiny with progressively faster
algorithms designed for it. Let us remind
that in the VERTEX COVER problem, we
are asked if an n vertex graph G contains a
vertex cover of size k or in other words a
set of vertices S such that every edge of G

has at least one endpoint in S . Starting from
a kk algorithm of Buss and Goldsmith in
1993, there have been algorithms with f .k/ 2

f2k ; 1:324718k ; 1:29175k ; 1:2906k ; 1:271k ;

1:2738kg. The current fastest algorithm for
VERTEX COVER runs in time 1:2738knO.1/

(see the entry �Vertex Cover Search Trees
from this book). The ever-decreasing running
time leads to the following natural question: can
VERTEX COVER admit a subexponential time
algorithm? That is, can it have an algorithm
with running time 2o.k/nO.1/

? The negative
answer to this question would imply that
P ¤ NP . However, using a stronger assumption
in complexity theory, namely, exponential time
hypothesis (ETH) (see the entry �Exponential
Lower Bounds for k-SAT Algorithms in this
book), one can show that if ETH holds, then
the answer to our question is NO. Moreover,
subject to ETH, there are no subexponential
algorithms for many other natural NP-complete
problems. Thus, another natural question arises:

http://arxiv.org/abs/1208.5738
http://arxiv.org/abs/1208.5738
http://dx.doi.org/10.1007/978-1-4939-2864-4_462
http://dx.doi.org/10.1007/978-1-4939-2864-4_678
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is it true that every NP-complete problem cannot
be solved in subexponential time? Interestingly,
the answer to this question is again NO, and there
are examples in the literature of such problems.
Coming back to our example of VERTEX
COVER problem, if we restrict the input graph to
be planar, the problem remains NP-complete, but
the brute-force algorithm problem can be sped up
even more. That is, VERTEX COVER on planar

graphs can be solved in time 2O.
p

k/ � nO.1/-
by a subexponential algorithm. We refer to
more parameterized subexponential algorithms
on planar graphs to the �Bidimensionality in
this book.

Until recently, the only subexponential
algorithms were known for “geometric” graph
problems, that is, problems on planar graphs or
graphs excluding some fixed graph as minors.
In 2009, Alon, Lokshtanov, and Saurabh [1]
obtained the first parameterized subexponential
algorithm for a natural “nongeometric” problem.
This result has acted as catalyst for the discovery
of new subexponential time algorithms. In
this article, we give a short overview of these
algorithms.

Key Results

FAST
In the FEEDBACK ARC SET IN TOURNA-
MENTS (FAST) problem, we are given an n-
vertex tournament T and a positive integer k;
the question is whether one can make T into a
directed acyclic graph by deleting at most k arcs.

FAST
Input: A tournament T D .V; E/ and a non-

negative integer k.
Parameter: k.
Question: Is there F � E, jF j � k, such that

diraph H D .V; E n F / is acyclic?

Alon, Lokshtanov, and Saurabh in [1] ob-
tained a parameterized subexponential algorithm
for FAST.

Theorem 1 ([1]) FAST is solvable in time
2

p
k log knO.1/.

The theorem is proved by making use of a
novel randomized technique called Chromatic
Coding. It appeared that subexponential algo-
rithms exist for several other problems on tour-
naments (see entry �Computing Cutwidth and
Pathwidth of Semi-complete Digraphs in this
book).

Fill-In
The next “nongeometric” problem for which a
subexponential algorithm was found happened to
be the classical MINIMUM FILL-IN problem.

A graph is chordal (or triangulated) if every
cycle of length at least four contains a chord,
i.e., an edge between nonadjacent vertices of the
cycle. The MINIMUM FILL-IN problem (also
known as MINIMUM TRIANGULATION and
CHORDAL GRAPH COMPLETION) is to de-
cide if a given graph G can be transformed into a
chordal graph by adding at most k edges.

MINIMUM FILL-IN
Input: A graph G D .V; E/ and a nonnegative

integer k.
Parameter: k.
Question: Is there F � ŒV �2, jF j � k, such that

graph H D .V; E [ F / is chordal?

Theorem 2 ([6]) MINIMUM FILL-IN is solv-
able in time 2

p
k log knO.1/.

The proof of the theorem is based on a combi-
natorial bound estimating the number of specific
objects in the graph, namely, potential maximal
cliques.

Completion to Graph Classes

Since discoveries of subexponential algorithms
for FAST and MINIMUM FILL-IN, it appeared
that several other graph modification problems
admit subexponential algorithms. In particular,
it was shown that problems of completion to a
certain subclass of chordal graphs like trivially
perfect, threshold [4], split [7], proper interval
[2], and interval graphs [3] admit parameterized
subexponential algorithms.

http://dx.doi.org/10.1007/978-1-4939-2864-4_47
http://dx.doi.org/10.1007/978-1-4939-2864-4_696
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On the other hand, it has been shown that for
a number of other graph classes, like cographs,
completion to these classes of graphs cannot
be done in parameterized subexponential time
unless the exponential time hypothesis (ETH)
fails [4].

Open Problems

The most natural open question about the
given subexponential algorithms is the question
about lower bounds. As a concrete example, an
algorithm for FAST with running time bound
2o.

p
k/nO.1/ would actually be a 2o.n/ time algo-

rithm which inclines us to suspect that 2O.
p

k/ is
the best possible dependency on k in the running
time for this problem. Unfortunately, there is a
big gap here between what we suspect and what
we can prove, even assuming ETH. The only
tight bound on parameterized subexponential
algorithms for graph modification problems
we are aware of is the p-CLUSTERING
problem [5].
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Problem Definition

Bin packing is a classical problem in combi-
natorial optimization. Given a collection of n

items with different sizes, the objective is to pack
the items into a minimum number of uniform
capacity bins. More formally, the input of the
bin packing problem is described by a set of
n items I D f1; : : : ; ng and a size function
s W I ! Œ0; 1�. The output is a packing of
the items into bins B1; : : : ; Bk � I such that
s.Bj / � 1 for j D 1; : : : ; k, where the notation
s.B/ denotes

P
i2B si for any B � I . The

objective is to minimize the number bins used in
the packing.

The SUBSET-SUM algorithm is an intu-
itively appealing greedy heuristic for the bin
packing problem: Starting from the empty
packing, the algorithm repeatedly finds a
subset B of yet-unpacked items maximizing
s.B/ subject to s.B/ � 1, adds B to
the packing, and iterates. Each iteration
requires that we solve an instance of the
knapsack problem. In practice, instead of
finding the optimal solution, one can use an
fully polynomial time approximation scheme
(FPRAS) to compute a .1 � �/-approximate
solution [6].

This note is concerned with the worst-case
asymptotic performance of the SUBSET-SUM

algorithm. For a given instance s W I ! Œ0; 1�,
we use OPT.s/ to denote the number of bins
used in an optimal packing of s and SS.s/

to denote the number of bins used by the
SUBSET-SUM algorithm. Then for a given
class C of instances, we define the worst-case
asymptotic approximation ratio of SUBSET-SUM

as

R1
SS.C/ D lim

k!1
sup
s2C

OPT.s/Dk

SS.s/

OPT.s/
: (1)

Finally, we use R1
SS to denote the ratio for general

instances of the problem.

Key Results

Lower Bound on R1
SS

Graham [4] provided a family of instance
exhibiting an approximation ratio that tends toP1

iD1
1

2i �1
	 1:6067.

Theorem 1 (Graham [4]) R1
SS �

P1
iD1

1

2i �1
	

1:6067.

Proof Consider the following instance parame-
terized by two positive integers r and N . For
each j D 1; : : : ; r , we create N items of size
2�i C ı, where ı D 2�2r . Let us denote this
instance with s. Provided that 2i�1 divides N for
all i D 1; : : : ; r , it is not hard to see that SUBSET-
SUM first packs the smallest items into N=.2r�1/

bins, then it packs the second-smallest items into
N=.2r�1 � 1/ bins, and so on, until it packs the
largest items into N bins. On the other hand, the
optimal solution uses just N bins by packing one
item of each size class per bin. Therefore,

SS.s/

OPT.s/
D

rX

iD1

1

2i � 1
; (2)

which quickly approaches 1:6067 as r grows. ut

Upper Bound on R1
SS

A trivial upper bound on R1
SS is 2. This follows

from the fact only the last bin can be less than
half full. Caprara and Pferschy [1] gave the first
nontrivial upper bound, by showing that R1

SS is
at most 4=3C ln 4 	 1:6210. Interestingly, Gra-
ham [4] had conjectured that the true value of R1

SS
should match his lower bound. This conjecture
was finally proven by Epstein et al. [2].

Theorem 2 (Epstein et al. [3]) R1
SS �P1

iD1
1

2i �1
	 1:6067.

The proof of this result uses weighting func-
tions and a factor revealing mathematical pro-
gram. Here we only sketch the high level idea of
the approach. Let B be one of the bins opened by
SUBSET-SUM. For every item i 2 B we define

wi D

(
si

s.B/
if 1 � smin � s.B/;

si otherwise;
(3)
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where smin is the size of the smallest yet-
unpacked item just before opening B .

The weights are used to charge the cost of
the packing computed by SUBSET-SUM to an
optimal packing. The following lemma allows
us to bound the performance of the algorithm
provided we can show that the sum of the weights
is comparable to the cost of the SUBSET-SUM

packing and that no bin in the optimal solution
is charged too much.

Lemma 1 Let O be an optimal solution and B be
the solution computed SUBSET-SUM. If there is a
weighting function w such that w.O/ � � for all
O 2 O and jBj � w.I /Cı, then jBj � �jOjCı.

Proof Because O is a packing
P

O2O w.O/ D

w.I /, therefore,

jBj � w.I /Cı D
X

O2O
w.O/Cı � �jOjCı: ut

The key contribution of Epstein et al. [3]
was bounding the parameters � and ı associated
with the weighting function (3). Bounding ı is a
relatively straightforward exercise. Bounding � is
more involved and requires analytically solving a
mathematical program. Here we only state their
bounds.

Lemma 2 (Epstein et al. [3]) Let B be the
SUBSET-SUM packing and let w be the weighting
function (3) for B. Then

1. jBj � w.I /C 1,
2. w.B/ �

P1
iD1

1

2i �1
for all B � I such that

s.B/ � 1.

Theorem 2 follows immediately from Lem-
mas 1 and 2.

Parametric Case
As it is the case with most bin packing heuris-
tics, the performance of SUBSET-SUM improves
when the items are small relative to the capacity
of the bin. In a parametric analysis of a heuristic,
we restrict our attention to instances where the
maximum item size is bounded. More formally,

for every real ˛ 2 .0; 1�, we define C˛ to be the
class of instances s such that maxi2I si � ˛.

Theorem 3 (Epstein et al. [3]) For every inte-
ger t � 1 and ˛ 2 . 1

tC1
; 1

t
�, we have R1

SS.C˛/ D

1C
P1

iD1
1

.tC1/2i �1
.

Notice that this is a strict generalization of
Theorems 1 and 2, which only cover the case
˛ D 1.

Applications

There is an interesting connection between the
performance of the SUBSET-SUM algorithm and
the quality of equilibria of a game-theoretic ver-
sion of bin packing. Let us associate a game
with each instance s W I ! Œ0; 1� of the
bin packing problem. The set of players in this
game is I , the set of items. Each player can
decide in which bin it wants to be packed; this
is the player’s strategy space. For each bin B

chosen in this uncoordinated fashion, if s.B/ > 1

then the players in B are charged1; otherwise,
player i 2 B is charged si

s.B/
. These payments

enforce that a strategy profile is a valid packing
if and only if the payments are finite. Further-
more, if the payments are finite, the sum of
these payments equals the number of bins in the
packing.

A strategy profile is said to be a Nash Equilib-
rium (NE) if there is no player that can switch
bins to decrease its payment. The price of an-
archy of the bin packing game is the asymp-
totic worst-case ratio between the number of
bins used by an NE and the number of bins in
an optimal packing. A packing is said to be a
Strong Nash Equilibrium (SNE) if no coalition
of players can switch bins to decrease the sum
of their payments. The strong price of anarchy
of the bin packing game is the asymptotic worst-
case ratio between the number of bins used by
an SNE and the number of bins by an optimal
packing.

Theorem 4 (Epstein and Kleiman [2]) The
strong price of anarchy for the bin packing game
is exactly R1

SS .
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Notice that every SNE is an NE, since we
can think of an NE as requiring that there are
no “coalitions” of size 1. Therefore, Theorem 4
establishes a lower bound on the price of anarchy
for the bin packing game. However, not every
NE is an SNE. In fact, it is known that the
price of anarchy for the bin packing game is
strictly worse than its strong price of anarchy
[2, 3].

Experimental Results

Gupta and Ho [5] performed an experimental
evaluation of SUBSET-SUM. (Gupta and Ho
call the algorithm minimum bin slack because
they formulate each iteration as trying to
minimize the slack (unused space) of the
bin, which is equivalent to maximizing the
bin’s usage.) The instances used in the
evaluation were randomly generated by selecting
the item sizes uniformly at random from
different numerical ranges. They compared
the performance of SUBSET-SUM to two well-
known heuristics: FIRST-FIT-DECREASING and
BEST-FIT-DECREASING. They observed that
SUBSET-SUM performed better on average
without incurring a significant computational
overhead.
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Problem Definition

The Substring Parsimony Problem, introduced by
Blanchette et al. [1] in the context of motif dis-
covery in biological sequences, can be described
in a more general framework:
Input:

• A discrete space S on which an integral
distance d is defined (i.e., d.x; y/ 2 N 8x;

y 2 S ).
• A rooted binary tree T D .V; E/ with n

leaves. Vertices are labeled f1; 2; : : : ; n;

: : : ; jV jg, where the leaves are vertices
f1; 2; : : : ; ng.

• Finite sets S1; S2; : : : ; Sn, where set Si � S is
assigned to leaf i, for all i D 1 : : : n.

• A non-negative integer t

Output: All solutions of the form .x1; x2; : : : ;

xn; : : : ; xjV j/ such that:

• xi 2 S for all i D 1 : : : jV j

http://dx.doi.org/10.1007/978-1-4939-2864-4_49
http://dx.doi.org/10.1007/978-1-4939-2864-4_192
http://dx.doi.org/10.1007/978-1-4939-2864-4_299
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• xi 2 Si for all i D 1 : : : n

•
P

.u;v/2E d.xu; xv/ � t

The problem thus consists of choosing one ele-
ment xi from each set Si such that the Steiner
distance of the set of points is at most t. This
is done on a Steiner tree T of fixed topology.
The case where jSi j D 1 for all i D 1 : : : n is
a standard Steiner tree problem on a fixed tree
topology (see [11]). It is known as the Maximum
Parsimony Problem and its complexity depends
on the space S .

Key Results

The substring parsimony problem can be solved
using a dynamic programming algorithm. Let
u 2 V and s 2 S . Let WuŒs� be the score of the
best solution that can be obtained for the subtree
rooted at node u, under the constraint that node u
is labeled with s, i.e.,

WuŒs� D min
x1;:::;x

jV j
2S

xuDs

X

.i;j /2E
i;j 2subtree.u/

d.xi ; xj /:

Let v be a child of u, and let X.u;v/Œs� be the
score of the best solution that can be obtained for
the subtree consisting of node u together with the
subtree rooted at its child v, under the constraint
that node u is labeled with s:

X.u;v/Œs� D min
x1;:::;xjV j2S

xuDs

P

.i;j /2E

i;j 2subtree.v/[f.u;v/g

d.xi ; xj /:

Then, we have:

WuŒs� D

8
<̂

:̂

0 if u is a leaf and s 2 Su

C1 if u is a leaf and s … SuP

v2children.u/

X.u;v/Œs� if u is not a leaf

and

X.u;v/Œs� D min
y02S

WuŒs0�C d.s; s0/:

Tables W and X can thus be computed using
a dynamic programming algorithm, proceeding
in a post-order traversal of the tree. Solutions

can then be recovered by tracing the computation
back for all s such that WrootŒs� � t . Note that the
same solution may be recovered more than once
in this process.

A straight-forward implementation of this
dynamic programming algorithm would run in
time O.n � jSj2 � �.S//, where �.S/ is the time
needed to compute the distance between any
two points in S . Let Na.S/ be the maximum
number of a-neighbors a point in S can have,
i.e., Na.S/ D maxx2S jfy 2 S W d.x; y/ D agj.
Blanchette et al. [3] showed how to use a mod-
ified breadth-first search of the space S to com-
pute each table X.u;v/ in time O.jSj �N1.S//,
thus reducing the total time complexity to
O.n � jSj �N1.S//. Since only solutions with
a score of at most t are of interest, the complexity
can be further reduced by only computing those
table entries which will yield a score of at most
t. This results in an algorithm whose running
time is O.n �M �Nbt=2c.S/ �N1.S// where
M D maxiD1:::n jSi j.

The problem has been mostly studied in
the context of biological sequence analysis,
where S D fA; C; G; T gk , for some small k
(k D 5; : : : ; 20 are typical values). The distance
d is the Hamming distance, and a phylogenetic
tree T is given. The case where jSi j D 1 for all
i D 1 : : : n is known as the Maximum Parsimony
Problem and can be solved in time O(n � k) using
Fitch’s algorithm [9] or Sankoff’s algorithm [12].
In the more general version, a long DNA
sequence Pu of length L is assigned to each leaf u.
The set Su is defined as the set of all k-substrings
of Pu. In this case, M D L � k C 1 2 O.L/, and
Na 2 O.min.4k ; .3k/a//, resulting in a com-
plexity of O.n � L � 3k �min.4k ; .3k/bd=2c//.
Notice that for a fixed k and d, the algorithm
is linear over the whole sequence. The problem
was independently shown to be NP-hard by
Blanchette et al. [3] and by Elias [7].

Applications

Most applications are found in computational
biology, although the algorithm can be applied
to a wide variety of domains. The algorithm
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for the substring parsimony problem has been
implemented in a software package called
FootPrinter [5] and applied to the detection of
transcription factor binding sites in orthologous
DNA regulatory sequences through a method
called phylogenetic footprinting [4]. Other
applications include the search for conserved
RNA secondary structure motifs in orthologous
RNA sequences [2]. Variants of the problem
have been defined to identify motifs regulating
alternative splicing [13]. Blanchette et al. [3]
study a relaxation of the problem where one
does not require that a substring be chosen from
each of the input sequences, but instead asks
that substrings be chosen from a sufficiently
large subset of the input sequence. Fang and
Blanchette [8] formulate another variant of the
problem where substring choices are constrained
to respect a partial order relation defined by a set
of local multiple sequence alignments.

Open Problems

Optimizations taking advantage of the specific
structure of the space S may yield more effi-
cient algorithms in certain cases. Many important
variations could be considered. First, the case
where the tree topology is not given needs to
be considered, although the resulting problems
would usually be NP-hard even when jSi j D 1.
Another important variation is one where the
phylogenetic relationships between trees is not
given by a tree but rather by a phylogenetic net-
work [10]. Finally, randomized algorithms sim-
ilar to those proposed by Buhler et al. [6] may
yield important and practical improvements.

URL to Code

http://bio.cs.washington.edu/software.html
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Problem Definition

A basic building block for compressed data struc-
tures for texts and functions is the representa-
tion of a permutation of the integers f1; : : : ; ng,
denoted by Œ1 : : : n�. A permutation 
 is triv-
ially representable in ndlg ne bits which is within
O.n/ bits of the information theoretic bound of
lg.nŠ/, but instances from restricted classes of
permutations can be represented using much less
space.

We are interested in encodings of permuta-
tions that can efficiently access them. Given a
permutation 
 over Œ1 : : : n�, an integer k and an
integer i 2 Œ1 : : : n�, data structures on permu-
tations aim to support the following operators as
fast as possible, using as little additional space as
possible:

• 
.i/: application of the permutation to i ,
• 
�1.i/: application of the inverse permutation

to i ,
• 
.k/.i/: 
./ iteratively applied k times start-

ing with value i (e.g., 
.2/.i/ D 
.
.i//).

Key Results

We distinguish between two types of solutions:
the succinct index and two succinct data
structures for permutations introduced by Munro
et al. [1], and the various compressed data
structures proposed later [2–4].

Succinct Data Structures
Munro et al. [1] studied the problem of succinctly
representing a permutation to support operators
on it quickly. They give several solutions, de-
scribed below.

“Shortcut” Index Supporting 
./ and 
�1./

Given an integer parameter t , the operators 
./

and 
�1./ can be supported by simply writing
down 
 in an array of n words of dlg ne bits
each, plus an auxiliary array S of at most n=t

back pointers called shortcuts: in each cycle of
length at least t , every t -th element has a pointer
t steps back. Then, 
.i/ is simply the i -th value
in the primary structure, and 
�1.i/ is found by
moving forward until a back pointer is found and
then continuing to follow the cycle to the location
that contains the value i .

The trick is in the encoding of the locations of
the back pointers: this is done with a simple bit
vector B of length n, in which a 1 indicates that
a back pointer is associated with a given location.
B is augmented using o.n/ additional bits so that
the number of 1’s up to a given position and the
position of the r-th 1 can be found in constant
time (i.e., using the rank and select operators on
binary strings [5]). This gives the location of the
appropriate back pointer in the auxiliary array S .
As there are back pointers every t elements in
the cycle, finding the predecessor requires O.t/

memory accesses.

Theorem 1 For any strictly positive integer n

and any permutation 
 on Œ1 : : : n� which can
be decomposed into ı cycles of respective sizes
c1; : : : ; cı , there is a representation of 
 using
within .

P
i2Œ1:::ı�b

ci

t
c/ lg nC2nCo.n/ � n lg n

t
C

2n C o.n/ bits to support the operator 
./ in
constant time and the operator 
�1./ in time
within O.t/.
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Interestingly enough, Munro et al. [1] did not
notice that their construction is actually an index
and that the raw encoding can be replaced by
any data structure supporting the operator 
./,
including the compressed ones later described
[4].

“Cycle” Data Structure Supporting 
k./

For arbitrary i and k, 
k./ is supported by
writing the cycles of 
 together with a bit vector
B marking the beginning of each cycle. Observe
that the cycle representation itself is a permuta-
tion in “standard form”; call it � . The first task
is to find i in the representation: it is in posi-
tion ��1.i/. The segment of the representation
containing i is found through the rank and select
operators on B . Then 
k.i/ is determined by
taking k modulo the cycle length, moving that
number of steps around the cycle starting at the
position of i , and applying �./ to obtain the value
to return.

Other than the support of the operators on
� , all operators are performed in constant time;
hence the asymptotic supporting time of 
k./

depends on the supporting time in which the
data structure chosen to represent � supports
the operators �./ and ��1./. Munro et al. [1]
proposed the following, using a raw encoding of
� with a shortcut index to support ��1./:

Theorem 2 For any strictly positive integer n

and any permutation 
 on Œ1 : : : n�, there is a
representation of 
 using at most .1C "/n lg nC

O.n/ bits to support the operator 
k./ in time
within O.1="/, for any " less than 1 and for any
arbitrary value of k.

Under a restricted model of pointer machine,
this technique is optimal: using O.n/ extra bits
(i.e., O.n= log n/ extra words), time within
˝.log n/ is necessary to support both 
./ and

�1./.

“Benes Network” Data Structure Supporting

k./

Any permutation can be implemented by a
communication network composed of switches:
this is called a Benes Network and uses even less
space under the RAM model than the solutions

described in the previous sections. Sparsely
adding pointers accelerates the support of 
k./

to time within O.
log n

log log n
/.

Theorem 3 For any strictly positive integer n

and any permutation 
 on Œ1 : : : n�, there is a
representation of 
 using at most dlg.nŠ/eCO.n/

bits to support the operator 
k./ in time within
O.log n= log log n/.

This representation uses space within an addi-
tive term within O.n/ of the optimal, both on av-
erage and in the worst case over all permutations
over Œ1 : : : n�.

Compressed Data Structures
Any comparison-based sorting algorithm yields
an encoding for permutations, and any adaptive
sorting algorithm in the comparison model yields
a compression scheme for permutations. Support-
ing operators on such compressed permutation in
less time than required to decompress the whole
of it requires some more work:

Runs
Barbay and Navarro [2] described how to seg-
ment a partition into nRuns runs composed
of consecutive positions forming already sorted
blocks and how to merge those via a wavelet
tree. This yields a data structure compressing a
permutation within space optimal over all permu-
tations with nRuns runs of sizes given by the
vector vRuns. This data structure supports the
operators 
./ and 
�1./ in sublinear time within
O.1 C lognRuns/, with the average supporting
time within O.1CH.vRuns//, which decreases
with the entropy of the partition of the permuta-
tion into runs. Here, the entropy of a sequence of
positive integers X D hn1; n2; : : : ; nri adding up
to n is H.X/ D

Pr
iD1

ni

n
lg n

ni
.

Theorem 4 For any strictly positive integer n

and any permutation 
 on Œ1 : : : n� which can be
decomposed into nRuns runs of sizes vRuns D
.r1; : : : ; rnRuns/, there is a representation of 


using at most nH.vRuns/CO.nRuns log n/C

o.n/ bits to support the computation of 
.i/

and 
�1.i/ in time within O.1 C lognRuns/

in the worst case over i 2 Œ1 : : : n� and in
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time within O.1CH.vRuns// on average when
i 2 Œ1 : : : n� is uniformly distributed. This com-
pressed data structure can be computed in time
within O.n.1 C H.vRuns///, which is worst-
case optimal in the comparison model over all
such permutations decomposed into nRuns runs
of sizes given by the vector vRuns.

The partitioning takes only n � 1 comparisons,
and the construction of the compressed data
structure itself is an adaptive sorting algorithm
improving over previous results [6, 7].

Heads of Strict Runs
A two-level partition of the permutation yields
further compression [2]. The first level parti-
tions the permutation into strict ascending runs
(maximal ranges of positions satisfying 
.i C

k/ D 
.i/ C k). The second level partitions
the heads (first position) of those strict runs into
conventional ascending runs. This is analogous
to the notion of blocks described by Moffat and
Petersson [7] for multisets.

Theorem 5 For any strictly positive integer n

and any permutation 
 on Œ1 : : : n� which can
be decomposed into nBlock strict runs and
into nRuns � nBlock monotone runs, let
vHRuns be the vector formed by the nRuns
monotone run lengths in the permutation of
strict run heads. Then, there is a representation
of 
 using at most nBlockH.vHRuns// C

O.nBlock log n
nBlock / C o.n/ bits to support

the operator 
./ and 
�1./ in time within
O.1 C lognBlock/. This compressed data
structure can be computed in time within
O.n.1C lognBlock//.

Shuffled Subsequences
The preorder measures seen so far have consid-
ered runs which group contiguous positions in

 : this does not need to be always the case. A
permutation 
 over Œ1 : : : n� can be decomposed
in n comparisons into a minimal number nSUS
of Shuffled Up Sequences, defined as a set of,
not necessarily consecutive, subsequences of in-
creasing numbers that have to be removed from

 in order to reduce it to the empty sequence [8].
Then those subsequences can be merged using

the same techniques as above, which yields a
new adaptive sorting algorithm and a new com-
pressed data structure [2]. An optimal partition
of a permutation 
 over Œ1 : : : n� into a minimal
number nSMS of Shuffled Monotone Sequences,
sequences of not necessarily consecutive subse-
quences of increasing or decreasing numbers, is
NP-hard to compute [9], but if such a permutation
is given, the same technique applies [10].

LRM Subsequences
LRM trees partition a sequence of values into
consecutive sorted blocks and express the relative
position of the first element of each block within
a previous block. Such a tree can be computed
in 2.n � 1/ comparisons within the array and
overall linear time, through an algorithm similar
to that of Cartesian Trees [11]. The interest of
LRM trees in the context of adaptive sorting
and permutation compression is that the val-
ues are increasing in each root-to-leaf branch:
they form a partition of the array into subse-
quences of increasing values. Barbay et al. [3]
described how to compute the partition of the
LRM tree of minimal size-vector entropy, which
yields a compressed data structure asymptoti-
cally smaller than H.vRuns/-adaptive sorting,
smaller in practice than H.vSUS/-adaptive sort-
ing, as well as a faster adaptive sorting algorithm.

Number of Inversions
The preorder measure nInv counts the number
of pairs .i; j / of positions 1 � i < j � n

in a permutation 
 over Œ1 : : : n� such that

.i/ > 
.j /. Its value is exactly the number
of comparisons performed by the algorithm
Insertion Sort, between n and n2 for a per-
mutation over Œ1 : : : n�. A variant of Insertion
Sort, named Local Insertion Sort,
sorts 
 in n.1 C dlg.nInv=n/e/ comparisons
[6, 7].

Simply encoding the n values .
.i/�i/i2Œ1:::n�

using the � 0 code from Elias [12], and indexing
the positions of the beginning of each code by a
compressed bit vector, yields a compressed data
structure supporting the operator 
./ in constant
time. The resulting data structure uses space
within n.1 C 2 lg nInv

n
/ C o.n/ bits. Support for
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the operator 
�1./ can be added in two distinct
ways, either encoding both 
 and 
�1 using this
technique within 2n.1 C 2 lg nInv

n
/ C o.n/ bits,

which supports both operators 
./ and 
�1./ in
constant time, or adding support for the operator

�1./ using Munro et al.’s shortcut succinct in-
dex for permutations [1] described previously.

Removing Elements
The preorder measure nRem counts the minimum
number of elements that must be removed from
a permutation so that what remains is already
sorted. Its exact value is n minus the length
of the Longest Increasing Subsequence, which
can be computed in time within O.n log n/. Al-
ternatively, the value of nRem can be approxi-
mated within a constant factor of 2 in 2.n � 1/

comparisons. Partitioning 
 into the removed
elements and the remaining ones through a bit
vector of n bits, representing the order of the
2nRem elements in a wavelet tree (using any
of the data structures described above), and rep-
resenting the merging of both into n bits yield
a compressed data structure using space within
2n C 2nRem lg.n=nRem/ C o.n/ bits and sup-
porting the operators 
./ and 
�1./ in sublinear
time, within O.1C log.nRemC 1//.

Applications

Integer Functions
Munro et al. [1] extended the results on per-
mutations to arbitrary functions from Œ1 : : : n�

to Œ1 : : : n�. Again f k.i/ indicates the function
iterated k times starting at i : if k is nonnegative,
this is straightforward. The case in which k is
negative is more complicated as the image is a
(possibly empty) multiset over Œ1 : : : n�.

Whereas 
 is a set of cycles, f can be viewed
as a set of cycles in which each node is the root of
a tree. Starting at any node (element of Œ1 : : : n�),
the evaluation moves one step along a branch of
the tree, or one step along a cycle. Moving k

steps in a positive direction is straightforward,
and one moves up a tree and perhaps around a
cycle. When k is negative, one must determine

all nodes at distance k from the starting location,
i , in the direction toward the leaves of the trees.
The key technical issue is to run across succinct
tree representations picking off all nodes at the
appropriate levels. Using a raw encoding of the
permutation mapping integers to the nodes, and
Munro et al.’s shortcut succinct index [1] to
support the operations on it, yields the following
result:

Theorem 6 For any fixed ", n > 0 and f W

Œ1 : : : n� ! Œ1 : : : n�, there is a representation of
f using .1 C "/n lg n C O.1/ bits of space to
compute f k.i/ in time within O.1 C jf k.i/j/,
for any integer k and for any integer i 2 Œ1 : : : n�.

Open Problems

Other Measures of Disorder
Moffat and Petersson [7] list many measures of
preorder and adaptive sorting techniques. Each
measure explored above yields a compressed data
structure for permutations supporting the opera-
tors 
./ and 
�1./ in sublinear time. Each adap-
tive sorting algorithm in the comparison model
yields a compression scheme for permutations,
but the encoding thus defined does not necessar-
ily support the simple application of the permu-
tation to a single element without decompressing
the whole permutation nor the application of the
inverse permutation. More work is required in
order to decide whether there are compressed
data structures for permutations, supporting the
operators 
./ and 
�1./ in sublinear time and
using space proportional to the other preorder
measures [6, 7] (e.g., Reg, Exc, Block, and
Enc).

Sorting and Encoding Multisets
Munro and Spira [13] showed how to sort multi-
sets through MergeSort, Insertion Sort,
and Heap Sort, adapting them with counters to
sort in time within O.n.1 C H.hm1; : : : ; mri///

where mi is the number of occurrences of i in
the multiset (note that this is orthogonal to the
results described in this chapter that depend on
the distribution of the lengths of monotone runs).
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It seems easy to combine both approaches (e.g.,
on MergeSort in a single algorithm using both
runs and counters), yet quite hard to analyze
the complexity of the resulting algorithm and
compressed data structure. The difficulty measure
must depend not only on both the entropy of the
partition into runs and the entropy of the partition
of the values of the elements but also on the
interaction of those partitions.

Compressed Data Structures Supporting
�k./

In Munro et al.’s “cycle” data structure [1] for
supporting the operator 
k./ (Theorem 2), the
raw encoding of the permutation � representing
the cycles of 
 can be replaced by any com-
pressed data structure such as those described
here, with the warning that the compressibility of
� depends not only on 
 but also on the order
in which its cycles are placed in � . The question
if there is a compressed data structure supporting
the operator 
k./ which takes advantage of this
order is open.
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Problem Definition

This problem is to design succinct representation
of balanced parentheses in a manner in which
a number of “natural” queries can be supported
quickly, and use it to represent trees and graphs
succinctly. The problem of succinctly represent-
ing balanced parentheses was initially proposed
by Jacobson [6] in 1989, when he proposed
succinct data structures, i.e., data structures that
occupy space close to the information-theoretic
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lower bound to represent them, while supporting
efficient navigational operations. Succinct data
structures provide solutions to manipulate large
data in modern applications. The work of Munro
and Raman [8] provides an optimal solution to the
problem of balanced parentheses representation
under the word RAM model, based on which they
design succinct trees and graphs.

Balanced Parentheses
Given a balanced parenthesis sequence of length
2n, where there are n opening parentheses and
n closing parentheses, consider the following
operations:

• findclose(i) (findopen(i)), the match-
ing closing (opening) parenthesis for the
opening (closing) parenthesis at position i;

• excess(i), the number of opening parenthe-
ses minus the number of closing parentheses
in the sequence up to (and including)
position i;

• enclose(i), the closest enclosing (matching
parenthesis) pair of a given matching
parenthesis pair whose opening parenthesis
is at position i.

Trees
There are essentially two forms of trees. An
ordinal tree is a rooted tree in which the children
of a node are ordered and specified by their ranks,
while in a cardinal tree of degree k, each child
of a node is identified by a unique number from
the set f1; 2; � � � ; kg. An binary tree is a cardinal
tree of degree 2. The information-theoretic lower
bound of representing an ordinal tree or binary
tree of n nodes is 2n � o.n/ bits, as there are�

2n
n

�
=.nC 1/ different ordinal trees or binary

trees.
Consider the following operations on ordinal

trees (a node is referred to by its preorder num-
ber):

• child(x, i), the ith child of node x for i � 1;
• child_rank(x), the number of left siblings

of node x;

• depth(x), the depth of x, i.e., the number of
edges in the rooted path to node x;

• parent(x), the parent of node x;
• nbdesc(x), the number of descendants of

node x;
• height(x), the height of the subtree rooted at

node x;
• LCA(x, y), the lowest common ancestor of

node x and node y.

On binary trees, the operations parent,
nbdesc and the following operations are
considered:

• leftchild(x) (rightchild(x)), the left
(right) child of node x.

Graphs
Consider an undirected graph G of n vertices
and m edges. Bernhart and Kainen [1] introduced
the concept of page book embedding. A k-book
embedding of a graph is a topological embedding
of it in a book of k pages that specifies the or-
dering of the vertices along the spine, and carries
each edge into the interior of one page, such
that the edges on a given page do not intersect.
Thus, a graph with one page is an outerplanar
graph. The pagenumber or book thickness [1] of
a graph is the minimum number of pages that
the graph can be embedded in. A very com-
mon type of graphs are planar graphs, and any
planar graph can be embedded in at most four
pages [15]. Consider the following operations on
graphs:

• adjacency(x, y), whether vertices x and y
are adjacent;

• degree(x), the degree of vertex x;
• neighbors(x), the neighbors of vertex x.

Key Results

All the results cited are under the word RAM
model with word size �.lg n/ bits (lg n denotes
dlog2 ne), where n is the size of the problem
considered.

Theorem 1 ([8]) A sequence of balanced paren-
theses of length 2n can be represented using
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Succinct Data Structures for Parentheses Matching,
Fig. 1 An example of the balanced parenthesis sequence
of a given ordinal tree

2nC o.n/ bits to support the operations find-
close, findopen, excess and enclose in constant
time.

There is a polymorphism between a balanced
parenthesis sequence and an ordinal tree: when
performing a depth-first traversal of the tree,
output an opening parenthesis each time a node
is visited, and a closing parenthesis immediately
after all the descendants of a node are visited
(see Fig. 1 for an example). The work of Munro
and Raman proposes a succinct representation
of ordinal trees using 2nC o.n/ bits to support
depth, parent and nbdesc in constant time,
and child(x, i) in O(i) time. Lu and Yeh have
further extended this representation to support
child, child_rank, height and LCA in
constant time.

Theorem 2 ([8, 7]) An ordinal tree of n nodes
can be represented using 2nC o.n/ bits to
support the operations child, child_rank, parent,
depth, nbdesc, height and LCA in constant
time.

A similar approach can be used to represent
binary trees:

Theorem 3 ([8]) A binary tree of n nodes can
be represented using 2nC o.n/ bits to support
the operations leftchild, rightchild, parent and
nbdesc in constant time.

Finally, balanced parentheses can be used to rep-
resent graphs. To represent a one-page graph, the

work of Munro and Raman proposes to list the
vertices from left to right along the spine, and
each node is represented by a pair of parentheses,
followed by zero or more closing parentheses and
then zero or more opening parentheses, where
the number of closing (or opening) parentheses is
equal to the number of adjacent vertices to its left
(or right) along the spine (see Fig. 2 for an exam-
ple). This representation can be applied to each
page to represent a graph with pagenumber k.

Theorem 4 ([8]) An outerplanar graph of n
vertices and m edges can be represented us-
ing 2nC 2mC o.nCm/ bits to support opera-
tions adjacency and degree in constant time, and
neighbors(x) in time proportional to the degree
of x.

Theorem 5 ([8]) A graph of n vertices and m
edges with pagenumber k can be represented
using 2kn C 2m C o.nk C m/ bits to support
operations adjacency and degree in O(k) time,
and neighbors(x) in O.d.x/Ck/ time where d(x)
is the degree of x. In particular, a planar graph
of n vertices and m nodes can be represented
using 8n C 2m C o.n/ bits to support opera-
tions adjacency and degree in constant time, and
neighbors(x) in O.d.x// time where d(x) is the
degree of x.

Applications

Succinct Representation of Suffix Trees
As a result of the growth of the textual data in
databases and on the World Wide Web, and also
applications in bioinformatics, various indexing
techniques have been developed to facilitate pat-
tern searching. Suffix trees [14] are a popular
type of text indexes. A suffix tree is constructed
over the suffixes of the text as a tree-based data
structure, so that queries can be performed by
searching the suffixes of the text. It takes O(m)
time to use a suffix tree to check whether an
arbitrary pattern P of length m is a substring of
a given text T of length n, and to count the number
of the occurrences, occ, of P in T. O(occ) addi-
tional time is required to list all the occurrences
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Succinct Data Structures for Parentheses Matching, Fig. 2 An example of the balanced parenthesis sequence of
a graph with one page

of P in T. However, a standard representation of
a suffix tree requires somewhere between 4n lg n

and 6n lg n bits, which is impractical for many
applications.

By reducing the space cost of representing
the tree structure of a suffix tree (using the
work of Munro and Raman), Munro, Raman
and Rao [9] have designed space-efficient suffix
trees. Given a string of n characters over a fixed
alphabet, they can represent a suffix tree using
n lg nCO.n/ bits to support the search of
a pattern in O.mC occ/ time. To achieve this
result, they have also extended the work of Munro
and Raman to support various operations to
retrieve the leaves of a given subtree in an ordinal
tree. Based on similar ideas and by applying
compressed suffix arrays [5], Sadakane [13] has
proposed a different trade-off; his compressed
suffix tree occupies O.n lg �/ bits, where ¢ is
the size of the alphabet, and can support any
algorithm on a suffix tree with a slight slowdown
of a factor of polylog(n).

Succinct Representation of Functions
Munro and Rao [11] have considered the problem
of succinctly representing a given function,
f W Œn�! Œn�, to support the computation
of f k.i/ for an arbitrary integer k. The
straightforward representation of a function is
to store the sequence f(i), for i D 0; 1; : : : ; n � 1.
This takes n lg n bits, which is optimal. However,
the computation of f k.i/ takes �.k/ time even
in the easier case when k is positive. To address
this problem, Munro and Rao [11] first extends
the representation of balanced parenthesis to
support the next_excess(i, k) operator, which
returns the minimum j such that j > i and

excess(j / D k. They further use this operator
to support the level_anc(x, i) operator on
succinct ordinal trees, which returns the ith
ancestor of node x for i � 0 (given a node x
at depth d, its ith ancestor is the ancestor of x
at depth d � i ). Then, using succinct ordinal
trees with the support for level_anc, they
propose a succinct representation of functions
using .1C �/n lg nCO.1/ bits for any fixed
positive constant –, to support f k.i/ in constant
time when k > 0, and f k.i/ in O.1C jf k.i/j/

time when k < 0.

Multiple Parentheses and Graphs
Chuang et al. [3] have proposed to succinctly
represent multiple parentheses, which is a string
of O(1) types of parentheses that may be
unbalanced. They have extended the operations
on balanced parentheses to multiple parentheses
and designed a succinct representation. Based on
the properties of canonical orderings for planar
graphs, they have used multiple parentheses and
the succinct ordinal trees to represent planar
graphs. One of their main results is a succinct
representation of planar graphs of n vertices and
m edges in 2mC .5C �/nC o.mC n/ bits, for
any constant � > 0, to support the operations
supported on planar graphs in Theorem 5 in
asymptotically the same amount of time. Chiang
et al. [2] have further reduced the space cost
to 2mC 3nC o.mC n/ bits. In their paper,
they have also shown how to support the
operation wrapped(i), which returns the number
of matching parenthesis pairs whose closest
enclosing (matching parenthesis) pair is the pair
whose opening parenthesis is at position i, in
constant time on balanced parentheses. They
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have used it to show how to support the operation
degree(x), which returns the degree of node x
(i.e., the number of its children), in constant time
on succinct ordinal trees.

Open Problems

One open research area is to support more op-
erations on succinct trees. For example, it is not
known how to support the operation to convert
a given node’s rank in a preorder traversal into its
rank in a level-order traversal.

Another open research area is to further reduce
the space cost of succinct planar graphs. It is not
known whether it is possible to further improve
the encoding of Chiang et al. [2].

A third direction for future work is to design
succinct representations of dynamic trees and
graphs. There have been some preliminary results
by Munro et al. [10] on succinctly representing
dynamic binary trees, which have been further
improved by Raman and Rao [12]. It may be
possible to further improve these results, and
there are other related dynamic data structures
that do not have succinct representations.

Experimental Results

Geary et al. [4] have engineered the implementa-
tion of succinct ordinal trees based on balanced
parentheses. They have performed experiments
on large XML trees. Their implementation uses
orders of magnitude less space than the standard
pointed-based representation, while supporting
tree traversal operations with only a slight slow-
down.
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Problem Definition

The suffix array [4, 15] is the lexicographically
sorted array of all the suffixes of a string. It is a
popular text index structure with many applica-
tions. The subject of this entry is algorithms that
construct the suffix array.

More precisely, the input to a suffix array
construction algorithm is a text string T D

T Œ0 : : : n/ D t0t1 : : : tn�1, i.e., a sequence
of n characters from an alphabet ˙ . For
i 2 Œ0 : : : n�, let Si denote the suffix T Œi : : : n/ D

ti tiC1 : : : tn�1. The output is the suffix array
SAŒ0 : : : n� of T , a permutation of Œ0 : : : n�

satisfying SSAŒ0� < SSAŒ1� < � � � < SSAŒn�,
where < denotes the lexicographical order of
strings.

Two specific models for the alphabet ˙

are considered. An ordered alphabet is an
arbitrary ordered set with constant time character
comparisons. An integer alphabet is the integer
range Œ1 : : : �� for � D nO.1/.

Many applications require that the suffix array
is augmented with additional information, most
commonly with the longest common prefix array
LCP Œ1 : : : n�. An entry LCP Œi� of the LCP array
is the length of the longest common prefix of the
suffixes SSAŒi� and SSAŒi�1�. The enhanced suffix

array [1] adds two more arrays to obtain a full
range of text index functionalities.

There are other important text indexes, most
notably suffix trees and compressed text indexes,
covered in separate entries. Each of these indexes
has their own construction algorithms, but they
can also be constructed efficiently from each
other. However, in this entry, the focus is on direct
suffix array construction algorithms that do not
rely on other text indexes.

Key Results

The naive approach to suffix array construction is
to use a general sorting algorithm or an algorithm
for sorting strings. However, any such algorithm
has a worst-case time complexity ˝.n2/ because
the total length of the suffixes is ˝.n2/.

The first efficient algorithms were based on the
doubling technique of Karp, Miller, and Rosen-
berg [10]. The idea is to assign a rank to all
substrings whose length is a power of two. The
rank tells the lexicographic order of the substring
among substrings of the same length. Given the
ranks for substrings of length h, the ranks for
substrings of length 2h can be computed using
a radix sort step in linear time (doubling). The
technique was first applied to suffix array con-
struction by Manber and Myers [15]. The best
practical algorithm based on the technique is by
Larsson and Sadakane [14].

Theorem 1 (Manber and Myers [15]; Larsson
and Sadakane [14]) The suffix array can be
constructed in O.n log n/ time, which is optimal
for the ordered alphabet.

Faster algorithms for the integer alphabet are
based on a different technique, recursion. The
basic procedure is as follows.

1. Sort a subset of the suffixes. This is done
by constructing a shorter string, whose suffix
array gives the order of the desired subset. The
suffix array of the shorter string is constructed
by recursion.

2. Extend the subset order to full order.
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The technique first appeared in suffix tree con-
struction [3], but 2003 saw the independent and
simultaneous publication of three linear time suf-
fix array construction algorithms based on the
approach but not using suffix trees. Each of the
three algorithms uses a different subset of suf-
fixes requiring a different implementation of the
second step.

Theorem 2 (Kärkkäinen, Sanders, and
Burkhardt [8]; Kim et al. [12]; Ko and
Aluru [13]) The suffix array can be constructed
in the optimal linear time for the integer alphabet.

We will describe the algorithm of Kärkkäinen,
Sanders, and Burkhardt [8] called DC3 in more
detail. For k 2 f0; 1; 2g, let Rk be the set of suf-
fixes Si such that i mod 3 D k. Let R12 D R1[

R2 and define R01 and R02 symmetrically. For
example, R12 D fS1; S2; S4; S5; S7; S8; : : : g.
The set R12 is the subset of suffixes sorted first.
For Si 2 R12, let NSi be the lexicographical
rank of Si in R12. Given those lexicographical
ranks, we can compare any two suffixes Si and
Sj in constant time using one of the following
ways:

1. If Si ; Sj 2 R12, compare the ranks NSi and NSj .
2. If Si ; Sj 2 R01, compare the pairs hti ; NSiC1i

and htj ; NSj C1i.
3. If Si ; Sj 2 R02, compare the triples
hti ; tiC1; NSiC2i and htj ; tj C1; NSj C2i.

Furthermore, we can radix sort R0 in linear time
by using hti ; NSiC1i to represent the suffix Si 2

R0. After this, we can merge R0 and R12, which
takes linear time since we can compare suffixes
in constant time.

We still need to describe how to sort R12.
Let ti tiC1tiC2 be the lexicographical rank of
the substring ti tiC1tiC2 among all substrings of
length three. Let

T12 D t1t2t3 t4t5t6 t7t8t9 : : :

t2t3t4 t5t6t7 t8t9t10 : : : :

For example if T D yabbadabbado, we have

T12 D abb ada bba do$ bba dab bad o$$

D 12575648 ;

where $ is a special padding symbol that does not
appear in the text and is considered smaller than
any normal character. Clearly, sorting the suffixes
of T12 is equivalent to sorting the set R12. The
suffixes of T12 are sorted by a recursive call to
the algorithm itself. Since the recursive call is for
a text of length at most d2n=3e and everything
outside the recursive call can be done in linear
time, the total time complexity of DC3 is O.n/.

The above algorithms and many other suf-
fix array construction algorithms are surveyed
in [18]. Worth mentioning among the more recent
results are the linear time algorithms of Nong,
Zhang, and Chan [17].

The ˝.n log n/ lower bound for the ordered
alphabet mentioned in Theorem 1 comes from
the sorting complexity of characters, since the
initial characters of the sorted suffixes are the text
characters in sorted order. Theorem 2 allows a
generalization of this result. For any alphabet, one
can first sort the characters of T , remove dupli-
cates, assign a rank to each character, and con-
struct a new string T 0 over the alphabet Œ1 : : : n�

by replacing the characters of T with their ranks.
The suffix array of T 0 is exactly the same as
the suffix array of T . Optimal algorithms for the
integer alphabet then give the following result.

Theorem 3 For any alphabet, the complexity of
suffix array construction is the same as the com-
plexity of sorting the characters of the string.

The result extends to the related arrays.

Theorem 4 (Kasai et al. [11]; Abouelhoda,
Kurtz, and Ohlebusch [1]) The LCP array and
the enhanced suffix array can be computed in
linear time given the suffix array.

One of the main advantages of suffix
arrays over suffix trees is their smaller space
requirement (by a constant factor), and a
significant effort has been spent making
construction algorithms space efficient, too. The
best algorithms need very little extra space.
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Theorem 5 (Kärkkäinen, Sanders, and
Burkhardt [8]; Nong [16]) For any v D

O.n2=3/, the suffix array can be constructed in
O.n.v C log n// time and O.n=

p
v/ extra space

for the ordered alphabet and in O.nv/ time and
O.n=

p
v/ extra space or O.n/ time and O.�/

extra space for the integer alphabet, where the
extra space is the space needed in addition to
the input (the string T ) and the output (the suffix
array).

In the algorithm DC3 described above, all
steps can be performed by sorting, prefix sums
(assigning lexicographical ranks) and localized
computation. This makes it straightforward to
adapt to several parallel and hierarchical memory
models of computation [8] including the fol-
lowing result for the standard external memory
model.

Theorem 6 (Kärkkäinen, Sanders, and
Burkhardt [8]) The suffix array can be
constructed in the optimal O.sort.n// I/Os in the
standard external memory model, where sort.n/

is the I/O complexity of sorting n elements.

The above algorithm can be modified to com-
pute the LCP array too in the same I/O complex-
ity [2, 7].

Applications

The suffix array is a simple and powerful text in-
dex structure with numerous applications; see [1]
and Cross-References. The practical construction
of many other text indexes usually starts with
the suffix array construction. In particular, the
Burrows–Wheeler transform, which is an im-
portant technique for text compression and the
basis of many compressed text indexes, is easily
computed from the suffix array.

Open Problems

Theoretically, the suffix array construction prob-
lem is essentially solved. The development of
ever more efficient practical algorithms is still

going on particularly for external memory and
parallel computation. There is currently no ex-
ternal memory algorithm for computing the LCP
array from the suffix array in O.sort.n// I/Os
other than as a side effect of suffix array construc-
tion [6].

Experimental Results

Many papers on suffix array construction contain
experimental results, but they are usually either
out of date (e.g., [18]) or limited in scope
(e.g., [16]). The most comprehensive comparison
of algorithms is at https://code.google.com/
p/libdivsufsort/wiki/SACA_Benchmarks. The
best practical algorithms for large data are
divsufsort, which is an O.n log n/ time
algorithm combining several techniques, and
SAIS, which is an implementation of the linear
time algorithm by Gong, Zhang, and Chan [17]
(see below for URLs to code). The comparison
and the fastest implementation are by the same
person, Yuta Mori, but the implementations are
widely used and there are no substantial claims
for other, faster algorithms.

There are also experiments for suffix array
construction in external memory [2, 5] and for
LCP array construction [2, 6, 9].

URLs to Code and Data Sets

The input to a suffix array construction algorithm
is simply a text, so an abundance of data exists.
Links to many text collections are provided
at https://code.google.com/p/libdivsufsort/wiki/
SACA_Benchmarks. Worth mentioning is also
the Pizza&Chili site with its standard text corpus
http://pizzachili.dcc.uchile.cl/texts.html and the
repetitive text corpus http://pizzachili.dcc.uchile.
cl/repcorpus.html.

Notable implementations of suffix array
construction algorithms are available at https://
code.google.com/p/libdivsufsort/, at https://sites.
google.com/site/yuta256/sais, at http://panthema.
net/2012/1119-eSAIS-Inducing-Suffix-and-LCP
-Arrays-in-External-Memory/ [2], and at https://

https://code.google.com/p/libdivsufsort/wiki/SACA_Benchmarks
https://code.google.com/p/libdivsufsort/wiki/SACA_Benchmarks
https://code.google.com/p/libdivsufsort/wiki/SACA_Benchmarks
https://code.google.com/p/libdivsufsort/wiki/SACA_Benchmarks
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
https://code.google.com/p/libdivsufsort/
https://code.google.com/p/libdivsufsort/
https://sites.google.com/site/yuta256/sais
https://sites.google.com/site/yuta256/sais
http://panthema.net/2012/1119-eSAIS-Inducing-Suffix-and-LCP-Arrays-in-External-Memory/
https://www.cs.helsinki.fi/group/pads/SAscan.html
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www.cs.helsinki.fi/group/pads/SAscan.html [5].
The latter two work in external memory and
provide (links to) LCP array construction too.
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Problem Definition
The suffix tree is perhaps the best-known and
most-studied data structure for string indexing
with applications in many fields of sequence
analysis. After its invention in the early 1970s,
several approaches for the efficient construction
of the suffix tree of a string have been developed
for various models of computation. The most
prominent of those that construct the suffix tree
in main memory are summarized in this entry.

Notations
Given an alphabet †, a trie over † is a rooted
tree whose edges are labeled with strings over
† such that no two labels of edges leaving the
same vertex start with the same symbol. A trie
is compacted if all its internal vertices, except
possibly the root, are branching. Given a finite
string S 2 †n, the suffix tree of S , T .S/, is
the compacted trie over † such that the concate-
nations of the edge labels along the paths from
the root to the leaves are the suffixes of S . An
example is given in Fig. 1.

The concatenation of the edge labels from the
root to a vertex v of T .S/ is called the path-
label of v, P.v/. For example, the path label of

Suffix Tree Construction, Fig. 1 The suffix tree for
the string S D MAMMAMIA. Dashed arrows denote
suffix links that are employed by all efficient suffix tree
construction algorithms

the vertex indicated by the asterisk in Fig. 1 is
P./ D MAM.

Constraints
The time complexity of constructing the suffix
tree of a string S of length n depends on the
size of the underlying alphabet †. It may be
constant, it may be the alphabet of integers † D

f1; 2; : : : ; ng, or it may be an arbitrary finite set
whose elements can be compared in constant
time. Note that the latter case reduces to the pre-
vious one if one maps the symbols of the alphabet
to the set f1; : : : ; ng, though at the additional cost
of sorting †.

Problem 1 (suffix tree construction)

INPUT: A finite string S of length n over an
alphabet †.

OUTPUT: The suffix tree T .S/.

If one assumes that the outgoing edges at
each vertex are lexicographically sorted, which is
usually the case, the suffix tree allows retrieving
the sorted order of S 0s characters in linear time.
Therefore, suffix tree construction inherits the
lower bounds from the problem complexity of
sorting: �.n log n/ in the general alphabet case
and �.n/ for integer alphabets.

Key Results

Theorem 1 The suffix tree of a string of length
n can be represented in O.n log n/ bits of space.

This is easy to see since the number of leaves
of T .S/ is at most n, and so is the number of
internal vertices that, by definition, are all branch-
ing, as well as the number of edges. In order to
see that each edge label can be stored in O.log n/

bits of space, note that an edge label is always
a substring of S . Hence it can be represented by
a pair .l; r/ consisting of left pointer l and right
pointer r , if the label is SŒl; r�.

Note that this space bound is not optimal since
there are j†jn different strings and hence suffix
trees, while nlog n bits would allow to represent
n! different entities.

Theorem 2 Suffix trees can be constructed in
optimal time, in particular:
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1. For constant-size alphabet, the suffix tree
T .S/ of a string S of length n can be
constructed in O.n/ time [11–13]. For general
alphabet, these algorithms require O.n log n/

time.
2. For integer alphabet, the suffix tree of S can

be constructed in O.n/ time [4, 9].

Generally, there is a natural strategy to construct a
suffix tree: Iteratively all suffixes are inserted into
an initially empty structure. Such a strategy will
immediately lead to a linear-time construction al-
gorithm if each suffix can be inserted in constant
time. Finding the correct position where to insert
a suffix, however, is the main difficulty of suffix
tree construction.

The first solution for this problem was given
by Weiner in his seminal 1973 paper [13]. His
algorithm inserts the suffixes from shortest to
longest, and the insertion point is found in amor-
tized constant time for constant-size alphabet,
using rather a complicated amount of additional
data structures. A simplified version of the algo-
rithm was presented by Chen and Seiferas [3].
They give a cleaner presentation of the three
types of links that are required in order to find
the insertion points of suffixes efficiently, and
their complexity proof is easier to follow. Since
the suffix tree is constructed while reading the
text from right to left, these two algorithms are
sometimes called anti-online constructions.

A different algorithm was given in 1976 by
McCreight [11]. In this algorithm the suffixes
are inserted into the growing tree from longest
to shortest. This simplifies the update procedure,
and the additional data structure is limited to just
one type of link: an internal vertex v with path
label P.v/ D aw for some symbol a 2 †

and string w 2 † � has a suffix link to the
vertex u with path label P.u/ D w. In Fig. 1,
suffix links are shown as dashed arrows. They
often connect vertices above the insertion points
of consecutively inserted suffixes, like the vertex
with path-label “M” and the root, when inserting
suffixes “MAMIA” and “AMIA” in the example
of Fig. 1. This property allows reaching the next
insertion point without having to search for it
from the root of the tree, thus ensuring amortized

constant time per suffix insertion. Note that since
McCreight’s algorithm treats the suffixes from
longest to shortest and the intermediate structures
are not suffix trees, the algorithm is not an online
algorithm.

Another linear-time algorithm for constant-
size alphabet is the online construction by Ukko-
nen [12]. It reads the text from left to right and
updates the suffix tree in amortized constant time
per added symbol. Again, the algorithm uses
suffix links in order to quickly find the insertion
points for the suffixes to be inserted. Moreover,
since during a single update the edge labels of
all leaf edges need to be extended by the new
symbol, it requires a trick to extend all these
labels in constant time: all the right pointers of the
leaf edges refer to the same end of string value,
which is just incremented.

An even stronger concept than online
construction is real-time construction, where
the worst-case (instead of amortized) time per
symbol is considered. Amir et al. [1] present
for general alphabet a suffix tree construction
algorithm that requires O.log n/ worst-case
update time per every single input symbol when
the text is read from right to left, and thus requires
overall O.n log n/ time, like the other algorithms
for general alphabet mentioned so far. They
achieve this goal using a binary search tree on
the suffixes of the text, enhanced by additional
pointers representing the lexicographic and the
textual order of the suffixes, called Balanced
Indexing Structure. This tree can be constructed
in O.log n/ worst-case time per added symbol
and allows maintaining the suffix tree in the same
time bound.

The first linear-time suffix tree construction
algorithm for integer alphabets was given
by Farach-Colton [4]. It uses the so-called
odd-even technique that proceeds in three
steps:

1. Recursively compute the compacted trie of all
suffixes of S beginning at odd positions, called
the odd tree To.

2. From To compute the even tree Te , the com-
pacted trie of the suffixes beginning at even
positions in S .
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3. Merge To and Te into the whole suffix tree
T .S/.

The basic idea of the first step is to encode pairs
of characters as single characters. Since at most
n/2 different such characters can occur, these can
be radix-sorted and range-reduced to an alphabet
of size n/2. Thus, the string S of length n over the
integer alphabet † D f1; : : : ; ng is translated in
O.n/ time into a string S 0 of length n/2 over the
integer alphabet †0 D f1; : : : ; n=2g. Applying
the algorithm recursively to this string yields
the suffix tree of S 0. After translating the edge
labels from substrings of S 0 back to substrings
of S , some vertices may exist with outgoing
edges whose labels start with the same symbol,

because two distinct symbols from †0 may be
pairs with the same first symbol from †. In such
cases, by local modifications of edge labels or
adding additional vertices, the trie property can
be regained and the desired tree To is obtained.

In the second step, the odd tree To from the
first step is used to generate the lexicographically
sorted list (lex-ordering for short) of the suffixes
starting at odd positions. Radix-sorting these with
the characters at the preceding even positions as
keys yields a lex-ordering of the even suffixes
in linear time. Together with the longest com-
mon prefixes (lcps) of consecutive positions that
can be computed in linear time from To using
constant-time lowest common ancestor queries
and the identity

lcp.l2i ; l2j / D

(
lcp.l2iC1; l2j C1/C 1 if SŒ2i� D SŒ2j �

0 otherwise

this ordering allows reconstructing the even tree
Te in linear time.

In the third step, the two tries To and Te are
merged into the suffix tree T .S/. Conceptually,
this is a straightforward procedure: the two tries
are traversed in parallel, and every part that is
present in one or both of the two trees is inserted
in the common structure. However, this proce-
dure is simple only if edges are traversed charac-
ter by character such that common and differing
parts can be observed directly. Such a traversal
would, however, require O.n2/ time in the worst
case, impeding the desired overall linear running
time. Therefore, Farach-Colton suggests to use an
oracle that tells for an edge of To and an edge of
Te the length of their common prefix.

However, the suggested oracle may overes-
timate this length, and that is why sometimes
the tree generated must be corrected, called un-
merging. The full details of the oracle and the
unmerging procedure can be found in [4].

Overall, if T .n/ is the time it takes to build the
suffix tree of a string S 2 f1; : : : ; ngn, the first
step takes T .n=2/ C O.n/ time and the second
and third steps take O.n/ time; thus the whole

procedure takes O.n/ overall time on the RAM
model.

Another linear-time construction of suffix
trees for integer alphabets can be achieved
via linear-time construction of suffix arrays
together with longest common prefix tabulation,
as described by Kärkkäinen and Sanders in [9].

All previously mentioned algorithms construct
the suffix tree in main memory. However, since
the data structure may become very large in
practice, also methods for building the suffix tree
in secondary memory have been studied. Possibly
the simplest way is to first construct the suffix
array A and the LCP array on disk, as described in
the entry � Suffix Array Construction. When this
is done, it is only a small final step to construct
the suffix tree [4]. The idea is to construct the tree
in n phases from left to right, such that after phase
i the suffix tree of the strings A[1], . . . , AŒi� has
been constructed. Simultaneously, an external-
memory stack containing the nodes on the path
leading from the root to AŒi� is maintained. In
phase iC1, first, the leaf representing string AŒiC

1� is created, and then all nodes are popped
from the stack whose string length is strictly

http://dx.doi.org/10.1007/978-1-4939-2864-4_412
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greater than LCP[i ]. Next, a new node with string
depth LCP[i ] is created (unless it already exists)
whose parent is the top element of the stack and
whose children are the last popped element and
the new leaf. This new node and the new leaf
are finally pushed on the stack. Keeping the two
top pages of the stack in internal memory, the
algorithm executes a total of O.n/ pop and push
operations and therefore uses a total of O.n=B/

time, where B is the external memory block size.
Other more direct ways to construct the

suffix tree on disk have also been developed,
e.g., [14, 15].

In some applications the so-called generalized
suffix tree of several strings is used, a dictionary
obtained by constructing the suffix tree of the
concatenation of the contained strings. An im-
portant question that arises in this context is that
of dynamically updating the tree upon insertion
and deletion of strings from the dictionary. More
specifically, since edge labels are stored as pairs
of pointers into the original string, when deleting
a string from the dictionary, the corresponding
pointers may become invalid and need to be
updated. An algorithm to solve this problem in
amortized linear time was given by Fiala and
Greene [6], and a linear worst-case (and hence
real-time) algorithm was given by Ferragina et
al. [5].

Applications
The suffix tree supports many applications, most
of them in optimal time and space, including
exact string matching, set matching, longest com-
mon substring of two or more sequences, all-
pairs suffix-prefix matching, repeat finding, and
text compression. These and several other appli-
cations, many of them from bioinformatics, are
given in [2] and [8].

Open Problems
Some theoretical questions regarding the
expected size and branching structure of suffix
trees under more complicated than i. i. d.
sequence models are still open. Currently most
of the research has moved toward more space-
efficient data structures like suffix arrays and
compressed string indices or the Burrows-
Wheeler Transform.

Experimental Results
Suffix trees are infamous for their high memory
requirements. The practical space consumption
is between 9 and 11 times the size of the string
to be indexed, even in the most space-efficient
implementations known [7, 10]. Moreover, [7]
also shows that suboptimal algorithms like the
very simple quadratic-time write-only top-down
(WOTD) algorithm can outperform optimal algo-
rithms on many real-world instances in practice,
if carefully engineered.

URLs to Code and Data Sets
Several sequence analysis libraries contain code
for suffix tree construction. For example, Str-
mat (http://www.cs.ucdavis.edu/~gusfield/strmat.
html) by Gusfield et al. contains implementations
of Weiner’s and Ukkonen’s algorithm. An imple-
mentation of the WOTD algorithm by Kurtz can
be found at (http://bibiserv.techfak.uni-bielefeld.
de/wotd).
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Problem Definition

The suffix tree is the ubiquitous data structure of
combinatorial pattern matching myriad of situa-
tions – just to cite a few, searching, data compres-

sion and mining, and bioinformatics [7]. In these
applications, the large data sets now available in-
volve the use of numerous memory levels which
constitute the storage medium of modern PCs: L1
and L2 caches, internal memory, multiple disks,
and remote hosts over a network. The power of
this memory organization is that it may be able
to offer the expected access time of the fastest
level (i.e., cache) while keeping the average cost
per memory cell near the one of the cheapest
level (i.e., disk), provided that data are properly
cached and delivered to the requiring algorithms.
Neglecting questions pertaining to the cost of
memory references may even prevent the use
of algorithms on large sets of input data. Engi-
neering research is presently trying to improve
the input/output subsystem to reduce the impact
of these issues, but it is very well known [20]
that the improvements achievable by means of
a proper arrangement of data and a properly
structured algorithmic computation abundantly
surpass the best-expected technology advance-
ments.

The Model of Computation
In order to reason about algorithms and data
structures operating on hierarchical memories, it
is necessary to introduce a model of computation
that grasps the essence of real situations so that
algorithms that are good in the model are also
good in practice. The model considered here is
the external-memory model [20], which received
much attention because of its simplicity and rea-
sonable accuracy. A computer is abstracted to
consist of two memory levels: the internal mem-
ory of size M and the (unbounded) disk memory
which operates by reading/writing data in blocks
of size B (called disk pages). The performance of
algorithms is then evaluated by counting (a) the
number of disk accesses (I/Os), (b) the internal
running time (CPU time), and (c) the number
of disk pages occupied by the data structure or
used by the algorithm as its working space. This
simple model suggests, correctly, that a good
external-memory algorithm should exploit both
spatial locality and temporal locality. Of course,
“I/O” and “two-level view” refer to any two levels
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Suffix Tree Construction in Hierarchical Memory, Fig.
1 The suffix tree of S D ACACACCG on the left, and
its compact edge-encoding on the right. The endmarker #
is not shown. Node v spells out the string ACAC. Each

internal node stores the length of its associated string, and
each leaf stores the starting position of its corresponding
suffix

of the memory hierarchy with their parameters M

and B properly set.

Notation
Let SŒ1; n] be a string drawn from alphabet †,
and consider the notation: Si for the i th suffix of
string S , lcp.˛; ˇ/ for the longest common pre-
fix between the two strings ’ and “, and lca.u; v/

for the lowest common ancestor between two
nodes u and v in a tree.

The suffix tree of SŒ1; n], denoted hereafter by
TS , is a tree that stores all suffixes of S# in a
compact form, where # … † is a special character
(see Fig. 1). TS consists of n leaves, numbered
from 1 to n, and any root-to-leaf path spells out a
suffix of S#. The endmarker # guarantees that no
suffix is the prefix of another suffix in S#. Each
internal node has at least two children and each
edge is labeled with a nonempty substring of S .
No two edges out of a node can begin with the
same character, and sibling edges are ordered lex-
icographically according to that character. Edge
labels are encoded with pairs of integers – say
SŒx; y] is represented by the pair hx; yi. As a
result, all Θ.n2/ substrings of S can be repre-
sented in O.n/ optimal space by TS ’s structure
and edge encoding. Furthermore, the rightward
scan of the suffix-tree leaves gives the ordered
set of S ’s suffixes, also known as the suffix array
of S [13]. Notice that the case of a large string
collection Δ D fS1; S2; : : : ; Skg reduces to the

case of one long string S D S1#1S2#2 � � �S
k#k ,

where #i … † are special symbols.
Numerous algorithms are known that build

the suffix tree optimally in the RAM model (see
[3] and references therein). However, most of
them exhibit a marked absence of locality of
references and thus elicit many I/Os when the
size of the indexed string is too large to be
fit into the internal memory of the computer.
This is a serious problem because the slow
performance of these algorithms can prevent
the suffix tree being used even in medium-scale
applications. This encyclopedia’s entry surveys
algorithmic solutions that deal efficiently with
the construction of suffix trees over large string
collections by executing an optimal number
of I/Os. Since it is assumed that the edges
leaving a node in TS are lexicographically
sorted, sorting is an obvious lower bound for
building suffix trees (consider the suffix tree
of a permutation!). The presented algorithms
have sorting as their bottleneck, thus establishing
that the complexity of sorting and suffix tree
construction match.

Key Results

Designing a disk-efficient approach to suffix-tree
construction has found efficient solutions only in
the last few years [4]. The present section surveys
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DIVIDE-AND-CONQUER ALGORITHM
(1) Construct the string S �[j] = rank of 〈S [2j], S [2j + 1]〉, and recursively compute T s�.
(2) Derive from T s� the compacted trie T o of all suffixes of S  beginning at odd positions.
(3) Derive from T o the compacted trie T e of all suffixes of S beginning at even positions.
(4) Merge T o and Te into the whole suffix tree T s, as follows:
  (4.1) Overmerge T o and T e into the tree T M.
  (4.2) Partially unmerge T M to get T s.

Suffix Tree Construction in Hierarchical Memory, Fig. 2 The algorithm that builds the suffix tree directly

(1) Construct the suffix array AS and the array lcpS of the string S.
(2) Initially set TS as a single edge connecting the root to a leaf pointing to suffix AS[1].
(2)  For i = 2,..., n:
  (2.1) Create a new leaf  i that points to the suffix AS [i].
  (2.2) Walk up from   –1 until a node ui is met whose string-length xi is ≤ lcps [i].
  (2.3) If xi = lcps[i], leaf   i is attached to ui.
  (2.4) If xi < lcps[i], create node u�i with string-length xi, attach it to ui and leaf  i to u�i;

i

SUFFIXARRAY-BASED ALGORITHM

Suffix Tree Construction in Hierarchical Memory, Fig. 3 The algorithm that builds the suffix tree passing through
the suffix array

two theoretical approaches which achieve the
best (optimal!) I/O-bounds in the worst case;
the next section will discuss some practical
solutions.

The first algorithm is based on a Divide-and-
Conquer approach that allows us to reduce the
construction process to external-memory sorting
and few low-I/O primitives. It builds the suffix
tree TS by executing four (macro)steps, detailed
in Fig. 2. It is not difficult to implement the first
three steps in Sort.n/ D O. n

B
logM=B

n
B

/ I/Os
[20]. The last (merging) step is the most difficult
one and its I/O-complexity bounds the cost of the
overall approach. Farach-Colton et al. [3] propose
an elegant merge for To and Te: substep (4.1)
temporarily relaxes the requirement of getting TS

in one shot, and thus it blindly (over)merges the
paths of To and Te by comparing edges only via
their first characters; then substep (4.2) refixes
TM by detecting and undoing in an I/O-efficient
manner the (over)merged paths. Note that the
time and I/O-complexity of this algorithm follow
a nice recursive relation: T .n/ D T .n=2/ C

O.Sort.n//.

Theorem 1 (Farach-Colton et al. [5]) Given an
arbitrary string SŒ1; n�, its suffix tree can be
constructed in O.Sort.n// I/Os, O.n log n/ time
and using O.n=B/ disk pages.

The second algorithm [10] is deceptively sim-
ple, elegant, and I/O optimal and applies suc-
cessfully to the construction of other indexing
data structures, like the string Btree [5]. The key
idea is to derive TS from the suffix array AS

and from the lcp array, which stores the longest-
common-prefix length of adjacent suffixes in AS .
Its pseudocode is given in Fig. 3. Note that step
(1) may deploy any external-memory algorithm
for suffix array construction: used here is the
elegant and optimal Skew algorithm of [9] which
takes O.Sort.n// I/Os. Step (2) takes a total of
O.n=B/ I/Os by using a stack that stores the
nodes on the current rightmost path of TS in
reversed order, i.e., leaf `i is on top. Walking
upward, splitting edges or attaching nodes in TS

boils down to popping/pushing nodes from this
stack. As a result, the time and I/O-complexity
of this algorithm follow the recursive relation:
T .n/ D T .2n=3/CO.Sort.n//.
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Theorem 2 (Kärkkäinen and Sanders 2003,
see [10]) Given an arbitrary string SŒ1; n], its
suffix tree can be constructed in O.Sort.n// I/Os,
O.n log n/ time and using O.n=B/ disk pages.

It is not evident which one of these two algo-
rithms is better in practice [10]. The first one ex-
ploits a recursion with parameter 1/2 but incurs a
large space overhead because of the management
of the tree topology; the second one is more space
efficient and easier to implement, but exploits a
recursion with parameter 2/3.

Applications

The reader is referred to [4] and [7] for a long list
of applications of large suffix trees and to [6, 18]
for practical implementations.

Open Problems

The recent theoretical and practical achievements
mean the idea that “suffix trees are not practical
except when the text size to handle is so small
that the suffix tree fits in internal memory” is
no longer the case [15]. Given a suffix tree, it
is known now (see, e.g., [4, 11]) how to map
it onto a disk-memory system in order to al-
low I/O-efficient traversals for subsequent pat-
tern searches. A fortiori, suffix-tree storage, and
construction are challenging problems that need
further investigation.

Space optimization is closely related to time
optimization in a disk-memory system, so the
design of succinct suffix-tree implementations is
a key issue in order to scale to gigabytes of
data in reasonable time. This topic is an active
area of theoretical research with many fascinating
solutions (see, e.g., [16] and the many papers that
followed it), which need further exploration in the
practical setting.

It is theoretically challenging to design a
suffix-tree construction algorithm that takes
optimal I/Os and space proportional to the
entropy of the indexed string. The more
compressible is the string, the lighter should

be the space requirement of this algorithm. Some
results are known [8, 11, 12], but both issues of
compression and I/Os have been tackled jointly
only recently [6], but more results are foreseen.

Experimental Results

The interest in building large suffix trees arose in
the last few years because of the recent advances
in sequencing technology, which have allowed
the rapid accumulation of DNA and protein data.
Some recent papers [1, 2, 9, 17, 18] proposed
new practical algorithms that allow us to scale
to Gbps/hours. Surprisingly enough, these algo-
rithms are based on disk-inefficient schemes, but
they properly select the insertion order of the
suffixes and exploit carefully the internal mem-
ory as a buffer, so that their performance does
not suffers significantly from the theoretical I/O-
bottleneck.

In [9] the authors propose an incremental al-
gorithm, called PrePar, which performs multiple
passes over the string S and constructs the suffix
tree for a subrange of suffixes at each pass. For
a user-defined parameter q, a suffix subrange is
defined as the set of suffixes prefixed by the same
q-long string. Suffix subranges induce subtrees
of TS which can thus be built independently
and evicted from internal memory as they are
completed. The experiments reported in [9] suc-
cessfully index 286 Mbps using 2 Gb internal
memory.

In [2] the authors propose an improved version
of PrePar, called DynaCluster, that deploys a
dynamic technique to identify suffix subranges.
Unlike Prepar, DynaCluster does not scan over
and over the string S , but it starts from the q-
based subranges and then splits them recursively
in a DFS-manner if their size is larger than a fixed
threshold £. Splitting is implemented by looking
at the next q characters of the suffixes in the sub-
range. This clustering and lazy-DFS visit of TS

significantly reduce the number of I/Os incurred
by the frequent edge-splitting operations that oc-
cur during the suffix-tree construction process
and allow it to cope efficiently with skew data.
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As a result, DynaCluster constructs suffix trees
for 200 Mbps with only 16 Mb internal memory.

In [17] authors improved the space require-
ment and the buffering efficiency, thus being
able to construct a suffix tree of 3 Gbps in 30 h,
whereas [1] improved the I/O behavior of RAM-
algorithms for online suffix-tree construction, by
devising a novel low-overhead buffering policy.
More recently [14] introduced a new technique,
called Elastic Range (ERA), which partitions
the tree construction process horizontally and
vertically and minimizes I/Os by dynamically
adjusting the horizontal partitions independently
for each vertical partition, based on the evolving
shape of the tree and the available internal mem-
ory. This technique is specialized to work also
for shared-memory and shared-disk multi-core
systems and for parallel shared-nothing architec-
tures. ERA indexes the entire human genome in
19 min on a commodity desktop PC. For com-
parison, the fastest existing method needs 15 min
using 1024 CPUs on an IBM BluGene supercom-
puter.

Finally [19] observed that increasing memory
sizes of current commodity PCs and servers
enhance the impact of in-memory tasks on
performance. So it is imperative nowadays
to reassess the performance of in-memory
algorithms and to propose new algorithms
that incorporate the characteristics of modern
hardware architectures, such as multilevel
memory hierarchy and chip multiprocessors
(CMPs). Starting from these premises the
authors proposed cache-conscious suffix-tree
construction algorithms that are tailored to CMP
architectures, using novel sample-based cache-
partitioning techniques that improved cache
performance and exploited on-chip parallelism
of CMPs thus achieving satisfactory speedups
with increasing number of cores.
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The suffix tree is one of the oldest full-text
inverted indexes and one of the most persistent
subjects of study in the theory of algorithms. With
extensions and refinements, including succinct
and compressed variants that provide some of its
expressive power in smaller space, it constitutes
a fundamental conceptual tool in the design of
string algorithms. The companion structure rep-
resented by the suffix array is as powerful as the
suffix tree in many applications, but it requires
significantly less space. The uses of these data
structures are so numerous that it is difficult to ac-

count for all of them, while even more are being
discovered. Salient applications include search-
ing for a pattern in a text in time proportional
to the size of the pattern, various computations
on regularities such as repeats and palindromes
within a text, statistical tables of substring occur-
rences, data compression by textual substitution,
as well as ancillary yet fundamental tasks in
string searching with errors, and more.

Problem Definition

It is well known that searching among n keys
in an unsorted table takes optimal linear time.
When multiple searches are expected, however, it
becomes worth to sort the table once and for all,
whereby each subsequent search will require only
logarithmic time. It is similarly possible to build
an inverted index on a long text so that the search
for any query string will take time proportional to
the length of the query rather than that of the text.
It turns out that the data structures built for this
purpose support many more applications, which
are the topic of this entry.

Formally, let T be a string of length n on
alphabet ˙ D Œ1 : : : ��, let T be its reverse, and
let # … ˙ be a shorthand for zero. To simplify
the exposition, we assume throughout that � is a
constant. The suffix tree STT D .?; V; E/ of T

is a tree rooted at node ?2 V with set of nodes
V and set of labeled edges E (Fig. 1, left). Edge
labels are pointers to substrings of T #: we denote
by `.e/, and equivalently by `.u; v/, the label of
edge e D .u; v/ 2 E, and we denote by `.v/

the string `.?; v1/ � `.v1; v2/ � � � � � `.vk�1; v/,
where ?; v1; v2; : : : ; vk�1; v is a path in STT .
We say that node v has string depth j`.v/j. Let
v 2 V be an internal node, and let w1; w2; : : : ; wk

be its children: then, 2 � k � � C 1, and
labels `.v; w1/, `.v; w2/, : : : , `.v; wk/ start with
distinct characters. The children of v are ordered
lexicographically according to the labels of edges
.v; w1/; .v; w2/; : : : ; .v; wk/. There is a bijection
between the leaves of STT and the suffixes of
T #, so every leaf is annotated with the starting
position of its corresponding suffix. Moreover,
if leaf v 2 V is associated with the suffix that
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Suffix Trees and Arrays, Fig. 1 Relationship between
the suffix tree, the suffix array (left), and the suffix-link
tree (right) of string T D AGAGCGAGAGCGCGC#. Thin
black lines, edges of STT ; thick gray lines, suffix links;
thin dashed lines, implicit Weiner links; thick black lines,
the subtree of STT induced by maximal repeats. Black

dots, nodes of STT ; large black dot, ?; white dots,
destinations of implicit Weiner links. Squares, leaves of
STT and cells of SAT ; numbers, starting position of
each suffix in T . For clarity, implicit Weiner links are not
overlaid to STT , and suffix links from the leaves of STT

are not drawn

starts at position i , then `.v/ D T Œi : : : n�#. Since
STT has exactly nC 1 leaves and every internal
node has at least two children, there are at most
n internal nodes; thus, STT takes O.n/ space.
We drop the subscript from ST whenever the
underlying string is clear from the context.

A substring W of T # is called right maximal
if both Wa and Wb occur in T , with fa; bg �

˙[f#g and a ¤ b. Clearly a substring W is right
maximal iff W D `.v/ for some v 2 V . More-
over, assume that `.v/ D aW for some v 2 V ,
a 2 ˙ , and W 2 ˙�. Since aW is right maximal,
string W is right maximal as well; therefore, there
is a node w 2 V with `.w/ D W . Thus, the set
of labels f`.v/ W v 2 V g enjoys the suffix closure
property, in the sense that if a string W belongs
to the set so does every one of its suffixes. We say
that there is a suffix link from v to w labeled by
a, and we write suffixLink.v/ D w. Clearly,
if v is a leaf, then suffixLink.v/ is either a
leaf or ?. The graph induced by V and by suffix
links is a trie rooted at ?: such trie is called the
suffix-link tree SLTT of string T (Fig. 1, right).
Inverting the direction of all suffix links yields
the so-called explicit Weiner links. Given a node
v and a symbol a 2 ˙ , it might happen that
string a`.v/ does occur in T but that it is not the

label of any node in V : all such left extensions
of nodes in V that end in the middle of an edge
of ST are called implicit Weiner links. A node in
V can have more than one outgoing Weiner link,
and all such Weiner links have different labels.
The number of suffix links (or, equivalently, of
explicit Weiner links) is upper-bounded by 2n�2,
and the same bound holds for the number of
implicit Weiner links: in some applications, we
thus assume that ST is augmented with unary
nodes that correspond to all the destinations of
implicit Weiner links. A substring W of T # is
called left maximal if both aW and bW occur in
T #, with fa; bg � ˙ [ f#g and a ¤ b, where
T # is interpreted as a circular string. A string that
is both left and right maximal is called maximal
repeat. The set of all left-maximal strings enjoys
the prefix closure property; therefore, there is a
bijection between the maximal repeats and the
nodes that lie in some paths of ST that start from
the root (Fig. 1, left).

The suffix array SAT Œ1 : : : n C 1� of string
T is the permutation of Œ1 : : : n C 1� such that
SAT Œk� D i iff suffix T Œi : : : n�# has position
k in the list of all suffixes of T # taken in lex-
icographic order. In this case, we say that suf-
fix T Œi : : : n�# has lexicographic rank k. Clearly
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SAT Œ1� D n C 1. The inverse suffix array of
string T is an array RT Œ1 : : : n C 1� such that
RT ŒSAŒi �� D i for all i 2 Œ1 : : : n C 1�. A
substring W of T # corresponds to a unique,
contiguous interval .iW ; jW / of SAT , which con-
tains all the suffixes of T # that are prefixed by
W . An additional structure that complements the
suffix array in many applications is the longest
common prefix array LCPT Œ2 : : : n C 1�, which
stores at position i the length of the longest
prefix shared by suffix T ŒSAT Œi � : : : n�# and by
suffix T ŒSAT Œi � 1� : : : n�#. Clearly LCPT Œk� �

jW j for all k 2 ŒiW C 1 : : : jW �. Again, we
drop the subscript from SA, R, and LCP when-
ever the underlying string is clear from the con-
text.

Suffix tree, suffix array, and LCP array are
strongly intertwined, and they have connections
to other substring recognizers, like the directed
acyclic word graph (DAWG) and its compact
variant (CDAWG). SA can be thought of as
the ordered set of leaves of ST, and ST can
be thought of as a search tree built on top of
SA (Fig. 1, left). The full ST, including suffix
links, can be built from SA and LCP with a
O.n/-time scan [1], and SA can be built from
ST with a O.n/ traversal. LCP itself can be
built from SA in O.n/ time [18]. A number
of ingenious algorithms have been proposed to
build ST and SA in linear time directly from
the string itself, even in the case of polynomial
alphabets: see [10, 17, 19, 20, 25, 32, 33] for a
sampler of such algorithms, and see [28] for a
detailed taxonomy. Some applications require to
maintain the suffix tree after edits to the under-
lying string: see [12, 13, 22] for a sampler of
such algorithms. Finally, see [21] for a compar-
ative study of space-efficient allocations of suffix
trees.

Key Results

Suffix trees are extremely versatile indexes
that allow one to solve a variety of string
matching and analysis problems [2, 9, 14].
We review few such problems, classifying the
corresponding algorithmic solutions based on

the way they walk on the suffix tree and on
the information they store in each node. This
classification exposes recurrent design patterns,
it highlights which parts of the suffix tree
are needed by each application, and it helps
decide which algorithms can be implemented
on top of more succinct but less powerful
representations of the suffix tree. The emphasis
of this section is on the power of different
traversals of the suffix tree, not necessarily on
the most efficient solution of each string analysis
problem.

Top-Down
Exact searching inside a string S of length n is
the most natural example of top-down traversal of
STS . Given a query string W , we can just match
its characters from the root of ST in O.jW j/

time to determine whether W occurs in S or not.
Since edges are labeled by substrings of S , the
search for W can end in the middle of an edge
.u; v/: we say that v is the locus of W in ST,
and we denote it by locus.W /. This approach
generalizes to a set of patterns W1; W2; : : : ; Wk

of total length m, by building the suffix tree of
the concatenation W D W1#1W2#2 � � � #k�1Wk

and by traversing STS and STW synchronously,
where i ¤ j implies #i ¤ #j and #i ¤ #.

The total number of (possibly overlapping)
occurrences of the label `.v/ of a node v of ST
equals the number of leaves in the subtree rooted
at v, which can be computed by a bottom-up
traversal of the tree. All strings that end in the
middle of edge .u; v/ start exactly at the same po-
sitions as `.v/ in S ; therefore, ST with frequency
annotation allows one to return the frequency in
S of any string W in O.jW j/ time. An important
consequence of this is the fact that the number
of distinct frequencies assumed by nonempty
substrings of S is at most jS j. It is also possible
to annotate every node of ST with the smallest
and largest leaf in its subtree, supporting O.jW j/-
time queries on the first and last occurrence in S

of any string W . More generally, traversing the
tree rooted at locus.W / in O.jW j C k/ time
allows one to print all the k starting positions of
W in S .
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Finding all the occurrences of W in S can also
be done in O.jW j log n/ time, by binary search-
ing SAS for strings W # and W $, where $ D � C

1: the result of these searches are, respectively,
the starting and ending position of the interval of
all suffixes prefixed by W . Knowing this interval
allows one to derive the number of occurrences of
W in S in constant time and to output the starting
positions of such occurrences in time linear in
the size of the output. Using simple properties of
LCPS , it is possible to reduce the time of binary
search to O.jW jC log n/, by reusing information
during the search [24].

The top-down navigation of a suitably anno-
tated suffix tree of S allows one also to compute
the Lempel-Ziv factorization of S [23]. Recall
that this factorization scans the string from left
to right, and it determines at every position i the
longest prefix of SŒi : : : n� that equals a prefix
of SŒj : : : n�, where j < i . Let W be such
longest prefix: the factorization outputs the tuple
.j; jW j; SŒi C jW j�/. Clearly we can find all
this information by annotating every node v of
ST with the index j of the smallest leaf in the
subtree rooted at v. Then, we can just match
suffix SŒi : : : n� from the root of ST until a
mismatch occurs or until we find a node with
index greater than i . More advanced solutions
embed the factorization in an online, one-pass
construction of ST [29].

Bottom-Up
A square is a string WW where W 2 ˙C is not
in the form Zk with k > 1 for any Z 2 ˙C.
Clearly, if a square WW occurs at position i in S ,
then there is a node v in STS such that j`.v/j �

jW j and such that leaves i and i C jW j belong
to the subtree rooted at v. The converse is also
true [4]. Thus, we can output all the repeats of
S by using the following bottom-up traversal of
ST. Assume without loss of generality that all
nodes in ST have exactly two children. Every
node u of ST builds its list of occurrences, sorted
by position in S , using the lists of its children.
Then, it scans its list once to find all pairs of
positions at distance at most j`.v/j in S that are
consecutive in the list: every such pair is a square,
and positions at distance at most j`.v/j that are

not consecutive induce squares that are implied
by the consecutive positions.

Let v and w be the two children of v, and
assume without loss of generality that the list
of occurrences of v is smaller than the list oc-
currences of w. Then, the list of node u can be
built by extracting all elements from the list of
node v and by inserting them into the list of
node w. As a consequence of such insertions,
the occurrences in the list of v move to a list
that is at least twice the size of the original
list: it follows that an occurrence can be pushed
into at most O.log n/ lists; therefore, the total
number of extractions and insertions is bounded
by O.n log n/. If the lists of occurrences are
implemented with balanced trees, the total time
to extract all squares from S is O.n log2 n/.
More advanced approaches manage to shave a
logarithm, reaching optimal O.n log n/ time [4],
and to reduce the complexity to O.nC �/, where
� is the size of the output [15, 31].

The algorithm for detecting squares can be
adapted to compute all the maximal palindromes
of S , by applying it to string T D S#S$.
Note that a variant of the same algorithm can
be implemented using the suffix array. First, it is
easy to see that a bottom-up, in-order traversal of
the internal nodes of STS can be simulated by
a linear scan of SAS and of LCPS , maintaining
a stack [1]. It follows that, for every interval
.iv; jv/ in SA of a node v in ST, we can just
check whether SAŒk� C j`.v/j 2 Œiv : : : jv� and
SŒSAŒk�C j`.v/j� ¤ SŒSAŒk�C 2j`.v/j�, for ev-
ery k 2 Œiv : : : jv�: in this case, the occurrence of
square `.v/ at position SAŒk� is called branching.
It is easy to see that all squares can be derived
from squares with branching occurrences [31].
Moreover, if the occurrence at position SAŒk�

is branching, then suffixes SAŒk� C j`.v/j and
SAŒk� C 2j`.v/j belong to distinct children of
node v in ST: we can thus discard the child
w of v with the largest number of leaves and
check for every k 2 Œi : : : j � that does not belong
to the interval of w whether SAŒk� � j`.v/j 2

Œiv : : : jv� and SŒSAŒk�� ¤ SŒSAŒk� C j`.v/j�.
The child of v with largest interval can be de-
termined in constant time during the simulated
bottom-up traversal of ST, and since the largest
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interval is always excluded, the algorithm runs in
O.n log n/ time.

Given a collection of k strings of total length
n, let S be the concatenation of all such strings,
each terminated by a distinct symbol that does
not belong to ˙ . A bottom-up navigation of STS

(called also the generalized suffix tree of the
collection) allows one to compute the length of
a longest string that occurs in x � k strings.
To solve this problem, we can annotate each leaf
v of ST with a bitvector which of length k,
such that whichŒi � D 1 iff the suffix associated
with v starts inside string i . Then, every node
of ST can be annotated with the same bitvector
via a bottom-up, O.nk/ traversal, in which we
compute the bitvector of a node by taking the
logical or of the bitvectors of its children. More
advanced algorithms solve this problem in O.n/

time [8]. As a byproduct, this annotation allows
one to answer queries on the number of strings
in the collection that contain a given substring,
a problem known as document counting. A ger-
mane problem is that of document listing, in
which we are given a pattern and we are asked
to return the set of all documents that contain one
or more copies of the pattern [26].

Top-Down and Suffix Links
Given two strings S and T , of length n and
m, respectively, the matching statistics array
MSS;T Œ1 : : : n� is such that MSS;T Œi � stores the
length of the longest string that starts at position
i in S and that occurs in T [33]. We can compute
MSS;T by scanning S from left to right, while
simultaneously issuing child and suffix-link
queries on STT . This results in a peculiar walk
on STT that consists of alternating sequences
of suffix-tree edges and of suffix links (we can
also compute MSS;T symmetrically, by scanning
S from right to left and by simultaneously
issuing parent and Weiner-link queries on
STT [27]).

Specifically, assume that we are at position i in
S , and let W D SŒi : : : i CMSS;T Œi � � 1�. Note
that W can end in the middle of an edge .u; v/ of
STT : let W D aXY where a 2 ˙ , X 2 ˙�,
aX D `.u/, and Y 2 ˙�. Moreover, let u0 D

suffixLink.u/ and v0 D suffixLink.v/.

Note that suffix links can project edge .u; v/ onto
a path u0; v1; v2; : : : ; vk ; v0, where vj 2 V for
j 2 Œ1 : : : k�. Since MSS;T ŒiC1� � MSS;T Œi ��1,
the first step to compute MSS;T Œi C 1� is to find
the position of XY in STT : we call this phase of
the algorithm the repositioning phase. To imple-
ment the repositioning phase, it suffices to take
the suffix link from u, to follow the outgoing edge
from u0 whose label starts by the first character of
Y , and then to iteratively jump to the next internal
node of STT and to choose the next outgoing
edge according to the corresponding character of
Y . After repositioning, we start matching the new
characters of S on STT , i.e., we read characters
SŒi CMSS;T Œi ��; SŒi CMSS;T Œi �C 1�; : : : until
such an extension becomes impossible in STT .
We call this phase of the algorithm the matching
phase. Note that no character of S that has been
read during the repositioning phase of MSS;T ŒiC

1� will be read again during the repositioning
phase of MSS;T ŒiCk� with k > 1: it follows that
every position j of S is consumed at most twice,
once in the matching phase of some MSS;T Œi �

with i � j and once in the repositioning phase
of some MSS;T Œk� with i < k < j . Since
every mismatch can be charged to the position
of which it concludes the matching statistics, the
total number of mismatches encountered by the
algorithm is bounded by the length of S .

These algorithms can be adapted to com-
pute the shortest unique substring array
SUSS Œ1 : : : n�, which stores at index i the length
of the shortest substring of S that occurs only at
position i [33]. The average of the matching
statistics vector can be used to estimate the
cross-entropy of the probability distributions
of two stationary, ergodic, stochastic processes
with finite memory that generated S and T [11].
Moreover, a number of compositional similarity
measures between two strings S and T can be
computed by scanning S and by simultaneously
navigating STT as in matching statistics: this
has the advantage of building and annotating
the suffix tree of just the shortest string [30].
Matching statistics on a suitably annotated suffix
tree of T allows one also to approximate the
probability that S was generated by the same
variable-length Markov process that produced
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T , another measure of similarity not based on
sequence alignment [3].

Top-Down in the Suffix-Link Tree
A number of statistical applications require to
annotate the nodes of STS with empirical prob-
abilities rather than with raw frequencies. The
empirical probability pS .W / of a string W is
essentially the number of its occurrences fS .W /

divided by the maximum number of occurrences
that W can have in a string of length jS j D n.
This number cannot exceed n�jW jC1, but it also
depends on the number of overlaps that W has
with itself, i.e., on the number of proper borders
of W : thus, we set pS .W / D fS .W /=b.W /,
where b.W / is the length of the shortest period
of W . Note that pS can change inside an edge
of ST. However, if we are interested only in the
empirical probability of nodes of ST, we can
compute all such values in overall linear time, by
mapping the longest-border computation in the
KMP algorithm onto a depth-first navigation of
the suffix-link tree [5].

The exact computation of the variance of the
frequency of a string W in S can be itself mapped
onto the computation of the longest proper bor-
der of W . Under suitable statistical assumptions,
computing the expectation and variance of the
frequency of all right-maximal substrings of S

suffices to detect all substrings of S with anoma-
lous frequency: it is thus possible to discover all
statistically frequent and rare substrings of S in
overall linear time [5].

Any Order
A single pass over all nodes of ST in any order,
coupled with a number of checks on the children
and on the Weiner links of each node, suffices
to solve a number of string analysis problems in
linear time.

A string W is a maximal unique match
(MUM) between two strings S and T if it occurs
exactly once in S and exactly once in T and if
neither aW nor Wb occur in both S and T for any
fa; bg � ˙ (for simplicity, we disregard cases in
which W occurs at the beginning or at the end of a
string) [14]. Clearly W must be a right-maximal
substring of U D S#T $, where # and $ are

separators not belonging to ˙ . Therefore, we just
need to iterate over every node v of STU in any
order, checking the following conditions: (1) v

has exactly two leaves as children; (2) the suffixes
that correspond to such leaves start before and
after position jS j C 1 in U , respectively; and
(3) v has two Weiner links. A similar approach
extends to MUMs of more than two strings, as
well as to maximal (not necessarily unique) exact
matches between two strings and to the maximal
repeats [7] and the minimal absent words of a
single string [16].

Symmetrically, it is easy to detect the MUMs
of two strings S and T by a linear scan of the
suffix array of U D S#T $ and of the correspond-
ing LCP array. Indeed, a MUM corresponds to
an interval .i; i C 1/ of size two in SAU such
that LCPU Œi � < LCPU Œi C 1�, LCPU Œi C 2� <

LCPU Œi C 1�, U ŒSAU Œi � � 1� ¤ U ŒSAU Œi C

1� � 1�, and SAU Œi � < jS j C 1 < SAU Œi C

1�. Similar criteria allow one to detect maximal
repeats, supermaximal repeats [14], and maximal
exact matches [1].

String Depth Annotation
Assume that every node v of STS is annotated
with j`.v/j. Recall that the shortest unique sub-
string array SUSS Œ1 : : : n� is such that SUSS Œi �

is the length of the shortest substring of S that oc-
curs only at position i . Since SŒi : : : iCSUSŒi ��

1� D W a where a 2 ˙ , since locus.W a/ is
a leaf v, and since locus.W / D parent.v/,
traversing the nodes of ST in any order suffices
to compute SUSŒi � for every i . String depth an-
notations, coupled with a traversal of the nodes of
ST in any order, suffice also to compute measures
of compositional complexity of S , like the total
number of distinct substrings, possibly of a fixed
length k.

Frequency Annotation
Recall that fS .W / is the number of occurrences
of string W in S . Assume that we want to
compute p.ajW / D fS .W a/=fS .W / for all sub-
strings W of S and for all characters a 2 ˙ such
that Wa is a substring of S . Such values are called
conditional probabilities. Clearly p.ajW / D 1 if
W ends in the middle of an edge of STS : it is thus
sufficient to compute conditional probabilities
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for the nodes of ST, and this can be done by
traversing the nodes of ST in any order and by
accessing their children.

String Depth and Frequency Annotation
Assume that every node v of STS is also anno-
tated with the number of leaves in the subtree
rooted at v. Then, traversing the nodes of ST
in any order allows one to compute the longest
substring of S that repeats at least � times, or
the most frequent string of length at least � , for

any user-specified threshold � . String depth and
frequency annotations, coupled with a traversal
of the nodes of ST in any order, allow one also
to compute the number of distinct substrings that
occur � times in S , for every frequency � in a
user-specified range.

Given a substring W of S , let right.W /

be the set of characters that occur in S after
W . More formally, right.W / D fa 2 ˙ W

fS .W a/ > 0g. The kth order empirical entropy
of S is defined as follows:

H.S; k/ D
1

jS j

X

W 2˙k

X

a2right.W /

fS .W a/ log

�
fS .W /

fS .W a/

�

To compute H.S; k/, it suffices again to traverse
the nodes of STS in any order, to check whether
j`.v/j D k, and to cumulate the contribution
of v to H.S; k/ by reading the frequency of
its children. Strings of length k that end in the
middle of an edge of ST do not contribute to
H.S; k/.

In a similar fashion, given a string S on
alphabet ˙ , let S be a vector indexed by all
strings in ˙k for a fixed k > 0, such that SŒW �

contains the frequency of string W in S . We
call S the k-mer composition vector of string
S . Given two strings S and T , assume that
we want to compute a function �.S; T / that
depends only on N D

P
W 2˙k f .SŒW �; TŒW �/,

DS D
P

W 2˙k g.SŒW �/, and DT DP
W 2˙k h.TŒW �/, where f , g, and h are user-

specified functions. �.S; T / if often called k-
mer kernel in text classification. It is possible
to compute �.S; T / in overall linear time by
traversing the nodes of the generalized suffix tree
of S and T in any order. A similar traversal
of ST allows one to compute �.S; T / on
composition vectors that are indexed by all
possible substrings, of any length. In practice
the frequencies used in composition vectors are
normalized by their expected values under IID
or Markov probability distributions: a number of
kernels based on such normalized counts can still
be computed in overall linear time by traversing
the nodes of ST in any order [6].

Positional Annotations
Given two strings S and T , the longest string W

that occurs in both S and T is clearly a right-
maximal substring of the concatenation U D

S#T $, where # and $ are separators not belong-
ing to ˙ . Consider thus STU , and assume that
every node v is annotated with j`.v/j and with
a bit flag.v/ set to one iff the subtree rooted
at v contains at least one leaf that starts before
position jS jC1 in U and at least one leaf starting
after position jS j C 1 in U . Such annotation can
be carried out in a bottom-up traversal of ST.
We can compute W by iterating over the nodes
v 2 ST with flag.v/ D 1 and by cumulating
the maximum of the lengths of the encountered
labels. The set of all common substrings between
S and T is the set of all prefixes of the labels
of nodes v 2 ST such that flag.v/ D 1 and
flag.w/ D 0 for every child w of v. This
approach generalizes immediately to more than
two strings, and it allows one to compute the
length of the longest substring common to at least
� strings in a collection of k strings in O.kjU j/

time and space. More advanced approaches solve
this problem in O.jU j/ time [8].

Applications

The primitives discussed above find application
in a wide set of domains. A list of the most salient
ones includes exact and approximate string
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searching, string compression, statistical pattern
discovery, alignment-free string comparison,
string kernels in learning theory, sequence
analysis, and assembly in bioinformatics.
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Problem Definition

Given a directed graph (digraph) G.V; E/ with
a set of vertices V and a set of edges E, the
Sugiyama algorithm solves the problem of find-
ing a 2D hierarchical drawing of G subject to the
following readability requirements:

(a) Vertices are drawn on horizontal lines
without overlapping; each line represents
a level in the hierarchy; all edges point
downwards.

(b) Short-span edges (i.e., edges between adja-
cent levels) are drawn with straight lines.

(c) Long-span edges (i.e., edges between nonad-
jacent levels) are drawn as close to straight
lines as possible.

(d) The number of edge crossings is the mini-
mum.

(e) Vertices connected to each other are placed as
close to each other as possible.

(f) The layout of edges coming into (or going out
of) a vertex is balanced, i.e., edges are evenly
spaced around a common target (or source)
vertex.

Requirements (a) and (b) are easy to meet
and they are imposed as mandatory basic
drawing rules. Requirements (c)–(f) are much
harder to satisfy and typically they are met
approximately [1, 4, 11].

Key Results

Sugiyama et al. propose a four-step procedure
for finding a hierarchical drawing of a digraph
subject to the readability requirements listed
above. It is known as the Sugiyama algorithm,
the Sugiyama method, or the Sugiyama
framework [19]. The steps of the Sugiyama
framework are illustrated in Fig. 1.

The Sugiyama Framework
Step 1: Preparatory step for transforming the

input digraph G into a proper hierarchy.

http://dl.acm.org/citation.cfm?id=545381.545469
http://dl.acm.org/citation.cfm?id=545381.545469
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Step 1.1 Step 1.2 Step 1.3

Step 2 Step 3 Step 4

Sugiyama Algorithm, Fig. 1 Illustration of the steps of the Sugiyama framework

Step 1.1: Transform the input digraph G into
a directed acyclic graph (dag) by reversing
the direction of some edges.

Step 1.2: Transform the dag into a multilevel
digraph, called a hierarchy, by partitioning
V into l levels (or layers) V1, V2, : : : ; Vl

such that for each edge e D .v; w/ 2 E

if v 2 Vi then w 2 ViC1. Levels are
drawn on horizontal lines which determine
the y�coordinates of the vertices.

Step 1.3 Transform the hierarchy into a
proper hierarchy by introducing dummy
vertices along long-span edges; one
dummy vertex at each crossing of a long-
span edge with a level.

Step 2: For each level Vi , specify a linear
order �i of the vertices in Vi with the goal
of minimizing the total number of edge
crossing.

Step 3: Determine the x�coordinates of the
vertices subject to requirements (c), (e), and
(f) while preserving the linear order in the
levels.

Step 4: Draw G in a 2D drawing area where
dummy vertices are removed and the long-
span edges are restored.

Steps 1.3 and 4 are trivial as computational
problems. Steps 1.1 and 1.2 can be solved easily
if the only readability requirements are those
listed above. However, some sensible additional
requirements can turn Steps 1.1 and 1.2 into dif-
ficult combinatorial optimization problems. For
example, if we want to minimize the number
of reversed edges at Step 1.1, then we need
to solve the MINIMUM FEEDBACK ARC SET

problem which is NP-hard [12]. Similarly, if we
impose upper bounds on both the number of
levels and the number of vertices per level, then
the problem in Step 1.2, known as the layering
problem, becomes NP-complete [4].

Following the work of Sugiyama et al., two
types of solutions to the layering problem have
been proposed in the research literature. The
first type of layer assignment algorithm is list-
scheduling algorithms (adapted from the area
of static precedence-constrained multiprocessor
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scheduling) which produce layer assignments
with either the minimum number of levels
or a specified maximum number of vertices
per level [4]. These include the longest-
path algorithm [13] and the Coffman-Graham
algorithm [3] as well as the proposed by
Nikolov et al. [15] MinWidth and StretchWidth
heuristics which take into account the dummy
vertices. The second type of algorithm employs
network simplex and branch-and-cut techniques,
respectively, for minimizing the number of
dummy vertices with or without constraints on
the number of levels and the number of vertices
per level [9, 10].

Steps 2 and 3 are already hard to solve with
the readability requirements listed above. It has
also been suggested to precede Step 2 by an edge
concentration or edge bundling step for achieving
a more readable drawing [14, 16]. The other key
results in the work of Sugiyama et al., besides
defining the four-step framework, are efficient
heuristics for Steps 2 and 3, respectively.

Reduction of the Number of Edge
Crossings
Consider a proper hierarchy G.V; E;L/ with a
set of vertices V D fv1; v2; : : : ; vng, a set of
edges E D fe1; e2; : : : ; emg, and a partitioning
L D fV1; V2; : : : ; Vlg of the vertex set V into
l levels (the result of Step 1.3). Let �i W Vi !

f1; 2; : : : jVi jg be a linear order of the vertices
in level Vi and let Si be the set of all possible
orders �i . The problem at Step 2 of the Sugiyama
algorithm is to find a set of linear orders � D

f�1; �2; : : : ; �lg 2 S1�S2� : : :�Sl such that the
total number of edge crossings is the minimum.
Let K.G; �/ be the total number of edge cross-
ings for a hierarchy G and a set of linear orders
� , and let K.Vi ; ViC1; �i ; �iC1/ be the number of

edge crossings between layers Vi and ViC1 with
linear orders �i and �iC1, respectively.

The algorithm, proposed by Sugiyama et al.
for Step 2, is a heuristic which consists in ini-
tially choosing a random order �1 for the ver-
tices in level V1 and then repeatedly executing
the following five-step procedure, called Down-
Up, until either � does not change or an ini-
tially given maximum number of iterations is
reached.

The Down-Up Procedure
Step A: i  1.
Step B: With a fixed linear order �i , find

a linear order �iC1 which minimizes
K.Vi ; ViC1; �i ; �iC1/.

Step C: If i < n � 1, then i  i C 1 and go to
Step B. Otherwise, go to Step D.

Step D: With a fixed linear order �iC1,
find a linear order �i which minimizes
K.Vi ; ViC1; �i ; �iC1/.

Step E: If i > 1, then i  i � 1 and go to Step
D. Otherwise, stop.

Both Step B and Step D involve minimizing
the number of edge crossings between two
adjacent layers with the linear order in one
of them being fixed. This problem is known
as the ONE-SIDED CROSSING MINIMIZATION

(OSCM) problem, which has been shown to
be NP-hard [5]. Based on previous work by
Warfield [20], Sugiyama et al. show how OSCM
can be reduced to the MINIMUM FEEDBACK

SET problem and propose a heuristic method,
called the barycentric method, for solving it.
Let A D .aij / be the adjacency matrix of G.
In essence, with a fixed linear order �i , the
barycentric method orders the vertices in level
ViC1 in the increasing order of their barycenters
Bj , defined with Eq. (1).

Bj D

jVi jX

kD1

akj �i .vk/=

jVi jX

kD1

akj ; j 2 f1; 2; : : : ; jViC1jg (1)

Sugiyama et al. evaluate the Down-Up procedure
experimentally with 800 randomly generated

hierarchies as well as with five hierarchies
from practical applications. Their conclusion is
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that the proposed heuristic is effective. It was
observed that in most cases the Down-Up proce-
dure requires a single iteration. Reportedly, the
heuristic was successfully extended for the case
when vertices in each level are partitioned into
subsets where the vertices in each subset must be
arranged adjacently.

Step 2 is probably the best studied part of the
Sugiyama framework. Numerous improvements
to the original technique as well as alternative
algorithms for crossing minimization have been
proposed since the introduction of the Sugiyama
framework [1, 4, 5, 7, 9, 11]. Notable among them
is the 3-approximation median method proposed
by Eades and Wormald [5] for solving the OSCM
problem. Having the order of the vertices in level
Vi fixed, the median method consists of placing
each vertex in level ViC1 at a position which
corresponds to the median of the positions of its
neighbors in level Vi . Since the median method
is an approximation algorithm, it guarantees to
find a solution without edge crossings if such
exists.

Determination of x-Coordinates of
Vertices
For Step 3 of their framework, Sugiyama et al.
propose a version of the Down-Up procedure
with the barycenter of a vertex based on the x-
coordinates of the connected to it vertices in an
adjacent level. Consider the down part of the
Down-Up procedure (the up part is symmetrical).
If the x-coordinates of the vertices in level Vi are
known, the barycenters B�

j of the vertices in level
ViC1 are defined with Eq. (2).

B�
j D

jVi jX

kD1

akj x.vk/=

jVi jX

kD1

akj ;

j 2 f1; 2; : : : ; jViC1jg (2)

The x-coordinates of the vertices in level
ViC1 are determined according to their priority.
The highest priority has the dummy vertices
(introduced in Step 1.3), and the priority of
each other vertex in level ViC1 is the number
of vertices in level Vi connected to it. The x-

coordinate of each vertex vj 2 ViC1 is the integer
number which is the closest to B�

j available
horizontal position (without changing the linear
order from Step 2 and without displacing already
placed vertices with higher priority). In finding
this position, it is allowed to displace vertices
with a priority lower than the priority of vj ,
where this displacement should be as little as
possible.

Sugiyama et al. evaluate the effectiveness of
this method for improving the readability re-
quirements (c), (e), and (f) experimentally. Re-
portedly, they have extended their heuristic for
the case when the dimensions of the vertices
are not insignificant. Both the Step 2 and the
Step 3 heuristics were successfully applied to a
hierarchy with more than 500 vertices.

Alternative algorithms for Step 3 have been
proposed by Gansner et al. [9], Eades et al. [6],
and Sander [17]. Probably, the best solution for
Step 3 to date is the O.jV j/ algorithm of Brandes
and Köpf [2]. It assigns x-coordinates to vertices
by computing four extreme vertex alignments
which are then combined into a final layout with
at most two bends per edge.

Applications

Hierarchical graph drawings are useful for pro-
viding insight into hierarchical structures in com-
plex systems. In recent years, the Sugiyama al-
gorithm has found an important application for
visual analysis of large social and biological
networks [8, 18].
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Problem Definition

In the 1970s, sequence alignment was introduced
to demonstrate the similarity of the sequences of
genes and proteins [12]. A DNA sequence is a
finite sequence over four nucleotides – adenine,
guanine, cytosine, and thymine, whereas a pro-
tein sequence is over 20 amino acids. Homolo-
gous proteins have similar biological functions.
Since they evolve from a common ancestral se-
quence, the sequences of homologous proteins
and their encoding genes are often highly similar.
Therefore, the DNA or amino acid sequence of
a protein is often aligned with the sequences
of well-studied proteins to infer the biological
functions of the protein.

Formally, an alignment of two sequences, S

and T , on an alphabet B is a two-row matrix with
the following properties:
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1. The letters in S are listed in order, interspersed
with space symbols “–,” in a row, where “–”
represents the fact that a letter is missing at a
position.

2. The letters in T are listed in the other row in
the same manner.

3. Each column does not contain two “–.”

An alignment of S and T poses a model of
the evolution from their least common ancestral
sequence to themselves. An alignment is scored
using a scoring matrix that has a score for every
pair of letters in B [ f–g. The score of an align-
ment is defined to be the sum of the scores of the
pairs of letters appearing in the columns of the
alignment.

Proteins often have multiple functions. Two
proteins having a common function often have
one or several highly similar regions in their DNA
and amino acid sequences. Such “conserved”
regions are found by solving the local alignment
problem:

Input: Two sequences S D s1s2 : : : sm and T D

t1t2 � � � tn on an alphabet.
Find: Two subsequences S 0 D si siC1 � � � sj (i �

j ) and T 0 D tktkC1 � � � tl (k � l)
such that the alignment score of S 0 and T 0 is
as large as possible.

The alignments between their subsequences are
called local alignments of S and T .

A dynamic programming approach takes
quadratic time to solve the local alignment
problem [13]. Unfortunately, it is not fast enough
for homology search against a database with
millions of DNA or protein sequences. Therefore,
a filtration technique was adopted to design fast
algorithms for homology search in the 1990s
[1], by which good local alignments between
two sequences are found by first identifying
short consecutive matches of a specified length
between the sequences, called seed hits, and then
extending them to obtain good local alignments.

The filtration technique has a dilemma over
sensitivity and speed. Employing a long seed will
miss some good local alignments between two
sequences, decreasing sensitivity; on the other
hand, using a short seed will waste time on

extending many seed hits into local alignments
that are not biologically meaningful, resulting in
low speed.

In PatternHunter [10], Ma, Tromp, and Li
introduced the idea of optimized spaced seeds to
achieve good balance between the sensitivity and
speed of the filtration approach. PatternHunter by
default looks for nucleotide match in 11 positions
in every region of 18 bases long, specified by the
string 111  1  1  1  11  111, to trigger
the process of local alignment. Such hit patterns,
called spaced seeds, led to surprisingly higher
sensitivity as well as speed than the consecutive
seed 11111111111 that has the same number
of match positions [10]. Moreover, sensitivity
can further be improved by employing multiple
spaced seeds that are longer than 18 bases [8,14].
This motivates the study of how to find the
optimal spaced seeds of given length and weight
[2–5, 7].

Key Results

A spaced seed Q can be represented by a string
of 1’s and ’s, where 1’s give the match po-
sitions in a seed hit. The number of 1’s in Q

is called its weight, denoted by wQ; the length
of the corresponding string is called its length,
denoted by LQ. The relative positions in Q are
denoted by RP.Q/. For example, for Q D

111  1  1  1  11  111, RP.Q/ D

f0; 1; 2; 4; 7; 9; 12; 13; 15; 16; 17g.
An alignment containing no –’s is called a un-

gapped alignment. A local ungapped alignment
can be modeled as a 0-1 sequence by translating
match columns (containing two identical letters)
into 1’s and mismatch columns into 0’s. Hence,
a hit of Q identifies an alignment if the relative
positions of Q match 1’s in a region in the
corresponding 0-1 string of the alignment.

Assume match occurs independently with
probability p at a position in a local ungapped
alignment. The sensitivity of Q in detecting a
local alignment of n columns of two sequences
with identity p is then defined to be the
probability that Q hits a Bernoulli random
sequence, called a uniform region, in which 1
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and 0 appear with probability p and .1 � p/,
respectively. A spaced seed is optimal for
aligning sequences with identity p of length
n if it has the largest hit probability over a
uniform region of length n in which 1 appears
with probability p at a position.

A straightforward method for identifying op-
timal spaced seeds is to exhaustively examine all
the spaced seeds of given length and weight by
keeping the largest sensitivity (or hit probability)
over a uniform region. Unfortunately, the sensi-
tivity of a spaced seed is unlikely computable in
polynomial time.

Theorem 1 Computing the sensitivity of a
spaced seed over a uniform region is NP-hard.

The hit probability of a spaced seed over a
uniform region can be computed using a dynamic
programming approach [7] or using recurrence
relations [4,5]. Not surprisingly, these approaches
become impractical for identifying long spaced
seeds, because their complexities are an exponen-
tial function in the difference of the length and
weight of spaced seeds under consideration. Here
a simple polynomial-time approximation scheme
is presented.

WISESAMPLE ALGORITHM

Input: A spaced seed Q, a positive integer n, 0 < p < 1, and � > 0.
Find: An estimate of hit probability Q in a uniform region of length n in which

bit 1 appears at a position with probability p.

Initialize an array A: AŒi� 0 for j D 1; 2; : : : ; n � LQ;
N  d6��2n2 log ne;
Repeats N times

RŒi� 1 for i 2 RP.Q/;
RŒi� 1 with probability p for i 2 f1; 2; : : : ; ng �RP.Q/;
For i D 1; 2; : : : ; L � LQ

If Q does not hit the subregion RŒ1; i C LQ � 1�

AŒi � AŒi�C 1;

Output pwQ

�
1CN �1

Pn�LQ

j D1 nj

�
.

Theorem 2 Let Q be a spaced seed and its hit
probability be x on a uniform region with identity
p of length n. WISESAMPLE outputs an estimate
y of x on input Q, n, p, and � > such that jy �
xj � �x with high probability.

Let Q be a spaced seed and R a uniform region
with identity p of length n. Following convention
in renewal theory, Q hits R at position k if and
only if RŒk � LQ C ij C 1� D 1 for all 1 � j �

wQ. Let Ak be the event that Q hits R at position
k and NAk be the complement event of Ak . Then
the probability fk that Q first hits R at the k-th
position is:

fk D PrŒ NA0
NA1 � � � NAk�2Ak�1�:

The hit probability Qn.p/ of Q on R is equal to:

Qn.p/ D PrŒA0 [ A1 [ � � � [ An�1�:

When seed hits are extended into local align-
ments, two seed hits will give one local alignment
if they overlap. Therefore, the sensitivity of a
spaced seed is closely related to the number of
its nonoverlapping hits in a uniform region. A
nonoverlapping hit of a spaced seed is a recurrent
event with the following convention: If a hit at
position k is selected as a nonoverlapping hit,
then the next nonoverlapping hit is the first hit at
or after position k C LQ.

The average distance, �Q, between two suc-
cessive nonoverlapping hits of Q is defined to be

�Q D
X

j �LQ

jf j :
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A spaced seed is nonuniform if g:c:d:.RP.Q// D

1.

Theorem 3 For any nonuniform spaced seed Q,

�Q �

wQX

j D1

p�j C .LQ � wq/

� .1 � p/
�
p2�wQ � 1

�
=p:

Buhler et al. [3] proved that for any spaced
seed Q, there are two constants ˛Q and �Q

that are independent of n such that limn!1.1 �

Qn.p//=
�
˛Q�Q

�
D 1, where �Q is the largest

eigenvalue of the transition matrix of a Markov
chain model constructed from Q.

Theorem 4 For the consecutive seed B of
weight w,

1
Pw

j D1 p�j � wC 1

� �B � 1 �
1

Pw
j D1.p�j C pj �1/ � w

:

For a spaced seed Q,

1 �
1

�Q � LQ C 1
� �Q � 1 �

1

�Q

:

If LQ < .1 � p/
�
p2�wQ � 1

�
=p C 1, by

Theorems 3 and 4, �Q � �B . This implies that
Q has a larger hit probability than the consecutive
seed of the same weight in a long uniform region
with identity p.

The detailed proofs of these results can be
found in [11, 15].

Applications

Spaced seed approach finds applications in
homology search and comparison of genome
sequences. PatternHunter was used to compare
the mouse and human genomes in the mouse
genome project [6]. MegaBLAST and BLASTZ
have adopted spaced seeds for homology search.
Recently, the approach has also been used in

mapping short reads into reference genome
sequences.

Interestingly, spaced seed design is found to
be closely related to optimal Golomb ruler design
[9].

Open Problems

It is proved to be NP-hard to identify the optimal
spaced seeds over a nonuniform region [8].

Open problem 1 Is it NP-hard to find the optimal
spaced seed of a given length and weight over a
uniform region?

It has been shown that a uniform spaced seed
has a lower hit probability than the consecutive
seed of the same weight over any uniform region
[4, 7]. But the following problem is open:

Open problem 2 For any nonuniform spaced seed
Q and 0 < p < 1, is there n.p; Q/ such that
Q has a larger hit probability than the consecutive
seed of the same weight over a uniform region with
identity p of length n � n.p; Q/?

Cross-References

�Local Alignment (with Affine Gap Weights)
�Local Alignment (with Concave Gap Weights)

Recommended Reading

1. Altschul SF, Gish W, Miller W, Myers EW, Lipman
DJ (1990) Basic local alignment search tool. J Mol
Biol 215(3):403–410

2. Brejovà B, Brown D, Vinar̆ T (2004) Optimal spaced
seeds for homologous coding regions. J Bioinformat-
ics Comput Biol 1:595–610

3. Buhler J, Keich U, Sun Y (2004) Designing seeds for
similarity search in genomic DNA. J Comput Syst Sci
70:342–363

4. Choi KP, Zhang LX (2004) Sensitivity analysis and
efficient method for identifying optimal spaced seeds.
J Comput Syst Sci 68:22–40

http://dx.doi.org/10.1007/978-1-4939-2864-4_207
http://dx.doi.org/10.1007/978-1-4939-2864-4_208


2170 Support Vector Machines

5. Choi KP, Zeng F, Zhang LX (2004) Good spaced
seeds for homology search. Bioinformatics 20:1053–
1059

6. Intl Mouse Genome Sequencing Consortium (2002)
Initial sequencing and comparative analysis of the
mouse genome. Nature 409:520–562

7. Keich U, Li M, Ma B, Tromp J (2004) On spaced
seeds for similarity search. Discret Appl Math 3:253–
263

8. Li M, Ma B, Kisman D, Tromp J (2004) Pattern-
Hunter II: highly sensitive and fast homology search.
J Bioinformatics Comput Biol 2:417–440

9. Ma B, Yao H (2009) Seed optimization for iid simi-
larities is no easier than optimal Golomb ruler design.
Inf Process Lett 109(19):1120–1124

10. Ma B, Tromp J, Li M (2002) PatternHunter: faster
and more sensitive homology search. Bioinformatics
18:440–445

11. Ma B, Li M (2007) On the complexity of the spaced
seeds. J Comput Syst Sci 73:1024–1034

12. Needleman SB, Wunsch CD (1970) A general
method applicable to the search for similarities in
the amino acid sequence of two proteins. J Mol Biol
48:443–453

13. Smith TF, Waterman MS (1980) Identification
of common molecular subsequences. J Mol Biol
147:195–197

14. Sun Y, Buhler J (2004) Designing multiple simultane-
ous seeds for DNA similarity search. In: Proceedings
RECOMB’04, 2004, San Diego, pp 76–85

15. Zhang LX (2007) Superiority of spaced seeds for
homology search. IEEE/ACM Trans Comput Biol
Bioinformatics (TCBB) 4:496–505

Support Vector Machines

Nello Cristianini1 and Elisa Ricci2
1Department of Engineering Mathematics, and
Computer Science, University of Bristol,
Bristol, UK
2Department of Electronic and Information
Engineering, University of Perugia, Perugia,
Italy

Keywords

Kernel Methods; Large Margin Methods; Sup-
port Vector Machines

Years and Authors of Summarized
Original Work

1992; Boser, Guyon, Vapnik

Problem Definition

In 1992 Vapnik and coworkers [1] proposed a
supervised algorithm for classification that has
since evolved into what are now known as support
vector machines (SVMs) [2]: a class of algo-
rithms for classification, regression, and other
applications that represent the current state of the
art in the field. Among the key innovations of
this method were the explicit use of convex op-
timization, statistical learning theory, and kernel
functions.

Classification
Given a training set S D f.x1; y1/; : : : ; .x`; y`/g

of data points xi from X � R
n with

corresponding labels yi from Y D f � 1;C1g,
generated from an unknown distribution, the task
of classification is to learn a function g:X ! Y

that correctly classifies new examples .x; y/

(i.e., such that g.x/ D y) generated from the
same underlying distribution as the training
data.

A good classifier should guarantee the
best possible generalization performance (e.g.,
the smallest error on unseen examples).
Statistical learning theory [3], from which
SVMs originated, provides a link between
the expected generalization error for a given
training set and a property of the classifier known
as its capacity. The SV algorithm effectively
regulates the capacity by considering the function
corresponding to the hyperplane that separates,
according to the labels, the given training
data and it is maximally distant from them
(maximal margin hyperplane). When no linear
separation is possible, a nonlinear mapping into
a higher dimensional feature space is realized.
The hyperplane found in the feature space
corresponds to a nonlinear decision boundary
in the input space.

Let � W I � R
n ! F � R

N be a
mapping from the input space I to the feature
space F (Fig. 1a). In the learning phase, the algo-
rithm finds a hyperplane defined by the equation
hw; �.xi /i D b such that the margin
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Support Vector Machines, Fig. 1 (a) The feature map simplifies the classification task. (b) A maximal margin
hyperplane with its support vectors highlighted

� D min1�i�` yi .hw; �.xi /i � b/

D min1�i�` yi g.xi / (1)

is maximized, where h; i denotes the inner prod-
uct, w is a `-dimensional vector of weights, and
b is a threshold.

The quantity .hw; �.xi /i � b/=jjwjj is the
signed distance of the sample xi from the hyper-
plane. When multiplied by the label yi , it gives
a positive value for correct classification and a
negative value for an uncorrect one. Given a new
data point x, a label is assigned evaluating the
decision function:

g.x/ D sign.hw; �.x/i � b/ (2)

Maximizing the Margin
For linearly separable classes, there exists a hy-
perplane .w; b/ such that

yi .hw; �.xi /i � b/ � �; i D 1; : : : ; `: (3)

Imposing jjwjj2 D 1, the choice of the hy-
perplane such that the margin is maximized is
equivalent to the following optimization problem:

maxw;b;� �

subject to yi .hw; �.xi /i � b/ � �; i D 1; : : : ; `;

(4)

and jjwjj2 D 1:

An efficient solution can be found in the dual
space by introducing the Lagrange multipliers ’i ,
i D 1; : : : ; `. The problem (4) can be recast in the
following dual form:

max
˛

X̀

iD1

˛i �
X̀

iD1

X̀

j D1

˛i ˛j yi yj h�.xi /; �.xj /i

(5)

subject to
X̀

iD1

˛i yi D 0; ˛i � 0:

This formulation shows how the problem reduces
to a convex (quadratic) optimization task. A key
property of solutions ˛� of this kind of problems
is that they must satisfy the Karush-Kuhn-Tucker
(KKT) conditions that ensure that only a subset
of training examples needs to be associated to
a nonzero ’i . This property is called sparseness
of the SVM solution and is crucial in practical
applications.

In the solution ˛�, often only a subset of train-
ing examples is associated to nonzero ’i . These
are called support vectors and correspond to the
points that lie closest to the separating hyperplane
(Fig. 1b). For the maximal margin hyperplane, the
weight vector w� is given by a linear function of
the training points:

w�
X̀

iD1

˛�
i yi �.xi /: (6)
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Then the decision function (2) can equivalently
be expressed as

g.x/ D sign.
X̀

iD1

˛�
i yi h�.xi /; �.x/i � b/: (7)

For a support vector xi , it is hw�; �.xi /i�b D yi

from which the optimum bias b� can be
computed. However, it is better to average the
values obtained by considering all the support
vectors [2]. Both the quadratic programming
(QP) problem (5) and the decision function (7)
depend only on the dot product between
data points. The matrix of dot products with
elements Kij D K.xi ; xj / D h�.xi /; �.xj /i

is called the kernel matrix. In the case of linear
separation, we simply have K.xi ; xj / D hxi ; xj i,
but in general, one can use functions that
provide nonlinear decision boundaries. Widely
used kernels are the polynomial K.xi ; xj / D

.hxi ; xj i C 1/d or the Gaussian K.xi ; xj / D

e�
jjxi �xj jj

2

�2 where d and ¢ are user-defined
parameters.

Key Results

In the framework of learning from examples,
SVMs have shown several advantages compared
to traditional neural network models (which rep-
resented the state of the art in many classifica-
tion tasks up to 1992). The statistical motivation
for seeking the maximal margin solution is to
minimize an upper bound on the test error that
is independent of the number of dimensions and
inversely proportional to the separation margin
(and the sample size). This directly suggests
embedding of the data in a high-dimensional
space where a large separation margin can be
achieved; this can be done efficiently with ker-
nels using techniques from convex optimization.
The sparseness of the solution, implied by the
KKT conditions, adds to the efficiency of the
result.

The initial formulation of SVMs by Vapnik
and coworkers [1] has been extended by many

other researchers. Here we summarize some key
contributions.

Soft Margin
In the presence of noise the SV algorithm can be
subject to overfitting. In this case one needs to
tolerate some training errors in order to obtain a
better generalization power. This has led to the
development of the soft margin classifiers [4].
Introducing the slack variables �i � 0, optimal
class separation can be obtained by

minw;b�;
 �� C C
X̀

iD1

�i

subject to yi .hw; �.xi /i � b/ � � � �i ; �i � 0

(8)

i D 1; : : : ; ` and jjwjj2 D 1:

The constant C is user defined and controls the
trade-off between the maximization of the margin
and the number of classification errors. The dual
formulation is the same as (5) with the only
difference in the bound constraints (0 � ˛i �

C; i D 1; : : : ; `). The choice of soft margin
parameter is one of the two main design choices
(together with the kernel function) in applica-
tions. It is an elegant result [5] that the entire
set of solutions for all possible values of C can
be found with essentially the same computational
cost as finding a single solution: this set is often
called the regularization path.

Regression
A SV algorithm for regression, called support
vector regression (SVR), was proposed in 1996
[6]. A linear algorithm is used in the kernel-
induced feature space to construct a function
such that the training points are inside a tube of
given radius ©. As for classification the regression
function only depends on a subset of the training
data.

Speeding Up the Quadratic Program
Since the emergence of SVMs, many researchers
have developed techniques to effectively solve
the problem (5): a quite time-consuming task,



Support Vector Machines 2173

S

especially for large training sets. Most methods
decompose large-scale problems into a series of
smaller ones. The most widely used method is
that of Platt [7] and it is known as sequential
minimal optimization.

Kernel Methods
In SVMs, both the learning problem and the
decision function can be formulated only in terms
of dot products between data points. Other popu-
lar methods (i.e., principal component analysis,
canonical correlation analysis, fisher discrimi-
nant) have the same property. This fact has led to
a huge number of algorithms that effectively use
kernels to deal with nonlinear functions keeping
the same complexity as the linear case. They are
referred to as kernel methods [8, 9].

Choosing the Kernel
The main design choice when using SVMs is
the selection of an appropriate kernel function, a
problem of model selection that roughly relates
to the choice of a topology for a neural network.
It is a nontrivial result [10] that also this key
task can be translated into a convex optimization
problem (a semi-definite program) under general
conditions. A kernel can be optimally selected
from a kernel space resulting from all linear
combinations of a basic set of kernels.

Kernels for General Data
Kernels are not just useful tools to allow us to
deploy methods of linear statistics in a nonlinear
setting. They also allow us to apply them to
nonvectorial data: kernels have been designed to
operate on sequences, graphs, text, images, and
many other kinds of data [8].

Applications

Since their emergence, SVMs have been widely
used in a huge variety of applications. To give
some examples, good results have been obtained
in text categorization, handwritten character
recognition, and biosequence analysis.

Text Categorization
In automatic text categorization, text documents
are classified into a fixed number of predefined
categories based on their content. In the works
performed by Joachims [11] and Dumais et al.
[12], documents are represented by vectors with
the so-called bag-of-words approach used in the
information retrieval field. The distance between
two documents is given by the inner product
between the corresponding vectors. Experiments
on the collection of Reuters news stories showed
good results for SVMs compared to other classi-
fication methods.

Handwritten Character Recognition
This is the first real-world task on which SVMs
were tested. In particular two publicly available
data sets (USPS and NIST) have been considered
since they are usually used for benchmarking
classifiers. A lot of experiments, mainly sum-
marized in [13], were performed which showed
that SVMs can perform as well as other complex
systems without incorporating any detailed prior
knowledge about the task.

Bioinformatics
SVMs have been widely used also in bioinformat-
ics. For example, Jaakkola and Haussler [14] ap-
plied SVMs to the problem of protein homology
detection, i.e., the task of relating new protein se-
quences to proteins whose properties are already
known. Brown et al. [15] describe a successful
use of SVMs for the automatic categorization of
gene expression data from DNA microarrays.

URL to Code

Many free software implementations of SVMs
are available at the website

• www.support-vector.net/software.html

Two in particular deserve a special mention for
their efficiency:

http://www.support-vector.net/software.html
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• SVMlight: Joachims T. Making large-scale
SVM learning practical. In: Schölkopf B,
Burges CJC, and Smola AJ (eds) Advances
in Kernel Methods Support Vector Learning,
MIT Press, 1999. Software available at http://
svmlight.joachims.org

• LIBSVM: Chang CC, and Lin CJ, LIBSVM:
a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm
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Problem Definition

Surface reconstruction, here, is the problem of
producing a piecewise-linear representation of a
two-dimensional surface S in R

3, given as input
a set P of point samples from the surface. Very
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Surface Reconstruction, Fig. 1 The medial axis of an
object; the Voronoi diagram of a set of samples from
the object boundary; the set of polar balls, with those

inside the object shaded; the corresponding cells of the
weighted Voronoi diagram, again with those inside the
object shaded

sparse sets of point samples clearly do not convey
much about S , so in order to prove correctness,
we need to assume that the sample P is some-
how sufficiently dense. The minimum required
density could vary across the surface, with more
detailed areas requiring denser sampling. This
idea is captured in the following definition [2].
Let S be a two-dimensional surface in R

3. The
medial axis of S is the closure of the set of
points that have more than one nearest point on
S ; a two-dimensional example is shown in Fig. 1,
top left.

Definition 1 The local feature size f .x/ at a
point x is the minimum distance from x to the
medial axis of S .

The distance from the medial axis to the surface is
zero at a sharp feature such as a corner or a crease,
so we usually assume that S is smooth. The
algorithms described here make the following �-

sampling assumption: the minimum distance, at
any surface point x, to the nearest sample point
is at most �f .x/, for some small constant �. This
leads to algorithms that are provably correct in
the following sense.

INPUT: A point set P that is an �-sample from
a smooth surface S without boundary.

OUTPUT: A piecewise-linear manifold without
boundary, homeomorphic to S , that everywhere
lies within distance O.�f .x// of S . The mono-
graph [7] is an excellent reference for this line of
research.

Key Results

One key idea is that in the neighborhood of any
point p 2 P sampled from S , the surface is
well approximated by a plane. Specifically, for
any surface point x closer to p than to any other
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sample, the distance of x from the tangent plane
at p is O.�f .x//, as is the difference between the
surface normal at x and the surface normal at p

[2] (with the corrected proof [3]). Another key
idea is that some subset of the Voronoi vertices of
P approximates the medial axis of S , as in Fig. 1,
top right.

Crust Algorithm
The crust algorithm [2] approximates the me-
dial axis with a subset of the three-dimensional
Voronoi vertices, called the poles. Each sample
point in p 2 P selects the vertex of its Voronoi
cell farthest from p as its first pole and the vertex
farthest in the opposite direction as its second. We
then eliminate any Delaunay triangle all of whose
circumspheres contain a pole; this is easy to im-
plement by computing the Delaunay triangulation
of the set P augmented with the set of poles and
eliminating any output triangle adjacent to a pole.
A subset of the remaining surface triangles can
then be selected as the piecewise-linear output
surface.

Cocone Algorithm
The cocone algorithm [4] provides a simpler way
of selecting a set of surface Delaunay triangles,
requiring only one Voronoi diagram computation.
It relies on the fact that the direction vector from
a sample p 2 P to its first pole is within O.�/

of the surface normal at p, under the �-sampling
assumption. We define the cocone at p as the
complement of a double cone, such that the angle
between the cone surface and this approximate
normal vector is at least 
�
=8. We consider the
intersection of the cocone at p with the Voronoi
cell of p; the Delaunay triangles dual to any
edge in this intersection are marked as potential
surface triangles. Triangles marked by all three
of their vertices are included in the set of surface
triangles.

Powercrust Algorithm
While it is easy in theory to select a subset of
the surface triangles to form a piecewise-linear
output surface, it can be difficult in practice when
the sampling density fails to meet the assumption,
as is inevitable at sharp features. The power crust

algorithm [5] eliminates this issue by producing a
piecewise-linear output surface. The Voronoi ball
centered at a pole is the ball with its nearest input
samples on the boundary; see Fig. 1, lower left.
We begin by labeling the Voronoi balls of all of
the poles either as inside or outside the object
bounded by S , using an iterative algorithm. We
then compute the weighted Voronoi diagram, also
known as the power diagram, of these polar
Voronoi balls. Any Voronoi face separating the
cell of an inner pole from the cell of an outer
pole is output as part of the surface (Fig. 1, lower
right). The faces of the piecewise-linear output
surface are convex polygons but not in general
triangles.

Noisy Samples
When the input sample points have noise, not
every pole will be near the medial axis. Nonethe-
less, if the level of noise is everywhere small
relative to the local feature size f , some subset of
Voronoi vertices will still approximate the medial
axis. In [8], this idea is developed into a provably
correct algorithm. In addition to the �-sampling
assumption, we need to assume that the noise
level is O.�2f .x// and that the distance from
any sample p to the kth nearest sample p0 is
O.�f .x//. This allows us to recognize a Voronoi
vertex of p as a pole only when it is significantly
farther from p than the k-nearest neighbors of p.
These poles are then labeled as either inner or
outer. This algorithm produces a triangulation of
the boundary of the union of the inner polar balls
as the output surface.

Complexity
The complexity of all of these algorithms de-
pends on the complexity of the Voronoi diagram.
While in general the Voronoi diagram of n points
in R

3 might have complexity O.n2/, Attali, Bois-
sonnat, and Lietier [6] proved that the complexity
of the Voronoi diagram for points distributed
uniformly on a nondegenerate smooth surface
in R

3 is O.n lg n/. Another idea, employed by
Funke and Ramos [9] and advanced by Cheng
et al. [12], is to replace the Voronoi diagram with
a less computationally expensive structure to get
an O.n lg n/ algorithm.
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Applications

Interest in this problem was motivated by the
advent of laser-range and LiDAR scanners [10],
which produce depth maps sampled by point
clouds. It is often reasonable to assume noise-free
surface samples, since there are preprocessing
methods, such as moving least squares (MLS)
[1], that attract noisy point clouds onto nearby
surfaces; there has also been theoretical work
on MLS. MLS, or simply local plane-fitting,
can be used to produce a normal vector at each
sample point. Another common assumption is
that the normal vectors can be consistently ori-
ented. Poisson surface reconstruction [11] is an
optimization technique that constructs manifold
surfaces from possibly noisy points with nor-
mals. Because of its very efficient implementa-
tions, it is currently the most popular method in
practice.

Open Problems

Subsequent work in surface reconstruction, both
in computer graphics and in computational geom-
etry, has focused on the identification and recon-
struction of sharp features and then using them to
construct surfaces that are non-manifold. Proving
that the complexity of the Voronoi diagram of
points distributed on a generic smooth surface
with noise or with boundary is o.n2/ remains
open.

URLs to Code and Data Sets

There is code available for the cocone algo-
rithm (http://web.cse.ohio-state.edu/~tamaldey/
cocone.html), with several subsequent variants.
There is also code for the power crust algorithm
(http://www.cs.ucdavis.edu/~amenta/powercrust.
html). There is a set of benchmark data sets for
surface reconstruction (http://www.cs.utah.edu/~
bergerm/recon_bench).
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Problem Definition

Design verification is the process of taking a
design and checking that it works correctly. More
specifically, every design verification paradigm
has three components [6]: (1) a language for
specifying the design in an unambiguous way, (2)
a language for specifying properties that are to be
checked of the design, and (3) a checking pro-
cedure, which determines whether the properties
hold off the design.

The verification problem is very general: it
arises in low-level designs, e.g., checking that a
combinational circuit correctly implements arith-
metic, as well as high-level designs, e.g., check-
ing that a library written in high-level language
correctly implements an abstract data type.

Hardware Verification

The verification of hardware designs is
particularly challenging. Verification is difficult
in part because the large number of concurrent
operations make it very difficult to conceive of
and construct all possible corner cases, e.g., one
unit initiating a transaction at the same cycle
as another receiving an exception. In addition,

software models used for simulation run orders
of several magnitude slower than the final chip
operates at. Faulty hardware is usually impossible
to correct after fabrication, which means that the
cost of a defect is very high, since it takes several
months to go through the process of designing
and fabricating new hardware. Wile et al. [15]
provide a comprehensive account of hardware
verification.

State Explosion

Since the number of state-holding elements in
digital hardware is bounded, the number of pos-
sible states that the design can be in is infinite, so
complete automated verification is, in principle,
possible. However, the number of states that a
hardware design can reach from the initial state
can be exponential in the size of the design; this
phenomenon is referred to as “state explosion.”
In particular, algorithms for verifying hardware
that explicitly record visited states, e.g., in a hash
table, have very high time complexity, making
them infeasible for all but the smallest designs.
The problem of complete hardware verification is
known to be PSPACE-hard, which means that any
approach must be based on heuristics.

Hardware Model

A hardware design is formally described using
circuits [4, 8]. A combinational circuit consists
of Boolean combinational elements connected
by wires. The Boolean combinational elements
are gates and primary inputs. Gates come in
three types: NOT, AND, and OR. The NOT gate
functions as follows: it takes a single Boolean-
valued input and produces a single Boolean-
valued output which takes value 0 if the input
is 1 and 1 if the input is 0. The AND gate takes
two Boolean-valued inputs and produce a single
output; the output is 1 if both inputs are 1 and
0 otherwise. The OR gate is similar to AND,
except that its output is 1 if one or both inputs
are 1. A circuit can be represented as a directed
graph where the nodes represent the gates and
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wires represent edges in the direction of signal
flow.

A circuit can be represented by a directed
graph where the nodes represent the gates and
primary inputs, and edges represent wires in the
direction of signal flow. Circuits are required
to be acyclic, that is, there is no cycle of
gates. The absence of cycles implies that a
Boolean assignment to the primary inputs can
be propagated through the gates in topological
order.

A sequential circuit extends the notion of
circuit described above by adding stateful ele-
ments. Specifically, a sequential circuit includes
registers. Each register has a single input, which
is referred to as its next-state input.

A valuation on a set V is a function whose
domain is V . A state in a sequential circuit is a
Boolean-valued valuation on the set of registers.
An input to a sequential circuit is a Boolean-
valued valuation on the set of primary inputs.
Given a state s and an input i , the logic gates
in the circuit uniquely define a Boolean-valued
valuation t to the set of register inputs – this is
referred to as the next state of the circuit at state s

under input i and say s transitions to t on input i .
It is convenient to denote such a transition by

s
i
�! t .
A sequential circuit can naturally be identified

with a finite state machine (FSM), which is a
graph defined over the set of all states; an edge
.s; t/ exists in the FSM graph if there exists an
input i , state s transitions to t on input i .

Invariant Checking

An invariant is a set of states; informally, the term
is used to refer to a set of states that are “good”
in some sense. One common way to specify an
invariant is to write a Boolean formula on the
register variables – the states which satisfy the
formula are precisely the states in the invariant.

Given states r and s, define r to be reach-
able from s if there is a sequence of inputs

i0; i1; : : : ; in�1 such that s D s0

i0
�! s1

i1
�!

� � � sn D t . A fundamental problem in hardware

verification is the following: given an invariant A,
and a state s, does there exists a state r reachable
from s which is not in A?

Key Results

Symbolic model checking (SMC) is a heuristic
approach to hardware verification. It is based
on the idea that rather than representing and
manipulating states one at a time, it is more
efficient to use symbolic expressions to represent
and manipulate sets of states.

A key idea in SMC is that given a set
A � f0; 1gn, a Boolean function A can be
constructed such that fA: f0; 1gn ! f0; 1g given
by f .’1; : : : ; ’n/ D 1 iff .’1; : : : ; ’n/ 2 A. Note
that given a characteristic function fA, A can be
obtained and vice versa.

There are many ways in which a Boolean func-
tion can be represented: formulas in DNF, general
Boolean formulas, combinational circuits, etc. In
addition to an efficient representation for state
sets, the ability to perform fast computations with
sets of states is also important, for example, in
order to determine if an invariant holds, it is
required to compute the set of states reachable
from a given state. BDDs [2] are particularly
well suited to representing Boolean functions, as
they combine succinct representation with effi-
cient manipulation; they are the data structure
underlying SMC.

Image Computation

A key computation that arises in verification is
determining the image of a set of states A in a
design D – the image of A is the set of all states
t for which there exists a state in A and an input
i such that state s transitions to t under input i .
The image of A is denoted by Img.A/.

The transition relation of a design is the set
of .s; i; t/ triples such that s transitions to t

under input i . Let the design have n registers and
m primary inputs; then the transition relation is
subset of f0; 1gn � f0; 1gm � f0; 1gn.
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Conceptually, the transition relation com-
pletely captures the dynamics of the design –
given an initial state, and input sequence, the
evolution of the design is completely determined
by the transition relation.

Since the transition relation is a subset of
f0; 1gnCmCn, it has a characteristic function
fT W f0; 1gnCmCn ! f0; 1g. View fT as
being defined over the variables x0; : : : ; xn�1,
i0; : : : ; im�1, y0; : : : ; yn�1. Let the set of states
A be represented by the function fA defined
over variables x0; : : : ; xn�1. Then the following
identity holds

Img.A/ D .9x0 � 9xn�19i0 � � � 9im�1/.fA � fT /:

The identity holds because .“0; : : : ; “n�1/ satis-
fies the right-hand side expression exactly when
there are values ’0; : : : ; ’n�1, and š0; : : : ; šm�1

such that .’0; : : : ; ’n�1/ 2 A and the state
.’0; : : : ; ’n�1/ transitions to .“0; : : : ; “n�1/ on
input .š0; : : : ; šm�1/.

Invariant Checking

The set of all states reachable from a given set A

is the limit as n tends to infinity of the sequence
of states R0; R1; : : : defined below:

R0D A

RiC1D Ri [ Img.Ri /:

Since for all i , Ri � RiC1 and the number of
distinct state sets is finite, the limit is reached in
some finite number of steps, i.e., for some n, it
must be that RnC1 D Rn. It is straightforward
to show that the limit is exactly equal to the set
of states reachable from A – the basic idea is to
inductively construct input sequences that lead
from states in A to Ri and to show that state
t is reachable from a state in A under an input
sequence of length l , then t must be in Rl .

Given BDDs F and G representing func-
tions f and g, respectively, there is an algorithm
based on dynamic programming for performing

conjunction, i.e., for computing the BDD for
f � g. The algorithm has polynomial complexity,
specifically O.jF j � jGj/, where jBj denotes the
number of nodes in the BDD B . There are sim-
ilar algorithms for performing disjunction .f C

g/ and computing cofactors .fx and fx0/. To-
gether these yield an algorithm for the opera-
tion of existential quantification, since .9x/f D

fx C f 0
x .

It is straightforward to build BDDs for fA and
fT W A is typically given using a propositional
formula, and the BDD for fA can be built up
using functions for conjunction, disjunction, and
negation. The BDD for fT is built using from the
BDDs for the next-state nodes, over the register
and primary input variables. Since the only gate
types are AND, OR, and NOT, the BDD can
be built using the standard BDD operators for
conjunction, disjunction, and negation. Let the
next-state functions be f0; : : : ; fn�1; then fT is
.y0 D f0/ � .y1 D f1/ � � � � � .yn�1 D fn�1/, and
so the BDD for fT can be constructed using the
usual BDD operators.

Since the image computation operation can be
expressed in terms of fA and FT , and conjunction
and existential quantification operations, it can be
performed using BDDs. The computation of Ri

involves an image operation, and a disjunction,
and since BDDs are canonical, the test for fixed
point is trivial.

Applications

The primary application of the technique
described above is for checking properties of
hardware designs. These properties can be
invariants described using propositional formulae
over the register variables, in which case the
approach above is directly applicable. More
generally, properties can be expressed in a
temporal logic [5], specifically through formulae
which express acceptable sequences of outputs
and transitions.

CTL is one common temporal logic. A CTL
formula is given by the following grammar: if x

is a variable corresponding to a register, then x
is a CTL formula; otherwise, if ® and § are CTL
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formulas, then so as .:¥/, .¥_§/; .¥^§/; .¥!

§/, and EX¥; E¥U §, and EG¥.
A CTL formula is interpreted as being true at

a state; a formula x is true at a state if that register
is 1 in that state. Propositional connectives are
handled in the standard way, e.g., a state satisfies
a formula (¥ ^ §) if it satisfies both ® and §.
A state s satisfies EG¥ if there exists a state t

such that s transitions to, and t satisfies ®. A state
s satisfies E¥U § if there exists a sequence of
inputs i0; : : : ; in leading through state s0 D s,
s1; s2; : : : ; snC1 such that snC1 satisfies §, and all
states si ; i � n C 1 satisfy ®. A state s satisfies
EG¥ if there exists an infinite sequence of inputs
i0; i1; : : : leading through state s0 D s; s1; s2; : : :

such that all states si satisfy ®.
CTL formulas can be checked by a

straightforward extension of the technique
described above for invariant checking. One
approach is to compute the set of states
in the design satisfying subformulas of ®,
starting from the subformulas at the bottom
of the parse tree for ®. A minor difference
between invariant checking and this approach
is that the latter relies on pre-image com-
putation; the pre-image of A is the set of
all states t for which there exists an input
i such that t transitions under i to a state
in A.

Symbolic analysis can also be used to check
the equivalence of two designs by forming a new
design which operates the two initial designs in
parallel and has a single output that is set to
1 if the two initial designs differ [14]. In prac-
tice this approach is too inefficient to be useful,
and techniques which rely more on identifying
common substructures across designs are more
successful.

The complement of the set of reachable states
can be used to identify parts of the design which
are redundant and to propagate don’t care con-
ditions from the input of the design to internal
nodes [12].

Many of the ideas in SMC can be applied to
software verification – the basic idea is to “fini-
tize” the problem, e.g., by considering integers
to lie in a restricted range or setting an a priori
bound on the size of arrays [7].

Experimental Results

Many enhancements have been made to the basic
approach described above. For example, the BDD
for the entire transition relation can grow large,
so partitioned transition relations [11] are used
instead; these are based on the observation that
9x:.f � g/ D f � 9x:g, in the special case that f

is independent of x. Another optimization is the
use of don’t cares; for example, when computing
the image of A, the BDD for fT can be sim-
plified with respect to transitions originating at
A0 [13]. Techniques based on SAT have enjoyed
great success recently. These approaches case the
verification problem in terms of satisfiability of a
CNF formula. They tend to be used for bounded
checks, i.e., determining that a given invariant
holds on all input sequences of length k [1].
Approaches based on transformation-based ver-
ification complement symbolic model checking
by simplifying the design prior to verification.
These simplifications typically remove complex-
ity that was added for performance rather than
functionality, e.g., pipeline registers.

The original paper by Clarke et al. [3] re-
ported results on a toy example, which could
be described in a few dozen lines of a high-
level language. Currently, the most sophisticated
model checking tool for which published re-
sults are ready is SixthSense, developed at IBM
[10].

A large number of papers have been published
on applying SMC to academic and industrial
designs. Many report success on designs with
an astronomical number of states – these results
become less impressive when taking into consid-
eration the fact that a design with n registers has
2n states.

It is very difficult to define the complexity of a
design. One measure is the number of registers in
the design. Realistically, a hundred registers is at
the limit of design complexity that can be handled
using symbolic model checking. There are cases
of designs with many more registers that have
been successfully verified with symbolic model
checking, but these registers are invariably part
of a very regular structure, such as a memory
array.
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Data Sets

The SMV system described in [9] has been up-
dated, and its latest incarnation nuSMV (http://
nusmv.irst.itc.it/) includes a number of examples.

The VIS (http://embedded.eecs.berkeley.edu/
pubs/downloads/vis) system from UC Berkeley
and UC Boulder also includes a large collec-
tion of verification problems, ranging from sim-
ple hardware circuits to complex multiprocessor
cache systems.

The SIS (http://embedded.eecs.berkeley.edu/
pubs/downloads/sis/) system from UC Berkeley
is used for logic synthesis. It comes with a num-
ber of sequential circuits that have been used for
benchmarking symbolic reachability analysis.
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Problem Definition

Symmetry is one of the most important aes-
thetic criteria in graph drawing that clearly re-
veals the structure and properties of a graph.
Many graphs in Graph Theory textbooks are often
symmetric.

A symmetry of a drawing D of a graph G

induces an automorphism � of the graph G,
a permutation of the vertex set that preserves
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adjacency. If an automorphism � can be dis-
played as a symmetry in a drawing of the graph
G, then it is called a geometric automorphism [6].
A geometric automorphism � of a planar graph
G is a planar automorphism, if there is a planar
drawing of G which displays �. Note that not
every automorphism is geometric, and not every
geometric automorphism is planar.

In general, algorithms for constructing
symmetric drawings of graphs have two
steps:

1. Symmetry finding step: Find the geometric
automorphisms of a graph

2. Symmetry drawing step: Draw the graph dis-
playing these automorphisms as symmetries.

Note that the first step is more difficult than
the second step. For example, finding automor-
phism of a graph is isomorphism-hard; however
finding geometric automorphism of a graph is
NP-hard in general [18]. For planar graphs, com-
puting isomorphism (therefore, automorphism)
of a graph can be solved in linear time [7, 17].
However, finding the best plane embedding of
planar graphs that displays the maximum number
of symmetries in a drawing of a planar graph
is challenging, because a planar graph can have
exponential number of possible plane embed-
dings.

Furthermore, the product of two geometric
automorphisms is not necessarily geometric, be-
cause they may be displayed by different draw-
ings. A subgroup A of the automorphism group
of a graph is a geometric automorphism group, if
there is a single drawing of the graph that displays
every element of A. Therefore, to construct a
maximally symmetric drawing of a graph, one
needs to compute a maximum size geometric
automorphism group for the graph. Therefore,
the main research problem for Symmetric Graph
Drawing can be defined as below.

Symmetric Graph Drawing Problem
Input: A graph G.
Output: A maximum size geometric automorphism
group A of G, A symmetric drawing D of G that
displays all elements of A.

Key Results

There are two types of symmetry in two-
dimensional drawings: rotational symmetry
(i.e., a rotation about a point) and axial (or
reflectional) symmetry (i.e., a reflection about
an axis). The order of an automorphism ˛ is the
smallest positive integer k such that ˛k equals
the identity I . A group-theoretic characterization
of geometric automorphism group was given by
Eades and Lin [6] as follows:

• A group of order 2 generated by an axial
automorphism;

• A cyclic group of order k generated by a
rotational automorphism;

• A dihedral group of order 2k generated by
a rotational automorphism of order k and an
axial automorphism. In this case there are k

axial symmetries.

In two dimensions, the problem of determin-
ing whether a given graph can be drawn sym-
metrically is NP-complete in general [18]. Exact
algorithms are devised based on Branch and Cut
approach by Buchheim and Junger [3] and a
group-theoretic approach by Abelson et al. [1].
Linear-time algorithms are available for trees and
outerplanar graphs by Manning and Atallah [19,
20] and for series-parallel digraphs by Hong et
al. [14]. Linear-time algorithms are presented for
maximally symmetric drawings of triconnected
planar graphs by Hong et al. [15] and for bicon-
nected, oneconnected, and disconnected planar
graphs by Hong and Eades [10, 12, 13]. Hong
and Nagamochi presented a linear-time algorithm
for constructing a symmetric convex drawings of
internally trconnected planar graphs [16]. For a
survey on symmetric drawings of graphs in two
dimensions, see [5].

In three dimensions, the problem of determin-
ing whether a graph can be drawn symmetrically
in three dimensions is NP-hard in general [8].
A group-theoretic characterization of symmetric
drawing in n-dimensions and exact algorithms
based on a group-theoretic approach are given
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by Abelson et al. [1]. Linear-time algorithms
are available for trees by Hong and Eades [9],
series-parallel digraphs by Hong et al. [11], and
biconnected and oneconnected planar graphs [8].

In this article, we review a linear-time
algorithm for constructing maximally symmetric
straight-line drawings of triconnected planar
graphs by Hong, McKay, and Eades [15].
The following theorem summarizes their main
results.

Theorem 1 There is a linear-time algorithm that
constructs straight-line drawings of maximally
symmetric planar drawings of triconnected pla-
nar graphs.

Computing a Planar Automorphism Group
of Maximum Size
We first review the first step of the algorithm, i.e.,
symmetry finding step for triconnected planar
graphs [15]. A geometric automorphism group A

of a graph G is a planar automorphism group,
if there is a planar drawing of the graph that
displays every element of A.

Suppose that A is a group acting on a set X .
The stabilizer of x 2 X , denoted by stabA.x/,
is fg 2 A j g.x/ D xg, and the orbit of x,
denoted by orbitA.x/, is fg.x/ j g 2 Ag. We
say that g 2 A fixes x 2 X if g.x/ D x; if g fixes
x for every g 2 A, then A fixes x. If X 0 � X

and �.x0/ 2 X 0 for all x0 2 X 0, then g fixes X 0.
Automorphisms g1; g2; : : : ; gk are called gener-
ators of hg1; g2; : : : ; gki; the group consists of all
permutations formed from products of elements
of fg1; g2; : : : ; gkg.

Hong et al. [15] characterize planar automor-
phisms as below.

Lemma 1 Let G be a triconnected planar graph.
An automorphism of G is a planar automorphism
if and only if it fixes a face of G.

To find the best plane embedding to compute
a planar automorphism group with a maximum
size, the algorithm uses the Stabilizer-Orbit theo-
rem in group theory [2].

Theorem 2 (Stabilizer-Orbit theorem) Sup-
pose that A is a group acting on a set X and let
x 2 X . Then jAj D jorbitA.x/j � jstabA.x/j.

The overall algorithm computing a maximum
size planar automorphism group of a triconnected
planar graph can be described as follows;

Algorithm Compute_Max_PAG

1. Find a plane embedding which has a maxi-
mum size planar automorphism group.

2. Perform “star triangulation” for the given em-
bedding.

3. Compute the generators of the planar auto-
morphism group of the new embedding.

The first step of Compute_Max_PAG uses
two applications of an algorithm of Fontet [7],
which computes the orbits on vertices of the (full)
automorphism group of a triconnected planar
graph in linear time.

Theorem 3 Fontet’s algorithm [7] can be used
to find a plane embedding of a triconnected graph
G such that the corresponding planar automor-
phism group is maximized in linear time.
Proof Based on Lemma 1, we take a dual graph
of G� of G and compute the orbits of G� using
Fontet’s algorithm [7]. Choose an orbit O of
minimum size; the stabilizer O has the maximum
size, by Theorem 2. Taking a face f 2 O as
the outer face of the plane embedding of G, we
have an embedding that displays the maximum
number of symmetries.

Once the outer face and thus the plane
embedding is chosen, the second step of
Compute_Max_PAG performs star triangu-
lation, i.e., triangulate each internal face f

by inserting a new vertex v in the face and
joining v to each vertex of f . Clearly, this
step takes linear time and simplifies the drawing
algorithm.

The final step of Compute_Max_PAG is to
compute the planar automorphism group for star-
triangulated plane graph. Since an explicit repre-
sentation of the planar automorphism group may
take more than linear space, for a more com-
pact representation, an algorithm for computing
minimal generators was devised. For details on
a linear-time algorithm for computing generators
of a planar automorphism group, see [15].
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Overview of the Drawing Algorithm
We now review a linear-time drawing algorithm
for constructing a symmetric drawing of a tricon-
nected planar graph that achieves that maximum
with straight-line edges. The main characteris-
tic of symmetric drawings is the repetition of
congruent drawings of isomorphic subgraphs. To
exploit this property, the drawing algorithm uses
a divide and conquer approach: (i) divide the
graph into isomorphic subgraphs; (ii) compute a
drawing for a subgraph; and (iii) merge multiple
copies of drawings of subgraphs to construct a
symmetric drawing of the whole graph. Overall,
each step of the drawing algorithm runs in linear
time.

The input of the drawing algorithm is a
triconnected planar graph with fixed plane em-
bedding and a specified outer face, which maxi-
mize the number of symmetries. The symmetric
drawing algorithm takes a different approach
for each type of planar automorphism group:
i.e., cyclic case, one axial case, and dihedral
case.

The Cyclic Case
Here we describe how to display k rotational
symmetries. Note that after star triangulation,
there is a central vertex c, which is fixed by the
planar automorphism group for k � 3. If k D 2,
there exits either a central vertex or a central edge.
If there is a central edge, then we preprocess the
graph by inserting a dummy central vertex c into
the central edge with two dummy edges.

The rotational symmetric drawing algorithm
consists of three steps:

Algorithm Cyclic

1. Find_Wedge_Cyclic.
2. Draw_Wedge_Cyclic.
3. Merge_Wedges_Cyclic.

The first step is to find a subgraph wedge W ,
which takes linear time:

Algorithm Find_Wedge_Cyclic
1. Find the central vertex c.
2. Find a shortest path P1, from c to a vertex v1

on the outer face, using breadth first search.
3. Find the path P2 which is a mapping of P1

under a minimal generator of the rotation.
4. Find the wedge W (see Fig. 1a), an induced

subgraph of G enclosed by the cycle formed
from P1, P2 and a path P0 along the outer face
from v1 to v2.

The second step, Draw_Wedge_Cyclic,
constructs a drawing D of the wedge W using
Algorithm CYN, the linear-time convex drawing
algorithm by Chiba et al. [4], such that P1, P2,
and P0 are drawn as straight lines. The input
to Algorithm CYN is an internally triconnected
plane graph G with given outer face S and
a straight-line drawing S� of S as a weakly
convex polygon, i.e., not every vertex of the outer
face needs to be at an apex (i.e., the interior
angle is less than 
) of the polygon. Algorithm
CYN chooses a vertex v and deletes it from G

together with incident edges and divides the
resulting graph G0 D G � v into the biconnected
components B1; B2; : : : ; Bp , p � 1. It defines a
convex polygon S�

i of the outer facial cycle Si of
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Symmetric Graph
Drawing, Fig. 2 Example
of (a) a fixed string of
diamonds and (b) !`
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each Bi and recursively applies the algorithm to
draw Bi with S�

i as outer boundary. For details,
see [4].

The last step, Merge_Wedges_Cyclic,
constructs a drawing of the whole graph G by
replicating the drawing D of W , k times. Note
that this merge step relies on the fact that P1 and
P2 are drawn as straight lines. See Fig. 1b.

It is clear that Algorithm Cyclic constructs
a straight-line drawing of a triconnected plane
graph which shows k rotational symmetry in
linear time.

One Axial Symmetry
Consider a drawing of a star-triangulated plane
graph with one axial symmetry. There are fixed
vertices, edges, and/or fixed faces on the axis;
we need to characterize the subgraph formed by
these.

A diamond is either a triangle or the 4-vertex
graph. A string of diamonds is a graph formed
from a path P D .v1; v2; : : : ; vk/, k � 2, by
a number (zero or greater) of “splitting” opera-
tions, as follows. If 1 � i � k � 1, then the
edge .vi ; viC1/ may be replaced by a diamond.
Alternatively, each of the end edges .v1; v2/ and
.vk�1; vk/ may be replaced by a triangle. Note
that a string of diamonds is basically a path
consisting of edges and diamonds; each end of
the path may be a triangle; see Fig. 2a.

To display a single axial symmetry, we need
two steps. First we identify the fixed string of di-
amonds; then use Algorithm Symmetric_CYN,
a modified version of Algorithm CYN. More for-

mally, the algorithm One_Axial is described
below.

Algorithm One_Axial

1. Find a fixed string of diamonds. Suppose that
!1; !2; : : : ; !k are the fixed edges and ver-
tices in the fixed string of diamonds, in order
from the outer face (!1 is on the outer face).
For each `, !` may be a vertex or an edge (see
Fig. 2b).

2. Choose a symmetric convex polygon S� for
the outer face S of G.

3. Symmetric_CYN(1; S�; G; y1).

The main ingredient in Algorithm One_Axi-
al is Algorithm Symmetric_CYN. To modify
Algorithm CYN to display a single axial sym-
metry, the following three conditions should be
satisfied:

• Choose the first vertex or edge on the fixed
string of diamonds !1 (see Fig. 3).

• Let D.Bi / be the drawing of Bi and ˛ be
the axial symmetry. Then, D.Bi / should be a
reflection of D.Bj /, where Bj D ˛.Bi /, i D

1; 2; : : : ; m and m D bp=2c: To satisfy this
condition, define S�

j to be the reflection of S�
i ,

i D 1; 2; : : : ; m. Then we apply Algorithm
CYN for Bi ; i D 1; 2; : : : ; m and construct
D.Bj / using a reflection of D.Bi /.

• If p is odd, then D.BmC1/ should display
axial symmetry: To satisfy this condi-
tion, we recursively apply Algorithm
Symmetric_CYN to BmC1.
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Symmetric Graph Drawing, Fig. 3 Example of a symmetric version of CYN

Note that the position of !2 in Fig. 3 can
be chosen arbitrarily along the axis of symme-
try of S� within S�. This means that we can
specify the positions of the fixed vertices and
middle edges along the axis of symmetry a priori,
that is, as input to the algorithm. The Algo-
rithm Symmetric_CYN can be described as
below:

Algorithm Symmetric_CYN

input: `: index of vertex or middle edge on the
fixed string of diamonds.
input: S�: a weakly convex polygon of the
outer face of S of G.
input: G: a triangulated planar graph.
input: y`: a position on the axis of symmetry
for the fixed vertex or the fixed edge !`.

1. Delete !` from G together with edges incident
to !`. Divide the resulting graph G0 D G �

!` into the blocks B1; B2; : : : ; Bp , p � 1,
ordered anticlockwise around the outer face.
Let m D bp=2c.

2. Determine a convex polygon S�
i of the outer

facial cycle Si of each Bi such that Bi with
S�

i satisfy the conditions for convex drawing
algorithm CYN and S�

p�iC1 is a reflection of
S�

i .
3. For each i D 1 to m,

(a) Construct a drawing D.Bi / of Bi using
Algorithm CYN.

(b) Construct D.Bp�iC1/ as a reflection of
D.Bi /.

4. If p is odd, then construct a drawing
D.BmC1/ using Symmetric_CYN(` C

1; S�
mC1; BmC1, y`C1).

5. Merge the D.Bi / to form a drawing of G,
placing !` at y`.

Since Algorithm CYN [4] runs in linear time,
clearly Algorithm Symmetric_CYN and Algo-
rithm One_Axial takes linear time.

The Dihedral Case
We now review an algorithm for displaying a
dihedral group < �; ˛ >, where � is a rotation of
order k and ˛ is an axial automorphism. As with
the cyclic case, we assume that there is a central
vertex.

The drawing algorithm adopts the same strat-
egy as for the cyclic case: (i) divide the graph
into “wedges”; (ii) draw each wedge; and (iii)
merge the drawings of wedges to construct a
symmetric drawing of the whole graph. However,
the dihedral case is more difficult than the cyclic
case, because an axial symmetry in the dihedral
group can have fixed faces as well as fixed edges;
i.e., the boundary of a wedge may be a fixed string
of diamonds as in the one axial case. To achieve
dihedral symmetry, the axis of symmetry must be
the perpendicular bisector of the middle edge of
each diamond. This makes the merging operation
more difficult.

Consider a drawing of a triconnected planar
graph with a dihedral symmetry group of size 2k.
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There are k axial symmetries, with axes at angles
of 
i=k, 0 � i � k � 1, to the x axis, as in
Fig. 4a. Roughly speaking, a wedge is the area
between two adjacent axes, as in Fig. 4b. Note
that in these wedges, the boundaries P1 and P2

may be strings of diamonds. These may terminate
in a triangle.

As with the cyclic case, Algorithm Dihedral
has three steps: (i) Find_Wedge_Dihedral,
(ii) Draw_Wedge_Dihedral, and (iii)
Merge_Wedges_Dihedral.

The first step is to define the “wedge” sub-
graph by finding two fixed strings of diamonds.
Note that one can find the central vertex c and the
two fixed strings of diamonds P1 and P2 in linear
time using the generators of the group.

Algorithm Find_Wedge_Dihedral

1. Find the central vertex c.
2. Find a string of diamonds P1 that is fixed by

˛, from c to a vertex v or an edge e on the
outer face.

3. Traverse the outer face, clockwise from v (or
e) to the vertex v0 or edge e0 that is fixed by
��1˛�. Let P0 denote the path so traversed.

4. Find the string of diamonds P2 for ��1˛�,
from c to v0 (or e0).

5. Define the wedge W to be the subgraph en-
closed by P0, P1, and P2, including the ver-
tices and edges of P0, P1, and P2.

The second step, Draw_Wedge_Dihedral,
constructs a drawing of the wedge, which is the
most complicated step of the drawing algorithm.

This step must ensure that the middle edge of
each diamond on the boundary is orthogonal to
the axis of reflection.

Roughly speaking, the algorithm Draw_
Wedge_Dihedral runs as follows: (i) Find
all special diamonds of P1 and P2 that share
fixed vertices or fixed edges, and draw them first
using algorithm Draw_Special_Diamonds;
(ii) choose the positions of all the fixed vertices
of P1 and P2 that have not been drawn
so far; (iii) subdivide the wedge in various
ways to form “subwedges”; (iv) draw each of
these subwedges using Algorithms CYN and
Symmetric_CYN accordingly. For details,
see [15].

The final step, Algorithm Merge_Wedges_
Dihedral simply constructs a drawing for
the whole graph by merging the drawing D of
the wedge W . Clearly each step of Algorithm
Dihedral takes linear time.
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Problem Definition

Consider a communication network, modeled by
an n-vertex undirected unweighted graph G D

.V; E/, for some positive integer n. Each vertex
of G hosts a processor of unlimited computa-
tional power; the vertices have unique identity
numbers, and they communicate via the edges of
G by sending messages of size O.log n/ each.

In the synchronous setting, the communica-
tion occurs in discrete rounds, and a message
sent in the beginning of a round R arrives at
its destination before the round R ends. In the
asynchronous setting, each vertex maintains its
own clock, and clocks of distinct vertices may
disagree. It is assumed that each message sent (in
the asynchronous setting) arrives at its destination
within a certain time £ after it was sent, but the
value of £ is not known to the processors.

It is generally much easier to devise
algorithms that apply to the synchronous setting
(henceforth, synchronous algorithms) rather
than to the asynchronous one (henceforth,
asynchronous algorithms). In [1] Awerbuch
initiated the study of simulation techniques
that translate synchronous algorithms to
asynchronous ones. These simulation techniques
are called synchronizers.



2190 Synchronizers, Spanners

To devise the first synchronizers, Awer-
buch [1] constructed a certain graph partition
which is of its own interest. In particular,
Peleg and Schäffer noticed [8] that this graph
partition induces a subgraph with certain
interesting properties. They called this subgraph
a graph spanner. Formally, for a positive integer
parameter k, a k-spanner of a graph G D .V; E/

is a subgraph G0 D .V; H/, H � E, such that for
every edge e D .v; u/ 2 E, the distance between
the vertices v and u in H , dist0G.v; u/, is at
most k.

Key Results

Awerbuch devised three basic synchronizers,
called ’, “, and ”. The synchronizer ’ is the
simplest one; using it results in only a constant
overhead in time, but in a very significant
overhead in communication. Specifically, the
latter overhead is linear in the number of edges of
the underlying network. Unlike the synchronizer
’, the synchronizer “ requires a somewhat costly
initialization stage. In addition, using it results in
a significant time overhead (linear in the number
of vertices n), but it is more communication
efficient than ’. Specifically, its communication
overhead is linear in n.

Finally, the synchronizer ” represents a trade-
off between the synchronizers ’ and “. Specif-
ically, this synchronizer is parametrized by a
positive integer parameter k. When k is small,
then the synchronizer behaves similarly to the
synchronizer ’, and when k is large, it behaves
similarly to the synchronizer “. A particularly
important choice of k is k D log n. At this point
on the trade-off curve, the synchronizer ” has a
logarithmic in n time overhead and a linear in
n communication overhead. The synchronizer ”

has, however, a quite costly initialization stage.
The main result of [1] concerning spanners

is that for every k D 1; 2; : : :, and every n-
vertex unweighted undirected graph G D .V; E/,
there exists an O.k/-spanner with O.n1C1=k/

edges. (This result was explicated by Peleg and
Schäffer [8].)

Applications

Synchronizers are extensively used for con-
structing asynchronous algorithms. The first
applications of synchronizers are constructing
the breadth-first-search tree and computing
the maximum flow. These applications were
presented and analyzed by Awerbuch in [1]. Later
synchronizers were used for maximum matching
[10], for computing shortest paths [7], and for
other problems.

Graph spanners were found useful for a vari-
ety of applications in distributed computing. In
particular, some constructions of synchronizers
employ graph spanners [1, 9]. In addition, span-
ners were used for routing [4] and for computing
almost shortest paths in graphs [5].

Open Problems

Synchronizers with improved properties were de-
vised by Awerbuch and Peleg [3] and Awerbuch
et al. [2]. Both these synchronizers have poly-
logarithmic time and communication overheads.
However, the synchronizers of Awerbuch and
Peleg [3] require a large initialization time. (The
latter is at least linear in n.) On the other hand,
the synchronizers of [2] are randomized. A major
open problem is to obtain deterministic synchro-
nizers with polylogarithmic time and communi-
cation overheads and sublinear in n initialization
time. In addition, the degrees of the logarithm
in the polylogarithmic time and communication
overheads in synchronizers of [2, 3] are quite
large. Another important open problem is to con-
struct synchronizers with improved parameters.

In the area of spanners, spanners that distort
large distances to a significantly smaller extent
than they distort small distances were constructed
by Elkin and Peleg in [6]. These spanners fall
short from achieving a purely additive distortion.
Constructing spanners with a purely additive dis-
tortion is a major open problem.
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